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Abstract

Background: There are limited studies on the automatic detection

of T waves in arrhythmic electrocardiogram (ECG) signals. This is per-

haps because there is no available arrhythmia dataset with annotated

T waves. There is a growing need to develop numerically-efficient al-

gorithms that can accommodate the new trend of battery-driven ECG

devices. Moreover, there is also a need to analyze long-term recorded

signals in a reliable and time-efficient manner, therefore improving

the diagnostic ability of mobile devices and point-of-care technologies.

Methods: Here, the T wave annotation of the well-known MIT-BIH

arrhythmia database is discussed and provided. Moreover, a simple

fast method for detecting T waves is introduced. A typical T wave

detection method has been reduced to a basic approach consisting of

two moving averages and dynamic thresholds. The dynamic thresholds

were calibrated using four clinically known types of sinus node response
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to atrial premature depolarization (compensation, reset, interpolation,

and reentry). Results: The determination of T wave peaks is performed

and the proposed algorithm is evaluated on two well-known databases,

the QT and MIT-BIH Arrhythmia databases. The detector obtained a

sensitivity of 97.14% and a positive predictivity of 99.29% over the first

lead of the validation databases (total of 221,186 beats). Conclusions:

We present a simple yet very reliable T wave detection algorithm that

can be potentially implemented on mobile battery-driven devices. In

contrast to complex methods, it can be easily implemented in a digital

filter design.

1 Introduction

According to the World Health Organization, cardiovascular diseases (CVDs)

are the number one cause of death globally; more people die annually from

CVDs than from any other cause [1]. An estimated 17.3 million people died

from CVDs in 2008, representing 30% of all global deaths [1]. Of these

deaths, an estimated 7.3 million were due to coronary heart disease and

6.2 million were due to stroke [1]. Thus, medical researchers have placed

significant importance on cardiac health research. This has led to a strong

focus on technological advances with respect to cardiac function assessment.

One such research pathway is the improvement of conventional cardiovascu-

lar diagnosis technologies used in hospitals and clinics.

The most common clinical cardiac test is electrocardiogram (ECG) anal-

ysis as it is simple, risk-free, and inexpensive [2]. The signal of each heart

beat contains five main waves: the P, Q, R, S, and T waves. The auto-

matic detection of these waves is critical for reliable cardiovascular assess-

ment, such as diagnosing cardiac arrhythmias [3, 4, 5, 6], understanding

autonomic regulation of the cardiovascular system during sleep and hyper-
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tension [7, 8], detecting breathing disorders such as obstructive sleep apnea

syndrome [9, 10], and monitoring other structural or functional cardiac dis-

orders.

The detection of R peaks and QRS complexes has been extensively in-

vestigated over the past two decades [11]. Conversely, T wave detection has

not been investigated as widely as QRS detection, and the T wave detection

problem is still far from being solved [12, 13, 14, 15]. Reliable T wave de-

tection is more challenging than QRS complex detection for several reasons,

including low amplitudes, low signal-to-noise ratio (SNR), amplitude and

morphology variability, and possible overlapping of the P wave and T wave

[11, 16]. Nevertheless, accurate T wave detection is mandatory for a vari-

ety of (differential) diagnostic tasks, such as acute coronary syndrome [17],

acute myocardial infarction [18], or potentially fatal arrhythmias [19]. To

our knowledge, there was no attempt to develop an ECG detector based on

existing clinical knowledge. Thus, in this paper, we investigated the possi-

bility of applying clinical knowledge to build a T wave detection algorithm.

In addition, in the near future, it is expected that Holter devices, which

are traditionally used for ECG analysis in the clinic, will be replaced by

portable battery-operated devices, such as mobile phones [11]. Therefore,

there is a need for a simple, fast, and computationally efficient algorithm

to detect arrhythmias efficiently in real time. To develop fast robust al-

gorithms for detecting Arrhythmia in ECG collected by portable, wearable,

and battery-driven devices, first we require fully annotated arrhythmia ECG

signals as a benchmark for evaluation. Unfortunately, the MIT-BIH Ar-

rhythmia database [20] includes only the annotations of R peaks. Therefore,

in this study, we annotated T waves in the MIT-BIH Arrhythmia database

[21, 20]. Moreover, a new fast robust algorithm consisting of two moving
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averages that are calibrated by a clinical knowledge base is presented.

2 Materials and Methods
2.1 Data Used

Several standard ECG databases are available for the evaluation of QRS

detection algorithms for ECG signals. Most of these databases contain an-

notated files for R peaks but not for T waves. To demonstrate the applica-

bility of the algorithm presented in this paper, two databases are used in this

study: one self-annotated database and one standard annotated database.

2.1.1 Database Annotated Under This Study

An expert manually annotated the P and T peaks of the MIT-BIH Arrhyth-

mia database [21, 20] to be used in evaluation for the following reasons:

1. The MIT-BIH database contains 30-min recordings for each patient,

which is considerably longer than the records in many other databases,

such as the Common Standards for Electrocardiography database,

which contains 10-s recordings [22].

2. The MIT-BIH Arrhythmia database contains records of normal ECG

signals and records of ECG signals that are affected by non-stationary

effects, low SNR, premature atrial complexes, premature ventricular

complexes, left bundle blocks, and right bundle blocks. This provides

an opportunity to test the robustness of T wave detection methods.

3. The database contains 23 records (the “100 series”) that were chosen

at random from a set of more than 4000 24-h Holter tapes, and 25

records (the “200 series”) that were selected from the same set, in-

cluding a variety of rare and clinically important ECG segments [20].

Several records in the 200 series have abnormal rhythms and QRS
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morphologies and they suffer from a low SNR. These issues are ex-

pected to present significant difficulties for any ECG signal analysis

algorithm [20].

Figures 1–3 demonstrate examples for annotation of T waves for different

beats in the MIT-BIH Arrhythmia database. There was no automated aid

provided during the annotation process and only channel one (Lead I) was

annotated. For special cases, such as biphasic T waves, the middle point of

the wave was considered as a T wave. The annotation file of P and T waves

can be downloaded from [23].

2.1.2 Standard Annotated Database

As the MIT-BIH database is self-annotated, the validation of the detector

must be carried out using a standard annotated database. For this purpose,

the easily-available QT database [24] is used. This database was annotated

by two cardiologists and includes different morphologies such as ST change,

supraventricular arrhythmia, normal sinus rhythm, sudden death, and long-

term ECG signals. The two cardiologists annotated only selected beats (3542

beats in a file called “.q1c”) in all recordings except two recordings: “sel35”

and “sel37”. However, the automatic annotation of the whole database was

carried using ecgpuwave software, which is saved in the “.pu” file. In this

work, the T peaks of Lead I of the whole QT database are used for validation

as they are more salient and certain compared to the onset and offset. In this

work, the T peaks of the whole QT database are used for validation as they

are more salient and certain compared to the onset and offset. Moreover,

once the T peak is detected correctly, searching for the onset and offset is a

relatively easy step; however, this is not the focus of this study.
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Figure 1: Annotation of P and T waves in normal beats. Here, “+” repre-
sents the P wave and “*” represents the T wave. Note that the higher peaks
represent the QRS complex.

6



94.1 94.2 94.3 94.4 94.5 94.6 94.7 94.8 94.9

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Record 102

m
V

Time (s)
101.7 101.8 101.9 102 102.1 102.2 102.3 102.4 102.5 102.6

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Record 105

m
V

Time (s)

989.4 989.5 989.6 989.7 989.8 989.9 990 990.1 990.2

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Record 107

m
V

Time (s)

276.1 276.2 276.3 276.4 276.5 276.6

0.95

1

1.05

1.1

1.15

1.2

Record 100

m
V

Time (s)

628.5 628.6 628.7 628.8 628.9 629 629.1 629.2

0.7

0.8

0.9

1

1.1

1.2

Record 118

m
V

Time (s)
83.65 83.7 83.75 83.8 83.85 83.9 83.95 84 84.05 84.1 84.15

0.9

0.95

1

1.05

1.1

1.15

1.2

Record 200

m
V

Time (s)

25.9 26 26.1 26.2 26.3 26.4 26.5 26.6 26.7 26.8 26.9

0.9

0.95

1

1.05

1.1

1.15

Record 102

m
V

Time (s)
24.6 24.8 25 25.2 25.4 25.6

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Record 107

m
V

Time (s)

6.4 6.6 6.8 7 7.2 7.4

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Record 217

m
V

Time (s)

9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 10.1

0.85

0.9

0.95

1

1.05

1.1

1.15

Record 109

m
V

Time (s)
9 9.2 9.4 9.6 9.8 10

0.95

1

1.05

1.1

1.15

Record 111

m
V

Time (s)
1001.8 1002 1002.2 1002.4 1002.6 1002.8

0.75

0.8

0.85

0.9

0.95

1

1.05

Record 207

m
V

Time (s)

28.2 28.4 28.6 28.8 29 29.2

0.6

0.7

0.8

0.9

1

1.1

Record 118

m
V

Time (s)

1.8 2 2.2 2.4 2.6 2.8 3 3.2

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Record 124

m
V

Time (s)
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Record 212

m
V

Time (s)

(a)

(b)

(c)

(d)

(e)

Figure 2: Annotation of Pand T waves in irregular heart beats. Each row
contains three different morphologies for a certain type of arrhythmia: (a)
premature ventricular beats; (b) premature atrial beats; (c) paced beats;
(d) left bundle branch block beats; (e) right bundle branch block beats.
Here, “+” represents the P wave and “*” represents the T wave, while the
green circle with asterisk represents merged P and T waves.
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Figure 3: Annotation of P and T waves in unusual beats. Each row contains
two different morphologies for a certain type of unusual beats: (a) unclas-
sified beats; (b) nodal premature beat; (c) nodal escape beat; (d) fusion of
ventricular and normal beat; (e) fusion of paced and normal beat. Here,
“+” represents the P wave and “*” represents the T wave, while the green
circle with asterisk represents merged P and T waves.
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2.2 T Wave Detection Algorithm

In this study, a fast robust knowledge-based T wave detection algorithm

is discussed and evaluated. The algorithm is based on the framework pro-

posed by Elgendi for detecting QRS complexes in ECG signals [25, 26],

for detecting systolic waves in photoplethysmogram signals [27], detecting

a waves [28], and detecting c, d, e waves [29] in acceleration photoplethys-

mogram (PPG) signals. We build upon this approach to detect T waves.

The method consists of three main stages: pre-processing (clinical knowl-

edge, bandpass filtering, squaring, and QRS removal), feature extraction

(generating potential blocks using two moving averages), and classification

(thresholding). The structure of the algorithm is given in Figure 4.

ECG
Bandpass

 Filter

indices for T waves 

x[n]

QRS

 Removal
Thresholding

Annotated

R peak 

Clinical

Knowledge

y[n]

Generate

Blocks of Interest

W1 

RT   

 RT 

min

max

k

Figure 4: Structure of the T waves detection algorithm. The algorithm
consists of three main stages: pre-processing (clinical knowledge, bandpass
filtering, squaring, and QRS removal), feature extraction (generating po-
tential blocks using two moving averages), and classification (thresholding).

2.2.1 Bandpass Filter

Most of the energy of T waves lies below 10 Hz [30, 31]; thus, a zero-phase

second-order Butterworth filter, with a 0.5–10 Hz bandpass, is implemented

to remove the baseline wander and high frequencies that do not contribute

to the T waves. The output of the zero-phase Butterworth filter applied to
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the ECG signal produces a filtered signal x[n].

2.2.2 QRS Removal

The QRS removal step based on the relative distance of the T wave to its

associated R peak. Removing the QRS complex has two advantages: (1)

T waves become the dominant feature in the processed signal; and (2) it

simplifies the search for T waves relative to the position of R peaks. In this

study, as proof of concept, the R peaks provided in the MIT-BIH Arrhythmia

and QT databases are used. Removing the QRS complex is performed by

setting the signal to zero for the duration of the QRS complex.

The limits (thresholds) of the RT distance are determined using ECG

clinical knowledge. The signal y[n] is initialized as equal to the filtered ECG

x[n] signal. The QRS removal length thresholds are determined based on

the clinical phases of the RR intervals. As the duration of the QRS complex

varies with the heart beat type, a clinical database is required to remove

the QRS complex, according to its type. Roskamm and Csapo divided the

ECG into four phases: compensation, reset, interpolation, and reentry [32].

Based on their analysis, in the compensation phase (Figure 5a), the second

beat (850 ms) is followed by a prolonged beat (1150 ms) to compensate

the two beats duration (2000 ms). During the reset phase (Figure 5b), the

second beat (650 ms) is followed by a prolonged beat (1150 ms), while in the

interpolation (Figure 5c), the second beat (400 ms) is followed by an irregular

beat (600 ms). Finally, in the reentry phase (Figure 5d), the second beat

(300 ms) is followed by a rapid irregular beat (400 ms); however, an extra

category is added to capture complex arrhythmias (repetitive, bigeminy, or

trigeminy). The output of this stage will produce an updated y[n] signal.
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Figure 5: Types of sinus node response to atrial premature depolarization
adapted from [32].

Based on the clinical information presented in Figure 5, the ratio of

the second beat duration to the first and third beat duration generates a

rule-based knowledge representation, as shown in Figure 6. For example,

in the case of reentry (left branch of the flowchart in Figure 6), the first

threshold is calculated by dividing the duration between the third and the

fourth beat (Ri+2−Ri+1 = 400 ms) by the duration between the two and the

third beat (Ri+1 − Ri = 300 ms) resulting as 1.33; however, this value was

calculated with reference to the duration between first beat and second beat

(Ri − Ri−1 = 1000 ms)—this generates the first rule: RR2 ≤ 1.33 RR1,

where RR1 = Ri − Ri−1, RR2 = Ri+1 − Ri, and i is the beat index. The

second threshold is the expected total duration of the second and third

beats (300 ms + 400 ms), which equals 0.7 s—this generates the second

rule: (RR1 + RR2) ≤ 0.7fs. On the right side the flowchart in Figure

6, in the case of reentry, the first threshold is calculated by dividing the

duration between the third and the fourth beat (Ri+1 − Ri = 300 ms) by

the duration between the first and the second beat (Ri − Ri−1 = 1000 ms)
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resulting as 0.3—this generates the first rule: RR2 ≤ 0.3 RR1, while the

second threshold is based on the duration between the first and the second

beat (Ri −Ri−1 = 1000 ms) which is 1 s (or fs)—this generates the second

rule: RR1 ≤ fs. Similarly, all other rules were created for the other four

ECG phases.
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Figure 6: Rule-based knowledge representation of QRS removal based on
the clinical knowledge shown in Figure 5.

During the QRS removal, the RR interval that satisfied each category is

saved and referred to as RRk, where k is the category type (compensation,

reset, interpolation, reentry, and complex arrhythmias). The normalized RR

intervals average in each category is calculated as Mc = (
∑l

j=1 RRc,j)/(lfs),

where l is the number of RR intervals saved in category c, and fs is the

sampling frequency. Dividing Mc by fs is sufficient as it is equivalent to the

12



average RR interval in healthy subjects.

2.2.3 Generating Blocks of Interest

Blocks of interest are generated using two event-related moving averages

that demarcate the areas of T waves, a method which was first introduced

in [33]. The particular method used to generate blocks of interest has been

mathematically shown to detect a waves [28], QRS complexes [25], and sys-

tolic waves in PPG signals [27]. In this procedure, the first moving average

(MApeak) is used to emphasize the peak of the T wave area, as the dotted

signal shown in Figure 7, and is given by

MApeak[n] =
1

W1
(y[n−(W1−1)/2]+ · · ·+y[n]+ · · ·+y[n+(W1−1)/2]) (1)

where W1 represents the window size of approximately the peak duration

of the T wave in ECG signals. The initial value for W1 of 70 ms is de-

termined by Trahanias [34]. However, as the ECG signals may contain

different arrhythmias the value of W1 will be calculated relative to the most

frequent RR intervals in all five categories (k = max
c

Mc). Then, the value

of W1 = (70 ms × fs) × k, and the result is rounded to the nearest odd

integer. The second moving average (MATwave) is used to emphasize the T

wave area to be used as a threshold for the first moving average, shown as

a dashed signal Figure 7, and is given by

MATwave[n] =
1

W2
(y[n−(W2−1)/2]+· · ·+y[n]+· · ·+y[n+(W2−1)/2]) (2)

where W2 represents the window size of approximately the T wave duration.

The initial value for W2 of 140 ms is determined by Laguna et al. [35].

However, as the ECG signals may contain different arrhythmias, the value
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of W2 will be calculated relative to the most frequent RR intervals in all five

categories (k). Then, the value of W2 = (140 ms× fs)× k, and the result is

rounded to the nearest odd integer. For example, the total values of W1 and

W2 for detecting T waves in record 100 from MIT-BIH Arrhythmia database

were 20 samples (55.6 ms) and 40 samples (111.2 ms); respectively.

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

Time(s)

MATwave

MApeak

Blocks of Interest

Figure 7: Demonstrating the effectiveness of using two moving averages
to detect T waves. The dotted line is the first moving average, while the
dashed line is the second moving average. The red circle is the detected T
wave peak.

2.2.4 Thresholding

In this stage, the blocks of interest are generated by comparing the MApeak

signal with MATwave. Many blocks of interest will be generated, some of

which will contain the T wave and others will contain P waves, U waves,

and noise. Therefore, the next step is to reject blocks that result from noise.

Rejection is based on the relative positions of P and T waves to R peaks

and anticipated peak width.

To determine whether the detected blocks contain T waves or not, the

number of blocks in each consecutive RR interval is counted. A threshold

based on the distance of the maximum point within a block to the R peak is
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applied to distinguish P waves from T waves and noise, as shown in Figure 8.

The search regions for T waves in terms of time occurrence with respect to

the current R peak (Ri) and the next R peak (Ri+1) are calculated as

RiTmin = DminRiRi+1 (3)

RiTmax = DmaxRiRi+1 (4)

where RiTmin represents the minimum dynamic interval between the T wave

and the current R peak, RiTmax represents the maximum dynamic interval

between the T wave and the current R peak, while RiRi+1 represents the

interval between Ri and Ri+1. The exact values for Dmin and Dmax are

170 ms and 800 ms, respectively, as determined by Schimpf et al. [36]

to represent the minimum RT durations for subjects with arrhythmia and

maximum RT duration for healthy subjects. All detected blocks go through

a durational threshold to reject the undesired blocks called THR1, which

rejects the blocks that contain P wave, U wave, and noise. By applying the

THR1 threshold, the accepted blocks will contain T peaks only,

THR1 = W1 (5)

After applying the relative-position thresholds, there are three possibil-

ities for the number of detected blocks within the area of interest:

1. Zero: if there is no block detected, it means the algorithm failed to

detect a T wave in the current RR interval.

2. One: if there is one detected block, it means the algorithm succeeds

in detecting T wave, P and T waves are most likely merged within

one block, which is marked as a circle with a black asterisk inside (see

Figure 9i,j).
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3. More than one: if there are multiple detected blocks, as shown in

Figure 7, it means one of the detected blocks contains T waves. How-

ever, in this work the nearest block to the current R peak is considered

a T wave.

The last stage is to find the maximum absolute value within each block

to detect the peak of T wave. The detected T wave peaks are compared

to the annotated T wave peaks to determine whether they were detected

correctly. The search range for the true T wave peak is fixed to ±30 ms for

both databases, to ensure consistency of comparison. The search region of

30 ms is good enough for diagnostics as it is less than W1.

T P

RiRi+1

Ri Ri+1

RiTmin

RiTmax

Figure 8: Search regions for T waves in terms of time occurrence with respect
to the current R peak (Ri) and the next R peak (Ri+1). Where RiTmin

represents the minimum interval between the T wave and current R peak
and RiTmax represents the maximum interval between the T wave and the
current R peak.
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Figure 9: Demonstrating the performance of the proposed T wave detection
algorithm on the MIT-BIH Arrhythmia database. The algorithm succeeds
to detect T wave peaks in electrocardiogram (ECG) signals that contain: (a)
high-frequency noise; (b) baseline wander; (c) normal sinus rhythm without
U waves; (d) normal sinus rhythm with U waves; (e) normal sinus rhythm
with negative polarization; (f) left bundle branch block (LBBB) beats with
merged P and T waves; (g) LBBB beats; (h) right bundle branch block
(RBBB) beats from record 118; (i) premature ventricular contraction (PVC)
beats from record 200; (j) premature atrial contraction (PAC) beats from
record 209. Here, the empty red circle represents the detected T wave while
the a circle with a black asterisk represents detection of merged P and T
waves.
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3 Results

The algorithm was evaluated using the MIT-BIH database. The T waves

were detected successfully even when the P and T waves are merged in

Arrhythmia ECG signals that are affected by: high-frequency noise, baseline

wander, normal sinus rhythm (NSR), left bundle branch block (LBBB), right

bundle branch block (RBBB), premature ventricular contraction (PVC), and

premature atrial contraction (PAC). All of the reasons for detection failure

are described below. High-frequency noise results from the instrumentation

amplifiers, recording system, and ambient electromagnetic signals received

by the cables. The signal shown in Figure 9a has been corrupted by power-

line interference at 60 Hz and its harmonics and other high frequencies. It

can be seen that the proposed algorithm is robust to noise. Moreover, the

proposed algorithm is not sensitive to baseline wander and detected the T

waves correctly, as shown in Figure 9b. This is because the moving averages

were applied to the bandpass filtered ECG signal—which is discussed in the

Bandpass Filter Subsection.

The NSR is a normal ECG cycle; it is initiated by the sinoatrial node and

consists of a P wave followed, after a brief pause, by a QRS complex and then

a T wave [37]. The proposed algorithm correctly detected T waves in three

types of normal beats: (1) NSR without U waves (record 100 of the MIT-

BIH database), as shown in Figure 9c; (2) NSR with U waves (record 103),

as shown Figure 9d; and (3) NSR with negative polarization (record 108),

as shown Figure 9e. The LBBB results from conduction delays or blocks at

any site in the intraventricular conduction system, including the main LBBB

and the bundle of His. The result of an LBBB is an extensive reorganization

of the activation pattern of the left ventricles [37]. The proposed algorithms

successfully detected normal and merged P and T waves in two types of
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LBBBs: (1) LBBB beats with merged P and T waves (record 109), as shown

in Figure 9f and (2) LBBB beats with normal T waves (record 111), as shown

in Figure 9g. However, RBBB is a result of a conduction delay in a portion of

the right-sided intra-ventricular conduction system. The delay can occur in

the main RBBB itself, in the bundle of His, or in the distal right ventricular

conduction system. The RBBBs may be caused by a minor trauma, such as

right ventricular catheterization [37]. As shown in Figure 9h, the proposed

algorithms succeeded in detecting the T waves in ECG signals of RBBB

(record 118).

The PVCs are characterized by the premature occurrence of a QRS com-

plex that is abnormal in shape, and that has a longer duration than normal

QRS complexes, generally exceeding 120 ms [37]. The T wave is commonly

large and opposite in direction to the major deflection of the QRS. In gen-

eral, the QRS complex is not preceded by a P wave, but it can be preceded

by a non-conducted sinus P wave occurring at the expected time [37]. In

Figure 9i, a special case of PVC is shown, called bigeminy, where the pre-

mature ventricular beats occur after every normal beat in an alternating

pattern.

The proposed algorithm succeeded in detecting the T waves in the nor-

mal beats and the T waves in the premature ventricular beats (record 200).

Note that PACs are among the most common causes of irregular pulses and

can originate from any area in the heart [37]. The impulse is discharged pre-

maturely by an irritable focus in the atria giving rise to a distorted P wave,

usually superimposed on the preceding T wave. As shown in Figure 9j, the

proposed algorithms detected the merged T waves in PACs (record 209). As

illustrated in Figure 9, the proposed method successfully detected T waves in

ECG signals with a low SNR, baseline wander, and various arrhythmias. The
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performance of the T wave detection algorithms is evaluated using two sta-

tistical measures: SE = TP/(TP + FN) and +P = TP/(TP + FP), where

TP is the number of true positives (T wave peak detected within the range

of 30 ms of the annotated T wave peak), FN is the number of false negatives

(annotated T wave peak has not been detected), and FP is the number of

false positives (T wave peak detected outside the range of 30 ms of the anno-

tated T wave peak). The sensitivity SE reports the percentage of true beats

that were correctly detected by the algorithm. The positive predictivity +P

reports the percentage of beat detections that were true beats.

The abnormal heart rhythms caused a large number of FNs compared

to the FPs. Table 1 shows the result of T wave detection over 48 records

of the MIT-BIH database. FNs are mainly caused by noise and PVC, as in

record 219, and atrial fibrillation, as in record 202. The algorithm achieved

a sensitivity of 99.86% and a positive predictivity of 99.65%, which are

promising results for handling the non-stationary effects, low SNR, PACs,

PVCs, LBBBs, and RBBBs in ECG signals.

3.1 Comparison of Performance on the QT Database

The detection performance on the QT database obtained by the proposed

T wave detector record by record performance is shown in Tables 2 and 3.

The overall comparison of our results with the existing T wave detection

algorithms on the QT database is demonstrated in Table 4. It summarizes

the performances in terms of number of beats, methodology, SE, and +P.

Note that the proposed algorithm scored slightly higher overall performances

(average of SE and +P) than Mart́ınez et al. [38] and Laguna et al. [39] over

the manually annotated T waves. It is clear that the proposed algorithm

succeeds in handling long ECG recordings with high performance over the
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111,201 automatically annotated heart beats. Moreover, the proposed T

wave detector has not been re-tuned over any databases, thus the results are

promising, and the algorithm can detect T peaks over different databases,

sampling frequencies, types of arrhythmias, and noise.

3.2 Processing Time

Less computational time is achieved when the simplest method is used (i.e.,

the algorithm presented in this paper requires less computational time). This

is advantageous in terms of future development of wearable and portable

diagnostic devices, and in terms of helping online and real-time diagnoses.

It is misleading to suggest that mentioning the average speed of the

proposed detector, over a certain time length of ECG signal, would provide

a comparative result. This is because the processing time depends on the

number of beats within each ECG recording, not on the record length. In

this study, the T wave detector was implemented in MATLAB 2010b (The

MathWorks, Inc., Natick, MA, USA) on IntelTM i5 CPU 2.27 GHz.

It is worth noting that the number of beats of the 15-min recordings

category in QT database was relatively consistent—with a mean ± SD,

number of beats 1059 ± 275—over all records of this category. On the

contrary, the 30-min beat average, in MIT-BIH database, was 2291 with an

SD of 448 beats. As the processing time depends on the number of beats

rather than the recording length [25], we found, for example, the proposed

detector took 2.58 s to process record 215-MITDB contains 3362 beats,

while it took 0.28 s to process 527 beats in record 33-QTDB. In general,

without taking the number of beats into consideration, the speed of the

proposed detector is fast. The suggested detector handles 15-min recordings

in 0.52±0.14 s, while it takes 1.98±0.32 s to handle 30-min ECG recordings.
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Table 1: T wave peak detection performance over the annotated MIT-BIH
Arrhythmia database [21, 20]. To evaluate the performance of the T wave
detection algorithm, two statistical measures are used: SE = TP/(TP + FN)
and +P = TP/(TP + FP), where TP is the number of true positives (T wave
peak detected within the range of 30 ms of the annotated T wave peak),
FN is the number of false negatives (annotated T wave peak has not been
detected), and FP is the number of false positives (T wave peak detected
outside the range of 30 ms of the annotated T wave peak).

Record
No of
beats

TP FP FN SE (%) +P (%)

100 2274 2272 0 0 100.00 100.00

101 1866 1863 1 4 99.79 99.95

102 2187 2185 0 0 100.00 100.00

103 2084 2082 0 4 99.81 100.00

104 2229 2227 0 1 99.96 100.00

105 2602 2586 0 2 99.92 100.00

106 2026 2024 0 56 97.23 100.00

107 2136 2134 0 3 99.86 100.00

108 1763 1757 0 13 99.26 100.00

109 2533 2530 0 0 100.00 100.00

111 2123 2121 0 16 99.25 100.00

112 2539 2537 0 0 100.00 100.00

113 1794 1792 0 0 100.00 100.00

114 1890 1885 0 69 96.34 100.00

115 1953 1951 0 19 99.03 100.00

116 2395 2392 0 2 99.92 100.00

117 1535 1533 0 0 100.00 100.00

118 2278 2276 0 4 99.82 100.00

119 1988 1986 0 4 99.80 100.00

121 1863 1860 0 46 97.53 100.00

122 2476 2474 0 0 100.00 100.00

123 1519 1517 0 0 100.00 100.00

124 1619 1617 0 7 99.57 100.00

200 2601 2599 0 9 99.65 100.00

201 1949 1947 0 57 97.07 100.00

202 2138 2134 0 113 94.70 100.00

203 2988 2965 0 1 99.97 100.00

205 2656 2556 0 0 100.00 100.00

207 2324 2139 0 9 99.58 100.00

208 2953 2949 0 0 100.00 100.00

209 3006 3003 0 5 99.83 100.00

210 2652 2637 0 0 100.00 100.00

212 2748 2746 0 0 100.00 100.00

213 3250 3247 0 0 100.00 100.00

214 2262 2184 0 0 100.00 100.00

215 3362 3354 0 0 100.00 100.00

217 2208 2205 0 3 99.86 100.00

219 2154 2152 0 144 93.31 100.00

220 2048 2046 0 2 99.90 100.00

221 2427 2424 0 0 100.00 100.00

222 2485 2472 0 33 98.67 100.00

223 2604 2601 0 1 99.96 100.00

228 2060 2056 0 52 97.47 100.00

230 2256 2254 0 39 98.27 100.00

231 1571 1569 0 0 100.00 100.00

232 1783 1781 0 1 99.94 100.00

233 3077 2914 0 1 99.97 100.00

234 2751 2749 0 0 100.00 100.00

109985 109284 1 720 99.28 100.00
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Table 2: T wave peak detection performance over the manually anno-
tated 11 recordings of the QT database [24]. To evaluate the perfor-
mance of the T wave detection algorithm, two statistical measures are used:
SE = TP/(TP + FN) and +P = TP/(TP + FP), where TP is the number
of true positives (T wave peak detected within the range of 30 ms of the
annotated T wave peak), FN is the number of false negatives (annotated T
wave peak has not been detected), and FP is the number of false positives
(T wave peak detected outside the range of 30 ms of the annotated T wave
peak).

Record
No5of5
beats

TP FP FN SE (%) +P (%)

sel100 30 30 0 0 100.00 100.00
sel102 85 85 0 0 100.00 100.00
sel103 30 30 0 0 100.00 100.00
sel104 77 75 0 0 100.00 100.00
sel114 50 50 0 0 100.00 100.00
sel116 50 49 0 0 100.00 100.00
sel117 30 30 0 0 100.00 100.00
sel123 30 30 0 0 100.00 100.00
sel213 71 71 0 0 100.00 100.00
sel221 30 29 1 1 96.67 96.67
sel223 31 31 0 0 100.00 100.00
sel230 50 42 9 8 84.00 82.35
sel231 50 50 0 0 100.00 100.00
sel232 30 30 0 0 100.00 100.00
sel233 30 30 0 0 100.00 100.00
sel301 30 30 0 0 100.00 100.00
sel302 30 30 0 0 100.00 100.00
sel306 36 32 0 0 100.00 100.00
sel307 30 30 0 0 100.00 100.00
sel308 50 40 10 10 80.00 80.00
sel310 30 30 0 0 100.00 100.00
sel803 30 30 4 0 100.00 88.24
sel808 30 30 0 0 100.00 100.00
sel811 30 30 0 0 100.00 100.00
sel820 30 30 0 0 100.00 100.00
sel821 30 30 0 0 100.00 100.00
sel840 70 70 0 0 100.00 100.00
sel847 33 33 0 0 100.00 100.00
sel853 30 30 0 0 100.00 100.00
sel871 70 70 0 0 100.00 100.00
sel872 30 30 0 0 100.00 100.00
sel873 33 33 0 0 100.00 100.00
sel883 30 30 0 0 100.00 100.00
sel891 71 71 0 0 100.00 100.00

sel16265 30 30 0 0 100.00 100.00
sel16272 30 30 0 0 100.00 100.00
sel16273 30 30 0 0 100.00 100.00
sel16420 30 30 0 0 100.00 100.00
sel16483 30 30 0 0 100.00 100.00
sel16539 30 30 0 0 100.00 100.00
sel16773 30 21 9 9 70.00 70.00
sel16786 30 30 0 0 100.00 100.00
sel16795 30 30 0 0 100.00 100.00
sel17453 30 30 0 0 100.00 100.00
sele0104 30 30 0 0 100.00 100.00
sele0106 30 30 0 0 100.00 100.00
sele0107 34 34 0 0 100.00 100.00
sele0110 30 30 0 0 100.00 100.00
sele0111 30 30 0 0 100.00 100.00
sele0112 50 50 0 0 100.00 100.00
sele0114 30 30 0 0 100.00 100.00
sele0116 30 30 0 0 100.00 100.00
sele0121 30 30 0 0 100.00 100.00
sele0122 30 30 0 0 100.00 100.00
sele0124 50 50 0 0 100.00 100.00
sele0126 30 25 4 5 83.33 86.21
sele0129 30 30 0 0 100.00 100.00
sele0133 30 30 0 0 100.00 100.00
sele0136 30 30 0 0 100.00 100.00
sele0166 36 36 0 0 100.00 100.00
sele0170 30 30 0 0 100.00 100.00
sele0203 30 30 0 0 100.00 100.00
sele0210 30 30 0 0 100.00 100.00
sele0211 30 30 0 0 100.00 100.00
sele0303 30 30 0 0 100.00 100.00
sele0405 30 30 0 0 100.00 100.00
sele0406 31 31 0 0 100.00 100.00
sele0409 30 30 0 0 100.00 100.00
sele0411 30 30 0 0 100.00 100.00
sele0509 30 30 0 0 100.00 100.00
sele0603 30 30 0 0 100.00 100.00
sele0604 30 30 0 0 100.00 100.00
sele0606 30 30 0 0 100.00 100.00
sele0607 30 30 0 0 100.00 100.00
sele0609 30 30 0 0 100.00 100.00
sele0612 30 30 0 0 100.00 100.00
sele0704 30 30 0 0 100.00 100.00

sel30 30 30 0 0 100.00 100.00
sel31 30 26 4 4 86.67 86.67
sel32 30 30 0 0 100.00 100.00
sel33 30 30 0 0 100.00 100.00
sel34 30 30 0 0 100.00 100.00
sel36 31 30 1 1 96.77 96.77
sel38 30 30 0 0 100.00 100.00
sel40 30 30 1 0 100.00 96.77
sel41 30 30 0 0 100.00 100.00
sel42 30 30 0 0 100.00 100.00
sel43 30 28 0 0 100.00 100.00
sel44 30 30 0 0 100.00 100.00
sel45 30 29 1 1 96.67 96.67
sel46 30 30 0 0 100.00 100.00
sel47 30 27 2 2 93.10 93.10
sel48 30 30 0 0 100.00 100.00
sel49 30 30 0 0 100.00 100.00
sel50 30 30 0 0 100.00 100.00
sel51 32 32 0 0 100.00 100.00
sel51 30 30 0 0 100.00 100.00
sel52 30 30 0 0 100.00 100.00

sel17152 30 30 0 0 100.00 100.00
sel14046 31 31 0 0 100.00 100.00
sel14157 30 30 0 0 100.00 100.00
sel14172 50 50 0 0 100.00 100.00
sel15814 30 30 0 0 100.00 100.00

3542 3491 46 41 98.90 98.77
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Table 3: T wave peak detection performance over the automatically anno-
tated QT database [24]. To evaluate the performance of the T wave detec-
tion algorithm, two statistical measures are used: SE = TP/(TP + FN) and
+P = TP/(TP + FP), where TP is the number of true positives (T wave
peak detected within the range of 30 ms of the annotated T wave peak),
FN is the number of false negatives (annotated T wave peak has not been
detected), and FP is the number of false positives (T wave peak detected
outside the range of 30 ms of the annotated T wave peak).

Record
No of
beats

TP FP FN SE (%) +P (%)

sel100 1134 1132 0 1 99.91 100.00
sel102 1088 1086 0 2 99.82 100.00
sel103 1048 1046 4 5 99.52 99.62
sel104 1109 1107 9 10 99.10 99.19
sel114 867 864 1 7 99.19 99.88
sel116 1186 1184 0 25 97.89 100.00
sel117 766 764 0 1 99.87 100.00
sel123 756 754 0 0 100.00 100.00
sel213 1641 1639 1 2 99.88 99.94
sel221 1247 1244 0 116 90.68 100.00
sel223 1309 1307 0 6 99.54 100.00
sel230 1077 1075 115 200 81.41 88.40
sel231 732 730 0 1 99.86 100.00
sel232 866 864 18 19 97.80 97.92
sel233 1532 1265 13 112 91.79 98.97
sel301 1352 1348 0 0 100.00 100.00
sel302 1501 1498 1 2 99.87 99.93
sel306 1040 1038 0 30 97.11 100.00
sel307 853 851 0 1 99.88 100.00
sel308 1294 1292 19 21 98.38 98.53
sel310 2012 2008 0 3 99.85 100.00
sel803 1026 1024 0 84 91.80 100.00
sel808 903 901 24 29 96.78 97.32
sel811 704 702 0 1 99.86 100.00
sel820 1159 1157 1 3 99.74 99.91
sel821 1557 1555 2 3 99.81 99.87
sel840 1180 1178 1 2 99.83 99.92
sel847 803 799 0 3 99.62 100.00
sel853 1113 1110 6 8 99.28 99.46
sel871 917 915 2 3 99.67 99.78
sel872 990 988 0 2 99.80 100.00
sel873 859 857 0 1 99.88 100.00
sel883 892 890 30 36 95.96 96.61
sel891 1267 1265 0 1 99.92 100.00
sel16265 1031 1029 10 11 98.93 99.03
sel16272 851 849 0 1 99.88 100.00
sel16273 1112 1110 4 5 99.55 99.64
sel16420 1063 1061 0 1 99.91 100.00
sel16483 1087 1085 1 2 99.82 99.91
sel16539 922 920 0 1 99.89 100.00
sel16773 1008 1006 168 328 67.43 80.17
sel16786 925 923 0 1 99.89 100.00
sel16795 761 759 0 1 99.87 100.00
sel17453 1047 1045 0 1 99.90 100.00
sele0104 804 802 0 1 99.88 100.00
sele0106 897 894 0 1 99.89 100.00
sele0107 823 810 25 34 95.81 96.88
sele0110 872 870 1 3 99.66 99.88
sele0111 908 906 1 1 99.89 99.89
sele0112 684 682 121 189 72.33 80.33
sele0114 698 696 23 28 95.98 96.68
sele0116 560 557 1 3 99.46 99.82
sele0121 1434 1432 2 2 99.86 99.86
sele0122 1414 1412 0 1 99.93 100.00
sele0124 1121 1119 4 5 99.55 99.64
sele0126 945 943 83 793 16.00 64.53
sele0129 672 670 40 55 91.80 93.90
sele0133 840 838 0 1 99.88 100.00
sele0136 810 808 3 4 99.51 99.63
sele0166 813 811 0 1 99.88 100.00
sele0170 897 895 0 1 99.89 100.00
sele0203 1246 1244 0 4 99.68 100.00
sele0210 1063 1061 0 1 99.91 100.00
sele0211 1575 1573 0 1 99.94 100.00
sele0303 1045 1043 1 2 99.81 99.90
sele0405 1216 1214 0 57 95.30 100.00
sele0406 959 957 0 1 99.90 100.00
sele0409 1737 1735 0 1 99.94 100.00
sele0411 1202 1200 0 2 99.83 100.00
sele0509 1028 1026 0 39 96.20 100.00
sele0603 869 867 30 84 90.33 96.32
sele0604 1031 1029 0 2 99.81 100.00
sele0606 1442 1440 0 4 99.72 100.00
sele0607 1184 1182 0 0 100.00 100.00
sele0609 1127 1125 3 4 99.64 99.73
sele0612 751 749 0 1 99.87 100.00
sele0704 1094 1092 0 214 80.40 100.00
sel30 1018 1014 0 3 99.70 100.00
sel31 1087 1084 45 385 64.52 93.96
sel32 1196 1194 0 3 99.75 100.00
sel33 527 525 0 4 99.24 100.00
sel34 897 895 0 0 100.00 100.00
sel35 882 880 0 384 56.36 100.00
sel36 948 946 135 227 76.03 84.21
sel37 682 679 0 511 24.74 100.00
sel38 1563 1561 0 0 100.00 100.00
sel40 1171 1169 0 9 99.23 100.00
sel41 1069 1067 0 24 97.75 100.00
sel42 1366 1363 2 24 98.24 99.85
sel43 1247 1245 0 63 94.94 100.00
sel44 1430 1427 0 46 96.78 100.00
sel45 1337 1335 0 57 95.73 100.00
sel46 971 968 66 96 90.09 92.97
sel47 856 854 0 98 88.52 100.00
sel48 886 884 0 88 90.05 100.00
sel49 1398 1396 0 4 99.71 100.00
sel50 833 831 0 4 99.52 100.00
sel51 661 659 0 32 95.14 100.00
sel51 749 747 0 29 96.12 100.00
sel52 1411 1409 0 1 99.93 100.00
sel17152 1628 1626 0 0 100.00 100.00
sel14046 1260 1258 0 0 100.00 100.00
sel14157 1081 1079 0 9 99.17 100.00
sel14172 663 661 0 73 88.96 100.00
sel15814 1036 1034 0 34 96.71 100.00

111201 110696 1016 4840 95.00 98.59
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Table 4: T waves detection performance comparison on the QT database
[24]. (N/R: not reported).

Publication Method # Beats Annotation (File Name) SE +P

This work Blocks of interest 111,201 Automatic (.pu) 95.0 98.59
This work Blocks of interest 3542 Manual (.q1c) 98.90 98.77

Martinez et al. [38] Wavelet 3542 Manual (.q1c) 99.77 97.79
Laguna et al. [39] Low-pass-differentiator 3542 Manual (.q1c) 99.0 97.74

Vila et al. [40] Modelling 3542 Manual (.q1c) 96.2 N/R

4 Limitations of Study and Future Work

The preliminary results are promising, especially after testing the algorithm

on the QT database; however, testing the algorithm on a larger sample

size is necessary to generalize the findings. In addition, a more focused

study is needed to investigate atrial fibrillation, atrial flutter, paroxysmal

supraventricular tachycardia, junctional tachycardia, and multifocal atrial

tachycardia as the morphology of T waves may differ.

The presented method assumes that the R peaks are correctly detected.

There is a linear correlation between the detection of T waves and the de-

tected R peaks. If the R peaks are misclassified, this method will fail as it

depends on the position of R peaks. However, this study provides a positive

proof of concept for detecting T waves in arrhythmic ECG beats.

We created a rule-based system based on the three RR interval window

proposed in [32]. Perhaps, it is important to investigate the development of

a rule-based system based on more than three RR intervals to examine if it

will improve the overall T wave detection accuracy. Moreover, the proposed

method is based on several thresholds, which are calibrated using clinical

knowledge. Clinical knowledge is considered the gold standard in our work;

thus, the obtained thresholds were considered optimal. However, an open
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question for future work is to optimize all thresholds to improve accuracy.

One of the next steps regarding the results of this study is to detect

arrhythmic ECG beats using the RT or ST interval as a main feature. In

addition, the detection of P waves based on the accurate detection of T wave

peaks needs to be examined. Moreover, perhaps, an optimization over the

clinical parameters after splitting the databases into a training set and test

set may improve the detection rate of the T waves. There is also a need to

investigate the T-waves with different morphology, e.g., biphasic T-waves.

Technically, exploring the event-related moving average methodology for

detecting events in ECG signals is promising in terms of computational com-

plexity and efficiency. This can be further improved by investigating other

bandpass filters with different orders and also by developing fast-moving

average (or median) techniques for real-time analysis and mobile phone ap-

plications.

5 Conclusions

There is a limitation when evaluating T wave detection algorithms as datasets

with annotated T waves are lacking. Consequently, comparing existing al-

gorithms becomes even more difficult. Therefore, annotation of T waves is

discussed and provided. Using these approaches, it is possible to support

diagnostic analysis, delivering important information for (differential) diag-

nosis to medical experts. Using mobile technologies with automatic analysis

software driven by medical expert knowledge, it will be furthermore possi-

ble to provide screening and monitoring solutions in places where medical

expertise is scarce, such as remote rural areas and developing countries.

The use of two moving averages is simple and computationally efficient

for mobile electronic health tools, such as cell phones and telemedicine tech-
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nologies. The assessment of the T detector has been reliably carried out

over the existing standard databases (QT and MIT-BIH), which contain

different beat types and morphologies found in ECG signals. The developed

algorithm was evaluated on all ECG recordings in the MIT-BIH database, 48

self-annotated records containing a total of 109,985 heart beats. It achieved

a sensitivity of 95% and a positive predictivity of 98.59% over the MIT-

BIH ECG signals, which contain low SNR, baseline wander, paced beats,

and various arrhythmias. Interestingly, the proposed algorithm succeeded

in scoring the highest overall accuracy of 98.84% over the manually anno-

tated QT database (3542 heart beats) when compared to the other three

algorithms (cf. Table 4). Moreover, the algorithm scored a high overall

accuracy of 96.7% over the automaticlly annotated QT database (111,201

heart beats). Overall, simplicity and efficiency are required in developing

T wave detection algorithms for processing long-term recordings and large

databases as well as for expanding our telemedicine capabilities in the near

future.
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