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Abstract

In this paper, we have made an attempt to discuss the role of octonions in gravity and dark
matter where, we have described the octonion space as the combination of two quaternionic spaces
namely gravitational G-space and electromagnetic EM-space. It is shown that octonionic hot dark
matter contains the photon and graviton (i.e. massless particles) while the octonionic cold dark
matter is associated with the W±, Z0 (massive) bosons.

1 Introduction

The Standard Model (SM) [1]-[5] of particle physics summarizes all [6]-[11] we know about the funda-
mental forces of electromagnetism, as well as the weak and strong interactions [12] (without gravity).
The Standard Model consists of elementary particles grouped into two classes [12]: bosons (particles
that transmit forces) and fermions (particles that make up matter). The bosons have particle spin that
is either 0, 1 or 2. The fermions have spin 1/2. On the other hand, particle physics strives to identify the
building blocks of matter and describe the interactions that bind them: the set of instructions needed
to create a universe. Our most succinct and (we believe) accurate set of instructions is encapsulated
in a quantum field theory [1, 3, 4] called the Standard Model, which describes a universe [13] made up
of six types of quarks and six types of leptons, bound together by three fundamental forces: strong,
weak, and electromagnetic. The standard model is a relativistic quantum field theory [1, 2, 3] that
incorporates the basic principles of quantum mechanics and special relativity. Like quantum electrody-
namics (QED) the standard model is a gauge theory [14]. However, with the non-Abelian gauge group
SU(3)C ⊗ SU(2)L ⊗ U(1)Y instead of the simple Abelian U(1)em gauge group of QED. The gauge
bosons are the photons mediating the electromagnetic interactions, the W± and Z0 bosons mediating
the weak interactions [12], as well as the gluons mediating the strong interactions [2, 3, 12]. Gauge
theories can exist in several phases: in the Coulomb phase with massless gauge bosons (like in QED),
in the Higgs-phase with spontaneously broken gauge symmetry [14] and with massive gauge bosons
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(e.g. the W± and Z0 bosons), and in the confinement phase, in which the gauge bosons do not appear
in the spectrum (like the gluons in quantum chromodynamics (QCD)). On the other hand, The Stan-
dard Model was formulated in the 1970s and tentatively established by experiments in the early 1980s.
Nearly three decades of exacting experiments have tested and verified the theory in meticulous detail,
confirming all of its predictions. Thus, the Standard Model of particle physics is the most successful
theory of nature in history, but increasingly there are signs that it must be extended by adding new
particles that play roles in high-energy reactions [15, 16].

Despite being the most successful theory of particle physics to date, the Standard Model is not
perfect [17, 18]. The deficiencies of the Standard Model on the bans of experimental observations
which are not yet explain, are described as

ä The standard model does not provide an explanation of gravity [19]. Moreover it is incompatible
with the most successful theory of gravity to date, general relativity.

ä Cosmological observations tell us that the standard model is able to explain only about 4% of the
energy present in the universe. Of the missing 96%, about 24% should be dark matter [20], i.e.
matter that behaves just like the other matter we know, but which interacts only weakly with the
standard model fields. The rest should be dark energy, a constant energy density for the vacuum.
Attempts to explain the dark energy in terms of vacuum energy of the standard model lead to a
mismatch of 120 orders of magnitude.

ä According to the standard model the neutrinos are massless particles [21]. However, neutrino
oscillation experiments have shown that neutrinos do have mass. Mass terms for the neutrinos
can be added to the standard model by hand, but these lead to new theoretical problems [21].
(For example, the mass terms need to be extraordinarily small).

ä The universe is made out of mostly matter. However, the standard model predicts that matter
and anti-matter [22] should have been created in (almost) equal amounts, which would have
annihilated each other as the universe cooled.

The standard model is also incomplete with respect to theoretical problems associated with

ä Hierarchy problem – the standard model introduces particle masses through a process known
as spontaneous symmetry breaking caused by the Higgs field. Within the standard model, the
mass of the Higgs gets some very large quantum corrections due to the presence of virtual particles
(mostly virtual top quarks) [23]. These corrections are much larger than the actual mass of the
Higgs. This means that the bare mass parameter of the Higgs in the standard model must be fine
tuned in such a way that almost completely cancels the quantum corrections. This level of fine
tuning is deemed unnatural by many theorists.

ä Strong CP problem – theoretically it can be argued that the standard model should contain
a term that breaks CP symmetry [24] —relating matter to antimatter— in the strong interaction
sector. Experimentally, however, no such violation has been found, implying that the coefficient
of this term is very close to zero. This fine tuning is also considered unnatural.

ä Number of parameters – the standard model depends on 19 numerical parameters. Their
values are known from experiment, but the origin of the values is unknown. Some theorists have
tried to find relations between different parameters, for example, between the masses of particles
in different generations.

2



On the other hand, the two fundamental mathematical structures (division algebras) a physicist uses
in his everyday life are the real (R) and the complex (C) numbers. Complex numbers are described as
pairs of real numbers with a specific multiplication laws. One can however go even further and build
two other sets of numbers, known in mathematics as quaternions (H) [25] and octonions (O) [26]. The
quaternions, formed as pairs of complex numbers are non-commutative whereas the octonions, formed as
pairs of quaternion numbers are both non-commutative and non-associative. The four sets of numbers
are mathematically known as division algebras. The octonions are the last division algebra, no further
generalization being consistent with the laws of mathematics. So, there exists four normed division
algebras [27]: the real numbers (R), complex numbers (C), quaternions (H) [25, 28], and octonions (O)

[26, 29]. Thus octonions are regarded as a super-set of quaternions in the same way that quaternions
are a super-set of complex numbers, i.e.

ä Scalars are represented by 1 number.

ä Complex numbers are represented by 2 numbers (1 real and 1 imaginary).

ä Quaternions are represented by 4 numbers (1 real and 3 imaginary).

ä Octonions are represented by 8 numbers (1 real and 7 imaginary).

2 Octonion Definition

An octonion x is expressed [30, 31] as a set of eight real numbers

x = (x0, x1, ...., x7) = x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7

= x0e0 +

7∑
A=1

xAeA (A = 1, 2, ....., 7) (1)

where eA(A = 1, 2, ....., 7) are imaginary octonion units and e0 is the multiplicative unit element. The
octet (e0, e1, e2, e3, e4, e5, e6, e7) is known as the octonion basis and its elements satisfy the following
multiplication rules

e0 = 1, e0eA = eAe0 = eA eAeB = −δABe0 + fABC eC . (A,B,C = 1, 2, ......7) (2)

The structure constants fABC are completely antisymmetric and take the value 1 i.e. fABC = +1 =

(123), (471), (257), (165), (624), (543), (736). Here the octonion algebraO is described over the algebra
of rational numbers having the vector space of dimension 8. Octonion algebra is non associative and
multiplication rules for its basis elements given by equations (2,3) are then generalized in the following
table:
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· e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e7 −e6 e5 −e4
e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e2 −e1 −1 −e5 e4 e7 −e6
e4 −e7 −e6 e5 −1 −e3 e2 e1

e5 e6 −e7 −e4 e3 −1 −e1 e2

e6 −e5 e4 −e7 −e2 e1 −1 e3

e7 e4 e5 e6 −e1 −e2 −e3 −1

Table1- Octonion Multiplication table

Hence, we get the following relations among octonion basis elements i.e.

[eA, eB ] = 2fABCeC ; {eA, eB} = −δABe0; eA(eBeC) 6= (eAeB)eC ; (3)

where brackets [ ] and { } are used respectively for commutation and the anti commutation relations
while δAB is the usual Kronecker delta-Dirac symbol.Octonion conjugate is thus defined as,

x̄ = x0e0 − x1e1 − x2e2 − x3e3 − x4e4 − x5e5 − x6e6 − x7e7

= x0e0 −
7∑

A=1

xAeA (A = 1, 2, ....., 7). (4)

An Octonion can be decomposed in terms of its scalar (Sc(x)) and vector (V ec(x)) parts as

Sc(x) =
1

2
(x+ x̄) = x0; V ec(x) =

1

2
(x− x̄) =

7∑
A=1

xAeA (5)

Conjugates of product of two octonions and its own are described as

(xy) = y x ; (x̄) = x (6)

while the scalar product of two octonions is defined as

〈x , y 〉 =
∑7
α=0 xαyα =

1

2
(x ȳ + y x̄) =

1

2
(x̄ y + ȳ x) (7)

which can be written in terms of octonion units as

〈eA , eB 〉 =
1

2
(eAeB + eBeA) =

1

2
(eAeB + eBeA) = δAB . (8)

The norm of the octonion N(x) is defined as

4



N(x) = xx = x x̄ =

7∑
α=0

x2αe0 (9)

which is zero if x = 0, and is always positive otherwise. It also satisfies the following property of normed
algebra

N(xy) = N(x)N(y) = N(y)N(x). (10)

As such, for a nonzero octonion x , we define its inverse as

x−1 =
x̄

N(x)
(11)

which shows that

x−1x = xx−1 = 1.e0; (xy)−1 = y−1x−1. (12)

3 Octonion Gravitational and Electromagnetic interactions

Let us identify the octonion space (eight dimensional) as the combination of two quaternionic spaces
namely associated with the gravitational interaction (G-space) and electromagnetic interaction (EM-
space) [32, 33]. So, we may write the octonionic (gravitational-electromagnetic) space as

O = (Og−space , Oem−space) =⇒ ((e0, e1, e2, e3) , (e4, e5, e6, e7)) , (13)

where (Og−space) is octonionic gravitational space consists e0, e1, e2, e3 octonion basis and (Oem−space)

is octonionic electromagnetic space consists e4, e5, e6, e7. So

O =(e0, e1, e2, e3, e4, e5, e6, e7) = (Og +Oem). (14)

Any physical quantity X ∈ O may be written as

X = Xg +Xem =(Xg0e0 +Xg1e1 +Xg2e2 +Xg3e3) + (Xem0
e4 +Xem1

e5 +Xem2
e6 +Xem3

e7)

=

3∑
j=0

Xgjej + e7

3∑
j=0

Xemjej . (15)

Accordingly, the octonion differential operator � [34, 35, 36] also may be written as the combination
of the two quaternionic space (G-space & EM-space) [32] in the terms of eight dimensional space as
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� = �g + �em =(∂g0e0 + ∂g1e1 + ∂g2e2 + ∂g3e3) + (∂em0
e4 + ∂em1

e5 + ∂em2
e6 + ∂em3

e7)

=

3∑
j=0

∂gjej + e7

3∑
j=0

∂emjej . (16)

Thus, the octonion conjugate of equation (16) may then be written as

� = �g + �em =(∂g0e0 − ∂g1e1 − ∂g2e2 − ∂g3e3) + (−∂em0
e4 − ∂em1

e5 − ∂em2
e6 − ∂em3

e7)

=∂g0e0 −
3∑
j=1

∂gjej − e7
3∑
j=0

∂emjej . (17)

Accordingly, the octonion valued potential, in eight dimensional formalism may also be written as the
combinations of two four dimensional quaternionic spaces (i.e. G-space and EM-space) as

V = (Vg , Vem) = ((V0, V1, V2, V3) , (V4, V5, V6, V7))

= ((Vg0 , Vg1 , Vg2 , Vg3) , (Vem0
, Vem1

, Vem2
, Vem3

)) , (18)

which can further be reduced to

V =(Vg0e0 + Vg1e1 + Vg2e2 + Vg3e3) + (Vem0
e4 + Vem1

e5 + Vem2
e6 + Vem3

e7)

=

3∑
j=0

Vgjej + e7

3∑
j=0

Vemj
ej . (19)

As such, we may obtain the octonion potential wave equation for gravitational-electromagnetic space
by operating � given by equation (17) to octonion potential V (19) in the following manner,

�V =e0{(∂g0Vg0 + ∂g1Vg1 + ∂g2Vg2 + ∂g3Vg3) + (∂em0Vem0 + ∂em1Vem1 + ∂em2Vem2 + ∂em3Vem3)}

+e1{(∂g0Vg1 − ∂g1Vg0 − ∂g2Vg3 + ∂g3Vg2) + (−∂em0Vem3 + ∂em1Vem2 − ∂em2Vem1 + ∂em3Vem0)}

+e2{(∂g0Vg2 − ∂g2Vg0 + ∂g1Vg3 − ∂g3Vg1) + (−∂em0Vem2 − ∂em1Vem3 + ∂em2Vem0 + ∂em3Vem1)}

+e3{(∂g0Vg3 − ∂g3Vg0 − ∂g1Vg2 + ∂g2Vg1) + (−∂em1Vem0 + ∂em0Vem1 − ∂em2Vem3 + ∂em3Vem2)}

+e4{(∂g0Vem0 + ∂g1Vem3 + ∂g2Vem2 − ∂g3Vem1) + (−∂em0Vg0 + ∂em1Vg3 − ∂em2Vg2 − ∂em3Vg1)}

+e5{(∂g0Vem1 − ∂g1Vem2 + ∂g2Vem3 + ∂g3Vem0) + (−∂em1Vg0 − ∂em0Vg3 + ∂em2Vg1 − ∂em3Vg2)}

+e6{(∂g0Vem2 + ∂g1Vem1 − ∂g2Vem0 + ∂g3Vem3) + (−∂em2Vg0 + ∂em0Vg2 − ∂em1Vg1 − ∂em3Vg3)}

+e7{(∂g0Vem3 − ∂g1Vem0 − ∂g2Vem1 − ∂g3Vem2) + (−∂em3Vg0 + ∂em0Vg1 + ∂em1Vg2 + ∂em2Vg3)}. (20)

which can further be reduced to

�V = F = ((F0, F1, F2, F3) , (F4, F5, F6, F7)) , (21)
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where F(F0, F1, F2, F3, F4, F5, F6, F7) is also an octonion reproduces the field strength of generalized
gravitational-electromagnetic fields of dyons. Thus, we may be express F as

F = Fg + Fem = ((Fg0 , Fg1 , Fg2 , Fg3) , (Fem0
, Fem1

, Fem2
, Fem3

))

=(Fg0e0 + Fg1e1 + Fg2e2 + Fg3e3) + (Fem0
e4 + Fem1

e5 + Fem2
e6 + Fem3

e7), (22)

where the component of F (Fg0 , Fg1 , Fg2 , Fg3 , Fem0
, Fem1

, Fem2
, Fem3

) are expressed as

Fg0 ={(∂g0Vg0 + ∂g1Vg1 + ∂g2Vg2 + ∂g3Vg3 ) + e7(−∂em3Vg0 + ∂em0Vg1 + ∂em1Vg2 + ∂em2Vg3 )}

Fg1 ={(∂g0Vg1 − ∂g1Vg0 − ∂g2Vg3 + ∂g3Vg2 ) + e7(−∂em0Vg0 + ∂em1Vg3 − ∂em2Vg2 − ∂em3Vg1 )}

Fg2 ={(∂g0Vg2 − ∂g2Vg0 + ∂g1Vg3 − ∂g3Vg1 ) + e7(−∂em1Vg0 − ∂em0Vg3 + ∂em2Vg1 − ∂em3Vg2 )}

Fg3 ={(∂g0Vg3 − ∂g3Vg0 − ∂g1Vg2 + ∂g2Vg1 ) + e7(−∂em2Vg0 + ∂em0Vg2 − ∂em1Vg1 − ∂em3Vg3 )}

Fem0 ={(∂g0Vem0 + ∂g1Vem3 + ∂g2Vem2 − ∂g3Vem1 ) + e7(−∂em0Vem3 + ∂em1Vem2 − ∂em2Vem1 + ∂em3Vem0 )}

Fem1 ={(∂g0Vem1 − ∂g1Vem2 + ∂g2Vem3 + ∂g3Vem0 ) + e7(−∂em0Vem2 − ∂em1Vem3 + ∂em2Vem0 + ∂em3Vem1 )}

Fem2 ={(∂g0Vem2 + ∂g1Vem1 − ∂g2Vem0 + ∂g3Vem3 ) + e7(−∂em1Vem0 + ∂em0Vem1 − ∂em2Vem3 + ∂em3Vem2 )}

Fem3 ={(∂g0Vem3 − ∂g1Vem0 − ∂g2Vem1 − ∂g3Vem2 ) + e7(∂em0Vem0 + ∂em1Vem1 + ∂em2Vem2 + ∂em3Vem3 )} (23)

using the Lorentz Gauge conditions in the equation (23), i.e. Fg0 = Fem3
= 0. Thus, equation (22)

may be written as

F = Fg + Fem =(Fg1e1 + Fg2e2 + Fg3e3) + (Fem0
e4 + Fem1

e5 + Fem2
e6). (24)

Here, the first term (Fg = Fg1 , Fg2 , Fg3) is defined as the field strength of the gravitational interaction
in G-space while the second term (Fem = Fem0 , Fem1 , Fem2) is associated with the field strength of
the electromagnetic interaction in EM-space. Hence, we may obtain the octonionic field equation in
gravitational-electromagnetic space on applying the differential operator (16) to equation (24) as

�F =− e0{(∂g1Fg1 + ∂g2Fg2 + ∂g3Fg3) + (∂em0Fem0 + ∂em1Fem1 + ∂em2Fem2)}

+e1{(∂g0Fg1 + ∂g2Fg3 + ∂g3Fg2) + (−∂em1Fem2 + ∂em2Fem1 − ∂em3Fem0)}

+e2{(∂g0Fg2 − ∂g1Fg3 + ∂g3Fg1) + (−∂em2
Fem0

+ ∂em0
Fem2

− ∂em3
Fem1

)}

+e3{(∂g0Fg3 + ∂g1Fg2 − ∂g2Fg1) + (−∂em0
Fem1

+ ∂em1
Fem0

− ∂em3
Fem2

)}

+e4{(∂g0Fem0 − ∂g2Fem2 + ∂g3Fem1) + (−∂em1Fg3 + ∂em2Fg2 + ∂em3Fg1)}

+e5{(∂g0Fem1 + ∂g1Fem2 − ∂g3Fem0) + (−∂em2Fg1 + ∂em0Fg3 + ∂em3Fg2)}

+e6{(∂g0Fem2
− ∂g1Fem1

+ ∂g2Fem0
) + (−∂em0

Fg2 + ∂em1
Fg1 + ∂em3

Fg3)}

+e7{(∂g1Fem0
+ ∂g2Fem1

+ ∂g3Fem2
) + (−∂em0

Fg1 − ∂em1
Fg2 − ∂em2

Fg3)}. (25)

which is further reduced to the compact notation in terms of an octonionic gravitational-electromagnetic
space as

� F = J = ((J0, J1, J2, J3) , (J4, J5, J6, J7)) , (26)
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where J(J0, J1, J2, J3, J4, J5, J6, J7) is also an octonion reproduces the field current source of dyons. So,
it may be expressed as

J = (J0, J1, J2, J3, J4, J5, J6, J7)

=(J(g−g)0 + J(em−em)0
)e0

+(J(g−g)1 + J(em−em)1
)e1

+(J(g−g)2 + J(em−em)2
)e2

+(J(g−g)3 + J(em−em)3
)e3

+{J(em−g)0 + J(g−em)0
)e4

+(J(em−g)1 + J(g−em)1
)e5

+(J(em−g)2 + J(g−em)2
)e6

+(J(em−g)3 + J(g−em)3
)e7. (27)

Here J(g−g), J(em−em), J(em−g), J(g−em) are defined for the octonionic current source respectively for
gravitational-gravitational, electromagnetic-electromagnetic, electromagnetic-gravitational, gravitational-
electromagnetic interaction [32, 33, 34, 35, 36]. As such, the components of octonionic current source
J are described as

J(g−g)0 =(∂g1Fg1 + ∂g2Fg2 + ∂g3Fg3), J(em−em)0
= (∂em0

Fem0
+ ∂em1

Fem1
+ ∂em2

Fem2
);

J(g−g)1 =(∂g0Fg1 + ∂g2Fg3 + ∂g3Fg2), J(em−em)1
= (−∂em1Fem2 + ∂em2Fem1 − ∂em3Fem0);

J(g−g)2 =(∂g0Fg2 − ∂g1Fg3 + ∂g3Fg1), J(em−em)2
= (−∂em2Fem0 + ∂em0Fem2 − ∂em3Fem1);

J(g−g)3 =(∂g0Fg3 + ∂g1Fg2 − ∂g2Fg1), J(em−em)3
= (−∂em0

Fem1
+ ∂em1

Fem0
− ∂em3

Fem2
);

J(em−g)0 =(∂g0Fem0
− ∂g2Fem2

+ ∂g3Fem1
), J(g−em)0

= (−∂em1
Fg3 + ∂em2

Fg2 + ∂em3
Fg1);

J(em−g)1 =(∂g0Fem1
+ ∂g1Fem2

− ∂g3Fem0
), J(g−em)1

= (−∂em2
Fg1 + ∂em0

Fg3 + ∂em3
Fg2);

J(em−g)2 =(∂g0Fem2 − ∂g1Fem1 + ∂g2Fem0), J(g−em)2
= (−∂em0Fg2 + ∂em1Fg1 + ∂em3Fg3);

J(em−g)3 =(∂g1Fem0 + ∂g2Fem1 + ∂g3Fem2), J(g−em)3
= (−∂em0Fg1 − ∂em1Fg2 − ∂em2Fg3); (28)

which are analogous to the generalized Dirac-Maxwell’s (GDM) equations in presence of gravitational-
gravitational (G-G), electromagnetic-electromagnetic (EM-EM), electromagnetic-gravitational (EM-
G), gravitational-electromagnetic (G-EM) interaction.
Consequently, the octonionic radius vector (R = R0, R1, R2, R3, R4, R5, R6, R7) is defined the combina-
tion of two quaternionic space in the following manner,

R =(R0, R1, R2, R3) , (R4, R5, R6, R7)

=(R0e0 +R1e1 +R2e2 +R3e3) + (R4e4 +R5e5 +R6e6 +R7e7). (29)

which yields the velocity (v) in the octonionic (gravitational-electromagnetic) representation as

v =
∂R
∂t

=
∂

∂t
{(R0e0 +R1e1 +R2e2 +R3e3) + (R4e4 +R5e5 +R6e6 +R7e7)}

=(v0e0 + v1e1 + v2e2 + v3e3) + (v4e4 + v5e5 + v6e6 + v7e7), (30)
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we may also described the charge and mass [33] of the particle in octonionic space as

J(g−g)0
∼= Q(g−g)0v0, J(em−em)0

∼= Q(em−em)0
v0;

J(g−g)1
∼= Q(g−g)1v1, J(em−em)1

∼= Q(em−em)1
v1;

J(g−g)2
∼= Q(g−g)2v2, J(em−em)2

∼= Q(em−em)2
v2;

J(g−g)3
∼= Q(g−g)3v3, J(em−em)3

∼= Q(em−em)3
v3;

J(em−g)0
∼= Q(em−g)0v4, J(g−em)0

∼= Q(g−em)0
v4;

J(em−g)1
∼= Q(em−g)1v5, J(g−em)1

∼= Q(g−em)1
v5;

J(em−g)2
∼= Q(em−g)2v6, J(g−em)2

∼= Q(g−em)2
v6;

J(em−g)3
∼= Q(em−g)3v7, J(g−em)3

∼= Q(g−em)3
v7; (31)

where Q(g−g), Q(em−g), Q(g−em) are respectively denoted the “Mass” of the gravitational - gravitational
(G-G), electromagnetic - gravitational (EM-G), gravitational - electromagnetic (G-EM) interactions
while Q(em−em) represent the “Charge” of the electromagnetic - electromagnetic (EM-EM) interaction.
So, the Q(g−g),Q(em−g), Q(g−em) and Q(em−em) respectively describe the “Generalized mass” and “Gen-
eralized charge” [33]. From the equations (27), (28) and (31), we may obtain the four-type of subfields
in the octonionic electromagnetic-gravitational fields [32, 33] as

ä Gravitational-Gravitational (G-G) subfield.

ä Electromagnetic-Gravitational (EM-G) subfield.

ä Electromagnetic-Electromagnetic (EM-EM) subfield.

ä Gravitational-Electromagnetic (G-EM) subfield.

Thus, from above four subfields, we have describe the octonion dark matter in the following section.

4 Octonion Dark Matter

The Dark Matter [20, 22] is a type of matter hypothesized to account for a large part of the total
mass in the universe. Dark matter cannot be seen directly with telescopes which is neither emits nor
absorbs light or other electromagnetic radiation at any significant level. Instead, its existence and
properties are inferred from its gravitational effects on visible matter, radiation and the large scale
structure of the universe. The majority of dark matter in the universe cannot be baryons, and thus
does not form atoms. It also cannot interact with ordinary matter as electromagnetic forces, i.e. the
dark matter particles do not carry any electric charge. The nonbaryonic dark matter may include the
photon, graviton, intermediate bosons and neutrinos, or supersymmetric particles. Unlike baryonic
matter, nonbaryonic dark matter does not contribute to the formulation of the elements in the universe
as its presence is revealed only via its gravitational attraction. Thus, the nonbaryonic dark matter
[20, 21, 22] is evident through its gravitational effect only. There are two type of nonbaryonic dark
matter respectively defined as hot dark matter and cold dark matter. Here, we have made an attempt
to express the nonbaryonic dark matter in terms of octonion representation in the following subsections.

4.1 Octonion Hot Dark Matter (OHDM):

Octonions hot dark matter assumed to compose of particles that have zero or near-zero mass. The spe-
cial theory of relativity requires that massless particles move at the speed of light while near-zero mass
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particles move at nearly the speed of light. Thus, the octonionic hot dark matter may be associated with
the gravitational-gravitational (G-G) and electromagnetic-electromagnetic (EM-EM) subfields. Thus,
the octonionic hot dark matter (OHDM) includes the photon and graviton. As such, we may write the
quantum equation for octonionic hot dark matter in terms of potential, field and current equations. So,
the potential wave equations from (15) and (16), may be written in the quaternionic (G-G) space as

�gXg =(∂g0e0 + ∂g1e1 + ∂g2e2 + ∂g3e3) · (Xg0e0 +Xg1e1 +Xg2e2 +Xg3e3)

=V(g−g)0e0 + V(g−g)1e1 + V(g−g)2e2 + V(g−g)3e3, (for G-G space) (32)

which may further be written for EM-EM sector as

�emXem =(∂em0e4 + ∂em1e5 + ∂em2e6 + ∂em3e7) · (Xem0e4 +Xem1e5 +Xem2e6 +Xem3e7)

=V(em−em)0e0 + V(em−em)1e1 + V(em−em)2e2 + V(em−em)3e3, (for EM-EM space) (33)

Thus, equations (17) and (19) reduces to

�gVg =(∂g0e0 − ∂g1e1 − ∂g2e2 − ∂g3e3) · (Vg0e0 + Vg1e1 + Vg2e2 + Vg3e3)

=F(g−g)0e0 + F(g−g)1e1 + F(g−g)2e2 + F(g−g)3e3, (for G-G space) (34)

and

�emVem =(−∂em0
e4 − ∂em1

e5 − ∂em2
e6 − ∂em3

e7) · (Vem0
e4 + Vem1

e5 + Vem2
e6 + Vem3

e7)

=F(em−em)0e0 + F(em−em)1e1 + F(em−em)2e2 + F(em−em)3e3, (for EM-EM space) (35)

Accordingly, the field source equations from (15) and (24), are respectively described as

�gFg =(∂g0e0 + ∂g1e1 + ∂g2e2 + ∂g3e3) · (Fg0e0 + Fg1e1 + Fg2e2 + Fg3e3)

=J(g−g)0e0 + J(g−g)1e1 + J(g−g)2e2 + J(g−g)3e3, (for G-G space) (36)

and

�emFem =(∂em0e4 + ∂em1e5 + ∂em2e6 + ∂em3e7) · (Fem0e4 + Fem1e5 + Fem2e6 + Fem3e7)

=J(em−em)0e0 + J(em−em)1e1 + J(em−em)2e2 + J(em−em)3e3. (for EM-EM space) (37)

These two equations (36), (37) describe the generalized Dirac-Maxwell’s equations of dyons in terms
of octonionic hot dark matter comparizing gravitational-gravitational (G-G) and electromagnetic-
electromagnetic (EM-EM) interactions. Hence, we may conclude that the quantum equations for
octonionic hot dark matter (i.e. photon and graviton) are expressed in the terms of quaternionic
representations of octonions.

4.2 Octonion Cold Dark Matter (OCDM):

Like wise, the octonions cold dark matter may be described as the composition of the massive ob-
jects moving at sub-relativistic velocities. So, the difference between the octonions cold dark matter
(OCDM) and the octonions hot dark matter (OHDM) is significant in the formulation of structure,
because the velocities of octonions hot dark matter cause it to wipe out structure on small scales.
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Thus, the octonions cold dark matter is associated with the electromagnetic-gravitational (EM-G) and
gravitational-electromagnetic (G-EM) subfields. Hence, the octonions cold dark matter (OCDM) is
assumed to include intermediate particles (i.e. W±, Zo particles). So, we may write the quantum equa-
tions for octonions cold dark matter in terms of potential, field and current equations. The potential
wave equations from (15) and (16) may then be written respectively as

�emXg =(∂em0
e4 + ∂em1

e5 + ∂em2
e6 + ∂em3

e7) · (Xg0e0 +Xg1e1 +Xg2e2 +Xg3e3)

=V(em−g)0e4 + V(em−g)1e5 + V(em−g)2e6 + V(em−g)3e7, (for EM-G space) (38)

and

�gXem =(∂g0e0 + ∂g1e1 + ∂g2e2 + ∂g3e3) · (Xem0e4 +Xem1e5 +Xem2e6 +Xem3e7)

=V(g−em)0e0 + V(g−em)1e1 + V(g−em)2e2 + V(g−em)3e3 + V(g−em)4e4 + V(g−em)5e5

+ V(g−em)6e6 + V(g−em)7e7. (for G-EM space) (39)

Accordingly, the field equations from (17) and (19) are respectively described as

�emVg =(∂em0
e4 − ∂em1

e5 − ∂em2
e6 − ∂em3

e7) · (Vg0e0 + Vg1e1 + Vg2e2 + Vg3e3)

=F(em−g)0e4 + F(em−g)1e5 + F(em−g)2e6 + F(em−g)3e7, (for EM-G space) (40)

and

�gVem =(∂g0e0 − ∂g1e1 − ∂g2e2 − ∂g3e3) · (Vem0e4 + Vem1e5 + Vem2e6 + Vem3e7)

=F(g−em)0e0 + F(g−em)1e1 + F(g−em)2e2 + F(g−em)3e3 + F(g−em)4e4 + F(g−em)5e5

+ F(g−em)6e6 + F(g−em)7e7. (for G-EM space) (41)

On the other hand the field source equations (15) and (24) are expressed as

�emFg =(∂em0e4 + ∂em1e5 + ∂em2e6 + ∂em3e7) · (Fg0e0 + Fg1e1 + Fg2e2 + Fg3e3)

=J(em−g)0e4 + J(em−g)1e5 + J(em−g)2e6 + J(em−g)3e7, (for EM-G space) (42)

and

�gFem =(∂g0e4 + ∂g1e5 + ∂g2e6 + ∂g3e7) · (Fg0e0 + Fg1e1 + Fg2e2 + Fg3e3)

=J(g−em)0e0 + J(g−em)1e1 + J(g−em)2e2 + J(g−em)3e3 + J(g−em)4e4 + J(g−em)5e5

+ J(g−em)6e6 + J(g−em)7e7. (for G-EM space) (43)

These equation on simplification, describe the generalized Dirac-Maxwell’s equations of dyons for oc-
tonionic cold dark matter in the presence of electromagnetic-gravitational (EM-G) and gravitational-
electromagnetic (G-EM) interactions. So, the quantum equations for octonionic cold dark matter (i.e.
W±, Zo particles) may easily be expressed in the terms of simpler and compact notation of octonions
representations.

Thus, the nonbaryonic dark matter is evident through its gravitational effect only. Octonions
hot dark matter is composed of particles that have zero or near-zero mass. So, the octonionic hot
dark matter (OHDM) includes the photon and graviton. As such, we have established the various
quantum equation for octonionic hot dark matter in terms of potential, field and current equations

11



given by equations (32)-(37). It is concluded that the quantum equations for octonionic hot dark matter
(i.e. photon and graviton) are expressed in the terms of quaternionic representations of octonions.
Accordingly, the octonions cold dark matter has been described as the composition of the massive
objects moving at sub-relativistic velocities. Hence, the octonions cold dark matter (OCDM) includes
the intermediate particles (i.e. W±, Zo particles) may easily be expressed in the terms of octonions
representations. So, we have established the quantum equations for octonions cold dark matter in terms
of potential, field and current equations given by equations (38)-(43).
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