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ABSRTACT. In this paper, we introduced a method to modify the Dirichlet series over the  
Mobius function by progressively eliminating the numbers that first have a prime factor 2, then 
3, then 5, ..up to the prime pr. The properties of the new series are analyzed as pr  approaches 
infinity  and  its  relationship  to  the  function  exp [E1((1−s)log pr )]  and  the  partial  Euler 
product is established and then used to examine the validity of the Riemann Hypothesis.

1- Introduction:

The Riemann Zeta function ζ (s)  satisfies the following functional equation over the complex plain 

(1.1)                               ζ (1−s )= 2(2π)2 cos (0.5 sπ)Γ(s)ζ (s) ,         

where s=σ+it  is a complex variable and s≠0  [1].  

For σ>1  (or ℜ(s )>1 ), ζ (s)  can be expressed by the following series 

(1.2)                                                   ζ (s) =∑
n=1

∞ 1
ns

 ,   

and by the following product over the primes p i 's 

(1.3)                                             1/ζ (s) =∏
i=1

∞

(1− 1
pi

s) ,   

where p1=2 , ∏
i=1

∞

(1−1/ pi
s)  is the Euler product and ∏

i=1

r

(1−1/ pi
s)  is the partial Euler product. The 

series ζ (s)  is absolutely convergent for σ>1 .  

The region of the convergence can be extended to ℜ(s )>0  by using the alternating series η(s)  
where

(1.4)                                               η(s)=∑
n=1

∞ (−1)n−1

ns
,       



and
                                     

 (1.5)                                              ζ (s) = 1
1−21− s η(s) .                                         

One may notice that the term 1−21−s  is zero at s = 1. This zero cancels the simple pole that ζ (s)  has 
at s =1 enabling the extension of the zeta function series representation over the critical strip 
0<ℜ(s )<1 . 

It is well known that all the non-trivial zeros of ζ (s)  are located in the critical strip 0<ℜ(s )<1 . 
Riemann stated that all the non-trivial zeros were very probably located on the critical line ℜ(s )=1/2  
[2]. There are many equivalent statements for the Riemann Hypothesis (RH) and one of them involves 
the Dirichlet series with the Mobius function. The Mobius function μ(n)  is define as follows

μ(n)=1, if n=1.

μ(n)=(−1)k , n=∏
i=1

k

pi , pi ' s are distinct primes

μ(n)=0, p2∣n for some p.

The Dirichlet series Mu(s) with the Mobius function is defined as

                                                        Mu( s)=∑
n=1

∞ μ(s)
ns

.

This series is absolutely convergent to 1/ζ (s)  for ℜ(s )>1  and conditionally convergent to 1/ζ (s)  
for ℜ(s )=1 . The Riemann hypothesis is equivalent to the statement that Mu(s) satisfies the following 
equation

 (1.6)                                        Mu( s)=∑
n=1

∞ μ(s)
ns = 1

ζ (s)

for ℜ(s )>0.5 .

In this paper, we have introduced a method to modify the Dirichlet series Mu(s) (defined by Equation 
(1.6)) by first eliminating the numbers that have the prime factor 2 to generate the series Mu(s,2). For 
the series Mu(s,2), we then eliminate the numbers with prime factor 3 to generate the series Mu(s,3), 
and so on, up to the prime number pr . In essence, we have applied the sieving technique to modify the 
series Mu(s) to include only the numbers with prime factors greater than pr . In the following sections, 
the properties of the new series will be analyzed and its use to compute the prime counting function and 
to examine the validity of the RH will be presented.

     
2- Applying the Sieving Method to the Dirichlet Series Mu(s):

The Dirichlet series Mu(s) with the Mobius function μ(n)  is defined as 
 



                                                        Mu( s)=∑
n=1

∞ μ(n)
ns

,     

where μ(n)  is the Mobius function. Thus,

                                       Mu( s)= 1− 1
2s−

1
3s+

0
4s−

1
5s+

1
6s− ..... .

Now, we introduce the series Mu(s,2) by eliminating all the numbers that have a prime factor 2. Thus, 
Mu(s,2) can be written as  

                           Mu( s ,2)= 1− 1
3s−

1
5s−

1
7s+

0
9s−

1
11s−

1
13s+

1
15s− ..... .

To have the same index for both series Mu(s) and Mu(s,2) referring to the same term, the above series 
can be re-written as 

                       Mu( s ,2)= 1+ 0
2s−

1
3s+

0
4s−

1
5s+

0
6s−

1
7s+

0
8s+

0
9s+

0
10s ..... ,

or

(2.1)                                           Mu( s ,2)=∑
n=1

∞ μ(n ,2)
ns

,

where
μ(n ,2)=μ(n) , if n is an odd number.
μ(n ,2)=0 , if n is an even number.

The above series Mu(s,2) can be further modified by eliminating all the numbers that have a prime 
factor 3 to get the series Mu(s;3) where

                      Mu( s ,3) = 1− 1
5s−

1
7s−

1
11s−

1
13s−

1
17s−

1
19s−

1
23s+

0
25s ..... ,

or more conveniently

                       Mu( s ,3) = 1+ 0
2s−

0
3s+

0
4s−

1
5s+

0
6s−

1
7s+

0
8s+

0
9s+

0
10s .....

and so on. 

Let I ( pr)  represent, in ascending order, the integers with distinct prime factors that belong to the set
{ pi : p i> pr } . Let {1, I ( pr)}  be the set of 1 and I ( pr)  (for example, {1,I(2)} is the set of square free 
odd numbers), then one may define the series Mu( s , pr) as



                                                Mu( s , pr)= ∑
n∈{1, I ( pr)}

μ(n)
ns

,    

or

(2.2)                                          Mu( s , pr)=∑
n=1

∞ μ(n , pr)

ns ,

where
μ(n , pr)= μ(n) , if n ∈ {1, I ( pr)}.
Otherwise , μ(n , pr)= 0

It can be easily shown that Mu( s , pr)  converges absolutely for ℜ(s )>1  for every prime number pr . 
Furthermore, it can be also shown that, for ℜ(s )>1 , Mu( s , pr)  satisfies the following equation

(2.3)                                    Mu( s)= Mu(s , pr)∏
i=1

r

(1− 1
pi

s) .                 

Since

                                                    Mu( s)=∏
i=1

∞

(1− 1
p i

s) ,              

one may then conclude that, for ℜ(s )>1 , Mu( s , pr)  approaches 1 as pr  approaches infinity.  

3- Convergence of the series Mu (s , pr)  within the strip 0.5<ℜ(s )≤1 : 

In this section, we will first deal with the question of the conditional convergence of the series 
Mu( s , pr)  over the strip 0.5<ℜ(s)≤1 . Toward this end, we need to examine the convergence of the 

series only along the real axis (or along the line 0.5<σ≤1 ). Theorem 1 establishes the relationship 
along the line 0.5<σ≤1  between the conditional convergence of the two series Mu(σ , pr) and 
Mu(σ) .

Theorem 1:  For s=σ+i0 , 0.5<σ≤1  and for every integer r, the series Mu(σ)  converges 
conditionally if and only if the series Mu(σ , pr)  converges conditionally. Furthermore, Mu(σ)  and
Mu(σ , pr)  are related as follows

(3.1)                                    Mu(σ)= Mu (σ , pr)∏
i=1

r

(1− 1
pi
σ) .

The proof of Theorem 1 is outlined in Appendix 1. 

Theorem 2:  For s=σ+it , 0.5<σ≤1  and for every integer r, the series Mu( s) converges 
conditionally if and only if Mu( s , pr)  converges conditionally. Moreover, Mu( s)  and Mu( s , pr)  are 
related as follows



(3.2)                                    Mu( s)= Mu(s , pr)∏
i=1

r

(1− 1
pi

s) .

The proof of the first part of Theorem 2 follows from the fact that Mu( s , pr)  is a Dirichlet series and 
consequently this series is conditionally convergent if and only if the series Mu(σ , pr)  is 
conditionally convergent. 

The second part of the theorem can be proved by first defining Mu( s , pr ; N 1, N 2)  as the sum

(3.3)                                    Mu( s , pr ; N 1, N 2)=∑
n=N 1

N2 μ(n , pr)
ns

.

Then, one can write

(3.4)              Mu( s , pr−1 ;1, Npr)= Mu (s , pr ;1, Npr)−
1
pr

s Mu(s , pr ;1, N )  .              

If both series Mu( s , pr−1)  and Mu( s , pr)  are convergent, then as N approaches infinity, we obtain

                                          Mu( s , pr−1) = (1− 1
pr

s)Mu (s , pr) .

By repeating this process r-1 times, we then obtain

                                            Mu( s)= Mu(s , pr)∏
i=1

r

(1− 1
pi

s) .

Note that if we multiply both sides of the above equation by ∏
i=1

r

(1+ pi
−s) , then as pr  approaches 

infinity, one may obtain

(3.5)                                     Mu (s , pr)=
ζ (2s )
ζ (s) ∏i=1

r

(1+ 1
pi

s) .

It should be pointed out that the sieving method applied to the Dirichlet series with Mobious function 
can be also applied to the Dirichlet series with Lioville function. The Dirichlet series Lv(s) with 
Lioville Function λ (n)  is defined as 
 

(3.6)                                                 Lv (s) =∑
n=1

∞ λ (n)
ns

,          

where λ (n) is the Liouville function defined as
λ (n) = 1,  if n = 1.
λ (n) = 1,  if n has an even number of prime factors including multiplicities.



λ (n) = -1, if n has an odd number of prime factors including multiplicities.

Following the same process, one may define the series Lv (s , pr)  as

                                                Lv (s , pr)= ∑
n∈{1, I ( pr)}

λ (n)
ns

,    

or

(3.7)                                         Lv (s , pr)=∑
n=1

∞ λ(n , pr)

ns
,

where
μ(n , pr) = λ (n) , if n ∈ {1, I ( pr)}.
Otherwise , λ(n , pr) = 0

It can be easily shown that Lv (s , pr)  converges absolutely for ℜ(s )>1  for every prime number pr  . 
Furthermore, it can also be shown that, for ℜ(s )>1 ,  Lv (s , pr) satisfies the following equation

(3.8)                                     Lv (s , pr)= Lv (s)∏
i=1

r

(1+ 1
pi

s) .

4- Relationship between the series Mu (s , pr)  and the Exponential Integral
E 1((s−1) log pr ) :

In this section, we will derive a functional representation for the series Mu( s , pr)  as pr  approaches 
infinity. This task can be easily achieved for σ>1  by noting that

(4.1)                            1/ζ (s) =Mu (s )= Mu (s , pr)∏
i=1

r

(1− 1
p i

s) .

Since

                                                     1/ζ (s) =∏
i=1

∞

(1− 1
pi

s) ,

therefore,

                                                  Mu( s , pr)= ∏
i=r+1

∞

(1− 1
p i

s) .

For s=σ+i0 ,  the above equation can be written as



                                                Mu(σ , pr)= ∏
i= r+1

∞

(1− 1
p i
σ) ,

or

                                            log (Mu (σ , pr))= ∑
i=r+1

∞

log(1− 1
pi
σ) .

Hence,

                              log (Mu(σ , pr))= ∑
i=r+1

∞

(− 1
p i
σ−

1
2 p i

2σ−
1

3 p i
3σ−...) .

However, for σ>0.5  , the sum ∑
i=r1

∞

(− 1
2 pi

2σ−
1

3 pi
3σ−...)  approaches zero as r1  approaches infinity. 

Thus, 

(4.2)            log(∏i=r1

r2

(1− 1
pi
σ)) = ∑i=r1

r2

(− 1
pi
σ−

1
2 pi

2σ−
1

3 pi
3σ−...) = −∑i=r1

r2 1
pi
σ+δ ,

where δ=O( pr1
1−2σ)  is an arbitrary small number for sufficiently large r1 .

On the other hand, using the Prime Number Theorem (PNT) with a suitable constant a > 0, the number 
of primes less than x is given by [4, page 43]

(4.3)                                         π( x) = Li (x)+O (x e−a√ log x ) ,

or

(4.4)                                        π( x) = Li ( x)+O (x / (log x)k ) ,

where Li(x) is the Logarithmic Integral of x and k is a number greater than zero.

Using Stieltjes integral [5], one may write the sum ∑
i=r1

r2

1/ p i
σ  for σ>1  as follows

(4.5)                                            ∑
i=r1

r2 1
p i
σ = ∫

x= pr1

pr2
d π( x)

xσ
.

Using Equation (4.4) for the representation of π( x) , one may then write the integral in Equation (4.5) 
as [5, Theorem 2, page 57]



(4.6)                          ∑
i=r1

r2 1
p i
σ = ∫

x= pr1

pr2
1
xσ

1
log x dx + O( 1

( log pr1)
k ) ,

 
where k is a number greater than zero. Thus, Equation (4.6) can be written as

(4.7)                ∑
i=r1

r2 1
p i
σ = ∫

x= pr1

∞
1
xσ

1
log x

dx − ∫
x= pr2

∞
1
xσ

1
log x

dx + O( 1
( log pr1)

k ) .

Recalling that the Exponential Integral E1(r )  is given by

                                                        E1(r ) =∫
r

∞
e−u

u
du ,

and using the substitutions u=(σ−1) log x , du=(σ−1)dx / x  and xσ / x=eu , then for σ>1 , one may 
write Equation (4.7) as

(4.8)                ∑
i=r1

r2 1
p i
σ = E1((σ−1) log pr1 )− E1 ((σ−1) log pr2 ) + O( 1

(log pr1)
k ) .

Combining Equations (4.2) and (4.8) and noting that E1((σ−1) log pr2)  approaches zero as pr2  
approaches infinity, one may write Equation (4.1) for σ>1  as

                                  −log ζ(σ) = ∑
i=1

r−1

log(1− 1
p i
σ)−∑i=r

∞ 1
pi
σ + δ ,

or

                            log ζ (σ) +∑
i=1

r−1

log(1− 1
p i
σ)− E1((σ−1) log pr) = Δ ,

where Δ=O(1/(log pr)
k)  is an arbitrarily small number attained by setting pr  sufficiently large. 

Therefore,

(4.9)                     ζ (σ) exp (−E1((σ−1) log pr))∏
i=1

r−1

(1− 1
pi
σ) = 1+Δ .

As pr  approaches infinity, Δ  approaches zero. Thus, the right side of the above equation approaches 
1 as pr  approaches infinity. Similarly, for σ>1 , it can be shown that

(4.10)                  lim
r→∞ {ζ(s )∏i=1

r−1

(1− 1
p i

s) exp(−E1((s−1) log pr))} = 1 .



Now, define the function G(s , pr)  as

(4.11)                 G(s , pr) = ζ (s) exp(−E1((s−1) log pr))∏
i=1

r−1

(1− 1
p i

s) ,

where G(s , pr)  is a regular (analytic and single valued) function for ℜ(s )>1 . Referring to Equation 
(4.10), the function G(s , pr)  approaches 1 as pr  approaches infinity. It should be noted that 
G(s , pr)  can be considered as a sequence of analytic functions. Furthermore, as pr  (or r) approaches 
infinity, this sequence is uniformly convergent over the half plane σ>1 . Thus, using Weiestrass 
theorem , the limit is also an analytic function [6] (Weiestrass theorem states that if the function 
sequence f n  is analytic over the region Ω  and f n  is uniformly convergent to a function f , then f  
is also analytic on Ω  and f '

n  converges uniformly to f '  on Ω ). If we define this limit as G(s ) , 
where 

(4.12)                                             G(s )=lim
r→∞

G (s , pr) ,

then, G(s )  is an analytic function over the half plane σ>1  and it is equal to 1 by the virtue of 
Equation (4.10).

The Prime Number Theorem (PNT) allows us to extend the above results to the line s=1+it . 
Moreover, we will show that if RH is valid, then for the strip s=σ+it  where 0.5<σ<1 , the above 
results will also be valid with the limit of G(s , pr)  is 1 as pr  approaches infinity.

We will start this task by showing that although both ζ (s)  and E1((s−1) log pr)  have a singularity at 
s=1, the product G(s , pr)  has a removable singularity at s=1, Furthermore, we will show that the 
function G(s , pr)  converges for every pr  with s=1+it . This can be shown by first expanding ζ (s)
as a Laurent series about its singularity s=1

(4.13)                    ζ (s) = 1
s−1

+γ−γ1(s−1)+γ2
( s−1)2

2 !
−γ3

(s−1)3

3 !
+ ... ,

where γ  is the Euler-Mascheroni constant and γi 's are the Stieltjes constants. For s=1+ε , where 
ε=ϵ+i δ , ϵ  and δ  are arbitrary small numbers, the above equation can be written as

                                        ζ (s) = 1
ε
+γ−γ1ε+γ2

ε2

2 !
−γ3

ε3

3!
+ ... .

Furthermore, for the right side complex plain, using the definition of the Exponential Integral E1(s) , 
one may write E1(s)  as

(4.14)                        E1(s)=−γ−log s+s− s2

2 ! 2
+ s3

3! 3
− s4

4 ! 4
+ ... .

Thus, for s=1+ε , we have



             exp (−E1((s−1)log pr)) = e γ ε log pr exp(−εlog pr+
(ε log pr)

2

2 2!
−
(εlog pr)

3

33!
+....) .

By taking the product ζ (s) exp {−E1((s−1) log pr)}  and allowing ε  to approach zero, one may then 
obtain at s=1  (in the same sense as computing (sin x)/x at x=0)

(4.15)                           ζ (s) exp (−E1((s−1)log pr))= eγ log pr .

However, it well known that the partial Euler product at s=1  can be written as [3]

(4.16)                                  ∏
i=1

r

(1− 1
pi) = e−γ

log pr
+O( 1

( log pr)
2) .

Multiplying Equations (4.15) and (4.16), one may conclude that at s=1 , G(s , pr)  approaches 1 as 
pr  approaches infinity. Furthermore, for s=1+it  and t≠0 , the value of exp(−E1( jx))  approaches 

1 as |x| (or pr ) approaches infinity and since

                                                lim
r→∞ {ζ(s )∏i=1

r

(1− 1
pi

s )}= 1 ,

therefore, we conclude that, for s=1+it , we have the following 

                          lim
r→∞ {ζ(s )∏i=1

r−1

(1− 1
p i

s) exp(−E1((s−1) log pr))} = 1 .

To analyze the function G(s , pr)  in the strip 0.5<ℜ(s)<1  assuming RH is valid, we first notice that 
the function G(s , pr)  is an entire function for every pr . In the following (assuming RH is valid), we 
will prove that, for 0.5<σ<1 , the function G(σ , pr)  is convergent as pr  approaches infinity. In 
Appendix 3, we will extends these results for the strip 0.5<σ<1 . To show that the function G(σ , pr)  
is convergent as pr  approaches infinity, we first write the expressions for G(σ , pr1)  and G(σ , pr2)  
(where r1<r2 )

(4.17a)              G(σ , pr1)= ζ(σ) exp (−E1((σ−1) log pr1))∏
i=1

r1−1

(1− 1
p i
σ) ,

(4.17b)              G(σ , pr2)= ζ(σ) exp(−E1((σ−1) log pr2))∏
i=1

r2−1

(1− 1
pi
σ) .

Dividing Equation (4.17b) by Equation (4.17a) and taking the logarithm

(4.18)    log(G (σ , pr2)
G (σ , pr1))= E1((σ−1)log pr1 )−E1((σ−1) log pr2 )+log( ∏i=r1−1

r2−1

(1− 1
pi
σ)) .



To compute the logarithm of the partial Euler product in the above equation, we recall Equation (4.2)

               log(∏i=r1

r2

(1− 1
pi
σ )) = ∑i=r1

r2

(− 1
pi
σ−

1
2 pi

2σ−
1

3 pi
3σ−...) =−∑i=r1

r2 1
pi
σ+δ ,               

where δ=O( pr 1

1−2σ) . Also, since we are assuming that RH is valid, then

(4.19)                                      π( x) = Li ( x)+O(√ x log x) ,

where Li(x) is the Logarithmic Integral of x. Using this representation for the prime counting function, 
one may then obtain (Appendix 2)

                            ∑
i=r1−1

r2−1 1
pi
σ = E1((σ−1) log pr1)−E1((σ−1) log pr2)+ε ,

where ε=O( t
(σ−0.5)2

pr1
1/2−σ log( pr1))  and Equation (4.18) can be written as

                                                 log(G (σ , pr2)
G (σ , pr1))= ε+δ ,

where, for σ>0.5 , ε+δ  approaches zero as pr1  approaches infinity. Hence,

                                              G(σ , pr2)=G (σ , pr1) eε+δ .

Since ε+δ  can be made arbitrary small by choosing pr1  arbitrary large, thus the limit of G(σ , pr2 )  
as pr2  approaches infinity exists and is given by

                                                 G(σ)= lim
pr2→∞

G(σ , pr2) .

This proves that, assuming RH, G(σ , pr)  is convergent as pr1  approaches infinity and thus G(σ)  
exists for σ>0.5 . In Appendix 3, we have proved the same results for s=σ+it  where σ>0.5 . In 
other words; we have proved that assuming RH is valid, then for σ>0.5 , G(s , pr)  is convergent as 
pr  approaches infinity and therefore G(s )  exists for σ>0.5 . 

It should be noted that while the function sequence G(s , pr)  is not uniformly convergent when the 
region of convergence is extended to the line σ=0.5 . It is however uniformly convergence for any 
strip 0.5+ϵ<σ<1  where ϵ  is an arbitrary small number. The uniform convergence is a necessary 
requirement for the function sequence G(s , pr) to converge to an analytic function (Weiestrass 
theorem [6]). Since G(s , pr)  is uniformly convergent in the strip 0.5+ϵ<σ<1 , therefore G(s ) is an 
analytic function. Furthermore, since this strip ( 0.5+ϵ<σ<1 ) is connected to the half plane ( σ≥1 ) 
where the function G(s )  is equal to 1, thus the function G(s ) should also be equal to 1 for 
0.5+ϵ<σ<1 , where ϵ  is arbitrary small. Hence, we have the following theorem,



Theorem 3 (Main Theorem 1): For s=σ+it and σ>0.5 , the followings hold if RH is valid

(4.20)                   lim
r→∞ {ζ(s ) exp(−E1(( s−1) log pr))∏

i=1

r

(1− 1
p i

s )}= 1 ,

and

(4.21)                      lim
r→∞

{Mu(s , pr) exp (E1((s−1) log pr))}= 1 .

Using Theorem 3, we can provide on RH an estimate of how well the partial Euler product represents 
ζ (s)  in the strip 0.5<σ<1 . Referring to Appendix 3 and Equation (A3-3), where we set pr1= pr  
and let pr2  approaches infinity, one may write Equation (4.20) for σ>0.5  as follows

(4.22)         
1
ζ (s)

= exp(−E1((s−1) log pr)) ∏
i=1

r

(1− 1
p i

s) exp(O( t
σ−0.5

pr
1/2−σ log pr)) .

Equation (4.22) is obtained using Theorem 3 to have the following

                               log ζ (s) = E1((s−1)log pr2) −∑
i=1

r2

log(1− 1
p i

s) ,

where the equality of both sides is attained as pr  approaches infinity. It should be pointed out that both 
functions log ζ (s)  and E1((s−1) log pr2)  have a branch cut along the real axis where 0.5<σ<1 . 
Alternatively, the above equation can be written as

              log ζ (s) = E1((s−1)log pr2) −∑
i=1

r

log(1− 1
p i

s)−∑i=r

r2

log(1− 1
pi

s) .

Since
                   

     −∑
i=r

r2

log(1− 1
pi

s)=−E1((s−1) log pr2)+ E1((s−1) log pr)+ O( t
(σ−0.5)2

pr
1 /2−σ log( pr)) , 

therefore

(4.23)        log ζ (s) = E1((s−1)log pr)−∑
i=1

r

log(1− 1
p i

s)+O( t
(σ−0.5)2

pr
1/2−σ log( pr)) .

From which Equation (4.22) follows. For sufficiently large pr , Equation (4.22) can be written as



               1
ζ (s)

= ∏
i=1

r

(1− 1
pi

s) exp(−E1((s−1) log pr)) (1+O( t
(σ−0.5)2

pr
1 /2−σ log pr)) .

For the cases where E1((s−1) log pr)=0  (or, exp (−E1((s−1)log pr))=1 ), one obtains

                              ζ (s) ∏
i=1

r

(1− 1
pi

s) = 1+O( t
(σ−0.5)2

pr
(1/2−σ)2 log pr) .

For 0.5<σ<1 , one way to achieve this result (i.e. E1((s−1) log pr)=0 ) is to choose t sufficiently 
large. In this case, we take advantage of the following asymptotic representation of the Exponential 
Integral
 

(4.24)                                          E1(z )=
e− z

z (1+O(1
z )) .         

With z=(σ+it−1) log pr , one may then obtain

                               ∣E1((s−1) log pr)∣ =
pr

1−σ

t log pr(1+O( 1
t log pr)) .

Thus,

(4.25)                         ∣exp (E1(( s−1) log pr))∣ = 1+O( pr
1−σ

t log pr) .

 
By the virtue of Equation (4.22), we then have

(4.26)         ζ (s) ∏
pi=2

r

(1− 1
pi

s) = 1+O( t
(σ−0.5)2

pr
1 /2−σ log pr)+O( pr

1−σ

t log pr) .

For 0.75<σ<1  and assuming RH is valid, by choosing t and pr  such that pr
1−σ≪t≪ pr

σ−0.5 , we 
may use the partial Euler product as a good representation for ζ (s) . In the next section, we will use 
the von Manglodt function to provide a better estimate for the first O term that allows the use of the 
partial Euler product over the range 0.5<σ<1  with the proper choice of t and pr . 

The rest of this section will be devoted to the derivation of an expression for ζ ' ( s)  using Equation 
(4.20). As mentioned earlier, assuming the validity of RH, the function sequence G(s , pr)  (defined in 
Equation (4.11)) is analytic and uniformly convergent for any σ>0.5+ϵ . Thus, by the Weiestrass 
theorem, the limit of G(s , pr)  as r approaches infinity is also an analytic function. We denoted this 
limit as G(s )  and we showed that G(s )=1 . Weiestrass theorem also states that as r approaches 
infinity, the derivative function sequence G' (s , pr)  should also converge uniformly to G ' (s)=0 . 



Thus, assuming the validity of RH and for σ>0.5 , we obtain

(4.27)             ζ ' (s) lim
r→∞ {exp (−E1((s−1) log pr))∏

i=1

r

(1− 1
pi

s)}=
                                                    −ζ(s ) d

ds(limr→∞ {exp (−E1((s−1)log pr))∏
i=1

r

(1− 1
pi

s)}) .

For s=1+it  where t≠0 , we have lim
r→∞

E1((s−1)log pr)=0 . We also have for s=1+it  where t≠0

                              

                                               ζ (s) = lim
r→∞ {∏i=1

r

(1− 1
p i

s)
−1} .

Thus, for s=1+it  where t≠0 , one can write Equation (4.27) as

                      ζ ' (s) = −ζ2(s ) d
ds (limr→∞ {exp(−E1(( s−1) log pr))∏

i=1

r

(1− 1
p i

s)}) .

Hence,

(4.28)                       ζ ' (s) = ζ(s ) lim
r→∞ {e−(s−1)log pr

(s−1)
−∑

i=1

r log pi

pi
s(1−p i

−s)} ,

or

(4.29)                        ζ ' (s) = ζ(s ) lim
r→∞ {e−i tlog p r

(it)
−∑

i=1

r log pi

pi
s(1−p i

−s)} .

Each term (of the the two terms) on the right side of Equation (4.28) doesn't converge as pr  
approaches infinity. However, we can show that the sum of these two terms converges as pr  
approaches infinity. If we denote ζ ' (s , r ) , for t≠0 , as

                                  ζ ' (s , r ) = ζ(s ) {e−i tlog pr

(it )
−∑

i=1

r log p i

p i
s (1− pi

−s)} ,

then

                   ζ ' (s , r2) − ζ ' (s , r1) = ζ(s ) {e−i tlog pr2

(it)
− e−i tlog pr1

( it)
−∑

i=r1

r2 log pi

pi
s(1−p i

−s)} .        

In Appendix 4, we have shown that using the prime number theorem, the above equation can be written 



as

                                    ζ ' (s , r2) − ζ ' (s , r1) = ζ(s )O (1/ log pr1) .
 
Thus, the limit of the sum on the right side of Equation (4.29) exists (although each term does not 
converge). Therefore, Equation (4.29) can be used to compute ζ ' ( s)  on the line σ=1  (where t≠0 ).

5- Partial Euler Product Functional Representation of ζ (s)  Using the von 
Mangoldt Function:

In the previous section, we have shown (Equation 4.23) that

(5.1)    log ζ (s) =−∑
i=1

r

log(1− 1
pi

s)+ E1((s−1) log pr)+O( t
(σ−0.5)2

pr
1 /2−σ log( pr)) .

The O term is derived using the prime counting function (Equation (4.19)). Equation (5.1) represents 
well the singularity at s=1 and it allows analytic continuation for values of s with σ<1 . This analytic 
continuation should extend all the way to the non-trivial zero('s) with the highest value of σ . 
Unfortunately, Equation (5.1) poorly represents the singularities in the critical strip (or non-trivial 
zeros) as the O term grows much faster than the growth of log ζ (s)  in the vicinity of the simple non-
trivial zeros. In the following, we will use the von Mangoldt function to provide a better representation 
for log ζ (s)  in the vicinity of the no-trivial zeros. 

The derivation of Equation (5.1) was based on computing the sum ∑
i=r1

r2

1/ p i
s  (see Appendix 3) as 

follows 

                 ∑
i=r1

r2 1
p i

s = ∫
x= pr1

pr2
1
x s d π( x) = ∫

x= pr1

pr2
1

xs log x
d x + ∫

x= pr1

pr2
1
x s d O(√ x log x) .

 
The above sum can be also computed using the von Mangoldt function Λ(n)  (where Λ(n)=log p  if 
n=pk  for some prime p and integer k≥1 , otherwise Λ(n)=0 ) to obtain

(5.2)                                    ∑
i=r1

r2 1
p i

s = ∑
n=r1

r2 1
ns log n

Λ(n) + δ ,

where δ=O( pr1
(0.5−σ))  is added to eliminate the contribution by the terms of the form m−s , where 

m= pk  and 2≤k<log2 pr2 . 

Since the Chebyshev function ψ(x)  is given by the following sum

                                                     ψ(x) = ∑
n=1

x

Λ(n) ,  

therefore, using the Stieltjes integral, one may write the sum of Equation (5.2) as the following integral



  

(5.3)                                    ∑
i=r1

r2 1
p i

s = ∫
r1

r2
1

xs log x
d ψ( x) + δ ,       

where ψ(x)  is also given by [1]  

(5.4)                                ψ(x) = x −∑
ρ

xρ

ρ
+∑

n

x−2n

2n
−
ζ ' (0)
ζ(o) .

It should be pointed out that the first term x in Equation (5.4) is attributed to the pole of ζ (s)  at s=1, 
the sum over ρ  (or non-travail zeros) is attributed to the non-trivial zeros in the critical strip and the 
sum over n is attributed to the trivial zeros. Hence, Equation (5.3) can be written as

(5.5)                     ∑
i=r1

r2 1
p i

s = ∫
Pr1

pr2

1
xs log x

d x −∫
pr1

pr2

1
xs log x

d (∑ρ xρ

ρ )+ δ .

                                        
In Appendix 3, we have shown that

(5.6)               ∫
pr1

pr2

1
xs log x

d x = −E1(( s−1) log pr2)+ E1((s−1) log pr1) .

Similarly, for σ>0.5 , we can also show that

(5.7)            ∫
pr1

pr2

1
xs log x

d (∑ρ xρ

ρ ) = ∑ρ (−E1(( s−ρ)log pr2)+ E1((s−ρ) log pr1)) .    

For the above integral, the interchange between the differentiation and summation is permissible by the 
virtue of the convergence of the sum ∑

ρ
(xρ/ρ)  (alternatively, one may integrate by parts to get the 

same results where the sum becomes the integrand and the differentiation is applied to the term 
1/( xs log x)  instead of the sum). Also, the interchange between the integral and the sum is permissible 
by the virtue of the convergence of the sum on the right side of Equation (5.7) for values of s with σ  
higher than ℜ(ρ)  for every ρ . The proof that this sum is convergent is outlined in Appendix 5. 

Using Theorem (3), on RH and for σ>0.5 , we have shown that

                               log ζ (s) = E1((s−1) log pr2)−∑
i=1

r2

log(1− 1
pi

s) ,

where the equality of both sides is attained as pr2  approaches infinity. Alternatively,

                    log ζ (s) = E1((s−1) log pr2)−∑
i=1

r

log(1− 1
pi

s)−∑i=r

r2

log(1− 1
p i

s) ,



or

(5.8)      log ζ (s) = E1((s−1) log pr2)−∑
i=1

r

log(1− 1
pi

s)+∑i=r

r2

( 1
pi

s)+O( pr1
(1−2σ)) .

Using Equations (5.5), (5.6) and (5.7) with pr1=pr  and noting that E1((s−ρ) log pr2)  in Equation 
(5.7) approaches zero when ℜ(s−ρ)≥0  and s≠ρ  (for every ρ  and ℜ(s )>0.5 ) as pr2  approaches 
infinity. we may then have the following theorem. 

Theorem 4 (Main Theorem 2): If ℜ(s−ρ)≥0  and s≠ρ  for every non-trivial zero ρ  where 
ℜ(s )>0.5 , then

 

(5.9)    log ζ (s) =−∑
i=1

r

log(1− 1
pi

s)+ E1((s−1) log pr)−∑
ρ

E1((s−ρ) log pr)+ δ

where, δ=O( pr1
(0.5−σ)) .

The differentiation of log ζ (s)  or ζ ' ( s)/ζ (s)  has been extensively used in the in the analysis of the 
Riemann zeta function. Using Equation (5.9), we may have the following expression for ζ ' ( s)/ζ (s)

Corollary 1: If ℜ(s−ρ)≥0  and s≠ρ  for every non-trivial zero ρ  where ℜ(s )>0.5 , then

                         ζ ' (s)
ζ (s)

=− d
ds (log∏

i=1

r

(1− 1
pi

s))− pr
−(s−1)

s−1
+∑

ρ

pr
−(s−ρ)

s−ρ
+ δ

where, δ=O( pr1
(0.5−σ)) .

Examining Equation (5.9), one may note that in the vicinity to the right of the non-trivial zero ρm , 
log ζ (s)  grows as log (s−ρm)  and therefore log ζ (s)  approaches −∞  as s approaches ρm . 

However, in the vicinity of ρm , the terms −∑
i=1

r

log (1−1/ p i
s)  and E1((s−1) log pr)  of Equation (5.9) 

are analytic. Therefore, in the vicinity of ρm , Equation (5.9) gives the value of log ζ (s)  as 

(5.10)  log ζ (s) =−∑
i=1

r

log(1− 1
pi
ρm)+ E1((ρm−1) log pr)+O (∣s−ρm∣)−∑

ρ
E1((s−ρ) log pr)+ δ .

Furthermore, examining Equation (5.10), one may notice that as s approaches ρm , log ζ (s)  can be 
written as log (s−ρm)+O(1) . Moreover, as s approaches ρm  and pr  approaches infinity, 
∑ρ

E1((s−ρ) log pr)  can be written as E1((s−ρm) log pr)+O(1) . Hence, we may re-write Equation 
(5.10) as follows

       log(s−ρm)+O(1) =−∑
i=1

r

log(1− 1
p i
ρm)+ E1((ρm−1) log pr)+ log( s−ρm)+log log pr



Thus, as s approaches ρm , we have 

(5.11)                    ∑
i=1

r

log(1− 1
p i
ρm)− E1((ρm−1) log pr) = log log pr+ O(1)                                

5a- Using Theorem 4 for estimating the sums of the form ∑i=1

r
( log pi)

m/ pi :

The following equation has been used in the literature to to estimate the sums of the form 

∑i=1

r
(log pi)

m / pi . 

     ∑
p≤x

f ( p)=∫
2

x f ( y)
log y dx+ f (2) li (2)+ f ( x)(π(x )−li (x ))−∫

2

x

f ' ( y)(π( y)−li( y))dy .

In the following, we will use corollary 1 of theorem 4 to compute these sums. We will start with task of 
computing the sum ∑i=1

r
log p i / p i . Toward this end, we set s=1+ϵ  (where ϵ  is an arbitrary small 

positive number) to obtain

                ζ ' (1+ϵ)
ζ (1+ϵ)

=−∑
i=1

r log p i

pi
1+ϵ(1− pi

−1−ϵ)
−

pr
−ϵ

ϵ
+∑

ρ

pr
−(1+ϵ−ρ)

1+ϵ−ρ
+O( pr

0.5−σ) .

Since

                                   ζ (1+ϵ)= 1
ϵ
+γ−γ1 ϵ+γ2

ϵ2

2!
−γ3

ϵ3

3!
+ ... ,

and 

                                      ζ ' (1+ϵ) =− 1
ϵ2−γ1+γ2ϵ−γ3

ϵ2

2!
+ ... ,

thus

                                                
ζ ' (1+ϵ)
ζ (1+ϵ)

=−1
ϵ
+γ+O(ϵ) .

Also, we have

                                                   
pr
−ϵ

ϵ
= 1
ϵ
+ log pr+O(ϵ) .

Therefore, as ϵ  approaches zero, we obtain 



(5.12)                                 ∑
i=1

r log p i

p i(1− pi
−1)

= log pr−γ+Δ ,

where 

                                           Δ = ∑
ρ

pr
−(1−ρ)

1−ρ
+O( pr

0.5−σ) .

Furthermore, the above equation can be also written as

(5.13)                       ∑
i=1

r log p i

pi
= log pr−γ−∑

i=1

r log p i

p i
2(1− pi

−1)
+Δ .

Similarly, we can compute the sum ∑i=1

r
( log pi)

2 / pi . Toward this end, we differentiate the ratio 
ζ ' ( s)/ζ (s)  with respect to s and then set s=1+ϵ  to obtain

                   ζ ' ' (1+ϵ)
ζ(1+ϵ)

−
(ζ ' (1+ϵ))2

(ζ (1+ϵ))2
=−∑

i=1

r log p i

pi
1+ϵ(1−p i

−1−ϵ)2
−

pr
−ϵ

ϵ2 + d Δ
d ϵ

Since

                                        
ζ ' ' (1+ϵ)
ζ(1+ϵ)

= 2
ϵ2−

2γ
ϵ
+2 γ1+O (ϵ) ,

                                        
(ζ ' (1+ϵ))2

(ζ(1+ϵ))2
= 1
ϵ2−

2 γ
ϵ
+γ2+O(ϵ) ,

and

                                      
pr
−ϵ

ϵ2 = 1
ϵ2−

log pr

ϵ
+
(log pr)

2

2
+O(ϵ) .

therefore, as ϵ  approaches zero, we obtain 

                                ∑
i=1

r (log p i)
2

p i(1− pi
−1)2

=
(log pr)

2

2
+2 γ1−γ

2+ d Δ
d ϵ .

The above equation can be also written as

(5.14)    ∑
i=1

r ( log pi)
2

pi
=
(log pr)

2

2
+2 γ1−γ

2+∑
j=1

∞ 1
j+1(∑i=1

r (log p i)
2

p i
j+1 )+ d Δ

d ϵ
.



Similarly, sums of the form ∑i=1

r
( log pi)

m / pi  for m greater than 2 can be computed.

5b- The sum ∑i=r1

r2
1/ pi

s  and Riemann Hypothesis:

In the following, we will use theorem 4 to compute the sum ∑i=r1

r2
1/ pi

s  and the role of the roots of 
the Riemann zeta function on its convergence. Toward this end, we assume that there are non-trivial 
zeros off the critical line and we assume that the right half plane with ℜ(s )>a  (where a>0.5 ) is 
void of non-trivial zeros. In other words, we assume that non-trivial zeros exist with ℜ(s )=a  or with 
ℜ(s )  arbitrary close but not equal to a. We then define the function J (s , pr1 , pr2)  as

(5.15)            J (s , pr1 , pr2) = ∑
i= r1

r2 1
p i

s+E1((s−1)log pr2) − E1(( s−1) log pr1) .

The function J (s , pr1 , pr2)  is analytic for every pr1 , pr2  and s. This can be shown by noting that 
although the functions E1((s−1) log pr1)  and E1((s−1) log pr2)  have a branch cut on the negative 
real axis, the difference does not have a branch cut. Moreover, although the functions 
E1((s−1) log pr1)  and E1((s−1) log pr2)  have a singularity at s≠1 , the difference has a removable 

singularity at s≠1 . This follows from the fact the as s approaches zero, the difference can be written 
as 
                             
     E1((s−1) log pr1)− E1((s−1) log pr2) = −log ((s−1) log pr1)−γ+E1((s−1)log pr2)+γ
      
or, 
 
                      E1((s−1) log pr1)− E1((s−1) log pr2) = −loglog pr1+ log log pr2

Hence, the function J (s , pr1 , pr2)  is analytic for every pr1 , pr2  and s.

Using Theorem 4, we then have

(5.16)    J (s , pr1 , pr2) = ∑
ρ
(−E1((s−ρ) log pr2) + E1((s−ρ)log pr1))+O ( pr1

(0.5−σ)) ,

and referring to Appendix 5, we then obtain (if ∣s−ρ∣≥ϵ>0  for every ρ )

(5.17)          J (s , pr1 , pr2) =
pr2

−s

log pr2
∑
ρ

pr2
ρ

s−ρ
−

pr1
−s

log pr1
∑
ρ

pr1
ρ

s−ρ
+O( pr1

(0.5−σ)) .   

Hence,

                                   J (s , pr1 , pr2) = O( pr1
a−σ

log pr1)+O( pr1
(0.5−σ)) .



Consequently, on RH, we have

(5.18)            ∑
i=r1

r2 1
p i

s = −E1((s−1) log pr2)+ E1((s−1) log pr1)+O ( pr1
(0.5−σ)) .

Also, on RH and for s=1 , we have

                                   ∑
i=r1

r2 1
p i
= log log pr2 − log log pr1+O( pr1

(0.5−σ)).

Thus, we conclude that the sum ∑i=r1

r2
1/ pi

σ  is convergent for 0.5<σ<1  if and only if the Riemann 
Hypothesis is true.

6- Representation of Mu (s , pr)  using Mellin Transform:

In section 2, we showed that the series Mu( s , pr)  converges absolutely or conditionally wherever the 
series  Mu( s)  converges absolutely or conditionally. Furthermore, if series Mu( s , pr)  is convergent, 
then it can written as

(6.1)                            
Mu( s , pr)=

Mu(s)

∏
i=1

r

(1− 1
pi

s)
= 1

ζ(s)∏
i=1

r

(1− 1
pi

s) .

The Mertens function M(x) is defined as

                                       M (x )= Mu(0+i0 ;1, x ) =∑
n=1

x

u (n) .

Similarly, we can define the function  M (x , pr)  as

(6.2)                       M (x , pr)= Mu(0+i0 , pr ;1, x)=∑
n=1

x

u (n , pr) .

Using the Stieltjes integral, for ℜ(s )>1  (or ℜ(s )>0.5  on RH), Equation (6.1) can be written as

                                        
1

ζ (s)∏
i=1

r

(1− 1
p i

s)
=∫

0

∞

x−s dM (x , pr) .

Using integration by parts, one can write the above equation as a Mellin transform, 



(6.3)                            
1

s ζ(s)∏
i=1

r

(1− 1
pi

s)
=∫

0

∞

x−s−1 M (x , pr)dx .

 
where ℜ(s )>1 .

Referring to Equation (6.3), one may use the Mellin inversion theorem to compute M (x , pr)   as the 
integral 

(6.4)                       M (x , pr) =
1

2π i ∫
σ−i∞

σ+i∞
x s

sζ (s)∏
i=1

r

(1− 1
pi

s)
ds ,

where the integral is valid for σ>1 . 

Theorem 5: For σ>1 , the functions M (x , pr)=∑
n=1

x

u (n , pr)  and 1/(s ζ (s)∏
i=1

r

(1− 1
p i

s))  are Mellin 

transform pair where

(6.5a)                             1

s ζ (s)∏
i=1

r

(1− 1
pi

s)
= ∫

0

∞

x−s−1 M (x , pr)dx ,

(6.5b)                             M (x , pr)=
1

2π i ∫
σ−i∞

σ+i∞
x s

sζ (s)∏
i=1

r

(1− 1
pi

s)
ds .

Similar results can be obtained using Perron's formula for ℜ(s )>1 . We first recall Lemma 3.12 in 
Reference [7] that states:

Let                                        f (z )=∑
n=1

∞ an

nz   for ℜ( z)>1 ,

where an=O{ψ (n)}, ψ (n)  being non-decreasing and as σ→1

                                                   ∑
n=1

∞ an

nz=O{ 1
(σ−1)α} .

Then, if c>0, σ+c>1  and x is an integer, we have



∑
n=1

x−1 an

nz +
a x

2 xz =
1

2π i ∫c−i T

c+i T

f ( z+s) xs

s
ds+O{ xc

T (σ+c−1)α}+O{ψ(2x) x1−σ log x
T }+O{ψ( x) x−σT } .

Applying this lemma to the series Mu( s , pr) , where c>1 and α=1 , one may obtain

∑
n=1

x−1 μ(n , pr)

nz +
μ( x , pr)

2 xz = 1
2π i ∫

c−i T

c+i T
xs

s ζ (z+s )∏
i=1

r

(1− 1
pi

z+s)
ds

                                               +O{ xc

T (σ+c−1)}+O{x1−σ log x
T }+ O{x−σ

T } .

Let x be an even number (thus, μ(x , pr)=0 ). Hence, as T approaches infinity, one can state the 
following theorem:

Theorem 6: For ℜ( z)+c>1  and c > 0,

                   Mu( z , pr ;1, x) = ∑
n=1

x μ(n , pr)

nz = 1
2π i ∫

c−i∞

c+i∞
xs

s ζ( z+s)∏
i=1

r

(1− 1
pi

z+ s)
ds .

Hence, for z= 0+i0 and c > 1
 

(6.6)                 M (x , pr) = ∑
n=1

x

μ(n , pr) =
1

2πi ∫
c−i∞

c+i∞
xs

s ζ(s )∏
i=1

r

(1− 1
pi

s)
ds .

For σ>1 , Equation (6.6) of Theorem 6  can be written as

(6.7)                           M (x , pr) =
1

2π i ∫
σ−i∞

σ+i∞
xs

s ∏i=r

∞

(1− 1
pi

s)dt .   

Equation (6.7) becomes evident if one denotes A as the integral

                                               A = 1
2 πi ∫

σ−i∞

σ+i∞
(x y)s

s
dt .

then, A=1  if x y>1 ,  A=0  if x y<1  and  A=0.5  if x y=1  [1].

In the following section, we will use Theorems 5 and 6 to drive a formula for the prime counting 



function. 

7- The Prime Counting Function π (x)  :

The prime counting function π( x)  is a function that gives the number of primes less than or equal to x. 
In this section, we will use Theorem 5 to compute this function. We first recall that

 μ(x , pr)=0  for x< pr ,
 μ(x , pr)=1  if x is a prime number and pr<x< pr

2 ,  
 μ(x , pr)=0  if x is a composite number and pr<x< pr

2 .  

Thus, for pr<x< pr
2 , M (x , pr)=π( x)−π( pr) . By the virtue of Theorem 5, one can state the 

following theorem.

Theorem 7: For pr<x< pr
2 , the prime counting function π( x)  is given by

(7.1)                        π( x) = π( pr) +
1

2π i ∫
σ−i∞

σ+i∞
xs

sζ (s)∏
i=1

r

(1− 1
pi

s)
dt ,

where σ>1 . 

Note that for σ>1  and pr<x< pr
2 , Equation (7.1) can be written as

(7.2)                           π( x) = π( pr) +
1

2π i ∫
σ−i∞

σ+i∞
x s

s ∏i=r

∞

(1− 1
pi

s)dt .   

For sufficiently large r and for pr<x< pr
2 , , one may also write Equation (7.2) as follows

                              π( x) = π( pr) +
1

2π i ∫
σ−i∞

σ+i∞
x s

s
exp(−∑i=r

∞

pi
−s)dt .

The sum in the exponent can be written as the following integral

                                                     ∑
i=r

∞

pi
−s = ∫

pr

∞ d π(x )
xs

.

Hence, for pr<x< pr
2 ,  one may obtain the following 



(7.3)                     π( x) = π( pr) +
1

2π i ∫
σ−i∞

σ+i∞
x s

s
exp(−∫pr

∞ d π( x)
xs )dt .

In Appendix 6, we will use Theorem 3 to derive a formula for the growth of the difference between the 
actual prime numbers p i  and their ideal values of Li−1(i) .

In the following, we will apply Theorem 4 to Equation (7.2) to show that π( x)=Li (x )+O(√ x ) . This 
task is achieved by first writing Equation (7.2) as follows

                        π( x)−π( pr) =
1

2πi ∫
σ−i∞

σ+i∞
xs

s
exp(∑i=r

∞

log(1− 1
pi

s))dt

where σ=1+ϵ  and ϵ  is arbitrary small. Referring to Equations (4.2), (5.2) and (5.5), one may write 
the above Equations as follows

(7.4)              π( x)−π( pr)=
1

2π i ∫
σ− i∞

σ+ i∞
x s

s
exp (−A)dt+ 1

2π i ∫
σ−i∞

σ+i∞
xs

s
exp (R)dt ,

where A  is given by

                                A=E1((s−1)log pr)−∑
ρ

E1((s−ρ) log pr) ,   

and R is the sum of terms of the form 1/ p−ns  where n≥2 . Consequently, the order of the second 

integral (i.e. 1
2π i ∫σ−i∞

σ+i∞ xs

s
exp(R)dt ) is given by O(√ pr) . 

The first integral in Equation (7.4) is computed by first expanding the term exp(−A)  as

                                            exp(−A)=1−A+ A2

2!
− A3

3 !
+...

                       
Only the first and second terms (i.e. 1−A ) contribute to the first integral of Equation (7.4) when 
1≤ x<pr

2 . The third term ( A2 /2! ) contributes to the integral only if x≥ pr
2 , the fourth term 

contributes to the integral only if x≥ pr
3  and so on. Thus, for 1≤ x<pr

2 , we have

(7.5)   1
2π i ∫

σ−i∞

σ+i∞
x s

s
exp (−A)dt= 1

2π i ∫
σ−i∞

σ+i∞
x s

s (1−E1((s−1)log pr)+∑
ρ

E1((s−ρ) log pr))dt .

The integral on the right side is the sum of integrals of the form 1
2π i ∫σ−i∞

σ+i∞ as

s
Ei ((s−Z )b)dt  where, 

a ,b>0 , Z=X+i Y . This integral is computed using Cauchy's residue theorem where the integral is 



performed over the line extending from σ−iT  to σ+iT , then the counter continues from σ+iT  over 
a semicircle until it reaches just above the horizontal line i(Y+ϵ) . The counter then continues along 
this line from left to right until it reaches Z+i ϵ . The counter continues along a semicircle around Z 
until it reaches Z−i ϵ . The counter then continues along the line just below the line i(Y−ϵ)  from 
right to left and then complete the semicircle at σ−iT . The only singularity within this counter is at 
s=0  and therefore, we may have the following,

1
2π i ( ∫σ−iT

σ+iT
as

s
E1((s−Z )b)dy+ ∫

−T+i (Y+ϵ)

X+i(Y+ϵ)
a s

s
E1((s−Z )b)dx+ ∫

x+i(Y−ϵ)

−T+i(Y −ϵ)
as

s
E1((s−Z )b)dx)=E1(−Zb) ,

where the integral along the semicircle approaches zero as T  approaches infinity. Since, for x>0  and 
as ϵ  approaches zero we have E1(−x±i ϵ)=−Ei ( x)∓ϵ , hence the second and third integrals on the 
right side can be written as,

         ∫
−T+i (Y+ϵ)

X+i (Y+ϵ)
as

s
E1((s−Z )b)dx+ ∫

X+i(Y −ϵ)

−T+i(Y−ϵ)
a s

s
E1((s−Z )b)dx =  

                                                                 −i π∫
−T

X ex log a+i (Y +ϵ)log a

x+iY
dx+i π∫

X

−T ex log a+i(Y−ϵ)log a

x+iY
dx .

Hence as ϵ  approaches zero, we have

       ∫
−T+ i(Y+ϵ)

X+i(Y+ϵ)
as

s
E1((s−Z )b)dx+ ∫

X+i(Y −ϵ)

−T+i(Y−ϵ)
a s

s
E1((s−Z )b)dx=−2i π∫

−T

X
e x log a+i (Y )log a

x+iY
dx .

Thus,
                     

1
2π i ∫

σ−i∞

σ+i∞
as

s
E1(( s−Z )b)dy = E1(−Zb) +∫

−∞

X
e xlog a+i (Y )log a

x+iY
dx .

Since the conjugate of every non-trivial zero is also a zero, hence  
  

1
2π i ∫

σ−i∞

σ+i∞
as

s (E1((s−Z )b)+E1(s−Z *))dy = E1(−Zb)+E1(−Z *b)
                                                        

+ 2∫
−∞

X
ex log a

x2+Y 2 (x cos(Y log a)+Y sin (Y log a))dx

Using the following two identities,
       

∫ xecx

ax2+b
dx= 1

2a
exp(−i √b

√a
c)(Ei(c(i √b

√a
+ x))+exp(2 i c√b

√a )Ei(c(−i √b
√a
+x)))



    

∫ ecx

ax2+b
dx= −i

2√a√b
exp(−i √b

√a
c)[exp(2 i c √b

√a )Ei(c(−i √b
√a
+x))−Ei(c(i √b

√a
+ x))]

we may then obtain,
 

2∫
−∞

X
ex log a

x2+Y 2 ( x cos(Y log a)+Y sin (Y log a ))dx =
                

(e−iY log a Li(aZ )+ei Y log a Li (aZ*

))cos (Y loga )−i (e−iY log a Li (aZ )+e i Y log a Li (aZ *

))sin(Y log a) .

This can be simplified as follows
     

2∫
−∞

X
ex log a

x2+Y 2 (x cos(Y log a)+Y sin (Y log a ))dx =
                                          

Li (a Z )+Li (a Z*

)+i sin(Y log a )cos(Y log a)(Li (aZ )Li(aZ*

)) .

Hence,

(7.6)    1
2π i ∫

σ−i∞

σ+i∞
as

s (E1((s−Z )b)+E1(s−Z *))dy=E1(−Zb)+E1(−Z * b)+ Li(aZ)+Li (aZ *

)

                                                 

Equation (7.6) can then be used to compute the integral of Equation (7.5) to obtain

    1
2π i ∫

σ−i∞

σ+i∞
x s

s (1−E1((s−1)log pr)+∑
ρ

E1((s−ρ) log pr))dt=                                
                                         

1−Li( pr)+∑
ρ
(Li( pr

ρ)+Li ( xρ
*

))+ Li (x)−∑
ρ
(Li ( xρ)+Li( xρ

*

))

Consequently,
              

(7.7)                             π( x)=Li (x )−∑
ρ
(Li ( xρ)+Li( xρ

*

))+O(√ x )

8- Some Properties of the Function M (x , pr)  :

In this section, we will use Theorems 5 and 6 to examine the properties of M (x , pr)  as r approaches 
infinity. Using s=1+ϵ+i t 1  in Equation (6.5b) and letting ϵ  approaches zero, one may obtain



                            M (x , pr)=
1

2π i ∫
1−i∞

1+i∞
xx it1

(1+it1)ζ(s )∏
i=1

r

(1− 1
pi

s)
dt 1 ,

or

                              M (x , pr)=
x

2π i ∫
1−i∞

1+i∞
x it1

(1+it1)∏
i=r

∞

(1− 1
p i

s)
−1 dt 1 .

However, by the virtue of Equation (4.4), one may have

                    ζ (s)∏
i=1

r

(1− 1
pi

s)=exp{E1((s−1) log pr)} (1+O(1 /(log pr)
k )) .

Hence,

                           M (x , pr)=
x

2π i ∫
1−i∞

1+i∞
x it1(1+O(1/( log pr)

k))
(1+it1) exp {E1(it1 log pr)}

dt 1 .

Let x= pr
ω , then

                     M (x , pr)=
x

2π i ∫
1−i∞

1+i∞
exp(iω t 1log pr)(1+O(1 /(log pr)

k ))
(1+it1) exp {E1(it1 log pr)}

dt 1 .

With the change of variables t=t 1 log pr , the above integral can be rewritten as

(8.1)               M (x , pr)=
x

2π log pr i ∫
1−i∞

1+i∞
exp(iω t)(1+O (1/(log pr)

k ))

(1+ it
log pr) exp (E1(it))

dt .      

For sufficiently large r, the above integral can be further simplified to

(8.2)      M (x , pr)=
x

2π log pr i ∫
1−i∞

1+i∞

(1+O (1/(log pr)
k )) exp (−E1(it )) exp (iω t) dt .

If define the above integral without the term O(1 /(log pr)
k )  as M A(x , pr) , then 



                       M A(x , pr)=
x

2π log pri ∫
1−i∞

1+i∞

exp(−E1(it )) exp( iω t ) dt ,

or 

(8.3)                   M A(x , pr)=
pr
ω

2π log pri ∫
1−i∞

1+i∞

exp(−E1(it )) exp( iω t ) dt .

Notice that the integral in Equation (8.3) is the Fourier transform of the function exp(−E1(it ))  and it 
is independent of pr . Since the function exp(−E1(it ))  is an entire function with an infinite order, 
thus the decay of its Fourier transform has the form O(exp (−ω log(ω)))  and M A(x , pr)  may be 
written as [8]

(8.4)      M A(x , pr) =
pr
ω

log pr
O(exp−ω log(ω)) = O(exp(ω log( pr

ω ))) = O(( pr

ω )
ω

) .

Thus, for pr<x< pr
2  (or 1<ω<2 ), M A(x , pr)  has the value of Li(x). M A(x , pr)  continues to 

grow for values of ω  greater than 2 and reaches its maximum for values of ω  at or around pr . For 
ω≫ pr ,  M A(x , pr)  decays to zero as determined by Equation (8.4).

9- The series Mu (s , pr)  at s = 1:

In this section, we will show that if we define the function f (a , pr)  as

(9.1)                            f (a , pr) = Mu(1, pr ;1, pr
a) =∑

n=1

P r
a

μ(n , pr)
n

,

then, as pr approaches infinity, the function f (a , pr) approaches a deterministic function F (a)  that 
is independent of pr  and is dependent on only a . In other words; if we plot Mu(1, pr ;1, N )  (where 
N= pr

a  )as a function log(N )/ log( pr)  (or a ), then for each value for a , as pr  approaches infinity, 
F (a)  approaches a unique value that is independent of pr .

This can be shown by first dividing the prime numbers that are in the range pr≤x< pr
2  into N sections. 

The first section comprises of all the prime numbers that are in the range pr≤x< pr
1+ϵ . The second 

section comprises of all the prime numbers that are in the range pr
1+ϵ<x< pr

(1+ϵ)2 and so on (where the 
i-th section comprises of all the prime numbers that are in the range pr

(1+ϵ)i<x< pr
(1+ϵ)i+1

). Hence,

                                                             (1+ϵ)N=2 , 
or



(9.2)                                                        ϵ= log 2
N

.  

 
The process of dividing the prime numbers into sections continues for primes greater than pr

2 . Thus, 
the total number of sections M over the range pr≤x< pr

a  is given by

(9.3)                                                       M= log a
ϵ

. 

If we define K i  as the sum of the reciprocal of the prime numbers in section i, then by Mertens' 
Theorem K i  is given by

                             K i = log log pr
(1+ϵ)i+1

− log log pr
(1+ϵ)i +O(1 / log pr) .   

Hence, for sufficiently small ϵ  and for sufficiently large pr , one may then obtain

(9.4)                                             K i = ϵ +O(1/ log pr) , 
                    
where O(1 /log pr)  can be made arbitrary small by selecting pr  arbitrary large. Thus, K i  will have 
the same value ϵ  for each of the M sections as pr  approaches infinity.

In the following, we will device an algorithm to construct a series that is equivalent to the series 
Mu(1, pr ;1, pr

ω)  from these M sections (that are comprised of the prime numbers) and the products of 
these sections (with the appropriate signs). This series starts with the number 1. Then, instead of 
subtracting the terms 1/ p i  (in the order based on their values, where pr≤p i< pr

2  ), we subtract the 
values of K i 's of the first N sections. These sections are ordered based on the value of the largest 
member within each section. It should pointed out that, the value of Mu(1, pr ;1, pr

2)  constructed by 
this method is given 1− log 2  (plus a factor that is determined by the sum of N terms of the form 
O(1 /log pr)  and, as mentioned earlier, this factor can be made arbitrary small by selecting pr  
arbitrary large).

The terms of the series Mu(1, pr ;1, pr
a)  in the range pr

2≤ pi<pr
3  are either a reciprocal of a prime or 

a reciprocal of the product of two primes. To reconstruct these terms, we subtract the sum of K i 's for 
the  sections of primes in the range pr

2≤ pi<pr
3  and then add it to the sum of the terms that are the 

product of K i 's and K j 's for any two sections of the prime numbers where the maximum value of 
members within the product is less than pr

3 .

Similarly, we reconstruct the terms of  Mu(1, pr ;1, pr
a)  in the range pr

3≤ pi< pr
4  by subtracting the 

sum of K i 's for the sections of primes in the range pr
3≤ pi< pr

4  and then adding it to the sum of the 
terms that are the product of K i 's and K j 's for any two sections of the prime numbers where the 
maximum value of the members within the product is less than pr

4 . We then subtract the result from 
the sum of the terms that are the product of K i 's, K j 's and K l 's for any three sections of the prime 
numbers where the maximum value of the members within the product is less than pr

4 .



We repeat this process a−1  times to reconstruct all the terms of Mu(1, pr ;1, pr
a) . Thus, one may 

conclude that except for the terms of the form O(1 /log pr)  (that can made arbitrarily small by 
choosing pr  arbitrarily large), Mu(1, pr ;1, pr

a)  is only dependent on M=log a /ϵ  (i.e. the  number 
of sections used to construct Mu(1, pr ;1, pr

a) ) and ϵ  (the value associated with the sum of the 
reciprocal of the primes within each section). Hence, Mu(1, pr ;1, pr

a)  is independent of pr . 
However, it is well known through elementary methods that for every integer N>1, we have have the 
following inequality [3];

                                             ∣∑
j=1

J μ( j)
j
∣ = ∣Mu (1 ;1, J )∣ ⩽ 1 .

                             
Thus, using Theorem 1, both Mu(1 ; pr

a)  and Mu(1, pr ;1, pr
a)  have a limit as a  approaches infinity 

(i.e. as J approaches infinity). Therefore, one may conclude that as ϵ  approaches zero (and at the same 
time, pr  approaches infinity since we have to keep the terms of the form O(1 /log pr)  much smaller 
than ϵ ), Mu(1, pr ;1, pr

a)  becomes dependent on only a . This implies that for sufficiently large pr , 
the value of Mu(1, pr)  is the same for all pr 's. However, Theorem 2 states that for every pr  we have

                                           Mu(1) = Mu(1, pr)∏
i=1

r

(1− 1
pi ) .

This can be achieved only if 

                                                  Mu(1) = Mu(1, pr) = 0 .
 
It should be pointed out that the series generated by this algorithm includes both square-free terms (that 
forms Mu(1, pr ;1, pr

a) ) as well as the non square-free terms. Therefore, the series generated by this 
algorithm is in fact Lv (1, pr ;1, pr

a)  instead of Mu(1, pr ;1, pr
a) . In the following, we will show that 

as pr  approaches infinity, the contribution by the non square-free terms approaches zero as well. Thus, 
our analysis in this sections holds for both Lv (1, pr)  and Mu(1, pr) . Toward this end, let S0  be the 
sum of the terms associated with the square of the prime pr . Let Sr+1  be the sum of the remaining 
terms that are associated with the square of the prime pr+1 , and so on. Let T be sum of all the terms 
associated with non square-free terms of Lv (1, pr ;1, pr

a) . Thus, T is given by

                                       T = 1
pr

2 S0 +
1

pr+1
2 S1 + ..+ 1

pr+L
2 S L−1 ,

where pr+L
2  is the largest prime square that is less than pr

a . However,

                                    ∣S0∣ , ∣S1∣ , .... , ∣S L−1∣ < 1+1
2
+1

3
+...+ 1

pr
a

.

Thus,

                                            ∣S0∣ , ∣S1∣ , .... , ∣S L−1∣ < log pr .



         
Hence,

                                       T < ( 1
pr

2 +
1

pr+1
2 + ..+ 1

pr+L
2 )a log pr ,

or

                                                          T <
a log pr

pr

.

Thus, for any a , T approaches zero as pr  approaches zero. Therefore, both Lv (1, pr)  and Mu(1, pr)  
attain the same value of zero for all pr 's.

10- The series Mu (s , pr)  for ℜ(s)≤1  and the validity of the Riemann Hypothesis:

In this section, we modify the method described in the previous section to provide an estimate for the 
decay of the function Mu(1, pr ;1, pr

a)  as a and pr  approach infinity. We then establish the 
relationship between Mu(1, pr ;1, pr

a)  and Mu(σ , pr ;1, pr
a)  where σ<1  as a and pr  approach 

infinity. Our analysis shows that the series Mu(1, pr)  fails to converge for σ<1  and this is the basis 
for our claim that RH is invalid. In fact, our analysis points to the presence of non-trival zeros arbitrary 
close to 1.

The main idea behind our approach to examine the validity of the Riemann Hypothesis is to determine 
the rate at which the function Mu( s=1, pr ;1, pr

a)  decays as a and pr  approach infinity. It is well 
known that the series Mu(1)  is equal to zero and Riemann Hypothesis is valid if and only if Mu(σ)  
is convergent and is equal to 1/ζ (σ)  for σ>0.5 . However, it is unknown how the function 

Mu( s=1 ;1,n)=∑
i=1

n μ(i)
i

 approaches zero as n approaches infinity. This follows from the random 

nature of the Mobius function μ(n) . Figure (1A) shows the value of the function Mu( s=1 ;1,n)  for 
1≤n≤64  which evidently shows the random behavior of Mu(1 ;1, n)  as it approaches zero. Figure 
(1B) shows the function Mu( s=1,3 ;1,3A)  for 1≤A≤6 . It is clear from this figure how our approach 
has effectively smoothed the random variation in Mu(1 ;1, n) . Figure (1C) shows the function 
Mu( s=1,17 ;1,17A)  for 1≤A≤6  and Figure (1D) shows an expanded view of Mu(17 ;1,17A)  for 
4≤A≤6  which demonstrates the smooth approach of the function Mu(17 ;1,17A)  to zero. As pr  
approaches infinity, the function Mu( s=1, pr ;1, pr

A)  approaches a deterministic function that we have 
shown to be dependent on only A. It is the rate of decay (at which this function Mu(1, pr ;1, pr

A)  
approaches zero) that we will analyze in this section. This rate is then used to examine the validity of 
RH.



Figure (1A): The function Mu(1 ;1, n)  or Mu( s=1 ;1,n)=∑
i=1

n

μ(i)/ i  vs. log2 n  which shows the 

random variation of Mu(1 ;1, n)  as it approaches zero.

   
Figure (1B): The function Mu( s=1 ;1,3A)=Mu(1 ;1,3A)  vs. A (where A=log3 n ). Notice the 
smoother approach of Mu(1 ;1,3A)  to zero as A (or n) approaches infinity.
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Figure (1C): The function Mu(1 ;1,17A)  vs. A (where A=log17 n ). Notice a much smoother approach 
of Mu(1 ;1,17A)  to zero as A (or n) approaches infinity.

Figure (1D):  An expanded view of Mu(17 ;1,17A)  for 4≤A≤6  which demonstrates the smooth 
approach of the function Mu(17 ;1,17A)  to zero. 
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In the previous section, we constructed the series Mu(1, pr ;1, pr
a)  by first dividing the prime 

numbers that are in the range pr≤x< pr
2  into N sections. The first section comprises of all the prime 

numbers that are in the range pr≤x< pr
1+ϵ . The second section comprises of all the prime numbers 

that are in the range pr
1+ϵ<x< pr

(1+ϵ)2 and so on.  In this section we will also divide the prime numbers 
that are in the range pr≤x< pr

2  into N sections. However, the first section comprises of all the prime 
numbers that are in the range pr≤x< pr

1+δ . the second section comprises of all the prime numbers that 
are in the range pr

δ≤ x<pr
1+2δ and so on (where the j-th section comprises of all the prime numbers 

that are in the range pr
1+( j−1)δ≤ x< pr

1+ jδ ).  Hence,

(10.1)                                                       N δ=1 .

The process of dividing the prime numbers into sections continues for primes greater than pr
2 . Thus, 

the total number of sections M over the range pr≤x< pr
a  is given by

(10.2)                                                      M δ=a . 

If we define K i  as the sum of the reciprocals of the prime numbers in section  j (where i=j+N) then by 
Mertens' Theorem, K i  is given by

(10.3)                     K i = log log pr
(i+1)δ− log log pr

iδ +
O(1/ log pr)

i δ
,   

where 1≤i δ≤a . Hence, for sufficiently small δ  and for sufficiently large pr , we may then obtain

(10.4)                              K i =
1
i
+ 1

i δ
O(1/ log pr)+O (1/ i2) , 

                    
where O(1 /log pr)  can be made arbitrary small by selecting pr  arbitrary large. As pr  and N 
approach infinity, we may then write

(10.5)                                                       K i =
1
i .

Similar to what we did in the section 9, in the following, we will device an algorithm to construct a 
series that is equivalent to the series Mu(1, pr ;1, pr

A)  from these M sections (that are comprised of 
the prime numbers) and the products of these sections (with the appropriate signs). This series starts 
with the number 1. Then, instead of subtracting the terms 1/ p i  (in the order based on their values, 
where pr≤p i< pr

2  ), we subtract the values of K i 's for the first N sections. These sections are ordered 
based on the value of the largest member within each section. It can be easily shown that the value of 
Mu(1, pr ;1, pr

2)  constructed by this method is given 1−log 2  (plus a factor that is determined by the 
sum of N terms of the form (1/ i δ)O(1 / log pr)  and this factor (as mentioned earlier) can be made 
arbitrary small by selecting pr  arbitrary large). 

Moreover, we will compute the sum of terms of the form 1/ p i  over the range pr≤p i< pr
A  and we will 



also compute the sum of the terms of the form 1/ p i  over pr
A≤p i< pr

A+Δ A  (where Δ A=1/N ). It can 
be easily shown the sum over the range pr≤p i< pr

A  as pr  approaches infinity is given by 
M 1(A)=log A  while the sum over the range pr

A≤p i< pr
A+Δ A  as pr  approaches infinity is given by 

ΔM 1(A)=Δ A/A  (one may notice that ΔM 1(A)  is also given by Δ A d M 1(A)/dA ).

The terms of the series Mu(1, pr ;1, pr
A)  in the range pr

2≤ pi<pr
3  are either a reciprocal of a prime or 

a reciprocal of the product of two primes. To reconstruct these terms, we subtract the sum of K i 's for 
the sections of primes in the range pr

2≤ pi<pr
3  and then add to it the sum of the terms that are the 

product of K i 's and K j 's for any two sections of the prime numbers where the maximum value of 
members within the product is less than pr

3 .

In the following, we will compute the sum of terms of the form 1/( pi p j)  over the range pr≤p i< pr
A . 

We will also compute the sum of the terms of the form 1/( pi p j)  over pr
A≤p i< pr

A+Δ A . The sum 
M 2(A)  of the terms of the form 1/( pi p j)  over the range pr≤p i< pr

A  as pr  approaches infinity is 
given by: 

                          M 2(A) =
1

2 N ∑i=N

M−N 1
A−i /N

log( i
N ) =1

2 ∫1
A−1

loga
A−a

da .

The factor of 1/2 was added since each term of the form 1/( pi p j)  is accounted twice in the above 
sum. Computing the above integral, we then obtain

                                         M 2(A) =
1
2

log2(A)+Li2( 1
A)−π

2

12
,

where Li2( x)  is the dilogarithm of x and is given by

                                                  Li2( x)=−∫
0

x
log(1−t)

t
dt .

Similarly, the sum ΔM 2(A)  of the terms of the form 1/( pi p j)  over the range pr
A≤p i< pr

A+Δ A  as 
pr  approaches infinity is given by: 

                                      ΔM 2(A) = = ΔA
2 ∫1

A−1
1

(A−a )a
da ,

or

                                              ΔM 2(A) =
Δ A
A

log(A−1) ,

or



                                              ΔM 2(A) =
Δ A
A

M 1(A−1) .

Once again, we notice that ΔM 2(A)  is also given by Δ A d M 2(A)/dA .

Similarly, we reconstruct the terms of Mu(1, pr ;1, pr
A)  in the range pr

3≤ pi< pr
4  by subtracting the 

sum of K i 's for the sections of primes in the range pr
3≤ pi< pr

4  and then adding it to the sum of the 
terms that are the product of K i 's and K j 's for any two sections of the prime numbers where the 
maximum value of the members within the product is less than pr

4 . We then subtract the result from 
the sum of the terms that are the product of K i 's, K j 's and K l 's for any three sections of the prime 
numbers where the maximum value of the members within the product is less than pr

4 . Similarly, the 
sum M 3(A)  of terms of the form 1/( pi p j pk )  over the range pr≤p i< pr

A  as pr  approaches infinity 
can be  computed as follows

                    M 3(A) =
1

3 N ∑i=2N

M−N 1
A−i /N

M 2( i
N ) = 1

3 ∫2
A−1 M 2(a )

A−a
da .

    
Furthermore, the sum ΔM 3(A)  of the terms of the 1/( pi p j pk )  over the range pr

A≤p i< pr
A+Δ A  as 

pr  approaches infinity is given by: 

                                  ΔM 3(A) =
ΔA
3 ∫2

A−1
1

(A−a )
log(a−1)

a
da ,

or

                     ΔM 3(A) = =
Δ A
3 A ∫2

A−1
log(a−1)

A−a
da+ Δ A

3 A ∫2
A−1

log(a−1)
a

da .

Hence,

                              ΔM 3(A) =
Δ
A ( 1

2
log2(A−1)+Li2( 1

A−1)−π
2

12 )
or,

                                             ΔM 3(A) =
ΔA
A

M 2(A−1) ,

We repeat this process A−1  times to reconstruct all the terms of Mu(1, pr ;1, pr
A) . For each step j , 

we compute both M j(A)  and ΔM j(A)  as pr  approaches infinity to obtain



(10.6)         M j(A) =
1
j N ∑

i= j N

(A−1)N 1
A−i /N

M j−1( i
N ) = 1

j ∫j
A−1 M j−1(a)

A−a
da ,

and 
     

(10.7)   ΔM j(A) =
Δ A2

j N ∑i= j N

M−N 1
A−i /N

1
i /N

ΔM j−1( i
N ) = Δ A

j ∫j
A−1

1
(A−a )

ΔM j−1(a)
a

da ,

or

(10.8)              ΔM j(A) =
Δ A
j A ∫j

A−1
ΔM j−1(a )

A−a
da+ Δ A

j A ∫j
A−1

ΔM j−1(a)
a

da ,

and

(10.9)                                         ΔM j(A) =Δ A
d M j(A)

dA
.                                     

Thus, we may conclude that

(10.10)                                         
d M j(A)

dA
=

M j−1(A−1)
A

.

Since Mu(1, pr ;1, pr
A)  is the superposition of the terms M j(A) 's, hence 

(10.11)                           d Mu(1, pr ;1, pr
A)

dA
=−

Mu (1, pr ;1, pr
(A−1))

A
.

Thus, for sufficiently large A, Mu(1, pr ;1, pr
A)  is given by

(10.12)                                      Mu(1, pr ;1, pr
A)=O (1 /A ) .

In other words; the Dirichlet series Mu( s , pr ;1, pr
A)  at s=1  approaches zero as approaches A 

infinity and for sufficiently large A, Mu(1, pr ;1, pr
A)  decays at a rate given by 1/A. In the following 

we will use this result to examine the validity of the Riemann Hypothesis. This task will be achieved 
by using the same approach described in this section to analyze the behavior of  Mu(σ , pr ;1, pr

A)  for 
0.5<σ<1  as A approaches infinity.

In the following, we will use the same approach to reconstruct Mu(σ , pr ;1, pr
a)  where we divide the 

prime numbers that are in the range pr≤x< pr
2  into N sections. The first section comprises of all the 

prime numbers that are in the range pr≤x< pr
1+δ . The second section comprises of all the prime 

numbers that are in the range pr
1+δ<x< pr

1+2δ and so on (where the j-th section comprises of all the 
prime numbers that are in the range pr

1+( j−1)δ< x< pr
1+ jδ ).  Hence, N δ=1 . The process of dividing 



the prime numbers into sections continues for primes greater than pr
2 . Thus, the total number of 

sections M over the range pr≤x< pr
a  is given by M δ=a . 

If we define K i  as the sum of the reciprocal of the prime numbers in section j (where i=j+N), then on 
RH and using Theorem 4, we have (refer to Equation 5.5)

                 K i = ∑
p r

i δ≤p j<pr
(i+1)δ

1
p j
σ = ∫

pr
iδ

pr
(i+1)δ

1
xσ log x

d x − ∫
pr

i δ

pr
(i+1)δ

1
xσ log x

d (∑ρ xρ

ρ )+ δ ,

or

          K i = −E1((σ−1) log pr
(i+1)δ)+ E1((σ−1)log pr

iδ)+O( 1
(σ−0.5)2

pr
1 /2−σ log( pr)) .

Using the following asymptotic representation of the Exponential Integral
 

                                                    E1(z )=
e− z

z (1+O(1
z )) ,

we may then have
      

 −E1((σ−1) log pr
(i+1)δ)= e(1−σ)(i+1)δ log p r

(1−σ) log pr
( i+1)δ(1+O( 1

N log pr))= e(1−σ)(i+1)δ log pr

(1−σ)i δ log pr (1+O( 1
N log pr)) , 

                                  
and

                           E1((σ−1)log pr
(i+1)δ)=− e(1−σ) iδ log p r

(1−σ)i δ log pr(1+O( 1
N log pr)) .

Hence

                 K i = C
pr
(1−σ)δ i

i (1+O( 1
N log pr ))+O( 1

(σ−0.5)2
pr

1/2−σ log( pr)) ,

where C=( pr
(1−σ)δ−1) /((1−σ)δ log pr) . Hence, as pr  and N approach infinity, we may then have

(10.13)                                             K i = pr
(1−σ)δi C

i

Similar to the computation of  M 1(A)=log A  and ΔM 1(A)=Δ A/A , in the following we will 
compute the sum of terms of the form 1/ p i

σ
 in Mu(σ , pr)  over the range over the range

pr
A≤p i< pr

A+Δ A  (where Δ A=1/N ). We will also introduce the series Mu(1, pr ;C ) . This series is 
similar to the series Mu(1, pr ;1, pr

a)  expect that the terms of the form 1/ p i1  are multiplied by the 



factor C, the terms of the form 1/ p i1 p i2  are multiplied by the factor C2   and the terms of the form 
1/ p i1 p i2 ... p¿  are multiplied by the factor Cn . If we denote the sum of terms of the form 1/ p i  in this 
series over the range pr≤p i< pr

A  as M 1(A ;C )  and the sum of the terms of the form 1/ p i  over 
pr

A≤p i< pr
A+Δ A  as ΔM 1(A ;C ) , then we have 

                                                     M 1(A ;C )=C log A ,

                                                  ΔM 1(A ;C )=CΔ A/A ,

and the sum of the terms of the form 1/ p i
σ

 in Mu(σ , pr)  over the range pr
A≤p i< pr

A+Δ A  is given by

                             ΔM 1(A ,σ)=C pr
(1−σ)AΔ A/ A=ΔM 1(A ;C) pr

(1−σ)A .

Similarly, if we denote the sum of terms of the form 1/ p i p j  in the series Mu(1, pr ;C )  over the range 
pr≤p i< pr

A  as M 2(A ;C )  and the sum of the terms of the form 1/ p i p j  over pr
A≤p i< pr

A+Δ A  as 
ΔM 2(A ;C )  then we have 

                                       M 2(A ;C ) =C 2 (1
2

log2(A)+Li2( 1
A)−π

2

12) ,

and

                                              ΔM 2(A ;C ) = C2 Δ A
A

log (A−1) ,

and the sum of the terms of the form 1/ p i
σ p j

σ
 in Mu(σ , pr)  over the range pr

A≤p i< pr
A+Δ A  is given 

by

                    ΔM 2(A ,σ) = C2 ΔA
A

log(A−1) pr
(1−σ)A=ΔM 2(A ;C) pr

(1−σ)A ,      

and so on for all the terms of the two series Mu(1, pr ;C )  and Mu(σ , pr) . Therefore, if the series 
Mu(1, pr ;C )  is convergent, then as it is the case with Mu(1, pr ;1, pr

A) , Mu(1, pr ;1, pr
A ;C )  

should also decay at a rate given by 1/A. Furthermore, we have

(10.1                                  ΔM i(A ,σ) = ΔM i(A ;C) pr
(1−σ)A .

Since for σ<1 , the factor pr
(1−σ) A  approaches infinity as A approaches infinity, therefore 

Mu(σ , pr ; pr
A , pr

A+Δ A)  also approaches infinity as A approaches infinity (Notice, that 

Mu(σ , pr ; pr
A , pr

A+Δ A)=∑i=1

A
ΔM i(A ,σ) ). Therefore, the series Mu(σ , pr)  diverges and 

consequently the series Mu(σ)  also diverges for σ<1  and the divergence of the the series Mu(σ)  is 
the basis for our claim that the Riemann Hypothesis is invalid.



Appendix 1:

To prove the first part of theorem 1 (i.e. for s=σ+i0  and 0.5<σ≤1 , the series Mu(σ , pr)  
converges conditionally if Mu(σ)  converges conditionally), we first start with proving that Mu(σ ,2)  
is convergent if Mu(σ)  is convergent. Since Mu(σ) is convergent, then for any arbitrary small 
number δ , there exists an integer N 0  such that for every integer N > N 0

                                         Mu(σ ; N ,∞) = ∑
n=N

∞ μ(n)
nσ

< δ .   

Let the sums Mu(σ ;1, N ) , Mu(σ ; N+1,2 N ) , Mu(σ ; 2N+1,22 N ) , Mu(σ ; 22 N+1,23 N ) ,….,
Mu(σ ; 2L−1 N+1,2L N )  be defined as;

                                          Mu(σ ;1, N ) = ∑
n=1

N μ(n)
nσ

= A1 ,

                                          Mu(σ ; N+1,2 N ) = ∑
n=N+1

2N μ(n)
nσ

= δ1 ,    

                                          Mu(σ ; 2N+1,22 N ) = ∑
n=2N+1

22 N μ(n)
nσ

= δ2 ,

(A1.1)                               Mu(σ ; 22 N+1,23 N ) = ∑
n=22 N+1

23 N μ(n)
nσ

= δ3 ,    

                                          Mu(σ ; 2L−1 N+1, 2L N ) = ∑
n=2L−1 N+1

2 L N μ(n)
nσ

= δL−1 ,

                                           
where by the virtue of the convergence of Mu(σ)  

(A1.2)                                    ∣δ1∣,∣δ2∣,∣δ3∣,... ,∣δL−1∣ < δ .

Furthermore, let the sums Mu(σ ,2 ;1, N ) , Mu(σ ,2 ; N+1,2 N ) , Mu(σ ,2 ;2N+1,22 N ) , 
Mu(σ ,2 ; 22 N+1,23 N ) ,…., Mu(σ , 2 ; 2L−1 N+1, 2L N )  be defined as

                                        Mu(σ ,2 ;1, N ) = ∑
n=1

N μ(n ,2)
nσ

= B1 ,

                                        Mu(σ ,2 ; N+1,2 N ) = ∑
n=N+1

2N μ(n ,2)
nσ

= ϵ1 ,    

                                        Mu(σ ,2 ;2N+1,22 N ) = ∑
n=2N+1

22 N μ(n ,2)
nσ

= ϵ2 ,

(A1.3)                              Mu(σ , 2 ; 22 N+1,23 N ) = ∑
n=22 N+1

23 N μ(n , 2)
nσ

= ϵ3 ,    



                                        Mu(σ , 2 ; 2L−1 N+1, 2L N ) = ∑
n=2 L−1 N+1

2L N μ(n , 2)
nσ

= ϵL−1 .

Since 

                   ∑
n=1

2N μ(n)
nσ

= ∑
n=1

2N μ(n ,2)
nσ

−∑
n=1

N μ(n ,2)
(2n )σ

= ∑
n=1

2N μ(n ,2)
nσ

− 1
2σ∑n=1

N μ(n , 2)
nσ

,

thus

(A1.4)                     Mu(σ ;1,2 N ) = Mu (σ ,2 ;1,2 N )− 1
2σ

Mu (σ ,2 ;1, N ) .

  
Similarly, we can write

     ∑
n=2l N+1

2l+1 N μ(n)
nσ

= ∑
n=2l N+1

2l+1 N μ(n , 2)
nσ

− ∑
n=2l−1 N+1

2l N μ(n , 2)
(2n)σ

= ∑
n=2l N+1

2l+1 N μ(n , 2)
nσ

− 1
2σ ∑n=2l−1 N+1

2l N μ(n , 2)
nσ

.

Thus,

(A1.5)   Mu(σ ; 2l N+1, 2l+1 N )= Mu(σ ,2 ;2l N+1, 2l+1 N )− 1
2σ

Mu(σ ,2 ; 2l−1 N+1, 2l N ) .

By the virtue of Equations (A1.2), (A1.3), (A1.4) and (A1.5)

(A1.6)                                        A1+δ1= B1+ϵ1−
1
2σ

B1 ,

(A1.7a)                                              δ2 = ϵ2−
1
2σ
ϵ1 ,   

              

(A1.7b)                                              δ3 = ϵ3−
1
2σ
ϵ2 ,

 

(A1.7c)                                         δL−1 = ϵL−1−
1
2σ
ϵL−2 .

where ∣δ1∣,∣δ2∣,∣δ3∣,... ,∣δL−1∣ < δ , ∣δ1+δ2∣<δ , ∣δ1+δ2+δ3∣<δ ,.., ∣δ1+δ2+δ3+...+δL−1∣<δ
and δ  is arbitrary small.

The above equations can be written as 
  

                                   ϵ2=
1
2σ
ϵ1+δ2 ,



(A1.8)                        ϵ3=
1
2σ
ϵ2+δ3=

1
22σ ϵ1+

1
2σ
δ2+δ3 ,

                          

                                  ϵL−1=
1
2σ
ϵL−2+δL−1=

1
2(L−2)σ ϵ1+

1
2( L−3 )σ δ2+

1
2(L−4)σ δ3+..+δL−1 .

Thus,

(A1.9 )   ϵ1+ϵ2+ϵ3+..+ϵL−1=(1+
1
2σ
+ 1

22σ+..+ 1
2(L−2)σ )ϵ1+(δ2+δ3+ ..+δL−1)

                                                  +
1
2σ
(δ2+δ3+..+δL−2)+

1
22σ (δ2+δ3+..+δL−3)+..+ 1

2(L−3)σ δ2 .

Since ∣δ2∣<∣δ∣ , ∣δ2+δ3∣<∣δ∣ ,.., ∣δ2+δ3+...+δL−1∣<∣δ∣ ,

∣δ2+δ3+..+δL−1∣+
1
2σ
∣δ2+δ3+..+δL−1∣+..+ 1

2(L−2)σ∣δ2∣<∣δ+
1
2σ
δ+ 1

22σ δ+..+ 1
2( L−2 )σ δ∣ ,

                 
or 

(A1.10)      ∣δ2+δ3+..+δL−1∣+
1
2σ
∣δ2+δ3+..+δL−1∣+..+ 1

2(L−2)σ∣δ2∣<∣δ∣
2σ

2σ−1
,

where ∣δ∣= δ . Thus, Equation (A1.9) can be written as

(A1.11)             ϵ1+ϵ2+ϵ3+..+ϵL−1 = ϵ1(1+
1
2σ
+ 1

22σ+..+ 1
2(L−2)σ )+γ1 ,  

where γ1  is a small number of the same order as δ . Since δ  is arbitrary small that tends to zero as N 
approaches infinity, thus, γ1  is also a small number that tends to zero as N approaches infinity. As L in 
Equation (A1.11) approaches infinity, one may then obtain 

(A1.12)                                       ∑
i=1

∞

ϵi=
2σ

2σ−1
ϵ1+γ1 .

Therefore, the sum Mu(σ ,2 ; N+1,∞)  (which is equal to  ϵ1+ϵ2+ϵ3+... ) is bounded by the sum 
Mu(σ ,2 ; N+1,2 N )  (which is equal to ϵ1 ).

The process of Equations (A1.6) through (A1.12) can be repeated with 2N is substituted for N and 
Equation (A1.6) becomes
  

                                                   A2+δ2=B2+ϵ2−
1
2σ

B2 ,

where A2=Mu (σ ;1,2 N ) and B2=Mu (σ , 2 ;1,2 N )

Thus (refer to Equation (A1.7a))



                                                   A2=B2−
1
2σ

B2+
1
2σ
ϵ1 ,

and following the same process, it can be shown that the sum Mu(σ ,2 ;2N+1,∞)  is given by

                                                   ∑
i=2

∞

ϵi=
1

2σ−1
ϵ1+γ2 ,

where γ2  is a small number of the same order as γ1 . Since γ1  tends to zero as N approaches infinity, 
thus, γ2  also tends to zero as N approaches infinity

If we repeat the process l times, we get 

                                                Al=B l−
1
2σ

B l+
1

2(l−1)σ ϵ1 ,

where Al=Mu(σ ;1, 2l N ) and Bl=Mu (σ ,2 ;1,2 l N ) . Furthermore, the sum Mu(σ ,2 ; 2l N+1,∞)  is 
given by

                                               ∑
i=l

∞

ϵi=
1

2(l−2)σ
1

2σ−1
ϵ1+γ l ,

where γl  is a small number that tends to zero as N approaches infinity.

It is clear that Mu(σ ,2 ; 2l N+1,∞)  approaches zero as l approaches infinity. Furthermore, as l 
approaches infinity, B approaches its limit given by
   

                                       (1−
1
2σ
)Mu(σ , 2 ;1,∞)=Mu (σ ;1,∞) .

Following the same steps, it can be also shown that

(A1.13)                           (1−
1
3σ
)Mu (σ , 3 ;1,∞)=Mu(σ , 2 ;1,∞) ,

or

(A1.14)                     (1−
1
2σ
)(1− 1

3σ
)Mu(σ ,3 ;1,∞)=Mu (σ ;1,∞) .

Equations (A1.13) and (A1.14) can be proved by first defining

                                    Mu(σ ,2 ;1, N ) = ∑
n=1

N μ(n ,2)
nσ

= A1 ,



                                    Mu(σ ,2 ; N+1,3N ) = ∑
n=N+1

3N μ(n , 2)
nσ

= δ1 ,    

                                    Mu(σ ,2 ;3N+1,32 N ) = ∑
n=3N+1

32 N μ(n ,2)
nσ

= δ2 ,

                                    Mu(σ ,2 ;3L−1 N+1,3L N ) = ∑
n=3L−1 N+1

3 LN μ(n ,2)
nσ

= δL−1 ,

and

                                    Mu(σ ,3 ;1,N ) = ∑
n=1

N μ(n ,3)
nσ

= B1 ,

                                    Mu(σ ,3 ; N+1,3 N ) = ∑
n=N+1

3N μ(n ,3)
nσ

= ϵ1 ,    

                                    Mu(σ ,3 ;3N+1,32 N ) = ∑
n=3N+1

32 N μ(n ,3)
nσ

= ϵ2 ,

                                    Mu(σ ,3 ;3L−1 N+1,3L N ) = ∑
n=3L−1 N+1

3L N μ(n ,3)
nσ

= ϵL−1 .

   
Since 

                   ∑
n=1

3N μ(n ,2)
nσ

= ∑
n=1

3N μ(n ,3)
nσ

−∑
n=1

N μ(n ,3)
(3n )σ

= ∑
n=1

3N μ(n ,3)
nσ

− 1
3σ∑n=1

N μ(n ,3)
nσ

.

thus
    

                                    Mu(σ ,2 ;1,3 N )=Mu (σ ,3 ;1,3 N )− 1
3σ

Mu (σ ,3 ;1, N ) .

Similarly

           Mu(σ ,2 ;3l N+1,3l+1 N )=Mu(σ ,3 ;3l N+1,3l+1 N )− 1
3σ

Mu (σ ,3 ; 3l−1 N+1,3l N ) .

Following the same steps (A1.1) through (A1.12), we can show that

                                                   ∑
i=1

∞

ϵi=
3σ

3σ−1
ϵ1+γ1 ,

where γ1  is an arbitrary small number.

Similarly, if we define A2=Mu (σ , 2 ;1,3 N )  and B2=Mu(σ ,3 ;1,3 N ) , then
 



                                                  A2=B2−
1
3σ

B2+
1
3σ
ϵ1 .

Therefore

                                                   ∑
i=2

∞

ϵi=
1

3σ−1
ϵ1+γ2 ,

where γ2  is an arbitrary small number.

Repeating the steps l times, one may obtain

                                              ∑
i=l

∞

ϵi=
1

3(l−2 )σ
1

3σ−1
ϵ1+γ l ,

thus, γl  is a small number that tends to zero as N approaches infinity.

Hence, one may conclude that Mu(σ ,3 ;3l N+1,∞)  approaches zero as l approaches infinity. 
Furthermore, as l approaches infinity, B  approaches its limit given by
   

                                     (1−
1
3σ
)Mu (σ ,3 ;1,∞)=Mu(σ ,2 ;1,∞) .

Repeating the process r times, one may conclude

                                  Mu(σ ;1,∞) = Mu(σ , pr ;1,∞)∏
i=1

r

(1− 1
p i
σ ) ,

or

(A1.15)                             Mu(σ) = Mu(σ , pr)∏
i=1

r

(1− 1
pi
σ ) .

The second part of the theorem can be proved by recalling

                    Mu(σ , pr−1 ;1, Npr) = Mu (σ , pr ;1, Np r) −
1

pr
σ Mu(σ , pr ;1, N ) .               

If both series Mu(σ , pr−1)  and Mu(σ , pr)  are convergent then as N approaches infinity, we obtain

                                       Mu(σ , pr−1) = (1− 1
pr
σ )Mu(σ , pr) .

By repeating this process r times, one then obtains



                                          Mu(σ) = Mu(σ , pr)∏
i=1

r

(1− 1
pi
σ ) .

Appendix 2:

Assuming RH is valid and for 0.5<σ<1 , to show that

                           ∑
i=r1

r2 1
p i
σ = E1((σ−1) log pr1)−E1((σ−1) log pr2)+ ε ,

where ε=O( 1
(σ−0.5)2

pr1
1 /2−σ log( pr1)) , we first recall that

(A2.1)      ∑
i=r1

r2 1
p i
σ = ∫

x= pr1

pr2

1
xσ

d π (x) = ∫
x=pr1

pr2

1
xσ log x

d x + ∫
x= pr1

pr2

1
xσ

d O(√ x log x ) .

We will first show that

                       ∫
x= pr1

pr2

1
xσ log x

d x = E1((σ−1) log pr1)− E1((σ−1) log pr2) .

Using the substation log x= y , one may then write the above integral as follows

             ∫
x= pr1

pr2

1
xσ log x

d x = ∫
log pr1

log pr2

e(1−σ) y

y
dy = ∫

ϵ

log pr2

e(1−σ) y

y
dy − ∫

ϵ

log pr1

e(1−σ) y

y
dy .

With the variable substantiations z1= y / log pr1  and z2= y / log pr2 , one then obtains

                  ∫
x= pr1

pr2

1
xσ log x

d x = ∫
ϵ/ log pr2

1
e(1−σ)log pr2 z 2

z2
dz 2 − ∫

ϵ/ log pr1

1
e(1−σ)log pr1 z1

z1
dz1 .

With the variable substantiations w1=(1−σ) log pr1 z1  and w2=(1−σ) log pr2 z2  and by adding and 

subtracting the terms − ∫
(1−σ)ϵ

(1−σ)log pr 2 dw 2

w2
+ ∫

(1−σ)ϵ

(1−σ)log pr 1 d w1

w1
, one may then write

 

∫
x= pr1

pr2

1
xσ log x

d x = ∫
(1−σ)ϵ

(1−σ)log pr2

ew2−1
w2

dw2− ∫
(1−σ)ϵ

(1−σ)log pr1

ew1−1
w1

dw1+ ∫
(1−σ)ϵ

(1−σ) log pr2
dw 2

w2
− ∫

(1−σ)ϵ

(1−σ)log pr1
dw1

w1



Since [9, page 230], for x > 0

                           ∫
0

x
e t−1

t
dt = Ei (x )−log( x)−γ =−E1(−x )−log( x)−γ ,

one may conclude

(A2.2)                ∫
x= pr1

pr2

1
xσ log x

d x = E1((σ−1) log pr1)− E1((σ−1) log pr2) .

The integral with the O notation in Equation (A2.1) can be computed by integration by parts. Thus,

      ∫
x= pr1

pr2

1
xσ

d O(√ x log x ) =
O (√ pr2 log pr2)

pr2
σ −

O (√ pr1 log pr1 )
pr1
σ − ∫

x=pr1

pr2

O(√ x log x )d( 1
xσ) .

Since x>0 , thus

      ∫
x= pr1

pr2

1
xσ

d O(√ x log x ) =
O (√ pr2 log pr2)

pr2
σ −

O (√ pr1 log pr1 )
pr1
σ −O( ∫x=pr1

pr2

√ x log x d( 1
xσ)) .

With the substitution of variables log x= y , one may then obtain

                                ∫
x= pr1

pr2

√ x log x d( 1
xσ) = − ∫

y=log pr1

log pr2

σ y e
(1
2
−σ) y

dy .

Since

                                                ∫ x eax dx = ( x
a
− 1

a2)eax ,

therefore
                                     

          ∫
x= pr1

pr2

√ x log xd ( 1
xσ ) = −σ( log pr2

0.5−σ−
1

(0.5−σ)2) pr2
0.5−σ+ σ( log pr1

0.5−σ−
1

(0.5−σ)2) pr1
0.5−σ .

Hence, for σ>0.5 , one may conclude

(A2.3)                       ∫
x= pr1

pr2

1
xσ

d O(√ x log x ) = O( pr1
1 /2−σ log ( pr1)

(σ−0.5)2 ) .



Appendix 3:

Assuming the validity of RH, to prove that,

        −∑
i=r1

r2 1
pi
σ+it = E1((s−1) log pr2) − E1(( s−1) log pr1)+O( t

(σ−0.5)2
pr1

1 /2−σ log( pr1)) ,

for σ>0.5 , we first recall Equation (4.2) with s=σ+it

        log(∏i=r1

r2

(1− 1
pi
σ+it)) = ∑i=r1

r2

(− 1
pi
σ+it−

1
2 p i

2(σ+it )−
1

3 pi
3 (σ+it)−...) = −∑

i=r1

r2 1
pi
σ+it + δ ,

where δ=O ( pr1
1−2σ)  is an arbitrary small number for sufficiently large r1  (it should be pointed out 

that the sum ∑
i=r1

r2 1
2 p i

2 (σ+it)  is finite for σ≥0.5  and t≠0  by the virtue of the prime number theorem or 

the absence of zeros on the line σ=1 ). We also have

                          −∑
i=r1

r2 1
pi
σ+it = −∑

i=r1

r2 cos (t log pi)
pi
σ + i∑

i=r1

r2 sin(t log pi)
p i
σ

.

We will first compute the first term using Equation (4.19) as the prime counting function to obtain 

         −∑
i=r1

r2 cos (t log pi)
pi
σ = −∫

pr1

pr2

e−σ log x cos (t log x )
log x

dx + ∫
x= pr1

pr2

cos(t log x)
xσ

d O (√ x log x) .

The integral with the O notation can be computed by integration by parts as shown in Appendix 2 to 
obtain

                    ∫
x= pr1

pr2

cos(t log x)
xσ

d O (√ x log x ) = O( t
(σ−0.5)2

pr1
1/2−σ log( pr1)) .

Hence,

       −∑
i=r1

r2 cos (t log pi)
pi
σ = −∫

pr1

pr2

e−σ log x cos (t log x )
log x

dx +( t
(σ−0.5)2

pr1
1 /2−σ log ( pr1)) .

Using the substation log x= y , one may then write the above Equation as follows



                             −∑
i=r1

r2 cos (t log pi)
pi
σ = − ∫

log pr1

log pr2

e(1−σ) y cos(t y)
y

dy + Δ ,

where Δ = O( t
(σ−0.5)2

pr1
1/2−σ log( pr1)) . The above integral can be computed if it is modified as 

follows

    −∑
i=r1

r2 cos (t log pi)
pi
σ = − ∫

log pr1

log pr2

e(1−σ) y cos(t y)
y

dy + ∫
log pr1

log pr2

e(1−σ) y

y
dy − ∫

log pr1

log pr2

e(1−σ) y

y
dy + Δ ,

or 
                                        

    −∑
i=r1

r2 cos (t log pi)
pi
σ = ∫

ϵ

log pr2

e(1−σ) y (1−cos(t y))
y

dy − ∫
ϵ

log pr1

e(1−σ) y (1−cos (t y ))
y

dy −

                                        ∫
ϵ

log pr2

e(1−σ) y

y
dy + ∫

ϵ

log pr1

e(1−σ) y

y
dy + Δ .

With the variable substantiations z1= y / log pr1  and z2= y / log pr2 , one then obtains

−∑
i=r1

r2 cos(t log pi)
pi
σ = ∫

ϵ/ log pr1

1 e(1−σ)log pr2 z2(1−cos (t log pr2 z2))
z 2

dz 2− ∫
ϵ/ log pr1

1 e(1−σ)log pr1 z1(1−cos(t log pr1 z1))
z1

dz1

                                    − ∫
ϵ/log pr2

1
e(1−σ)log p r2z 2

z2
dz 2 + ∫

ϵ/log pr1

1
e(1−σ)log pr1 z1

z1
dz1 +Δ . 

By the virtue of the following identity (Reference [9], page 230)

                         ∫
0

1
eat(1−cos(bt))

t
dt = 1

2
log(1+b2/a2)+Ei (a)+ℜ [E1(−a+ib )] ,

where a>0 , one may then have the following

−∑
i=r1

r2 cos (t log pi)
pi
σ =ℜ [E1((s−1) log pr2)]+Ei((1−σ)log pr2)−ℜ [E1((s−1)log pr1)]−Ei((1−σ) log pr1)



                                  − ∫
ϵ/ log pr2

1
e(1−σ)log pr2 z2

z2
dz2+ ∫

ϵ/ log pr1

1
e(1−σ)log pr1 z1

z1
dz1+Δ .

With the variable substantiations w1=(1−σ) log pr1 z1  and w2=(1−σ) log pr2 z2  and by adding and 

subtracting the terms ∫
(1−σ)ϵ

(1−σ)log pr 2 dw2

w2
− ∫

(1−σ)ϵ

(1−σ)log pr 1 d w1

w1
, one may then obtain

                −∑
i=r1

r2 cos (t log pi)
pi
σ = ℜ [E1((s−1) log pr2)]− Ei ((1−σ) log pr2)−

                                                    ℜ [E1((s−1)log pr1)]+ Ei ((1−σ) log pr1)−                               

                                                   ∫
(1−σ)ϵ

(1−σ) log pr2

ew2−1
w2

dw2 + ∫
(1−σ)ϵ

(1−σ)log pr1

ew1−1
w1

dw1 −

                                                   ∫
(1−σ)ϵ

(1−σ) log pr2
dw 2

w2
+ ∫

(1−σ)ϵ

(1−σ)log pr2
dw1

w1
+ Δ .

Since [9, page 230], for x>0

                                            ∫
0

x
e t−1

t
dt = Ei ( x)−log(x )−γ ,

hence, one may conclude

(A3-1)     −∑
i=r1

r2 cos (t log pi)
pi
σ = ℜ [E1((s−1) log pr2)]− ℜ [E1((s−1) log pr1)]+ Δ .

Similarly, using the identity [9, page 230]

                                ∫
0

1
eat sin(bt )

t
dt = π−arctan (b /a)+ℑ [E1(a+ib)] ,

one may show that

                −∫
pr1

pr2

e−σ log x sin( t log x )
log x

dx = ℑ [E1((s−1) log pr2)]− ℑ [E1((s−1) log pr1)] ,

from which one may obtain 



 

(A3-2)         −∑
i=r1

r2 sin( t log p i)
pi
σ = ℑ[E1((s−1) log pr2)]− ℑ [E1((s−1) log pr1)]+ Δ .

Combining Equations A3-1 and A3-2, one may conclude

(A3-3)  −∑
i=r1

r2 1
pi
σ+it = E1((s−1) log pr2) − E1(( s−1) log pr1)+( t

(σ−0.5)2
pr1

1/2−σ log( pr1)) .

It should be pointed out that (A3-3) can be also obtained directly by noting that

                        −∑
i=r1

r2 1
pi

s = −∫
pr1

pr2

1
x s log x

dx +O( t
(σ−0.5)2

pr1
1 /2−σ log( pr1)) .

Using the definition of the Exponential integral as we did in Appendix 2, one may then be able to show

                          ∫
pr1

pr2

1
xs log x

dx =−E1((s−1)log pr2) + E1((s−1) log pr1) .

Appendix 4:

In the following, using the Prime Number Theorem (PNT) and for s=1+it  where t≠0 , we will show 
that

(A4.1)            −∑
i=r1

r2 log pi

pi
s(1−p i

−s)
= e−(s−1)log p r1

(s−1)
− e−(s−1)log pr2

(s−1)
+ O(1 / log pr1

k ) .

We first note that

(A4.2)                   ∑
i=r1

r2 log p i

p i
s(1− pi

−s)
= ∑

i=r1

r2 log pi

p i
s (1+ 1

pi
s+

1
pi

2s+
1

p i
3s+...) .

                    
The first sum on the right side of Equation (A4.2) can be written as the following integral

                                                ∑
i=r1

r2 log pi

p i
s = ∫

pr1

pr2 log x
xs d π(x ) ,

 
where using PNT, π( x)  is given by

                                                π( x) = Li ( x)+O (x / (log x)k ) .
  
Thus, for s=1+it , we may then obtain



                        −∑
i=r1

r2 log p i

pi
s = e−(s−1)log pr1

(s−1)
− e−(s−1)log pr2

(s−1)
+ O(1 /log pr1

k) .

Similarly, for s=1+it , we can also show that

                                 ∑
i=r1

r2 log pi

p i
2s (1+ 1

pi
s+

1
p i

2s+
1

pi
3s+...) = O(1 / pr1) .

Hence, for s=1+it , we have

                    −∑
i=r1

r2 log pi

pi
s(1−p i

−s)
= e−( s−1 )log pr1

(s−1)
− e−(s−1)log pr2

(s−1)
+ O (1/ log pr1) .

Appendix 5:
        
In Appendix 5, we will show that the sum ∑ρ

E1((s−ρ) log pr)  is convergent if ℜ(s )>0.5 , 
ℜ(s−ρ)≥0  and s≠ρ  for every ρ . Also, if ∣s−ρ∣≥ ϵ> 0  for every ρ , then for sufficiently large 
pr , we will show that

                              ∑
ρ

E1((s−ρ) log pr) =
pr
−s

log pr
∑
ρ

pr
ρ

s−ρ
+ O(1 /(log pr)

2) .

Furthermore, if s has a fixed value, then the sum ∑ρ
E1((s−ρ) log pr)  is given by

                              ∑
ρ

E1((s−ρ) log pr) = −
pr
−s

log pr
∑
ρ

pr
ρ

ρ
+ O (1/ log pr).

This task is achieved by noting that for sufficiently large log pr , E1((s−ρ) log pr)  can be written as

(A5.1)                E1((s−ρ) log pr) =
e−(s−ρ)log pr

(s−ρ) log pr (1+O( 1
∣s−ρ∣ log pr)) .

The sum ∑
ρ

E1((s−ρ) log pr)  is then given by

(A5.2)                     ∑
ρ

E1((s−ρ) log pr) = ∑
ρ

e−(s−ρ)log pr

(s−ρ) log pr
+ δ ,

 
where δ  is contribution by the sum of the O terms in Equation (A5.1). It can be easily shown that if 
∣s−ρ∣≥ ϵ> 0  for every ρ , then δ  in Equation (A5.2) tends to zero as pr  approaches infinity. This 
result can be deduced by noting that O(δ)=(1/( log pr)

2)∑ρ
1/∣s−ρ∣2 . Since the sum ∑ρ

1/∣s−ρ∣2  is 
bounded, therefore O(δ)=1 /(log pr)

2 .



Equation (A5.2) can be then simplified to

                              ∑
ρ

E1((s−ρ) log pr) =
pr
−s

log pr
∑
ρ

pr
ρ

s−ρ
+ O(1 /(log pr)

2) .

Let s=σ+iT  and ρi=βi+i γi . We split ρi 's into two groups. The first group comprises of the non-
trivial zeros with γi 's less than mT. The rest of the non-trivial zeros belong to the second group. Since 
the first group has a finite number of ρi 's, thus the sum ∑∣γ i∣<mT

E1((s−ρ) log pr)  is bounded. Since 

∣pr
−s pr

ρi∣<1  for every ρi , therefore ∑∣γ i∣<mT
E1((s−ρ) log pr)=O (1/ log pr) .

The sum over the second group is then given by

         ∑
∣γ i∣>mT

E1((s−ρ) log pr) = −
pr
−s

log pr ( ∑∣γi∣>mT

pr
ρi

ρi
+ s ∑

∣γ i∣>mT

pr
ρi

ρi
2 + s2 ∑

∣γ i∣>mT

pr
ρ i

ρi
3 + .....) .

It is well know that the first term ∑
∣γ i∣>mT

pr
ρ/ρi  is convergent. The upper bound for the second term can 

be determined as follows 

                                pr
−s

log pr
s ∑
∣γ i∣>mT

pr
ρi

ρi
2 ≤

∣pr
−s∣

log pr
∣s∣ ∑

∣γ i∣>mT

∣pr
ρi∣

∣ρi
2∣

Since for sufficiently large T, ∣s∣  is given by T and the density of the non-trivial zeros is given by log t, 
thus

                             pr
−s

log pr
s ∑
∣γ i∣>mT

pr
ρi

ρi
2 ≤

∣pr
−min∣σ−βi∣∣T

log pr
∫
mT

∞
log t

t2 dt ,

or,

                             
pr
−s

log pr
s ∑
∣γ i∣>mT

pr
ρi

ρi
2 ≤

∣pr
−min∣σ−βi∣∣T

log pr

O(log T )
m

Similarly,

                             
pr
−s

log pr
s2 ∑

∣γ i∣>mT

pr
ρi

ρi
3 ≤

∣pr
−min∣σ−βi∣∣ T 2

log pr

O( logT )
m2 .

and so on. Consequently,

              ∣ pr
−s

log pr(s ∑∣γi∣>mT

pr
ρi

ρi
2 + s2 ∑

∣γi∣>mT

pr
ρi

ρi
3 + .....)∣ ≤ ∣pr

−min∣σ−βi∣∣ T 2

log pr
∑
i=1

∞ 1
mi

,



or 

                       ∣ pr
−s

log pr(s ∑∣γi∣>mT

pr
ρi

ρi
2 + s2 ∑

∣γi∣>mT

pr
ρi

ρi
3 + .....)∣ = O (1/ log pr) .

Hence the sum ∑ρ
E1((s−ρ) log pr)  is convergent and it is given by

                          ∑
ρ

E1((s−ρ) log pr) =
pr
−s

log pr
∑
ρ

pr
ρ

s−ρ
+ O(1 / log pr)

Furthermore, if ℑ(s)≤T  then 

                    ∑
∣γ i∣>mT

E1((s−ρ) log pr) = −
pr
−s

log pr
∑

∣γi∣>mT

pr
ρi

ρi
+ O(1/ log pr)

 

Since the sum ( pr
−s / log pr)∑∣γ i∣≤mT ( pr

ρ/ρi)  is given by O(1 /log pr)  when ℑ(s)≤T , therefore for s 
with ℑ(s)≤T , we have

                          ∑
ρ

E1((s−ρ) log pr) = −
pr
−s

log pr
∑
ρ

pr
ρ

ρ
+ O (1/ log pr)

It is well known that on RH, the density of the root on the critical line is given by O(1 /log t) . 
Consequently, if all the roots are located on the critical line then ∑ρ

pr
ρ /ρ=O(√ pr(log pr)

2)  (refer to 
[1], section 5.5). The derivation of the estimate O(√ pr (log pr)

2)  is based on splitting the roots into 
two groups. The first group comprises of the roots with ℑ(ρ)≤ pr . The contribution by this group to 
the estimate is governed by the sum pr

1/2∑ℑρ≤ pr
1 /ℑ(ρ) . The second group comprises of the roots 

with ℑ(ρ)> pr . The contribution by this group to the estimate is governed by the sum 
pr

3/2∑ℑρ> pr
1/(ℑ(ρ))2 .

We now consider the case where there are non-trivial zeros off the critical line. For this case, Bohr 
Landau theorem (refer to [1], section 9.6) states that for every ϵ  there is a constant K  such that the 
number of roots ρ 's in the range {ℜ(s)≥0.5+ϵ ,0≤ℑ(s )≤T }  is less than KT  for all T . In other 
words, the density of the roots off the critical line is less than a constant K  (or O(1) ) compared with 
log(T )  on the critical line). If we denote N (σ , T )  as the number of zeros β+i γ  such that β>σ  
and 0<γ≤T , then using Bohr-Landua theorem N (σ , T )=O(T ) . Several theorems are presented in 
Titchmarch [7] that provide smaller bounds for N (σ , T ) . Theorem 9.17 shows that 
N (σ , T )=O(T 4σ(1−σ)+ϵ) , where 0.5<σ<1 . Using this theorem, one may show that if  0.5<a<1 , 
ℜ(ρ)≤a  for all 's ρ 's and ℜ(ρ)=a  for a finite or infinite number of ρ 's, then if ℜ(s )=a  and 



∣s−ρ∣≥ ϵ> 0  for every ρ , we have

                                                
∑
ρ

E1((s−ρ) log pr ) = O(1/ pr).

In other words; if 0.5<a<1 , ℜ(ρ)≤a  and ∣s−ρ∣≥ ϵ> 0  for every ρ , then the the sum 
∑ρ

E1((s−ρ) log pr)  approaches zero as pr  approaches infinity. 
 
On the other hand, if ℜ(ρ)=0.5  for all ρ 's, then for ℜ(s )=0.5  and ∣s−ρ∣≥ ϵ> 0 , we have

                                             ∑ρ E1((s−ρ) log pr ) = O( log pr).

In other words; if all the non-trivial zeros are on the critical line and ℜ(s )=0.5 , then the 
∑ρ

E1((s−ρ) log pr)  diverges as pr  approaches infinity. 

Appendix 6:

In Appendix 6, we will derive a formula, based on Theorem 3, for the growth of the difference between 
the actual prime numbers p i  and their ideal values of Li−1(i) . This will be achieved by first noting 
that for s=1+it , we have 
                              

                                               ζ (s) = lim
r→∞ {∏i=1

r

(1− 1
p i

s)
−1} .

Furthermore, Theorem 3 states that for s=1+it , we have 

                               log ζ (s) = E1((s−1)log pa2) −∑
i=1

a2

log(1− 1
p i

s) ,

where the equality of both sides is attained as pa2  approaches infinity. For a1<a2 , we have 

(A6.1)         log ζ (s) =− ∑
i=1

a1−1

log(1− 1
pi

s)−∑i=a1

a2

log(1− 1
p i

s)+ E1((s−1) log pa2) .

Subtracting the term E1((s−1) log pa1)  from both sides of Equation (A6.1), we obtain

log ζ (s)−E1((s−1)log pa1) =−∑
i=1

a1−1

log(1− 1
pi

s)−∑i=a1

a2

log(1− 1
pi

s)−E1((s−1)log pa1)+E1((s−1) log pa2)

If we denote C as

(A6.2)                          C = −∑
i=1

a1

log(1− 1
p i

s)+ E1((s−1)log pa1) ,



then we have the following equation 
 

−ℜ ( log (ζ (s)))=−∑
i=a1

a2

∑
n=1

∞ cos (nt log( pi))

n pi
nσ − ℜ (E1((s−1)log pa2))+ ℜ (E1((s−1) log pa1))+ ℜ(C )

Consider, instead of the set of prime numbers p1  , p2 ,  .., pn  (where  n=π( pn) ), the set of numbers 
m1  , m2 , .. mn  where n=[Li(mn)]  (where [ x ]  is the integer value of x). Let k i  be the difference 
between the prime number p i  and its ideal value mi  (i.e. p i=mi+k i  ). Thus, by the virtue of the 
Prime Number Theorem k i /mi  and k i / pi  approach zero as i approaches infinity.
                   
Thus, referring to Appendix 7 and noting that log p i=log mi(1+k i /mi)=log mi+log(1+k i/mi)  (where 
log (1+k i /mi)= k i /mi+O (k i

2/mi
2)  approaches zero as i approaches infinity), one may then write

 

   −ℜ (E1((s−1) log pa2))+ ℜ (E1((s−1) log pa1)) = ∑
i=a1

a2

ℜ(mi
−s)+ ε1 = ∑

i=a1

a2 cos (t log mi)
mi
σ + ε1 ,

where, ε1=O( pa1
−σ) . Thus

              −ℜ( log (ζ (s))) = −∑
i=a1

a2

∑
n=1

∞ cos(n t log( p i))

n p i
nσ +∑

i=a1

a2 cos( t log mi)
mi
σ +C 1 ,

where C1= ℜ(C )+ε1  is bounded. 

Let C2  be defines as

                                    C2 = −∑
i=a1

a2

∑
n=2

∞ cos (n t log( pi))

n pi
nσ + C1 .

Thus, C2  is also bounded for σ>0.5 . Hence, we have the following equation,

(A6.3)         −ℜ( log (ζ (s))) = −∑
i=a1

a2 cos( t log p i)
p i
σ +∑

i=a1

a2 cos (t log mi)
mi
σ + C 2

Substituting mi+k i  for p i , one may then obtain,
     

 −ℜ( log (ζ (s)))=−∑
i=a1

a2

exp(−σ log(mi+k i))cos(t log(mi+k i))+∑
i=a1

a2

exp(−σ log mi)cos(t log mi)+C2

Let δi=k i /mi , where δi  approaches 0 as i approaches infinity, then one may write,

                            log(mi+k i) = log mi(1+δi) = log mi+ log(1+δi)
    
Since log (1+δi)= δ i+O(δi

2) , therefore,



                                          log(mi+k i) = log mi + δi+O(δi
2)

Hence,

                          exp(−σ log(mi+k i)) = (1−σδ i+O(δi
2)) exp(−σ log mi)

Similarly,

    cos (t log(mi+k i)) = cos (t log mi) cos( t δi+t O(δi
2))− sin(t log mi) sin( t δi+t O(δi

2))

if we choose a1  so that t δ i≪1 , then,

           cos (t log(mi+k i)) = (1+O(δ i
2)) cos( t log mi)− t δi(1+O (δi

2)) sin (t log mi)

where by the virtue of the Prime Number Theorem, the term (1+O (δi
2))  approaches 1 as i approaches 

infinity. Hence, Equation (A6.3) can be written as:

                −ℜ ( log (ζ (s))) = ∑
i=a1

a2 δi

mi
σ ( t sin(t log mi)+σ cos (t log mi))+C3

where C3  is equal to C2  plus the sum of the terms that contain O(δi
2) (Since δi=k i /mi , the sum of 

these terms is comparable with the integral ∫1/ x1+σdx  ). For each t, the sum of these terms is 
bounded and can be chosen to be less than 1 for sufficiently large pa1 . Thus,

(A6.4)         −ℜ( log (ζ (s))) = ∑
i=a1

a2 k i

mi
1+σ (t sin(t log mi)+σ cos (t log mi))+C 3

where mi=Li−1(i)  represents the ideal value for the prime number p i=π
−1( i)  and k i  is the deference 

between p i  and mi . Thus, Equation (A6.4) establishes a relationship between the ζ (s)  and k i . If  all 
k i 's are zero, then the value of log∣ζ (s)∣  will be given by the C3  which bounded for each t. It should 
be pointed out that Equation (A6.4) is valid only in the right section of the the critical strip that is void 
of non-trival zeros. Therefore, Equation (A6.4) establishes the relationship between k i 's and the non-
trival zeros of ζ (σ+it ) with the highest value of σ . Therefore, one can then use this equation to 
determine the growth of k i  by first writing Equation (A6.4) as the following integral 

         −ℜ ( log (ζ (s))) = ∫
x=ma1

ma2 f ( x)
x1+σ (t sin(t log x)+σ cos( t log x )) d Li ( x)+ C3 ,

where  f (x )=k Li(x)  .Thus,

          −ℜ ( log (ζ (s))) = ∫
x=ma1

ma2 f (x)
x1+σ log x

(t sin( t log x)+σ cos (t log x )) dx + C3 .



Using the substitutions y=log x  and dx=e y dy , one may write the above integral as

(A6.5)   −ℜ( log (ζ (s))) = ∫
y=log ma1

log ma2 h( y )
y

e−σ y (t sin( t y)+σ cos (t y ))dy + C3 ,

where, f (x )= f (e y )=h ( y) . Equation (A5.5) should be compared with product formula [1]

(A6.6)       log ζ (s) = log ζ(0) +∑
ρ

log(1− s
ρ)− log∏ ( s

2)+ s
2

logπ − log(s−1) ,

where the above sum is performed over the zero's ( ρ ) of ζ (s)  in the critical strip.

From Equation (A6.5), one may be able to compute the derivative of log ζ (s)  using Cauchy-Riemann 
equations. Using Cauchy-Riemann equations, the derivative of a complex function f (z )  (where 
z=x+iy ) that is analytic over the region Ω  is given by

  

                                               f ' ( z)=∂ℜ( f ( z ))
∂ x

−i ∂ ℜ( f ( z))
∂ y .

Thus,

(A5.7)                  d
ds

log ζ (s) = ζ ' (s )
ζ(s)

=
∂ℜ(log ζ (s))

∂σ
−i ∂ℜ( log ζ(s ))

∂ t .

Hence,

(A6.8)  ℜ(ζ ' (s)
ζ (s) ) = ∫

y=log ma1

log ma2

h ( y)e−σ y (t sin(t y)+σ cos( t y))dy − ∫
y=log ma1

log ma2 h( y )
y

e−σ y cos (t y )dy + C 4

(A6.9)   ℑ(ζ ' (s )
ζ (s) ) = ∫

y=log ma1

log ma2

h( y )e−σ y (t cos (t y )−σ sin (t y ))dy + ∫
y=log ma1

log ma2 h ( y)
y

e−σ y sin (t y )dy + C5

where C4  and C5  are both bounded for values of s that are not in the vicinity of s=1. Equations 
(A6.8) and (A6.9) should be compared with the formula for ζ ' (s)/ζ (s)  given by [1]

(A6.10)                   −ζ ' (s)
ζ(s )

= s
s−1

−∑
ρ

s
ρ(s−ρ)

+∑
n=1

∞ s
2n(s+2n)

−
ζ ' (0)
ζ (0)

.

To make this comparison, we first combine Equations (A6.8) and (A6.9) to obtain;

                               ζ ' (s)
ζ (s)

= ∫
y=log ma1

log ma2

(h ( y)(σ+it )+h ( y)
y )e−(σ+it) y dy +C 6

or,



                                   ζ ' (s)
ζ (s)

= ∫
y=log ma1

log ma2

(s h( y )+h( y )
y )e−s y dy + C6

    
Thus, by letting m2  approaches infinity, one may then obtain,

                                     ζ ' (s)
ζ (s)

= ∫
y=0

∞

(s h( y )+h( y)
y )e−s y dy + C7

where C7  is a bounded and analytic for every s that is to the right of the non trivial zero(s) with the 
maximum value for σ  and is given by, 

                                      C7 = ∫
y=0

log m1

(s h( y )+h( y)
y )e−s y dy + C6

Now, if we consider that h(y) is the sum of two components h1( y)  and h2( y) , i.e.,

                                                    h ( y) = h1( y)+h2( y) ,                                         

where h1( y)  is the component that is generating the term of the sum over ρ  in Equation (A6.10) then,

                                         s L (h1( y ))+ L(h1( y )
y ) = ∑ρ s

ρ(s−ρ)
, 

and

                                            s L (h2( y))+L(h2( y )
y ) = −C7−

s
s−1

,

                                                        
where L (f(y)) denotes the Laplace Transform of the function f(y). It should be pointed out, that one of 
the components of C7  is generated by the term E1((s−1) log pa1)  (Equation A6.3) that has a 
singularity at s=1. This singularity eliminates the singularity of ζ (s)  at s=1 and consequently 
eliminates the pole at s=1. Therefore, the term C7+s /(s−1)  has no singularities for σ≥0.5  and 
consequently, h2( y)  grows no faster than e(0.5 y) .

Hence, we have

                                                  h1( y)=∑
ρ

e yρ

ρ (1− 1
y ρ)

−1

,

and for large values of y, we have 

                                              h ( y) =∑
ρ

e yρ

ρ
+ lesser terms ,

Therefore,



                                   

                                              f (x )=∑
ρ

xρ

ρ
+ lesser terms ,

where  f (x )=k Li(x)  and k i  is the deference between p i  and mi  ( mi=Li−1(i)  represents the ideal 
value for the prime number p i=π

−1( i) ). 

Appendix 7:

For σ>0.5 , we will show that

                 ∑
i=a1

a2 1
mi
σ+it = −E1((s−1) log pa2)+ E1((s−1)log pa1) +O ( pa1

−σ) .

First, we write

                              ∑
i=a1

a2 1
mi
σ+it = ∑

i=a1

a2 cos (t log mi)
mi
σ + i∑

i=a1

a2 sin(t log mi)
mi
σ .

The two sums on the right side can be written as integrals as we did in Appendix 3. However, instead of 
Equation (4.4), we use the following equation to represent πm(x )  (which is the number of mi 's that 
are less than x)

                                                       πm(x )= Li( x)+ε ,

where ε  can take any value between 0 and 1.

Thus, one may obtain

                       ∑
i=a1

a2 cos( t log mi)
mi
σ = ∫

pa1

pa2

e−σ log x cos (t log x )
log x

dx +O ( pa1
−σ) ,

and

                        ∑
i=a1

a2 sin(t log mi)
mi
σ = ∫

pa1

pa2

e−σ log x sin(t log x)
log x

dx +O ( pa1
−σ) .

The above two integrals were computed in Appendix 3. Therefore,

           ∑
i=a1

a2 cos( t log mi)
mi
σ = −ℜ [E1((s−1) log pa2)]+ ℜ [E1((s−1) log pa1)]+O( pa1

−σ) ,



and

            ∑
i=a1

a2 sin(t log mi)
mi
σ = −ℑ [E1((s−1) log pa2)]+ ℑ[E1((s−1) log pa1)]+O ( pa1

−σ) .
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