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ABSTRACT: We study the relation between the Guzwiller Trace for a dy-
namical system and the Riemann-Weil trace formula for the Riemann zeros,
using the Bohr-Sommerfeld quantization condition, the WKB rules and the
fractional calculus we obtain a method to de�ne implicitly a potential f−1(x)
for a Hamiltonian in one dimension, we also apply this method to de�ne a
Hamiltonian whose energies are the square of the Riemann zeros (imaginary
part) En = γ2

n , also we show that for big `x' the potential is very close to an
exponential function.

In this paper and for simplicity we use units so 2m = 1 = ~
�Keywords: = Riemann Hypothesis, WKB semiclassical approximation, Gutzwiller
trace formula, Bohr-Sommerfeld quantization,exponential potential.

1. RIEMANN ZEROS AND TRACE FORMULAE

Given a Hamiltonian in one dimension plus boundary conditions on the real line
[0,∞)

Hy(x) = Eny(x) = − ~2

2m

d2y(x)

dx2
+ f(x)y(x) y(0) = 0 = y(∞) (1.1)

Can we recover the potential f(x) from spectral data ?, for example if we knew

the Eigenvalue staircase of the problem (1.1) N(E) =
∞∑
n=0

H(E −En) , then we

could use the Bohr-Sommerfeld quantization condition, see [9] for our problem
as

2π~
(
n+ 1

2

)
=
∫∫
R2 dxdpH (E −H(x, p)) = 2

√
2m
∫ a=a(E)

0

√
En − V (x)dx =

2
√

2m
∫ E

0

√
En − xdf

−1

dx =
√

2m
√
πD
− 1

2
x f−1(x)

(1.2)
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The number `a' is a turning point where the momentum is p = 0 so f(a) = E
The idea of the Borh-Sommerfeld quantization condition (1.2) is the following,
we equate the smooth part of the spectral staircase to an integer plus 1/2

H(x) =

{
1 x>0
0 x<0

〈N(E)〉 =
1

2π~

∫∫
R2

dxdpH (E −H(x, p)) = n+
1

2
(1.3)

Here , inside (1.2) we have used the de�nitions of the fractional derivative and
integral of order ½. [10] (for fractional calculus)

d−
1
2 f(x)

dx−
1
2

=
1

Γ(1/2)

∫ x

0

dt
f(t)√
x− t

d
1
2 f(x)

dx
1
2

=
1

Γ(1/2)

d

dx

∫ x

0

dtf(t)√
x− t

(1.4)

Also for our Hamiltonian we have imposed boundary conditions on the half line
[0,∞) so the Eigenfunctions Hyn(x) = Eny(x) satisfy the boundary conditions
yn(0) = 0 = yn(∞) .

From (1.4) we obtain that the inverse of the potencial can be described implicitly
in terms of the half-derivative of smooth part of the Eigenvalue staircase as the

function f−1(x) =
√

2π~2

m
d

1
2

dx
1
2
〈N(x)〉 .

This result (4) can be improved with the aid of the Gutzwiller's trace formula
for the density of states [6] , formula (1.42) valid (it is assumed trough all the
paper) in the limit ~→ 0 for the Planck's constant.

E =
p2

2m
ρ(E) = 〈ρ(E)〉+

1

π~
∑
γp

∞∑
k=1

Aγpcos
(
k
~Sγp(E)− π

2 kµγp
)∣∣∣det

(
Mk
γp − 1

)∣∣∣ 12 +O(~)

(1.5)
With Sγ(E) =

∫
C
pdx =

√
2mE =

√
2mplγ being the action over the closed

orbit for the momentum, lγ is the length of the closed orbit , µγp is a Maslov

index and det
(
Mk
γp − 1

)
is the determinant of the Monodromy Matrix, Aγp (see

[6] for further references) are constants related to the orbits. Equation (1.5) is
a better expression to evaluate the Eigenvalue staircase ( by integration) since
dN(x)
dx = ρ(x) , also from expression (1.5) we can obtain a trace formula

∞∑
n=0

h(pn) =

∫ ∞
0

dp 〈ρ(p)〉h(p) +
1

~
∑
γp

∞∑
k=1

AγpF
k
γp [h]

(
kS(E)γp

~ − k µγp2

)
∣∣∣det

(
Mk
γp − 1

)∣∣∣ 12 +O(~)

(1.6)

F kγp [h] (u) =
1

π

∫ ∞
0

dph(p) cos

(
kp

~
− π

2
µγp

)
(1.7)

Since the energy is related to the momentum of the particle by E = p2 , then
we must choose and even function of the momentum h(p) = h(−p) so this test
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function may be also de�ned for negative `p' , in both cases the trace formulae
(1.5) and (1.6) are real for real values of the Energy.

For the EXACT Eigenvalue staircase the half derivative can be evaluated for-

mally as f−1(x) =
√

2~2

m

∞∑
n=0

H(E−p2n)√
E−p2n

if we insert this function inside (1.6)

f−1(x) =

√
2~2π

m

d
1
2

dx
1
2

〈N(x)〉+
√

2π

m

∑
γp

∞∑
k=1

AγpJ0

(
k
S(x)γp

~ − π
2 kµγp

)
∣∣∣det

(
Mk
γp − 1

)∣∣∣ 12 +O(~)

(1.8)
Where we have used inside (1.8) the representation for the zeroeth order Bessel

function 1
π

∫ x
0
dt cos(ut)√
x2−t2 = J0(ux)

2 . In order to study the limit x→∞ inside (1.8)

we can use the approximation for the Bessel function J0(x) ≈
√

2
πx cos

(
x− π

4

)
+

O
(

1
x

)
If we took the fractional derivative operator

√
m

2~2π
d

1
2

dx
1
2
inside (1.8) we would

obtain the trace formulae for the density of states (1.6) , this is deduced from the

identity of the Bessel function
√
π d

1
2

dx
1
2
J0 (a

√
x) =

cos(a
√
x)√

x
[10] , this identity

can be easily proved by expanding both functions into a power series around
the origin and taking the half-derivative on each term.

Equation (1.8) de�ned the potential function for the Hamiltonian inside (1.8)
which depends on the fractional derivative of the Smooth part of the Eigenvalue
staircase 〈N(E)〉 = 1

2π~
∫∫
R2 dxdpH (E −H(

x,p) plus a correction due to the closed orbits of the dynamical system, this
correction will turn to be very important for the case of the potential and the
Hamiltonian which yield to the Riemann zeros.

A good example of the Trace formula (1.5) is for the case of the Eigenvalue

problem y(0) = 0 = y(π) H = −d
2y(x)
dx2 = Eny(x) , in this case the density of

states and the trace (1.5) is just the Poisson summatin formula
∞∑

m=−∞
e2πixm =

∞∑
m=−∞

δ (x−m) , the smooth part of the Eigenvaue staircase is given by 〈N(E)〉 =
√
E , since the energies of the problems are En = n2 , and the correction to the

inverse of the potential due to the length of the periodic orbits is (in terms of

the Besssel function)
∞∑
m=1

J0 (2πm
√
x)

o Riemann zeros and a potential:
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There is exist an analogue of the Gutzwiller's trace formula for the Riemann
zeros, if we consider a dynamical system with the Maslov indices e

π
2 kµγp = −1

and length of the periodic orbits Sγ(E) =
√
E log pn (prime numbers), see [7]

∑
γ

h(γ) = 2h

(
i

2

)
−g(0) lnπ−2

∞∑
n=1

Λ(n)√
n
g(lnn)+

1

2π

∫ ∞
−∞

dsh(s)
Γ′

Γ

(
1

4
+
is

2

)
(1.9)

Here, g(k) = 1
2π

∫∞
0
dxh(x) cos(kx) = g(−k) h(x) and g(x) are test functions

which form a Fourier transform pair and Λ(n) =

{
ln p n = pk

0 otherwise
is the Man-

goldt function , formula (1.9) gives the relationship between a sum over the
imaginary part of the Riemann zeros and a sum over the primes and prime
powers.

By analogy with the Trace formula (1.5) the imaginary part of the zeros are
not energies but rather the momenta of a certain Hamiltonian , the energies
of the Hamiltonian will be the square of the imaginary part for the Riemann
zeros En = γ2

n , if we do the same reasoning we did for the Gutzwiller trace and
set ~ = 2m = 1 , then the potential which yields to the imaginary part of the
Riemann Zeros is given by

f−1(x) = 2
∑
n

H(x−γ2
n)√

x−γ2
n

=
4H(x+ 1

4 )√
4x+1

−
∞∑
n=1

Λ(n)√
n
J0 (
√
x lnn)

1
2π

∫√x
−
√
x

dr√
x−r2

(
Γ′

Γ

(
1
4 + ir

2

)
− lnπ

)
x>0 (1.10)

We can see inmediatly how the expressions (1.6) and (1.10) are connected, they
both have a correction due to the length of the periodic orbits which includes
the Bessel function term, in the case of the Riemann zeros , from the de�nition
of Von Mangoldt function we have that the lenghts of the orbits are equal to
the log of prime numbers (with repetition).

But what would happen for x < 0 ?, due to the boundary condition y(0) = 0
there is a in�nite potential well at x=0 so the potential would be

f(x) =

{
de�ned implicitly by formula (1.10) for x >0

∞ for x ≤ 0
(1.11)

If we take the fractional derivative 1
2
√
π
d

1
2

dx
1
2
inside (1.10) and use the identities

δ (f(x)) =
∑
n

δ (x− xn)

|f ′(xn)|
√
π
d

1
2

dx
1
2

J0

(
a
√
x
)

=
cos (a

√
x)√

x
(1.12)

We obtain the distributional Riemann-Weil trace formula, so the density of
states of our Hamiltonian , with the potential de�nd implicitly inside (14) is
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just the Riemann-Weil trace formula (on the momentum variable) [7]

∞∑
n=0

δ (k − γn) +
∞∑
n=0

δ (k + γn) = 1
2π

ζ
ζ

(
1
2 + ik

)
+ 1

2π
ζ′

ζ

(
1
2 − ik

)
− lnπ

2π

+Γ′

Γ

(
1
4 + ik2

)
1

4π + Γ′

Γ

(
1
4 − i

k
2

)
1

4π + δ
(
k − i

2

)
+ δ

(
k + i

2

)
= Tr {δ (E −H)}

(1.13)
Where we have used the Shokhotsky's formula representation for the delta func-

tion − 1
π=m

(
1

x+iε−a

)
= δ (x− a) with a = ± i

2 .

In case x >>> 1 , the smooth density of states can be well approximated by

〈N(x)〉 ≈
√
x

2π ln
( √

x
2πe

)
so in this case the trace formula inside (1.10) becomes

f−1(x) ≈ 1√
π

d
1
2

dx
1
2

(√
x ln

(√
x

2πe

))
+

2√
π

d
1
2

dx
1
2

arg ζ

(
1

2
+ i
√
x

)
+O

(
1√
x

)
(1.14)

We have used inside (1.14) the zeta regularization [ ] for the Dirichlet series

ζ′

ζ

(
1
2 + is

)
=reg −

∞∑
n=1

Λ(n)

n
1
2
+is

so in this case the term

2√
π

d
1
2

dx
1
2

arg ζ

(
1

2
+ i
√
x

)
= −

∞∑
n=1

Λ(n)√
n
J0

(√
x lnn

)
(1.15)

Unfortunately the expressions for the inverse of the potential (1.10) and (1.14)
can not be analytically invert ( we will study the asymptotic behaviour in the
nex section), however any function can be numerically inverted so the need only
to re�ect every point of f−1(x) through the line y = x to get f(x)

2. A TOY MODEL OF RIEMANN ZEROSWITH AN EXPONEN-

TIAL POTENTIAL

For big energies the Eigenvalue staircase for a Hamiltonian whose energies are
the square of the Riemann zeros is given by

N(x) =

√
x

2π
ln

(√
x

2πe

)
+

7

8
+O

(
1√
x

)
+

1

π
arg ζ

(
1

2
+ i
√
x

)
(2.1)

Then the smooth part is given approximately by Nsmooth(E) =
√
E

2π ln
(√

E
2πe

)
To compute the half-derivative we use the representation for the logarithm

ln(x) ≈ xε−1
ε ε→ 0 , e =

∞∑
n=0

1
n! in this case we get

f(x) ≈ 4π2e2

(
ε
√
πx+B

A(ε)

) 2
ε

f−1(x) ≈
(
4π2e2

)−ε/2
A(ε)xε/2 −B
√
πε

(2.2)
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The constants are A(ε) =
Γ( 3+ε

2 )
Γ(1+ ε

2 )
and B = Γ

(
3
2

)
=
√
π

2 , and we have used the

property of the half-derivative of powers of `x' d
1
2 xn

dx
1
2

= Γ(n+1)

Γ(n+ 1
2 )
xn−

1
2 , (Nishimoto

[10])

The last expression inside (2.2) is equal to an exponential , so for the case
of a Hamiltonian with boundary conditions y(0) = 0 = y(∞) and that gives
only the `smooth ` part of the staircase of the zeros via the WKB approxima-

tion 2
∫ a=a(E)

0

√
En − λe4xdx ≈ Nsmooth(E) =

√
E

2π ln
(√

E
2πe

)
the potential is the

following

λ = 4π2e2 exp

(
− 2√

π

∂F (s)

∂s
|s=0

)
f0(x) =

{
4π2 exp

(
2− 2√

π
∂G(s)
∂s |s=0

)
e4x x >0

∞ x ≤ 0
(2.3)

With G(s) =
Γ( 3

2 +s)
Γ(1+s) . So our toy model or approximate model for the Riemann

zeros is given by the Hamiltonian on the half line [0,∞)

ζ

(
1

2
+ i
√
En

)
= 0 En ≈ γ2

n Eny(x) = −d
2y(x)

dx2
+λe4xy(x) y(0) = 0 = y(∞)

(2.4)
and λ ≈ 16π2 has been previously de�ned inside (2.3) .

An advantage of this model is that is exactly solvable ( Amore,[1]), if we impose
boundary conditions on the half line [0,∞) the quantization conditions for the
energies are

C1, C2 ∈ C µ =
i
√
En
2

0 = C1Jµ

(√
−λ
2

)
+ C2J−µ

(√
−λ
2

)
(2.5)

For any value of C1, C2 , condition (2.5) is ful�lled if J±i
√

E
4

(√
−λ
2

)
= 0

So the energies appear inside the index of a Bessel function, in general this
problem may be generalized to arbitrary boundary conditons on the half line
[u0,∞) for some real u0 so y(u0) = 0 = y(∞) , if we choose also that C1 = −C2

then we may choose the u0 (if such u0 exists) so

1 =

J ix
2

(√
−λ4 e

2u0

)
J−ix

2

(√
−λ4 e2u0

) ≈ Γ
(

1
4 −

ix
2

)
Γ
(

1
4 + ix

2

) ζ ( 1
2 − ix

)
ζ
(

1
2 + ix

)πix (2.6)

Equation (2.6) is just the functional equation for the Riemann Zeta function on
the critical line s = 1

2 + ix , this means that the quantization condition (2.5)
may give the Riemann zeros and it is equivalent to the functional equation for
the Riemann zeta function
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3. ZETA REGULARIZATION FOR FUNCTIONAL DETERMI-

NANTS AND THE RIEMANN XI- FUNCTION ξ(s)

Berry [5] has suggested the following Quantization condition for the Energies of
a Quantum system

∆(E) = det (E −H) = 0 (3.1)

Here ∆(E) =
∞∏
n=0

(E − En) is the functional determinant of the system , for

example for the Harmonic oscillator and the in�nite potential well we have

∞∏
n=0

(
1− E

n+ 1
2

)
e

E
n+1 =

cos (πE)√
π

Γ
(
E + 1

2

)
e−γE

∞∏
n=0

(
1− E

n2

)
=

sin
(
π
√
E
)

π
√
E

(3.2)
Here γ = 0.57721.. is the Euler-Mascheroni constant.
In order to de�ne a Functional determinant, one of the best method to use is
the Zeta regularization [8] the zeta regularized determinant for an operator T
having real eigenvalues {λn} is

∂sZ(0) = −
∞∑
n=0

lnλn
1

Z(s) =

∞∑
n=0

1

λsn
det(T ) =

∞∏
n=0

λn = exp

(
−∂Z(0)

∂s

)
(3.3)

ere Z(s) is the spectral zeta function associated to the operator T , in many
cases we do not know this function so we need to use the representation

Θ(t) =

∞∑
n=0

e−tEn Z(s) =
1

Γ(s)

∫ ∞
0

dtΘ(t)ts−1 (3.4)

This Theta function is de�ned only for t >0 , for our case with the potential

de�ned implicitly by the equation f−1(x) =
∞∑
n=0

H(x−γ2
n)√

x−γ2
n

= 2
√
π d

1
2N(x)

dx
1
2

we can

use the Semiclassical approximation for the Theta function

ΘWKB(t) =
1

2π

∫ ∞
−∞

dx

∫ ∞
0

dpe−tp
2−tf(x) =

1√
πt

∫ ∞
0

dxe−tf(x) =

√
t

π

∫ ∞
0

dre−tr
f−1(r)

dr
(3.5)

From the properties of the Laplace transform
∫∞

0
dtf(t)tk = (−1)k ∂F∂s

∫∞
0
dtf(t) =

F (s) k = 1
2 and from the identity

∫∞
−∞ dxe−ax

2

=
√

π
a the last integral inside

(3.5) is equal to
∞∑
n=0

e−tγ
2
n with ζ

(
1
2 + iγn

)
= 0 . If we take the Mellin transform

1
Γ(s)

∫∞
0
dtΘWKB(t)ts−1e−tE

2

inside (3.4) we obtain
∞∑
n=0

1
(E2+γ2

n)s = Z(E, s) ,

and the sum is extended to the positive imaginary part of the Riemann zeros ,
from ths last expression we can de�ne the Riemann Xi-function on the critical
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line as the quotien of 2 functional determinants

det (H − E)

det(H)
=

∞∏
n=0

(γ2
n − E)

∞∏
n=0

γ2
n

=

∞∏
n=0

(
1− E

En

)
=
ξ
(

1/2 + i
√
E
)

ξ (1/2)
= exp

(
− d

ds
Z(s, E) |s=0 +

d

ds
Z(s, 0) |s=0

)
(3.6)

So, from the expression (3.6) one observes that the functional determinant of a
Hamiltonian H = p2 + f(x) with a potential de�ned implicitly by

f−1(x) =

∞∑
n=0

H(x− γ2
n)√

x− γ2
n

= 2
√
π
d

1
2N(x)

dx
1
2

=
2√
π

d
1
2

dx
1
2

arg ζ

(
1

2
+ i
√
x

)
(3.7)

Is exactly to the Riemann Xi-function on the critical line, hence Riemann Hy-
pothesis must be true, since the Riemann xi-function is the Charasteristic Poly-
nomial (Functional determinant) of an Hermitian operator in one dimension

Appendix A: Useful formulae:

For a Polynomial or a power function xm and for the Heaviside step function,
the fractional derivative of any order can be computed as follows

Dα =
dα

dxα
DαH(x) =

H(x)

Γ(1− α)

1

xα
Dαxm =

Γ(m+ 1)

Γ (m− α+ 1)
xm−α (A.1)

f we expanded the Bessel function and the cosine function into a power series
around x =0

cos(
√
x)√

x
=

∞∑
n=0

(−1)nxn−
1
2

(2n)!
J0(
√
x) =

∞∑
n=0

(−1)nxn

22nn!n!
(A.2)

We could prove inmediatly the identity
√
πDxJ0 (a

√
x) =

cos(a
√
x)√

x

For the case of the function
√
x ln(x) the evaluation of the fractional derivative

is a bit harder , [11] and it is de�ned

dα

dxα
(√
x ln(x)

)
= z

1
2−α.

Γ
(

3
2

)
Γ
(

3
2 − α

) .(ln(x) + Ψ

(
3

2

)
−Ψ

(
3

2
− α

))
(A.3)

Here , we have used the de�nition of the Digamma function Ψ(x) = Γ′

Γ (x) .
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For a Quantum system, the quantization condition in terms of the EXACT
Eigenvalue staircase can be formulated either as N(E) = n+ 1

2 or cos (πN(E)) =

0 with N(E) =
∞∑
n=0

H(E − En)

The Bohr-Sommerfeld quantization condition for the system come from approx-
imating the exact sum over Energies by an integral over the Phase Space and
then integrating over the momentum variable

n+
1

2
=

∞∑
n=0

H(E−En) ≈ 1

2π~

∫∫
R2

dxdpH(E−H(x, p)) =
1

π~

∫ a

0

dx
√

2m (E − f(x))

(A.4)

With the Hamiltonian H = p2

2m + f(x) and f(a) = E a turning point of the
system where the momentum of the particle is 0

From the semi-group property for the fractional derivatives Da
xD

b
x = Da+b

x for
positive a and be , if we take the half derivative of the potential

D
1
2
x

2
√
π
f−1(x) =

1

2
√
π
D

1
2
x

(
2
√
πD

1
2
xN(x)

)
= D

1
2 + 1

2
x N(x) = ρ(x) =

∞∑
n=0

δ
(
x− γ2

n

)
(A.5)
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