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Abstract

We propose a reorganisation of the standard model and their mesons
in order to build supersymmetric multiplets. The presentation is open to
improvements to choose the adequate candidates in each recombination.

I have told elsewhere how a chain of four Koide equations does a good work
to predict SM mass. Gray cells are inputs All triplets in sequence meet Koide
equation. For (bcs), sign of

√
ms is minus.

pdg 2012 exact rotated
t 173.5± 1.0 174.10 173.26
b 4.18± 0.03 3.64 4.197
c 1.275± 0.025 1.698 1.359
τ 1.77682(16) 1.698 1.776968
s 95± 5 121.95 92.275
µ 105.65837 121.95 105.6584
d ∼ 4.8 8.75 5.32
u ∼ 2.3 0 .03564
e 0.5109989 0 .5109989

Lets exploit this identification of some levels to try to fold them into a susy-
like configuration.

First step, the SM as it is. For each QCD string, consider its fundamental
state.

ν1, trgb
ν2, brgb B+, B+

c bu, bc bb, bs, bd ηb, B
0, B0

s , B̄
0, B̄0

s
c̄c̄
cc,

c̄ū
cu τ, crgb D+, D+

s sc, dc ηc, D
0, D̄0

ūū
uu µ, srgb π+,K+ su, du ss, sd, dd η8, π

0,K0, K̄0

ν3, drgb
e, urgb

For charged particles, the antiparticle is in the same level. I ommit the “+
antiparticle” remark

Now, second step, we fold t and u
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ν2, brgb, e, urgb B+, B+
c bu, bc bb, bs, bd ηb, B

0, B0
s , B̄

0, B̄0
s

c̄c̄
cc,

c̄ū
cu τ, crgb D+, D+

s sc, dc ηc, D
0, D̄0

ūū
uu µ, srgb, ν1, trgb π+,K+ su, du ss, sd, dd η8, π

0,K0, K̄0

ν3, drgb

Next steps are arbitrary, we could fold any combination of up-like quarks

ν2, brgb, e, urgb B+, B+
c bu, bc bs, bd ηb, B

0, B0
s , B̄

0, B̄0
s

c̄c̄
cc,

c̄ū
cu τ, crgb, ν3, drgb D+, D+

s sc, dc bb, dd ηc, D
0, D̄0

ūū
uu µ, srgb, ν1, trgb π+,K+ su, du ss, sd η8, π

0,K0, K̄0

And last, and even more arbitrary, is to decide which neutral meson to fold
into the intermediate level. Just choose one

ν2, brgb, e, urgb B+, B+
c bu, bc bs, bd B0, B0

s , B̄
0, B̄0

s
c̄c̄
cc,

c̄ū
cu τ, crgb, ν3, drgb D+, D+

s sc, dc bb, dd ηb, ηc, D
0, D̄0

ūū
uu µ, srgb, ν1, trgb π+,K+ su, du ss, sd η8, π

0,K0, K̄0

The ±4/3 diquarks, at last, I guess they are related to electroweak symmetry
breaking via some condensation. They could stay as there are, or perhaps the
charm should be at an upper level

c̄c̄
cc ν2, brgb, e, urgb B+, B+

c bu, bc bs, bd B0, B0
s , B̄

0, B̄0
s

c̄ū
cu τ, crgb, ν3, drgb D+, D+

s sc, dc bb, dd ηb, ηc, D
0, D̄0

ūū
uu µ, srgb, ν1, trgb π+,K+ su, du ss, sd η8, π

0,K0, K̄0

It could be. Probably all the ambiguities in the above folding, including this
last one, are related.

Final, let me prettify it by adding the antiparticles. Note that we have
the required quantity of bosons for three generations of the SM, but that the
not-SM charged bosons (the uu etc) can not be arranged in a pattern of three
generations of Dirac particles; it is because of it that we can guess they have a
different role that being a plain sfermion.

c̄c̄
cc ν2, brgb, e, urgb B±, B±

c

b̄ū

bu,
b̄c̄

bc
b̄s̄

bs,
b̄s̄

bd B0, B0
s , B̄

0, B̄0
s

c̄ū
cu τ, crgb, ν3, drgb D±, D±

s

s̄c̄
sc,

d̄c̄

dc
b̄b̄

bb,
d̄d̄

dd ηb, ηc, D
0, D̄0

ūū
uu µ, srgb, ν1, trgb π±,K± s̄ū

su,
d̄ū

du
s̄s̄
ss,

s̄d̄

sd η8, π
0,K0, K̄0

Remember that the point of the grouping in fermion side is that we were
looking at the koide triplets of the waterfall; any of the triplets is build by taking
a fermion for each of the three lines.
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A lateral question is, can be build mass values so that any of the eight
possible triplets is solution?

Let me consider a simpler case, that of, say, mu = 0. Call

k = k+ = 2 +
√

3

k− = 2−
√

3

k+k− = 1

and check that (k, 8, k−) and (k, 0, k−) are Koide triplets. We can use them to
build “mass spectra” that saturate all the equations.

0
1
k2 k2

0
1
k−2 k−2

0
1
k2 k−2

0
1 1
k2 k2

0
1 k4

k2 k2

0
1 1
k−2 k−2

0
1 k−4

k−2 k−2

0
1 1
k2 k−2

0 0
1 1
k2 k2

0 8k
1 1
k2 k2

0 0
1 k4

k2 k2

0 0
1 1
k−2 k−2

0 8k−

1 1
k−2 k−2

0 0
1 k−4

k−2 k−2

0 0
1 1
k2 k−2

0 0
k− k−

k k

0 8
k− k−

k k

0 0
k−2 k2

1 1

0 0
k k
k− k−

0 8
k k
k− k−

0 0
k2 k−2

1 1

0 0
1 1
k2 k−2

In this case, we see that there is really only three possibilites: we can keep
full degenerated with the trivial triplet (0, 2−

√
3, 2+

√
3) or we can do one of two

possible mutations: either change one zero to a nonzero from the complementary
triplets (8 or 96, thus), or to multiply one of the 2−

√
3 masses with k4, scaling

it to k3 = 26 + 15
√

3.
Phenom-wise, the two changes are interesting. In the former, we could think

that the broken double is the u, b pair, and then the b quark gains -or keeps-
a mass above the other two doubles. In the later, it should be the t, s pair,
separating the top quark still not far enough, but the most allowed by the set
of eight simultaneus Koide equations (at least, the most with a massless quark
still there; we should work now the general case).

0 96
k− k−

k k

0 8
k− k−

k k

0 0
k− k−

k k

0 0
k3 k−

k k
. . .

96 8
k− k−

k k
. . .

If we put some mass scale in GeV, the likeliness with the SM is apparent

0 43.6918
0.12195 0.12195
1.69854 1.69854

0 3.64098
0.12195 0.12195
1.69854 1.69854

0 0
0.12195 0.12195
1.69854 1.69854

0 0
1.69854 0.008755
0.12195 0.12195
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Ok; if we are going to use these sextets as a startpoint to look for continous
families of non-zero solutions, we can also change both zeros to a still degener-
ated pair (8,8) or (96,96) or to the non-degenerated (8,96). But here we see that
the general case of two degenerated pairs is uninteresting: there is always the
possibility of choosing from up to four different solutions for a pair of masses.
In any case, we could look for accidental degeneracies.

So a more interesting question is if there are solutions with zero or one
degenerated pair at most. A numerical exploration, e.g with octave finds at
least four candidates, they are uninteresting, if they are expected to have some
hint about the top quark:

0.000055046 174.1 0.000091997 174.1 0.0722 174.1 5.864 174.1
0.49746 94.32 0.4714 96.229 4.597 29.24 7.299 20.432
6.7159 6.7159 6.8354 6.8354 1.1821 1.1821 0.3796 0.3796

They are not directly connected to the zeroed solutions. The next approach
is to use Mathematica or Maxima to find solutions perhaps missed in the nu-
merical exploration This is explained in

http://www.physicsforums.com/showthread.php?t=551549&page=7

http://www.physicsforums.com/showpost.php?p=4270855&postcount=100

and what happens is very peculiar; the polynomials in the resolvent produce
the above four solutions but each of them have extra real triplets that can
be used to build zero-less but degenerated solutions; these solutions are really
inside the continous spectra of answers, but they are specially signaled in the
resolvent and they are also connected in some way to the above zeroed solutions.
In particlar, the strange-charm-bottom triplet

[2−
√

3, 1, 2
√

3− 2]

and the charm-bottom-top

[1, 2
√

3− 2, 7
√

3− 2]

solutions appear explicitly. So we have on one side a zeroed solution, and on
other side, from the resolvent, a particular zeroless solution, that happens to be
related to our folding:

3.64098 0
1.69854 1.69854
0.12195 0.12195

. . .
b u
d c
s t

. . .
3.640 3.640
1.698 1.698
0.1219 174.1

Note that some of the zeroed solutions were also able to produce good values
for the down quark. Perhaps the right symmetry group is beyond S4
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