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Abstract 

 

Recent publications discussed a possible change with time of Sommerfeld’s fine structure 

constant α , in which several of the fundamental constants of Nature are combined. The 

problem of a changing nature of α  raises the question whether its value is ultimately a result 

of chance or reveals an objective law of nature. If the value of the fine structure constant is 

independent of human reason, a derivation of it may be possible from basic numbers, like e 

and π , which appear in the logical development of mathematics [1].  

In the following investigation a pure mathematical derivation of the fine structure constant is 

described, starting from a fundamental property of natural numbers. The constant α  results as 

a limit value in an algorithm with exponential structures where the value w = exp(2π /e) plays 

a decisive role. 
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1. Introduction  

 

The dimensionless electromagnetic coupling constant hcqe 0

2 2/ εα =  with the approximate 

value 1/137 combines the electric charge qe and electric-permittivity constant 0ε  in vacuum, 

with Planck’s constant h and the velocity of light c. If such a fundamental dimensionless 

constant of Nature can be obtained by numerical calculation it may be possible from the 

fundamental relations between natural numbers. A characteristic feature of stable elementary 

particles of matter is their uniformity. This uniformity can be regarded as a property of Nature 

resulted by following mathematical relations between natural numbers into directions of 

extreme values. The guiding principle in this investigation was the search for a simple, 

fundamental property of natural numbers which supports this interpretation and allows further 

correlations with material systems.  

The basic property used is the relation g ≤ m between the arithmetical mean m = 

(x1+x2+...+xn)/n and the geometrical mean g = ( ) n

nxxx
/1

21 ...⋅⋅  between any number n of 

positive quantities, denoted by x1, x2,...xn. The general theorem states that the extreme g=m is 

valid only if all the xi are equal, x1 = x2 = ...= xn. This property is used as starting point. 

But from the extreme value g = m further relations with new extremes follow immediately. If 

a natural number n can be written in different ways as a sum of i identical prime numbers p, 

then the corresponding product of the primes, p
i
, has a maximum for the number p = 3 as seen 

in the following example with n = 30: 

p  i  n = i×p  p
i
 

2  15  30 = 15×2  2
15

 = 32768 = 2
n/2

 

3  10  30 = 10×3  3
10

 = 59049 = 3
n/3

 

5  6  30 = 6×5  5
6
  = 15625 = 5

n/5
 

This property can be generalized for any number and a function 

 

  y = x
q/x

            (1) 

 

with the positive real numbers x, q ∈R
+
 and a maximum value ymax = e

q/e
 for x = e results.  

In Figure 1 the graph of the function (1) with q = π2  is shown. The number π2  has been 

selected because it appears as a proportional constant in all relations concerning periodical 



 3 

phenomena and objects with spherical symmetry. The maximum value, e
e

/2π = w = 10.089…, 

plays a fundamental role in the following investigation. 
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 Figure 1. Graph of the function y = x
2 π /x

  

 

The maximum value, e
e

/2π = w, appears also as the limit value of the following power 

sequence: 

 

( )n
n

i

ni
i

w
/11

,

2
1

+







 += π
          (2) 

 

with lim wi,n = wi,e if n →  ∞  and lim wi,e = w if i →  ∞ . 

The sequence wi,n and its particular form wi,e are denoted as interaction functions. These 

functions can be used for modeling of emergent properties in multi-particle systems. 

 

2. Correlation of the limit value w with the fine structure constant 

 

The number e
1/e

 obtained from (1) for x = e and q = 1 can be presented as resulting formally 

in two steps: y1 = e
q
 = e

1
 and y2 = exp(q/e

q
) = exp(1/e

1
) = exp(1/y1)=e

1/e
. By proceeding in this 

way an algorithm is produced which provides an oscillating sequence, yn: 
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yn 

y1 = exp(q) 

y2 = exp(q/y1) 

y3 = exp(q/y2)           (3) 

…………….. 

yi = exp(q/yi-1). 

 

Starting with q = 1, one monotone decreasing sequence y
I
2n-1 (Figure 2, trace 1) and one 

monotone increasing sequence y
II

2n (Figure 2, trace 2) result, which reach asymptotically the 

same limit value (Figure 2 trace 3), ...518977632228343.1)1( === ∞∞∞ yyy III >  e
1/e

 = 

1.44466… 
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Figure 2. Graph (trace 3) of the oscillating sequence yn in (3) for q =1: y

I
2n-1 (trace 1) and y

II
2n 

(trace 2) with the same limit value ...763.1)1( === ∞∞∞ yyy III   

 

The algorithm (3) based on the exponential function is used as backbone in this investigation 

with ...518977632228343.1)1( =∞y as the first corner point.  

 

The limit values )(qy∞  calculated with the algorithm (3) as functions of q ≥  0 are shown in 

Figure 3. 
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Figure 3. Graph of the limit values y(I) = )(qy I

∞  (trace 1) and y(II) =  )(qy II

∞  (trace 2). 

 

In this figure two domains with remarkable different properties appear. In a first domain with  

0 ≤  q ≤  e a maximal limit value )(ey∞  = e for q = e results asymptotically. In a second 

domain with q > e two limit values, lim(y2n-1) = )(qy I

∞  > lim(y2n)= )(qy II

∞ , with 

)(/)()( qyqyqY III

∞∞∞ =  are obtained with the algorithm (3). 

A special role plays the result obtained with the algorithm (3) if q = w. The limit values 

)(wy I

∞ = 23976.90006232883…> )(wy II

∞  = 1.000420872319414….are obtained with their 

ratio  )(/)()( wywywY III

∞∞∞ =  = 23966.81309411294… The value )(wY∞  is the second corner 

point in this investigation. 

 

Of special interest for the following relations is the limit value 

 

=







=

∞

∞
∞

)(

)1(
exp),1(

wY

y
wY  1.000073572055.       (4)
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Figure 3 illustrates a model of collective self-organization, starting with natural numbers, with 

the result of limit values with exponential structures. Remarkable is the limit eey =∞ )(  

obtained with q = e as starting value.  

From three consecutive steps which form one cycle in the algorithm (3), yi, yi+1 and yi+2,  and 

with q = e the following relation is obtained for i >> 1: 

 





























=








=

+
+

i

i

i

y

q

q

y

q
y

exp

expexp
1

2  = e

ey

e

e =






























∞ )(
exp

exp     (5) 

 

with )(ey∞ = e.  

 

If the structure of equation (5) with the limit e is maintained as an invariant postulate, but 

including also the cases  eeyqY => ∞∞ )()(  from the second domain (q > e), an enlargement of 

equation (5) can be used by introducing the term BA ⋅ , with B = )(qY∞ > e, instead of 

eey =∞ )( :  

 

( )
( )

( )
( ) e

Ae

BAe

qY

BAe

BAe =








⋅
⋅⋅=




























 ⋅⋅
⋅⋅

∞

exp
exp

)(
exp

exp  .      (6) 

 

The structure of equation (5) resulting with the algorithm (3) with q = e and the enlargement 

(6) with the invariant limit value e form the third corner point of this investigation. 

Whereas A = 1/e results with B = eey =∞ )(  and equation (5) is obtained again, Figure (4) 

shows the graph of AeeB
Ae ⋅= ⋅ /  in the environment of B = w

2
 in order to fulfill equation (6). 

From this figure a relation between the number w
2
 and α /2 is suggested. Due to this 

connection, A = A
*
/2 and B = w

2
 are introduced into equation (6): 
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e
A

e

w
A

e

=





























⋅









⋅⋅

2
exp

2
exp

*

2
*

.         (7) 

 

Equation (7) is fulfilled for A
*
 = 1/136.98… This number exceeds the value 

035999074.137/1102973525698.7 3 =⋅= −α  by 4101.4 −⋅ . 
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Figure 4. Graph of AeeB
Ae ⋅= ⋅ /  in the environment of B = w

2
.  

 

In the next step a connection to the limit value )(wY∞  is realized. Enlargement of )(wY∞  with 

the exponent π2 /e from w gives: 

 



















⋅⋅⋅= ∞
∞

e

wY

e
wY π

π
2

)(2
)( .         (8) 

 

Instead of B = w
2
 = 101.789…and A

*
 the numbers resulting from the limit value )(wY∞  and 

2π /e : 

 

...826.101
/2

)( 2

1

1 =








⋅
= ∞

e

wY
B

π
         (9) 
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and 

2

1

0
1

/2

)(2









⋅
⋅⋅⋅= ∞

e

wY

e

a
A

π
π

         (10) 

 

are introduced into equation (7). In this way the new equation (11): 

 

e
Ae

B
Ae

=

























 ⋅

⋅⋅

2
exp

2exp
1

1
1

          (11) 

 

is fulfilled for 510...100507352.3 −⋅=x . The corresponding value A1 = 1/137.03118… exceeds 

α by 5105.3 −⋅ . 

The result obtained at this stage of the investigation already demonstrates the existence of a 

deeper connection between the fine structure constant α  and the number w in combination 

with the invariant structure (6) where the first corner point )(wY∞  has been used.  

 

The number a0 in (10) is related to )(wY∞ . The term 2π a0/e can be regarded as analogous to 

the exponent 2π /e in w = )/2exp( eπ⋅  and gives the value )/2exp( 0 ea⋅⋅π  = 

1.000071669….The corresponding limit value for this number is ),1( wY∞  defined in (4). This 

limit value is taken into account with the following enlargement, where instead of A1 and B1 

in (11), the numbers  

 

a = ( )
*0

2

1

0 2

/2

),1()(2
b

e

a

e

wYwY

e

a ⋅⋅⋅=








⋅
⋅⋅⋅⋅ ∞∞ π
π

π
      (12) 

and 

b = ( ) ),1(

2
exp

),1(

2
exp

/2

),1()(
0

*

0

2

1

wY

e

a

b
wY

e

a

e

wYwY

∞∞

∞∞







 ⋅⋅

⋅=







 ⋅⋅

⋅








⋅
⋅

ππ

π
    (13) 

 

are used. With this enlargement the number )/2exp( 0 ea⋅⋅π  resulting from 2π a0/e is related 

to the limit value (4). With a and b instead of A1 and B1 the new equation (14) results: 
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e
ae

b
ae

=

























 ⋅

⋅⋅

2
exp

2exp .          (14) 

 

This equation is fulfilled for a0 = 510...1002840896.3 −⋅  and gives a = 310...29735215.7 −⋅  and 

1/a = 137.0360069…, respectively. This a-value is by –5.2×10
-8 

smaller
 
than α . This 

difference is within the order of magnitude in which possible variations of the fine-structure 

constant with time are discussed
 
[2]. It is believed that α has been smaller in the past. 

 

The relation *

0 2/ baea ⋅⋅⋅= π  from (12) in combination with equation (14) allows the 

determination of the number a as the limit value of the following sequence:  

 

( )























⋅
⋅⋅

⋅⋅⋅








⋅
⋅⋅=

−
∞∞

∞
−

∞∞
+ 2/1

2/1

1

/2

),1()(
exp

2/exp),1(

/2

),1()(2

e

wYwY
a

eawY

e

wYwY

e
a

n

n
n

π
π

.    (15) 

 

With the starting value ( ) ( ) ...4.138/12/),1()(/2
2/1

1 =⋅⋅⋅= −
∞∞ πewYwYea the final value of a 

results by iteration a = 1/137.0360069….  

With the above procedure the fine structure constant is obtained from the numbers 2, e, π  and 

the limit values )(wY∞  and ),1( wY∞  which also result from these basic numbers. 

 

3. Conclusions 

 

The backbone in this investigation is the algorithm (3) in combination with the two numbers 

e
1/e

 and e
e

/2π  = w, which result as maximum values of the function (1) for q = 1 and q = π2 .  

The decisive step is the introduction of the limit values )1(∞y , )(wY∞  and ),1( wY∞  into 

equation (5). From this invariant mathematical structure the value of a for the fine structure 

constant is obtained by iteration from equation (15) as a limit value. 

Now the question is raised if the constant b can also be connected with fundamental constants 

of Nature. A positive answer may be regarded as a confirmation for the correctness of the   

way followed above for the calculation of the fine structure constant. 
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The constant b contains in its definition in (13) the square roots of )(wY∞  and consequently 

both values ± b may be considered. The square root 2/1)(wY∞  used for a is positive because 

the constant a is also positive. But depending on the sign of b in (13) equation (14) can be 

written as: 

 

( ) 12
2 ±⋅⋅

± =
⋅−

ee

ae

e
ae

b           (16) 

 

with  441067647037.1 ⋅=+b
e  and 451096491303.5 −− ⋅=b

e .  

The negative value of b suggests a connection of it to a further dimensionless constant of 

nature, the coupling constant for the gravity interaction: 

 

452 107516885.1
2 −⋅=

⋅
⋅⋅⋅=
ch

mG eG

πα .       (17) 

 

With G the constant of gravity and with me the mass of the electron are denoted, respectively. 

The ratio of gravity to electromagnetic coupling gives the following dimensionless number: 

 

42

43

10165896.4

1
1040044385.2

⋅
=⋅= −

α
αG .       (18) 

 

These numbers express the interactions between the lightest elementary particles with no 

internal structure but with known masses [3]. 

A further combination of fundamental constants of nature connects the Fermi-constant with 

the mass of W-Bosons to the dimensionless number: 

 

FW

W
G

ch

cM

3

2

42 2
2

sin8

4







 ⋅

⋅
Θ⋅

⋅⋅=⋅ παπ
.        (19)

            

The number WΘ ≅ 28.7° represents the Weinberg-angle with the sin
2

)( WΘ  ≅  0.2306 which 

relates the electric charge with the weak charge. The weak interaction is a function of the 

energy and depending of the method used for its measurement different values of sin
2

)( WΘ  

between 0.2223 and 0.2314 are obtained [4]. 



 11 

The constant b can now be correlated with a combination of Gα , α , and (19) into a 

dimensionless number: 

 

45

2

22

2
10...964913.5

2

sin22

12

sin8

4

2

1 −⋅=
⋅

⋅
Θ⋅

⋅⋅⋅=
⋅
⋅⋅⋅⋅

Θ⋅
⋅⋅⋅=

ch

mG

ch

mG

W

ee

W

πππ
α

απβ    (20) 

 

with the following values of the natural constants [5]: 

Planck’s constant  h = 341062606957.6 −⋅ Js,  

velocity of light  c = 81099792458.2 ⋅  
ms

-1
, 

mass of the electron  me = 311010938291.9 −⋅ kg, 

constant of gravitation G = 111067384.6 −⋅ m
3
kg

-1
s

-2
, 

fine structure constant 035999074.137/1102973525698.7 3 =⋅= −α  by 4101.4 −⋅ . 

The Weinberg angle is used as a free parameter with the value sin
2
( WΘ ) = 0.2306442, within 

the above mentioned limits. With α  and β , as well as with a and b from (16), the following 

expression is obtained finally:  

 

( ) i

aee

ee
ae

be
e ⋅

⋅−⋅−

=⋅⋅⋅−=−=⋅⋅⋅ π
ααβ 22

2
1

2
ln .      (21) 

 

The left side of this equation contains all fundamental constants of Nature necessary for 

characterization of the four fundamental interactions occurring in stable matter. The limit 

value e is considered here as the dimensionless coupling constant Sα  for the strong 

interaction in stable nucleons. The right side represents the fundamental relation between the 

two transcendental numbers π  and e. Equation (21) can be regarded as the bridge between 

fundamental constants of Nature and a fundamental mathematical relation. This result 

supports the assumption of general validity of dimensionless constants of Nature.  

 

It is well known that the coupling constant of strong interaction and the coupling constant for 

weak interaction are in fact not constants, due to their “running” character [4]. Whereas at 

high energies Sα < 1, an increase above 1 occurs at low energy values, as the case in stable 

matter. For this stable state one single value for interaction is needed. 
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If only the first domain (q ≤  e) is considered, than equation (14) reduces to equation (5) with 

only one limit value, the number e. This situation can be regarded as the limit where the four 

interactions are asymptotically unified in the strong interaction. 
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