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We propose a model of baryon and lepton number conserving interactions in which the

two states of a quark, a colored and electrically charged state and a colorless and electrically

neutral state, can transform into each other through the emission or absorption of a colored

and electrically charged gauge boson. A novel feature of the model is that the colorless and

electrically neutral quarks carry away the missing energy in decay processes as do neutrinos.
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I. INTRODUCTION

The known gauge bosons can be classified according to their color charge and electric charge

into four types:

1. Colorless and electrically neutral: photon and Z0.

2. Colorless and electrically charged: W±.

3. Colored and electrically neutral: gluons.

4. Colored and electrically charged: X and Y bosons.

All the known gauge bosons of the first, second and third types mediate the baryon and lepton

number conserving interactions, whereas the X and Y bosons of the fourth type, i.e., the colored

and electrically charged gauge bosons, mediate the baryon and lepton number violating interactions

[1, 2].

The question arises as to whether there exist the colored and electrically charged gauge bosons

which mediate the baryon and lepton number conserving interactions like the known gauge bosons

of the first, second and third types. In this paper, the possibility is explored of existence of such

colored and electrically charged gauge bosons.

In section II, we consider the various cases of transitions of a quark from one state to another with

the emission or absorption of a colored and electrically charged gauge boson. For the description of

the transitions with which we are to deal, we postulate the existence of the colorless and electrically

neutral quarks. In section III, we discuss the properties of the colorless and electrically neutral

quarks. In section IV, we construct a model of gauge invariant Lagrangian which involves the

newly introduced quark and gauge boson fields. In section V, we show the application of the model

to the problem of the measured K+ → π++ ‘missing energy’ branching ratio.

We shall hereafter denote by pc
′
c the state of a particle p, of which the color charge and electric

charge are c and c′e respectively, and denote by C0 colorless. For any color c, the relation c+c̄ = C0,

c̄ being the anti-c, holds .

II. QUARKS AND GAUGE BOSONS

Let us consider a transition of a quark from a colored and electrically charged state qe1c1 to another

state qe2c2 with the emission of a colored and electrically charged gauge boson bebcb , q
e1
c1 → qe2c2 + bebcb ,

and its reverse transition with the absorption of the gauge boson, qe2c2 + bebcb → qe1c1 :

qe1c1 � qe2c2 + bebcb , (1)
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where

c1 6= C0, e1 6= 0, (c1 = r, g, b, e1 = −1

3
, +

2

3
), (2)

cb 6= C0, eb 6= 0. (3)

It can easily be shown that in the interactions of the quark currents qe1c1 � qe2c2 mediated by

the colored and electrically charged gauge boson bebcb , the baryon and lepton numbers are strictly

conserved.

We shall now determine the color and electric charges of the gauge boson bebcb , and those of the

quark qe2c2 . The transitions (1) must satisfy the law of conservation of color and electric charges:

c1 = c2 + cb, e1 = e2 + eb, (4)

which gives

cb = c1 + c̄2, eb = e1 − e2. (5)

Substituting for cb and eb in (1) their values, we have

qe1c1 � qe2c2 + be1−e2c1+c̄2 . (6)

Since we are considering the case cb 6= C0, eb 6= 0, (i.e., c1 6= c2, e1 6= e2), and c1 6= C0, e1 6= 0, we

may consider four cases of equality and inequality between the c2 and C0, and e2 and 0:

Case I. When c1 6= c2 = C0 and e1 6= e2 = 0,

qe1c1 � q0
C0

+ be1c1 . (7)

Case II. When c1 6= c2 = C0 and e1 6= e2 6= 0,

qe1c1 � qe2C0
+ be1−e2c1 . (8)

Case III. When c1 6= c2 6= C0 and e1 6= e2 = 0,

qe1c1 � q0
c2 + be1c1+c̄2 . (9)

Case IV. When c1 6= c2 6= C0 and e1 6= e2 6= 0,

qe1c1 � qe2c2 + be1−e2c1+c̄2 . (10)

Each case will require considerable discussion and lead to many theories.

In this paper, we shall restrict ourselves to the first case, and construct a model of interactions

based on the first case: The transition of a quark from a colored and electrically charged state
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qe1c1 to a colorless and electrically neutral state q0
C0

with the emission of a colored and electrically

charged gauge boson be1c1 , and its reverse transition with the absorption of the gauge boson:

qe1c1 � q0
C0

+ be1c1 , (11)

which also mean that the colored and electrically charged quark qe1c1 and the colorless and electrically

neutral quark q0
C0

transform into each other through the emission or absorption of the colored and

electrically charged gauge boson be1c1 . Of course, in our case (11), the existence is postulated of

colorless and electrically neutral quarks. The extension of the transitions (11) to the cases of

involving anti-particles may be made as follows:

¯qe1c1 � ¯q0
C0

+ b̄e1c1 , qe1c1 + b̄e1c1 � q0
C0
, be1c1 � qe1c1 + ¯q0

C0
, ¯qe1c1 + be1c1 � ¯q0

C0
, (12)

etc., where Ā denotes the anti-particle of A.

It should be noted that the colored and electrically charged gauge boson be1c1 in (11) has the

same color and electric charges as the colored and electrically charged quark qe1c1 , i.e., bebcb = be1c1 , it

thus has the color charges r, g, b and the electric charges −1
3e, +2

3e.

The transitions (11) can be rewritten in the form

q
Q/e
i � κq +W

Q/e
i , (13)

where we have put κq = q0
C0

, W = b, i = c1, Q/e = e1. The (13) takes the form when q = u, c or

t, (Q/e = +2
3),

q
+ 2

3
i � κq +W

+ 2
3

i , (14)

and when q = d, s or b, (Q/e = −1
3),

q
− 1

3
i � κq +W

− 1
3

i . (15)

III. COLORLESS AND ELECTRICALLY NEUTRAL QUARKS

We may see from (14) and (15) that there can be six colorless and electrically neutral quarks,

which we shall call cen-quarks,

κq (q = u, c, t, d, s, b) : κu, κc, κt, κd, κs, κb, (16)

and six pairs of (q, κq): (u, κu), (c, κc), (t, κt), (d, κd), (s, κs), (b, κb).

Cen-quarks are colorless and electrically neutral quarks, whereas neutrinos are colorless and

electrically neutral leptons. Since cen-quarks have neither color charge nor electric charge, they
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participate neither in strong interactions nor in electromagnetic interactions. This means that

cen-quarks can carry away the ‘missing energy’ as do neutrinos.

Let us consider two kinds of transitions

q
Q/e
i � κq +W

Q/e
i , (17)

l− � νl +W−, (18)

where Q/e = +2
3 (q = u, c, t), Q/e = −1

3 (q = d, s, b), l = e, µ, τ . We may see that the transitions

(17) take the same form as the transitions (18): A colored and electrically charged quark loses its

color and electric charges completely through the emission of a colored and electrically charged

gauge boson, just as an electrically charged lepton loses its electric charge completely through

the emission of an electrically charged gauge boson. This suggests that the description of the

transitions of a quark (17) can be made in the same way as the transitions of a lepton (18), that

is, in the form of electroweak theory of leptons.

The cen-quarks must have spin 1
2 and baryon number 1

3 . To describe within the framework

of SU(2) × U(1) model, the left-handed cen-quarks have isospin 1
2 : Each left-handed colored and

electrically charged quark and its left-handed cen-quark have the same magnitude of isospin charge

but opposite in sign. Thus from the isospin charge T3

T3|q, L〉 =

 +1
2 |q, L〉 for q = u, c, t,

−1
2 |q, L〉 for q = d, s, b,

(19)

and Q
e = T3 + 1

2Y , the isospin charge T3 and hypercharge Y of each left-handed cen-quark are

T3|κq, L〉 =

 −1
2 |κq, L〉 for q = u, c, t,

+1
2 |κq, L〉 for q = d, s, b,

(20)

and

Y |κq, L〉 =

 +1|κq, L〉 for q = u, c, t,

−1|κq, L〉 for q = d, s, b.
(21)

Accordingly, quarks can be classified into four types and three generations:

u− type : u, c, t

κd − type : κd, κs, κb

κu − type : κu, κc, κt

d− type : d, s, b

(22)
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and

GI =


u

κd

κu

d

 , GII =


c

κs

κc

s

 , GIII =


t

κb

κt

b

 . (23)

We may see that cen-quarks resemble neutrinos in many respects. We utilize the resemblance

between them by determining the masses of cen-quarks from the mass conditions of neutrinos: We

assume that the mass of each cen-quark is either zero or very small in comparison to the mass of

the corresponding colored and electrically charged quark, i.e., mκq = 0 or mκq � mq.

IV. MODEL

Let us consider ten column vectors

ΨL
1i =



uLi

cLi

tLi

dLi

sLi

bLi


,ΨL

2i =



uLi

cLi

tLi

κLu

κLc

κLt


,ΨL

3i =



κLd

κLs

κLb

dLi

sLi

bLi


,ΨL

4 =



κLd

κLs

κLb

κLu

κLc

κLt


, (24)

where i = r, g, b, qLi = PLqi, κ
L
q = PLκq, (q = u, c, t, d, s, b), PL = 1−γ5

2 .

By introducing the 6× 6 isospin matrices Tjα (j = 1, 2, 3, α = 1, 2, 3, 4),

T1α =
1

2

 0 Uα

U †α 0

 , T2α =
1

2

 0 −iUα

iU †α 0

 , T3α =
1

2

 I 0

0 −I

 , (25)

the I being the 3× 3 unit matrix, the Uα’s 3× 3 unitary matrices, which satisfy the commutation

relations

[Tiα, Tjα] = iεijkTkα, (α : unsummed), (26)

and the 6× 6 diagonal hypercharge matrices Yα

Y1 =

 1
3I 0

0 1
3I

 , Y2 =

 1
3I 0

0 +I

 ,

Y3 =

 −I 0

0 1
3I

 , Y4 =

 −I 0

0 +I

 , (27)
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we may construct the Lagrangian, which is invariant under Tjα and Yα gauge transformations,

being of the form

L =
3∑
j=1

∑
i=r,g,b

iΨ̄L
jiγµD

µΨL
ji + iΨ̄L

4 γµD
µΨL

4

+
∑

q=u,c,t,d,s,b

∑
i=r,g,b

iq̄Ri γµD
µqRi +

∑
q=u,c,t,d,s,b

iκ̄Rq γµD
µκRq + L ′, (28)

where qRi = PRqi, κ
R
q = PRκq, (q = u, c, t, d, s, b), PR = 1+γ5

2 , the L ′ involves the terms of free

gauge fields and Higgs fields, and the covariant derivatives are defined as

DµΨL
1i = (∂µ +

3∑
j=1

igTj1W
µ
j1 + ig′

1

2
Y1B

µ)ΨL
1i, (29)

DµΨL
2i = (∂µ +

2∑
j=1

igTj2W
µ
j2i + igT32W

µ
32 + ig′

1

2
Y2B

µ)ΨL
2i, (30)

DµΨL
3i = (∂µ +

2∑
j=1

igTj3W
µ
j3i + igT33W

µ
33 + ig′

1

2
Y3B

µ)ΨL
3i, (31)

DµΨL
4 = (∂µ +

3∑
j=1

igTj4W
µ
j4 + ig′

1

2
Y4B

µ)ΨL
4 , (32)

DµqRi = (∂µ + ig′
2

3
Bµ)qRi , (q = u, c, t), (33)

DµqRi = (∂µ − ig′ 1
3
Bµ)qRi , (q = d, s, b), (34)

DµκRq = ∂µκRq . (35)

The terms ∑
i=r,g,b

iΨ̄L
1iγµD

µΨL
1i +

∑
q=u,c,t,d,s,b

∑
i=r,g,b

iq̄Ri γµD
µqRi (36)

are well-known. Newly introduced terms are

3∑
j=2

∑
i=r,g,b

iΨ̄L
jiγµD

µΨL
ji + iΨ̄L

4 γµD
µΨL

4 +
∑

q=u,c,t,d,s,b

iκ̄Rq γµD
µκRq + L ′′. (37)

Since the charged currents constructed out of ΨL
1i do not carry color charges, they are coupled not

to colored and electrically charged gauge bosons, but to colorless and electrically charged gauge

bosons like W±. Whereas, the charged currents constructed out of ΨL
2i or ΨL

3i carry color and

electric charges, and are coupled to colored and electrically charged gauge bosons.

The first term of (37) can be written in the form

3∑
j=2

∑
i=r,g,b

iΨ̄L
jiγµD

µΨL
ji =

3∑
j=2

∑
i=r,g,b

iΨ̄L
jiγµ∂

µΨL
ji + LIC + LIN , (38)
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where

LIC = −g
3∑
j=2

2∑
k=1

∑
i=r,g,b

Ψ̄L
jiγµTkjW

µ
kjiΨ

L
ji, (39)

LIN = −
3∑
j=2

∑
i=r,g,b

Ψ̄L
jiγµ(gT3jW

µ
3j + g′

1

2
YjB

µ)ΨL
ji. (40)

The LIC describes the interactons in which each current involving a cen-quark and a colored

and electrically charged quark is coupled to a colored and electrically charged gauge boson:

LIC = − g

2
√

2

∑
i=r,g,b

(Wµ
2iJ2iµ +Wµ†

2i J
†
2iµ +Wµ†

3i J3iµ +Wµ
3iJ
†
3iµ), (41)

where Wµ
2i = 1√

2
(Wµ

12i − iW
µ
22i), W

µ
3i = 1√

2
(Wµ

13i + iWµ
23i),

Jjiµ = 2Ψ̄L
jiγµHjΨ

L
ji, Hj =

 0 Uj

0 0

 . (42)

We shall denote the quanta of the field Wµ
2i and those of the field Wµ

3i by W
+ 2

3
i (or W+ 2

3 ) and W
− 1

3
i

(or W−
1
3 ) respectively. The LIC describes the processes such as

ui � κu +W
+ 2

3
i , di � κd +W

− 1
3

i , (43)

where i = r, g, b.

The LIN describes the interactions in which neutral currents of quarks are coupled to colorless

and electrically neutral gauge bosons:

LIN = −
3∑
j=2

∑
i=r,g,b

Ψ̄L
jiγµ(gT3W

µ
3j + g′

1

2
YjB

µ)ΨL
ji, (44)

where T3 ≡ T3j . By introducing Hermitian fields Zµj and Aµ

Wµ
3j = cos θjZ

µ
j + sin θjA

µ, (45)

Bµ = − sin θjZ
µ
j + cos θjA

µ, (46)

substituting for Wµ
3j and Bµ in (44) their values, we obtain

LIN = −
3∑
j=2

∑
i=r,g,b

Ψ̄L
jiγµ[gT3(cos θjZ

µ
j + sin θjA

µ)

+g′
1

2
Yj(− sin θjZ

µ
j + cos θjA

µ)]ΨL
ji

= −
3∑
j=2

∑
i=r,g,b

Ψ̄L
jiγµ[(g cos θjT3 − g′ sin θj

1

2
Yj)Z

µ
j

+(g sin θjT3 + g′ cos θj
1

2
Yj)A

µ]ΨL
ji. (47)
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Since
Qj
e = T3 + 1

2Yj and g sin θjT3 +g′ cos θj
1
2Yj = Qj , they agree if we take g sin θj = g′ cos θj = e.

Thus it becomes

LIN = −
3∑
j=2

∑
i=r,g,b

Ψ̄L
jiγµ[

g

cos θj
(T3 − sin2 θj

Qj
e

)Zµj +QjA
µ]ΨL

ji

= −
3∑
j=2

[
g

cos θj
(J

(T3)
µj − sin2 θj

J
(Qj)
µj

e
)Zµj + J

(Qj)
µj Aµ], (48)

where J
(T3)
µj =

∑
i=r,g,b Ψ̄L

jiγµT3ΨL
ji and J

(Qj)
µj =

∑
i=r,g,b Ψ̄L

jiγµQjΨ
L
ji.

From (41) and (48), we have

LIC + LIN = − g

2
√

2

∑
i=r,g,b

(Wµ
2iJ2iµ +Wµ†

2i J
†
2iµ +Wµ†

3i J3iµ +Wµ
3iJ
†
3iµ)

−
3∑
j=2

[
g

cos θj
(J

(T3)
µj − sin2 θj

J
(Qj)
µj

e
)Zµj + J

(Qj)
µj Aµ]. (49)

V. APPLICATION

It should be noted that cen-quarks can be produced in non-leptonic decays, and they can carry

away ‘missing energy’ as do neutrinos. Thus we must take into account the processes involving the

cen-quarks in non-leptonic weak interactions where missing energies occur.

For example, for the description of the rare kaon decay K+ → π++ ‘missing energy’, we must

take into account the following quark level processes:

(i) s̄i → d̄iνlν̄l (l = e, µ, τ), (50)

(ii) s̄i → d̄iκ
′
qκ̄
′
q (q = u, c, t, d, s, b), (51)

(iii)s̄i → d̄iκ
′
dκ̄
′
s, (52)

where i = r, g, b, and κ′d and κ′s are mixed states of κd, κs and κb. We may see that the process

(iii) is similar to the muon decay µ− → νµe
−ν̄e in many respects.

The interactions of the well-known processes (i) are mediated by the gauge bosons W± and Z0.

Whereas the interactions of (ii) and (iii) are mediated by the gauge bosons W−
1
3 ,

¯
W−

1
3 and Z0

3 .

We may infer from extremely short range of the interactions of (ii) and (iii) that the mass of the

gauge bosons W−
1
3 ,

¯
W−

1
3 and Z0

3 must be very massive.

The decay rate of K+ → π++ ‘missing energy’, i.e., Γ(K+ → π+ + Nothing), can be written

from (50), (51) and (52) as

Γ(K+ → π+ + Nothing) = Γ(i) + Γ(ii) + Γ(iii), (53)
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where

Γ(i) = Γ(K+ → π+νν̄)ν=νe,νµ,ντ , (54)

Γ(ii) = Γ(K+ → π+κ′κ̄′)κ′=κ′u,κ′c,κ′t,κ′d,κ′s,κ
′
b

= Γ(s̄i → d̄iκ
′κ̄′)κ′=κ′u,κ′c,κ′t,κ′d,κ′s,κ

′
b
, (55)

Γ(iii) = Γ(K+ → π+κ′dκ̄
′
s) = Γ(s̄i → d̄iκ

′
dκ̄
′
s). (56)

The terms among the Lagrangian terms in (49) responsible for the processes (ii) and (iii) are

LI3 = − g

2
√

2

∑
i=r,g,b

(Wµ†
3i J3iµ +Wµ

3iJ
†
3iµ)

−[
g

cos θ3
(J

(T3)
µ3 − sin2 θ3

J
(Q3)
µ3

e
)Zµ3 + J

(Q3)
µ3 Aµ], (57)

where

J3iµ = 2Ψ̄L
κγµU3ΨL

qi = 2Ψ̄L′
κ γµΨL

qi , (58)

where ΨL′
κ = U †3ΨL

κ , and

ΨL
κ =


κLd

κLs

κLb

 ,ΨL
qi =


dLi

sLi

bLi

 . (59)

In the limit m
W−

1
3
→∞, the W−

1
3 propagator reduces to

igµνm−2

W−
1
3
. (60)

Similarly, in the limit mZ0
3
→∞, the Z0

3 propagator reduces to

igµνm−2
Z0
3
. (61)

In the lowest order, the process (iii) has one internal W−
1
3 boson line, whereas each of the

processes (ii) has two internal W−
1
3 boson lines for the box diagram, or at least one internal W−

1
3

boson line plus one internal Z0
3 boson line for the Z0

3 -penguin diagrams. Thus from
g2W

m2

W
− 1

3

� 1

and
8g2W

cos2 θ3m2
Z0
3

� 1, we have

Γ(ii) � Γ(iii), (62)

and

Γ(K+ → π+ + Nothing) ≈ Γ(i) + Γ(iii). (63)
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From (57), we may construct the invariant amplitude of the lowest order for the process (iii)

which takes in the form

M ≈ −i
4g2
W

m2

W−
1
3

s̄Li γ
µκL′s κ̄

L′
d γµd

L
i , (64)

where gW = g

2
√

2
and

κL′s =
∑

κ=κLd ,κ
L
s ,κ

L
b

U †
3(sL,κ)

κ, κL′d =
∑

κ=κLd ,κ
L
s ,κ

L
b

U †
3(dL,κ)

κ. (65)

Assuming that U3 ≈ I, mκd ≈ 0, mκs ≈ 0, md � ms, and that the process (iii) is unaffected by

strong and electromagnetic interactions except some negligible higher order corrections, we have

from (64)

Γ(K+ → π+κ′dκ̄
′
s) ≈

g4
Wm

5
s

96π3m4

W−
1
3

, (66)

where g2
W ≈

1√
2
Gm2

W± well-known in electro-weak theory.

The (63) suggests that the branching ratio B(K+ → π+κ′dκ̄
′
s) can be determined by the dis-

crepancy between the measured K+ → π++ ‘missing energy’ branching ratio and the predicted

K+ → π+νν̄ branching ratio. Thus if the discrepancy is determined, from

B(K+ → π+κ′dκ̄
′
s) = τK+Γ(K+ → π+κ′dκ̄

′
s) ≈

τK+G2m4
W±m

5
s

192π3m4

W−
1
3

, (67)

we may calculate the mass of W−
1
3

m
W−

1
3
≈ (

τK+G2m4
W±m

5
s

192π3B(K+ → π+κ′dκ̄
′
s)

)
1
4 , (68)

where G ≈ 1.16639× 10−5GeV−2, mW± ≈ 80.399GeV, ms ≈ 100MeV, τK+ ≈ 1.238× 10−8s.

However, at the present stage, if we compare the measured K+ → π++ ‘missing energy’ branch-

ing ratio [3] with the predicted K+ → π+νν̄ branching ratio [4],

B(K+ → π+ + Nothing)Exp = (1.73+1.15
−1.05)× 10−10, (69)

B(K+ → π+νν̄) = (0.781+0.080
−0.071 ± 0.029)× 10−10, (70)

the range of the experimental uncertainty is so wide that we cannot know the exact value of

B(K+ → π+κ′dκ̄
′
s), i.e., the discrepancy between the (69) and (70).

In this situation, if we postulate that B(K+ → π+κ′dκ̄
′
s) is approximately the discrepancy

between the representative values of (69) and (70), i.e.,

B(K+ → π+κ′dκ̄
′
s) ≈ 0.95× 10−10, (71)
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the value for the m
W−

1
3

becomes from (68)

m
W−

1
3
≈ 6.594 TeV. (72)

To confirm our speculation, we should look for colored and electrically charged bosons with

spin-1 consistent with the properties described in this paper.
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