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Abstract

This note supplements a recent article [1] in which it was pointed out that the

observed spectrum of quarks and leptons can arise as quasi-particle excitations in a

discrete internal space. The paper concentrated on internal vibrational modes and

it was only noted in the end that internal spin waves (’mignons’) might do the same

job. Here it will be shown how the mignon-mechanism works in detail. In particular

the Shubnikov group A4 + S(S4 − A4) will be used to describe the spectrum, and

the mignetic ground state is explicitly given.
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This is a supplement to section 7 of the article [1] where 8 internal spins were

considered, whose collective excitations (’mignons’ or ’i-spin waves’) were used to

construct quark and lepton states. The scenario to start with is a spinor model in

a (6+2)-dimensional spacetime which by some unknown compactification process

splits into a (3+1)-dimensional Minkowski space plus a (3+1)-dimensional internal

space, in such a way that the internal space reappears as a finite and discrete internal

’crystal’ on each point of the physical base space [1].

Generally, in SO(d1, d2) the spinor dimensions viewed over complex space coincide

with the case of the (d1+d2)-dimensional Euclidean space. Therefore spinors in 6+2

dimensions can be considered as SO(8) spinors by a suitable Wick rotation. Note

that the Lie algebra of SO(8) is extremely symmetric - the key word here is triality

[2] - and has an intimate connection to the nonassociative algebra of octonions

[3, 4]. Furthermore, it is known that SO(8)-spinors can appear as 8-dimensional

right-handed states 8R as well as 8-dimensional left-handed states 8L [15]. Both

representations can be combined to a 16-dimensional Dirac spinor 8L + 8R in a

similar way as a Dirac spinor in 3+1 dimensions can be written as a sum of two

Weyl spinors 2L + 2R.

When going to SOph(3, 1) × SOin(3, 1) the SO(6,2) spinor will split into a product

of a Dirac spinor in internal space and a Dirac spinor on Minkowski space according

to [5]

8L + 8R = (2ph

L + 2
ph

R , 2in
L + 2in

R) (1)

The corresponding field has therefore 2 spinor indices a and i both running from 1

to 4 and corresponding to a particle with Dirac properties both in physical and in

internal space.

The next step is to assume that after the compactification process a copy of the inter-

nal space is fixed to each point of physical space, so that internal Lorentz symmetry

is broken and the induced i-spin structure can be analyzed as a nonrelativistic sys-

tem of strongly correlated 3-dimensional i-spin vectors. This is not only supported

by phenomenological observations (see below) but as a benefit the methods of solid

state physics for the description of magnetic systems can be applied.

The internal system is described in second quantization language by creation and
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annihilation operators satisfying the canonical anti-commutation relations

[cα(m), c†β(m′)]− = δαβδm,m′ (2)

where α = ±1/2 denotes the spin and m, m′ = 1, ..., 8 denotes the sites of the

internal crystal. The appropriate Hamiltonian for the free i-spin system is given by

[9]

H0 = −
∑

m,m′

t(m, m′)[c†α(m)cα(m′) + h.c.] (3)

where the sum is over all crystal sites m 6= m′ and t is the tunneling rate between

the spins.

When it comes to interactions a suitable framework for discussion is given by Heisen-

berg spin models. These have been considered in statistical and solid state physics

for a long time [6, 7, 8], and they have been used to describe magnetic phase tran-

sitions and excitations as well as many other phenomena. The basic variables are

spin vectors S defined on each site of the internal crystal. They are related to the

original creation and annihilation operators eq. (2) via

S(m) =
1

2
c†α(m)ταβcβ(m) (4)

where τ is the triplet of internal Pauli matrices.

What are the symmetries of this system? There are 2 continuous symmetries, asso-

ciated with the conservation of internal charge and spin, respectively. Namely, the

Hamiltonian H0 is invariant under U(1) transformations cα(m) → exp(iθ0)cα(m) for

arbitrary (constant) angle θ0 and under (constant) SU(2) transformations cα(m) →

exp(iθτ )cα(m). The point is that without interaction the i-spins are fixed to the

crystal sites but otherwise can rotate freely so that the system shows an overall

internal SU(2) symmetry. When the interaction is switched on, the SU(2)-breaking

mignetic ground state will be formed and the mignons will appear as spin vector

fluctuations around the ground state.

There are also several discrete symmetries. First of all, there is the point group

symmetry dictated by the discrete nature of the internal crystal. To be specific a

tetrahedral arrangement of spins is chosen with point group symmetry S4 and 8

spin vectors forming an internal ’mignetic molecule’ [10, 11]. Counting the degrees
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of freedom one easily sees that there are 3×8=24 quasi-particle states to be ex-

pected, which can be ordered according to the symmetry of the (mignetic) ground

state, cf. eq. (5) below. Note that S4 is not a chiral symmetry because it contains

improper rotations in the form of reflections of a plane. However, the spin vector is

a pseudovector, and this implies that the combined point and mignetic transforma-

tions can form a chiral group - the Shubnikov group to be introduced later. Finally,

the Hamiltonian is real (H0 = H∗
0
), a signature of time reversal invariance. Just as

SU(2) and the reflection symmetries, the time reversal invariance will be broken by

the mignetic ground state. At this point the existence of an internal time variable s

which describes processes in the internal crystal and differs from physical time t, is

mandatory, not only because it naturally leads to internal spin waves of antifermion

spins which can be used to describe the quantum numbers of antiquarks and an-

tileptons but also because the breaking of internal time reversal invariance will play

an important role for the discussion of the ordered mignetic structures presented

below. That is the reason why I started with SO(6,2) as the complete symmetry of

the whole space before the compactification - instead of SO(6,1) as was done in ref.

[1].

It is well known that one should use Shubnikov groups (which are sometimes called

black-and-white groups) [12, 13] instead of ordinary point groups to classify the

spectrum of spin wave excitations. More concretely, we shall use the Shubnikov

group A4 + S(S4 − A4) instead of the pyritohedral group A4 × Z2 considered in

the article [1]. Here S4 is the symmetry group of a regular tetrahedron, and A4 its

subgroup of proper rotations (i.e. without reflections).1 S denotes the (internal)

time inversion operation, which in an elegant way replaces the rather unnatural Z2-

factor in A4 × Z2. Instead of eq. (4) of the paper, the 24 mignon states are then

given by

A(νe) + A′(νµ) + A′′(ντ ) + T (d) + T (s) + T (b) +

As(e) + A′
s(µ) + A′′

s(τ) + Ts(u) + Ts(c) + Ts(t) (5)

where A, A′, A′′ and T are singlet and triplet representations of A4 and the index s

denotes genuine representations of the Shubnikov group A4 +S(S4 −A4) [12, 14, 8].

1These groups have been discussed in connection with neutrino and family mixing by many

authors [16].
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Figure 1: Mignetic ground state with 8 spin vectors arranged as follows: the corner

points of the outer tetrahedron (big black dots) are given by the coordinate vectors

(1, 1, 1), (1,−1,−1), (−1, 1,−1) and (−1,−1, 1) and the spin vectors are chosen as to

point to its centre (0, 0, 0), i.e. the spin vectors sitting on the 4 sites are the negative

of the coordinate vectors. The remaining 4 points lie on the inner tetrahedron (small

black dots) which is obtained from the outer by multiplying the above coordinates

by a common shrinking factor < 1, and the spinvectors of the inner tetrahedron

are oriented opposite to those of the first one. The tetrahedra themselves have the

tetrahedral group S4 as point group symmetry. From the pseudovector property of

the spin vectors it can be shown that the spin system has A4+S(S4−A4) symmetry.
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Figure 2: A ground state similar to fig. 1, however with opposite chirality. As

compared to fig. 1 all spins point in opposite directions. Also shown is the behavior

of one of the spin vectors in an excited state. Such an excitation is obviously not

identical to its chiral counterpart, i.e. to the states derived from fig. 1

The 24 d.o.f. in eq. (5) correspond in fact to 8 spins each with 3 possible directions

of the spin vector, as predicted above.

Note that the multiplet structure eq. (5) is quite unique. None of the other possible

Shubnikov groups [12] show a pattern of the type eq. (5). Most of them do not even

have triplets, and if so, one usually finds doublets as well.

To understand the physics it is useful trying to construct a ground state, for which

the 24 states eq. (5) represent (internal spinwave) excitations. In other words, one

is looking for a static system with 8 internal spins and symmetry group A4 +S(S4−

A4). The simplest ’mignetic molecule’ [10, 11] of this kind consists of two regular

tetrahedra with spin vectors arranged as in figure 1. Note that this ground state

shows a rather strong type of antiferromagnetic order. Firstly, the spins in each

tetrahedron add up to zero. Furthermore the spins appear in pairs with partners

coming from both tetrahedra and which are oriented oppositely.

As a consequence, the (internal) Heisenberg spin SU(2) symmetry of the mignetic
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system is broken as well as the internal point symmetry S4:

SU(2) × S × S4 → A4 + S(S4 − A4) (6)

The remaining Shubnikov symmetry A4+S(S4−A4) does not contain any reflections,

because improper rotations S4−A4 appear only in combination with the time reversal

operation S. Therefore it is a chiral group (just as A4 × Z2), a property which was

essential in the paper [1] to derive the parity violation of the weak interactions.

Note further that internal time reversal S is itself broken, as can be seen easily,

because it is not an element of the Shubnikov group A4 + S(S4 −A4). Only combi-

nations of the form SR, where R ∈ S4 −A4 is an improper rotation, are symmetries

of the system. The point is that applying S (or R) to the ground state fig. 1 one

will obtain a different state (fig. 2) with higher energy and opposite chirality, whose

excitations have nothing to do with the excitations of fig. 1.

All states in eq. (5) are therefore chiral states, the difference between A and As, A′

and A′
s etc excitations being mainly odd and even behavior under transformations

SR. Since they are different multiplets, they will in general have different masses.

On the level of quarks and leptons this gives different masses to weak isospin part-

ners. How this is linked to the breaking of the Standard Model gauge group SU(2)L

will be discussed in a future publication.
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