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Abstract

Starting with the Dirac-Maxwell’s equations in presence of electric and magnetic sources in an isotropic
medium of dyons, we have derived the generalized octonion Maxwell’s equations in isotropic medium. And
the octonion formulation of generalized electromagnetic fields in chiral medium has also been developed in
compect, simple and consistent manner.
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1 Introduction

There has been a revival in the formulation of natural laws so that there exists [1] four division algebras consisting

the algebra of real numbers, complex numbers, quaternions and octonions. Octonion analysis has been widely discussed

by Baez [2]. It has also played an important role in the context of various physical problems of higher dimensional super-

symmetry, supergravity and super strings etc. Few interest in the subject of monopoles and dyons was enhanced by the

work of t’ Hooft [3] and Polyakov [4] and its extension by Julia and Zee [5]. keeping in view the potential importance of

monopole and the results of Witten [6] that monopoles are necessarily dyon, Bisht et. al. [7, 8] constructed a self-consistent

co-variant theory of generalized electromagnetic fields associated with dyons each carrying the generalized charge as com-

plex quantity with its real and imaginary part as electric and magnetic constituents. Kravchenko and co-authers [9, 10]

discussed the Maxwell’s equations in homogeneous media and accordingly developed [11] the quaternionic reformulation

of the time-dependent Maxwell’s equations along with the classical solution of a moving source i.e. electron. Kravchenko
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et al have also demonstrated [12] the electromagnetic fields in chiral media and their quaternionic form in a simple and

consistent manner. Recently, Bisht et. al. have developed the generalized Dirac Maxwell’s equations in homogeneous

(isotropic) medium [13] while their quaternionic forms in a unique and consistent way are also developed [14]. They have

already obtained the solution of time independent generalized Dirac Maxwell’s (GDM) equations in presence of electric

and magnetic sources in chiral media and inhomogeneous media [14][15]. The quaternionic reformulation of generalized

electromagnetic fields of dyons in chiral and inhomogeneous media has also been developed and the corresponding quater-

nionic equations are derived in compect, simple and consistent manner [15]. In this paper we have derived the various

quantum equations of generalized electromagnetic fields of dyons (particles carrying simultaneously electric and magnetic

charge) in isotropic medium in consistent and manifest co-variant ways. It has been shown that the present theory of

dyons remains invariant under the duality transformations in isotropic homogeneous and chiral medium. The octonions

analysis of time dependent Maxwell’s equations in presence of electric and magnetic charges are obtained in unique, simple

and consistent manner.

2 Generalized Electrodynamic of Dyons in Isotropic Medium

In order to write the various quantum equations of dyons in isotropic medium, we start with the definition of homo-

geneous (isotropic) medium [10-13] in the generalized electromagnetic fields as,

~D =ε
−→
E (ε = ε0εr),

−→
B =µ ~H (µ = µ0µr); (1)

where ~D and
−→
B are respectively the electric and magnetic induction vectors while

−→
E and ~H are generalized electromagnetic

fields. Here ε0 is the free space permittivity, µ0 is the permeability of free space, εr and µr are defined respectively as

relative permittivity and permeability associated with electric and magnetic fields. Applying the above relations in Dirac

[16] Maxwell’s field equations and establish the dual invariance between electric and magnetic in isotropic medium as [15],

−→
∇ ·
−→
E =

ρ

ε
;

−→
∇ ·
−→
B =µ%;

−→
∇ ×

−→
E = − ∂

−→
B
∂t
−
−→
k

ε
;

−→
∇ ×

−→
B =

1

v2
∂
−→
E
∂t

+ µ
−→
j ; (2)

where ρ and % are respectively the electric and magnetic charge densities while ~j and ~k are the corresponding current

densities. The electric and magnetic fields of dyons are expressed in following differential form in isotropic medium in

term of two four - potentials [15] i.e.
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−→
E = −∂

−→
A

∂t
−
−→
∇φ−

−→
∇ ×

−→
B ; (3)

−→
B = − 1

v2
∂
−→
B

∂t
−
−→
∇ϕ+

−→
∇ ×

−→
A ; (4)

where {Aµ} =
{
φ, v ~A

}
and {Bµ} =

{
vϕ, ~B

}
are the two four - potentials associated with electric and magnetic charges.

Defining the complex vector field
−→
ψ as

−→
ψ =

−→
E − iv

−→
B (5)

using the equations (3) and (4), we get the following relations between generalized field
−→
ψ and the components of four -

potential as

−→
ψ =− ∂

−→
V

∂t
−
−→
∇Φ− iv

(−→
∇ ×

−→
V
)

(6)

where {Vµ} is the generalized four - potential of dyons in isotropic medium and is defined as

Vµ =
{

Φ,
−→
V
}

; (7)

where

Φ =φ− ivϕ; (8)

and

−→
V =

−→
A − i

v

−→
B. (9)

Maxwell’s field equations (2) may then be written in term of generalized field
−→
ψ as

−→
∇ ·
−→
ψ =

ρ

ε
; (10)

−→
∇ ×

−→
ψ =− iv

(
µ
−→
J +

1

v2
∂
−→
ψ

∂t

)
; (11)

where ρ and
−→
J are the generalized charge and current source densities of dyons in isotropic medium, given as
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ρ =
(
ρ− i%

v

)
; (12)

−→
J =

(−→
j − iv

−→
k
)
. (13)

Here we introduce a new parameter
−→
S (called field current) in the following form in term of source densities i. e.

−→
S = �

−→
ψ = −µ∂

−→
J

∂t
− 1

ε

−→
∇ρ− ivµ

(−→
∇ ×

−→
J
)
. (14)

where � is the D’ Alembertian operator. In term of complex potential the Generalized Dirac - Maxwell’s (GDM) equations

of dyons in isotropic medium are written in the following form

�Φ = vµρ; (15)

� ~V =µ~J. (16)

3 Generalized Octonionic Maxwell’s Equations in Isotropic Medium

An octonion O is expressed as [17] a set of eight real numbers

O =O0e0 +O1e1 +O2e2 +O3e3 +O4e4 +O5e5 +O6e6 +O7e7

=O0e0 +

7∑
A=1

OAeA. (A = 1, 2, ....., 7) (17)

where eA(A = 1, 2, .., 7) are imaginary octonion units and e0 is the multiplicative unit element.

The octet (e0, e1, e2, e3, e4, e5, e6, e7) are known as the octonion basis and its elements satisfy the following multipli-

cation rules

e0 = 1, e0 eA = eAe0 = eA, eAeB = −δABe0 + fABC eC . (A,B,C = 1, 2, ......7) (18)

The structure constants fABC are completely antisymmetric and take the value 1 i. e. fABC = +1 = (123), (471), (257),

(165), (624), (543), (736).

In order to write the quantum equations of dyons in isotropic media in terms of compact notations of octonions, let

us start with the four dimensional representation of differential operator [17, 18] expressed in terms of octonion units as
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� = e1
∂

∂x
+ e2

∂

∂y
+ e3

∂

∂z
− i

v
e7
∂

∂t
. (19)

where the other components like ∂0, ∂4, ∂5, ∂6 are vanishing. The octonion conjugate differential operator in isotropic

medium is defined as

� = −e1
∂

∂x
− e2

∂

∂y
− e3

∂

∂z
+
i

v
e7
∂

∂t
. (20)

from equations (19) and (20) we get

�� =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

v2
∂2

∂t2

=∇2 − 1

v2
∂2

∂t2
= � = � � . (21)

In terms of the components of electric {Aµ} and magnetic {Bµ} four - potentials of dyons (particles carrying simultaneously

the electric and magnetic charges), the octonionic potential is expressed in the isotropic medium as [17, 18],

V = e1(Ax + ie7
Bx
v

) + e2(Ay + ie7
By
v

) + e3(Az + ie7
Bz
v

) + (ϕ+ ie7
φ

v
)

= e1Vx + e2Vy + e3Vz + ie7Φ. (22)

where (Φ,Vx,Vy,Vz) = (Φ,
−→
V ) = {Vµ} are described as the components of generalized four - potential {Vµ} associated

with dyons in presence of generalized charge (q = e+ i v g) (where e and g are respectively known as electric and magnetic

charges) of dyons. Now operating � to octonion potential V , we get

�V = e1(−∂ϕ
∂x

+
∂Az
∂y
− ∂Ay

∂z
− 1

v2
∂Bx
∂t

) + e2(−∂ϕ
∂y

+
∂Ax
∂z
− ∂Az
∂zx

− 1

v2
∂By
∂t

)

+e3(−∂ϕ
∂z

+
∂Ay
∂x
− ∂Ax

∂y
− 1

v2
∂Bz
∂t

)− ie4
1

v
(−∂φ
∂x
− ∂Bz

∂y
+
∂By
∂z
− ∂Ax

∂t
)

−ie5
1

v
(−∂φ

∂y
− ∂Bx

∂z
+
∂Bz
∂x
− ∂Ay

∂t
)− ie6

1

v
(−∂φ

∂z
− ∂By

∂x
+
∂Bx
∂y
− ∂Az

∂t
). (23)

under the Lorentz Gauge condition

−→
∇ ·
−→
A +

1

v2
∂φ

∂t
= 0; (24)

−→
∇ ·
−→
B +

1

v2
∂ϕ

∂t
= 0; (25)
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then equation (23) reduced in the following octonion form

�V =F. (26)

where F is generalized electromagnetic field of octonion of the dyon in isotropic medium

F = e0F0 + e1F1 + e2F2 + e3F3 + e4F4 + e5F5 + e6F6 + e7F7 (27)

where

F0 =F7 = 0;

F1 = (−∂ϕ
∂x

+
∂Az
∂y
− ∂Ay

∂z
− 1

v2
∂Bx
∂t

);

F2 = (−∂ϕ
∂y

+
∂Ax
∂z
− ∂Az
∂zx

− 1

v2
∂By
∂t

);

F3 = (−∂ϕ
∂z

+
∂Ay
∂x
− ∂Ax

∂y
− 1

v2
∂Bz
∂t

);

F4 = − i

v
(−∂φ
∂x
− ∂Bz

∂y
+
∂By
∂z
− ∂Ax

∂t
);

F5 = − i

v
(−∂φ

∂y
− ∂Bx

∂z
+
∂Bz
∂x
− ∂Ay

∂t
);

F6 = − i

v
(−∂φ

∂z
− ∂By

∂x
+
∂Bx
∂y
− ∂Az

∂t
); (28)

in term of electric and magnetic field, we may described the different components of F as

F1 7−→Bx; F4 7−→ −i
Ex
v

;

F2 7−→By; F5 7−→ −i
Ey
v

;

F3 7−→Bz; F6 7−→ −i
Ez
v
. (29)

Thus, from equation (28) the generalized electromagnetic field of dyons F in terms of the octonion in isotropic medium

may be expressed as

F = e1(Bx + ie7
Ex
v

) + e2(By + ie7
Ey
v

) + e3(Bz + ie7
Ez
v

)

= e1Ψx + e2Ψy + e3Ψz (30)

where
−→
Ψ =

−→
B + i e7

−→
E
v is the generalized vector field of dyon in in isotropic medium [17, 18]. Now applying the differential
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operator to the equation (30), we get

�F =−e0(
−→
∇.
−→
B ) + e1[(

−→
∇ ×

−→
B )x −

1

v2
∂Ex
∂t

]

+e2[(
−→
∇ ×

−→
B )y −

1

v2
∂Ey
∂t

] + e3[(
−→
∇ ×

−→
B )z −

1

v2
∂Ez
∂t

]

−ie4
1

v
[(
−→
∇ ×

−→
E )x −

∂Bx
∂t

]− ie5
1

v
[(
−→
∇ ×

−→
E )y −

∂By
∂t

]

−ie6
1

v
[(
−→
∇ ×

−→
E )z −

∂Bz
∂t

] + ie7
1

v
(
−→
∇.
−→
E ). (31)

the wave equation of dyons in isotropic medium in terms of octonion may be expressed as

�F = J; (32)

where J is the generalized octonion current. In the isotropic medium generalized octonion current J is defined as

J = µ(e0%+ e1jx + e2jy + e3jz)−
1

ε
· i

v
(e4kx + e5ky + e6kz + e7ρ) . (33)

Equations (26) and (32) are represents the octonion form of field equations associated respectively with the generalized

potential and current of dyons in isotropic medium. Thus the equation (32) leads to the generalized Dirac Maxwell’s

equations of dyons in isotropic medium.

4 Generalized Maxwell’s field equations in Chiral Media

In the case of homogeneous (isotropic) medium given by equation (1), we have taken the electric field (~E) and the

magnetic field ( ~B) are time harmonic. The electric and magnetic fields in complex space can be defined as [15],

~E(x, t) =Re{~E(x) e−iωt};

~B(x, t) =Re{ ~B(x) e−iωt}. (34)

Thus, the generalized Maxwell’s equations (2) for dyons in homogeneous (isotropic) medium may be written as
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−→
∇ ·
−→
E =

ρ(x)

ε
;

−→
∇ · ~H = %(x);

∇×
−→
E (x) = iω

−→
B (x)− k̃(x)

ε
;

−→
∇ × ~H(x) =− iω ~D(x) + µ~j(x). (35)

In chiral medium [19], the electric and magnetic fields are paired with each other. As such that the constitutive

relations ~D = ε~E and ~B = µ ~H will become in paired form as

~D = ε~E + ε′ ~H =⇒ ~D = ε
(
~E + β

(
∇× ~E

))
; (36)

~B =µ ~H + µ′~E =⇒ ~B = µ
(
~H + β

(
∇× ~H

))
. (37)

where β is chiral parameter and ε′ and µ′ are pairing constants and the relation (36) and (37) are known as Drude - Born

- Fedorov constitutive relations [20, 21]. The cartesian field components of the equations (36), (37) are given by

~Dx = εEx − εβ (∇× E)x

~Dy = εEy − εβ (∇× E)y

~Dz = εEz − εβ (∇× E)z

~Bx =µHx − µβ (∇×H)x

~By =µHy − µβ (∇×H)y

~Bz =µHz − µβ (∇×H)z . (38)

using the Drude - Born - Fedorov constitutive relations (36) (37), the generalized Maxwell’s equations (2) may be written

as

−→
∇ ·
−→
E =

ρ(x)

ε
;

−→
∇ · ~H = %(x);

∇×
−→
E (x) = + iωµ

(
~H(x) + β

(
∇× ~H(x)

))
− k̃(x)

ε
;

−→
∇ × ~H(x) =− iωε

(
~E(x) + β

(
∇× ~E(x)

))
+ µ~j(x). (39)

The equation (39) represents the Generalized Dirac-Maxwell’s (GDM) field equations of dyons in chiral media.
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5 Octonion Electrodynamic in Chiral Medium

In the case of octonions the Born - Fedorov constitutive relations given by equation (36) (37) may be written as

~B =
(
~Bx, ~By, ~Bz

)
, ~D =

(
~Dx, ~Dy, ~Dz

)
(40)

where

~Bx =µHxe1 − e7µβ (∇×H)x · e4;

~By =µHye2 − e7µβ (∇×H)y · e5;

~Bz =µHze3 − e7µβ (∇×H)z · e6; (41)

equation (41) may be generalized as

~B =µ ~Hej − e7µβ (∇×H) · ej+3; (j = 1, 2, 3) . (42)

similarly

~Dx = εExe1 − e7εβ (∇× E)x · e4;

~Dy = εEye2 − e7εβ (∇× E)y · e5;

~Dz = εEze3 − e7εβ (∇× E)z · e6; (43)

equation (43) written in the following reduced form

~D = ε~Eej − e7εβ (∇× E) · ej+3; (j = 1, 2, 3) . (44)

generalized electromagnetic field of dyons ~F of octonion in chiral medium then may be write as

~F = ~B + ie7 ~D. (45)

in this field equation we substitute ~B and ~D value from equations (42) and (44) as
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~F =
(
µ ~Hej − e7µβ (∇×H) · ej+3

)
+ ie7

(
ε~Eej − e7εβ (∇× E) · ej+3

)
; (j = 1, 2, 3) . (46)

the equation (46) express as

~F = (µHx + ie7εEx) · e1 + (µHy + ie7εEy) · e2

+ (µHz + ie7εEz) · e3 − e7β (µ (∇×H)x + ie7ε (∇× E)x) · e4

−e7β
(
µ (∇×H)y + ie7ε (∇× E)y

)
· e5 − e7β (µ (∇×H)z + ie7ε (∇× E)z) · e6 (47)

thus we may write equation (47) simple form as

~F = {µHx + µβ (∇×H)x} · e1

+
{
µHy + µβ (∇×H)y

}
· e2

+ {µHz + µβ (∇×H)z} · e3

+ {εEx + εβ (∇× E)x} · e4

+
{
εEy + εβ (∇× E)y

}
· e5

+ {εEz + εβ (∇× E)z} · e6 (48)

now operate � to the chiral octonion field ~F , we get

�F =−
[
µ
∂

∂x
Hx + µβ

∂

∂x
(∇×H)x + µ

∂

∂y
Hy + µβ

∂

∂y
(∇×H)y + µ

∂

∂z
Hz + µβ

∂

∂z
(∇×H)z

]
· e0

+

[
µ
∂

∂y
Hz + µβ

∂

∂y
(∇×H)z − µ

∂

∂z
Hy − µβ

∂

∂z
(∇×H)y − ε

∂

∂t
Ex − εβ

∂

∂t
(∇× E)x

]
· e1

+

[
µ
∂

∂z
Hx + µβ

∂

∂z
(∇×H)x − µ

∂

∂x
Hz − µβ

∂

∂x
(∇×H)z − ε

∂

∂t
Ey − εβ

∂

∂t
(∇× E)y

]
· e2

+

[
µ
∂

∂x
Hy + µβ

∂

∂x
(∇×H)y − µ

∂

∂y
Hx − µβ

∂

∂y
(∇×H)x − ε

∂

∂t
Ez − εβ

∂

∂t
(∇× E)z

]
· e3

+i

[
ε
∂

∂z
Ey + εβ

∂

∂z
(∇× E)y − ε

∂

∂y
Ez − εβ

∂

∂y
(∇× E)z − µ

∂

∂t
Hx − µβ

∂

∂t
(∇×H)x

]
· e4

+i

[
ε
∂

∂x
Ez + εβ

∂

∂x
(∇× E)z − ε

∂

∂z
Ex − εβ

∂

∂z
(∇× E)x − µ

∂

∂t
Hy − µβ

∂

∂t
(∇×H)y

]
· e5

+i

[
ε
∂

∂y
Ex + εβ

∂

∂y
(∇× E)x − ε

∂

∂x
Ey − εβ

∂

∂x
(∇× E)y − µ

∂

∂t
Hz − µβ

∂

∂t
(∇×H)z

]
· e6

+i

[
ε
∂

∂x
Ex + εβ (∇× E)x + ε

∂

∂y
Ey + εβ (∇× E)y + ε

∂

∂z
Ez + εβ (∇× E)z

]
· e7 (49)

equation (49) may write in the following reduced form as
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�F = −
[
µ(
−→
∇ ·
−→
H ) + µβ

−→
∇ · (

−→
∇ ×

−→
H )
]
.e1

+

[
µ(
−→
∇ ×

−→
H )− ε ∂

∂t
~E + µβ

−→
∇ · (

−→
∇ ×

−→
H )− εβ ∂

∂t

(−→
∇ × ~E

)
− µβ

−→
∇ · (

−→
∇ ×

−→
H )

]
· ej

+i

[
−ε
(−→
∇ × ~E

)
+ εβ

−→
∇ ·

(−→
∇ × ~E

)
− µ ∂

∂t
~H − µβ ∂

∂t
(
−→
∇ ×

−→
H )− εβ

−→
∇ ·

(−→
∇ × ~E

)]
· ej+3

+i
[
ε
(−→
∇ · ~E

)
+ εβ

−→
∇ ·

(−→
∇ × ~E

)]
· e7 (50)

The octonion GDM wave equation in Chiral medium of dyons may be written as

�F =J . (51)

where octonion current source J is

J = e0J0 + e1J1 + e2J2 + e3J3 + e4J4 + e5J5 + e6J6 + e7J7

= − e0%+ ej~j − iej+3
~k + ie7ρ (52)

from the equation (51) we get following relation

ε
(−→
∇ · ~E

)
= ρ;

µ(
−→
∇ ·
−→
H ) = %;

ε
(−→
∇ × ~E

)
= − µ ∂

∂t
~H − µβ ∂

∂t
(
−→
∇ ×

−→
H )− ~k;

µ(
−→
∇ ×

−→
H ) = ε

∂

∂t
~E + εβ

∂

∂t

(−→
∇ × ~E

)
+~j. (53)

These equations are octonionic GDM equations in Chiral medium. If we use the time-derivative relations as

∂

∂t
~D = ε

∂

∂t

(
~E + β

(−→
∇ × ~E

))
= ε

∂

∂t
~E + εβ

∂

∂t

(−→
∇ × ~E

)
; (54)

∂

∂t
~B =µ

∂

∂t

(
~H + β(

−→
∇ ×

−→
H )
)

= µ
∂

∂t
~H + µβ

∂

∂t
(
−→
∇ ×

−→
H ); (55)

and we have

−→
∇ ·
−→
D = ε

−→
∇ ·

(
~E + β

(−→
∇ × ~E

))
= ε

(−→
∇ · ~E

)
; (56)

−→
∇ ·
−→
B =µ

−→
∇ ·

(
~H + β(

−→
∇ ×

−→
H )
)

= µ(
−→
∇ ·
−→
H ); (57)
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using above equations (54),(55) and equations (56),(57), we get

ε
(−→
∇ · ~E

)
= ρ;

µ(
−→
∇ ·
−→
H ) = %;

ε
(−→
∇ × ~E

)
= − ∂

∂t
~B − ~k; (58)

µ(
−→
∇ ×

−→
H ) =

∂

∂t
~D +~j.

There equations are another form of Maxwell’s equation in Chiral medium in case of generalized octonion electrodynamics.

6 Discussion

The equations ((42)) and ((44)) showing the constitutive relation and then describe the rich variety of physical phe-

nomenon representing the properties and responses of the chiral medium and to the application of generalized octonionic

electromagnetic field of dyons. The octonions field equations are described here in isotropic medium and chiral medium.

The present theory of generalized octonions electrodynamics of dyons leads to the connection between the mechanical pa-

rameters with the chirality and dielectric properties. And we formulised octonions Maxwell’s equation for electromagnetic

wave theory, are being unique, compact, and consistent manner for isotropic and chiral medium.
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