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Jay R. Yablon* 
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Abstract: We demonstrate that Yang-Mills Magnetic Monopoles naturally 
confine their gauge fields, naturally contain three colored fermions in a color 
singlet, and that mesons also in color singlets are the only particles they are 
allowed to emit or absorb.   SU(3)C QCD as it has been extensively studied 
and confirmed is understood in broader context, with no contradiction, to be a 
consequence of baryons being Yang-Mills magnetic monopoles.  Protons and 
neutrons are naturally represented in the fundamental representation of this 
group.  We use the t’Hooft monopole Lagrangian with a Gaussian ansatz for 
fermion wavefunctions to demonstrate that these monopoles can be made to 
interact only at very short range as is required for nuclear interactions, and 
we establish topological stability following symmetry breaking from an SU(4) 
group using the B-L (baryon minus lepton number) generator. Finally, the 
mass of the electron is accurately predicted based on the masses of the up and 
down quarks to about 3% from the experimental mean for the quark masses, 
and confinement of quarks occurs energetically via fantastically strong 
negative binding energies that accord very well with experimental nuclear 
data.   All of this makes Yang-Mills magnetic monopoles worthy of serious 
consideration and further development as baryons. 
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Introduction and Summary 
 
The thesis of this paper is simple: magnetic monopole densities which 

come into existence in a non-Abelian Yang-Mills gauge theory of non-
commuting fields are synonymous with baryon densities.  Baryons, including 
the protons and neutrons which form the vast preponderance of matter in the 
universe, are Yang-Mills magnetic monopoles!  Conversely, magnetic 
monopoles, long pursued since the time of Maxwell, have always been hiding 
in plain sight as baryons. 

We first show how Yang-Mills magnetic monopoles naturally confine 
their gauge fields for the same formal reasons that there are no magnetic 
monopoles in Abelian gauge theories (section 1).  When we replace the gauge 
fields of a Yang-Mills magnetic monopole with associated currents via an 
inverse relation σ

σνν JIG ≡  based on Maxwell’s classical chromoelectric 

charge equation µν
µ

ν FJ ∂=  and then introduce fermion fields via currents 

ψγψ µµ
ii TJ = , we find that these magnetic monopoles naturally contain three 

fermions and associated propagators (sections 2 and 3).  After showing some 
ways in which these propagators may be mathematically expanded (section 4), 
we employ Fermi-Dirac statistics to require that each of the three fermions 
contained in this magnetic monopole system must possess unique quantum 
numbers, and this compels the introduction of SU(3)C QCD.  We thus uncover 
a natural system containing three colored quarks which has the precise 
antisymmetric color wavefunction [ ] [ ] [ ]GRBRBGBGR ,,, ++  expected of a 
baryon, and which passes through its closed surfaces objects with the 

symmetric wavefunction configuration BBGGRR ++  expected of a meson.  
Thus, we naturally arrive at all the required features of QCD including three 
valence quarks and gluons and quark-anti-quark pairs (mesons).  SU(3)C QCD 
as it has been extensively studied and confirmed is thereby understood in 
broader context, with no contradiction, to be a natural consequence of 
baryons being Yang-Mills magnetic monopoles (section 5). 
 These magnetic monopoles, however, cannot be made stable with the 
gauge group SU(3) alone, and will vanish unless one employs a product group 
SU(3)xU(1) with a U(1) generator for which the trace in non-vanishing.  This 
leads us to obtain the required SU(3)xU(1) from a larger group SU(4) via 
spontaneous symmetry breaking, to both ensure renormalizability and provide 
topological stability (section 6).  Close consideration of this SU(4) group 
reveals that its 15λ  generator can naturally represent the difference between 
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baryon number and lepton number, LB − , and that the SU(3) subgroup 
provides a natural fundamental representation for protons and for neutrons 
(section 7) which emerge as distinct entities following spontaneous symmetry 
breaking (section 8). 

The t’Hooft [1] and Polyakov [2] model may be used without 
alteration to specify the dynamics of this magnetic monopole system which 
includes protons and neutrons.  However, rather than apply an ansatz 

( )rGxG bab
a

µµ ε=  to the spin 1 gauge fields to determine radial behaviors, we 

apply a Gaussian ansatz ( ) ( )( ) 22
0 /2/14/32))(( Drrepur −−−= πλψ  as in [3] to the spin ½ 

fermion fields.  Because Gaussians are well-behaved and easily integrable, the 
monopoles vanish at the boundaries, have finite, calculable energies, and are 
indeed stable (section 9).  Moreover, unlike the known monopoles which all 
exhibit inverse square-law field strengths, monopoles based on the Gaussian 
ansatz from [3] interact only at extremely short range, which is precisely what 
is to be expected and is experimentally observed for baryons such as protons 
and neutrons (section 10). 

Finally, integrating the energy tensor of these magnetic monopoles 
over an entire spatial volume d3x with all gauge field interactions and vacuum 
effects turned off (zero perturbation) allows us to obtain expressions for the 
“uncovered” proton and neutron mass as a function of the up and down 
“current quark” masses.  For experimental validation we show how the 
observed electron mass me=0.510998928 MeV may be predicted from the 
2012 PDG values of the up and down quark masses mu, md, not only within 
experimental errors, but with only a 3% difference from the mean 
experimental data which itself has a spread about the mean of about 20% for 
the down mass and 50% for the up mass.  Specifically, it is predicted that 

( ) ( )2
3

2/3 πude mmm −= , with the ( )2
3

2π  divisor directly emergent from three-

dimensional Gaussian integration (section 11).  The “uncovered” masses of 
the proton and neutron turn out to be more than 80% smaller than the total 
mass of the three quarks that they contain.  This is understood as being due to 
a fantastically strong binding energy which confines the quarks.  Moreover, 
latent (available) binding energies B for the proton and neutron are predicted 
to be MeVB 640679.7P =  and  MeVB 812358.9N = , which accords well with 

empirical per-nucleon binding data for many nuclei and provides a basis to 
better understand nuclear bonding and fusion.  Finally, it is shown how 
nuclear binding is intimately related to quark confinement, with extremely 
tight empirical data concurrence (section 12). 
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1.  Yang-Mills Magnetic Monopoles Naturally Confine their Gauge Fields 
through Spacetime Geometry 
 

First, we demonstrate how Yang-Mills magnetic monopoles naturally 
confine their gauge fields.  We use the language of differential forms, and 
assume the reader has sufficient familiarity with this so no tutorial 
explanations are required. 

In an Abelian (commuting field) gauge theory such as QED, the field 
strength tensor F is specified in relation to the vector potential gauge field 
(e.g., photon) A according to F=dA.  The magnetic monopole source density P 
is then specified classically (for high-action ( ) ( ) h>>= ∫ ϕϕ LxdS 4  where the 

Euler Lagrange equation may be applied) by the classical field equation 
P=dF=ddA=0.  This makes use of the geometric law that the exterior 
derivative of an exterior derivative is zero, dd=0.  In integral form, this 
becomes 0===== ∫∫∫∫∫∫∫∫∫∫∫∫∫ dAFddGdFP .  All of the foregoing “zeros” 

are what tell us that there are no magnetic monopoles in an Abelian gauge 
theory such as QED.  This absence of magnetic monopole charges at all 
attainable experimental energies is well borne out in the 140 years since James 
Clerk Maxwell published his 1873 A Treatise on Electricity and Magnetism. 

In a non-Abelian (non-commuting field) Yang-Mills gauge theory such 
as QCD, the fundamental difference is that the field strength tensor F is now 
specified in relation to the vector gauge field potential G (e.g., gluon in QCD) 

according to 2iGdGF −= .  For SU(N), both F and G  are NxN matrices.  In 
this relationship, [ ] νµ

νµ dxdxGGG ,2 =  expresses the non-commuting nature of 

the gauge fields and the non-linearity of Yang-Mills gauge theory.  Therefore, 
although ddG=0 as always because of the exterior geometry, the classical 
(high-action) magnetic monopole density becomes the non-zero 

( ) 22 idGiGdGddFP −=−== .  For SU(N), P is also an NxN matrix.  In 
integral form, using Gauss’/ Stokes’ law, this becomes: 

( ) ∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫ −=−==−=−== 2222 GiGidGFdGiiGdGddFP . (1.1) 

and from the last two terms above, we also derive the companion equation: 

0=∫∫dG . (1.2) 

Of course, (1.2), albeit with the different field name, is just the relationship 
0=∫∫ dA  which tells us that there are no magnetic monopoles in Abelian 

gauge theory.  But in light of (1.1), which provides us with a non-zero 
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magnetic monopole 02 ≠−= ∫∫∫∫∫ GiP , what can we learn from (1.2), which 

is  the Yang-Mills analogue to the Abelian “no magnetic monopole” 
relationship 0=∫∫ dA ? 

 If we perform a local transformation dGFFF −=′→  on the field 
strength F,  which in expanded form is written as ][' µνµνµνµν GFFF ∂−=→ , 
then we find from (1.1) as a direct and immediate result of the Abelian “no 
magnetic monopole” relationship 0=∫∫dG  in (1.2), that: 

( ) ∫∫∫∫∫∫∫∫∫∫∫ =−=′→= FdGFFFP . (1.3) 

This means that the flow of the field strength ∫∫∫∫ −= 2GiF  across a two 

dimensional surface is invariant under the local gauge-like transformation 
][' µνµνµνµν GFFF ∂−=→ .  We know in QED that invariance under the 

similar transformation Λ∂+=→ µµµµ AAA '  means the gauge parameter Λ  is 
not a physical observable.  We know in gravitational theory that invariance 
under }{' νµµνµνµν Λ∂+=→ ggg  likewise means the gauge vector νΛ  is not a 
physical observable.  In this case, the invariance of ∫∫F  under the 

transformation ][' µνµνµνµν GFFF ∂−=→  tells us the gauge field µG  is not an 
observable over the surface through which the field ∫∫∫∫ −= 2GiF  is flowing.  

But µG  are simply the gauge fields, which in QCD, are the gluon fields.  So, 
simply put: the Yang-Mills gauge fields Gµ, including gluons in SU(3)C, are 
not observables across any closed surface surrounding a magnetic monopole 
density P.  No matter what may transpire inside the volume represented by 

∫∫∫P , the gauge fields remain confined. 

 Taking this a step further, we see that the origins of this gauge field 
confinement rest in the 140-year old mystery as to why there are no magnetic 
monopoles in Abelian gauge theory.  In differential forms, the statement of 
this is 0=ddG .  In integral form, this becomes 0=∫∫dG , equation (1.2).  Yet 

it is precisely this same “zero” which renders ∫∫∫∫∫∫ =′→ FFF  invariant under 
][' µνµνµνµν GFFF ∂−=→  in (1.3).  So the physical observation that there are 

no magnetic monopoles in Abelian gauge theory translates into a symmetry 
condition in non-Abelian gauge theory that gauge boson flow is not an 
observable over the surface of a magnetic charge.  Again: In Abelian gauge 
theory there are no magnetic monopoles.  In non-Abelian theory, this absence 
of Abelian magnetic monopoles translates into there being no flow of gauge 
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bosons (e.g., gluons) across any closed surface surrounding a Yang-Mills 
magnetic monopole.  Consequently, the absence of gluon flux, hence color, 
across surfaces surrounding non-Abelian chromo-magnetic monopoles is 
fundamentally equivalent to the absence of magnetic monopoles in Abelian 
gauge theory.  And, because this is turn originates in 0=dd , we see that this 
confinement is mandated by the differential forms geometry, imposed by 
spacetime itself.  The very same “zero” which in Abelian gauge theory says 
that there are no magnetic monopoles, in non-Abelian gauge theory says that 
there is no observable flux of Yang-Mills gauge fields across a closed surface 
surrounding a Yang-Mills magnetic monopole.  We do not find a net flow of 
gluons across a closed monopole surface in Yang-Mills gauge theory any 
more than we find Abelian magnetic monopoles in electrodynamics, for 
identical geometric reasons. 
  
2.  Yang-Mills Magnetic Monopoles Contain Fermion Wavefunctions 
  

While gauge field confinement is a necessary prerequisite for Yang-
Mills magnetic monopoles to be considered baryon “candidates,” it is by no 
means sufficient.  At minimum, we must also show that these monopoles are 
capable of naturally containing three fermions in suitable color eigenstates, 
because we know that baryons contain three colored quarks.  So, we now 
show how the hypothesis that Yang-Mills magnetic monopoles are baryons is 
fully consistent with SU(3)C QCD as it has been extensively studied and 
confirmed, replete with three valence quarks and gluons and quark-anti-quark 
pairs (mesons), and that QCD can in fact be viewed as the very consequence 
of this thesis. This will be the central focus of sections 2 through 5. 
 For this purpose, we start with the classical “chromoelectric” and 
“chromomagnetic” Maxwell field equations, using µµµ iGD −∂≡ : 

( ) µ
νµσ

σ
µνµν

µ
νµ

µ
νµ

µ
µν

µ
ν GDDgGDGDGDFJ ∂−∂=∂−∂=∂=∂= ][  (2.1) 

σµννσµµνσσµν FFFP ∂+∂+∂= , (2.2) 

together with the Yang-Mills field strength tensor: 
[ ] ][, νµµννµνµµννµµν GDGDGDGGiGGF =−=−∂−∂= . (2.3) 

Above, group generators iT  are related by the group structure relation 
[ ]kj

i
ijk TTiTf ,−= , and µνµν

i
i FTF ≡  and µµ

i
i GTG ≡  are NxN matrices for any 

given SU(N) (same for νJ  and σµνP ).  (2.2) and (2.3) respectively are just 
expanded restatements of the classical field relationships dFP=  and 
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2iGdGF −=  which we used in (1.1).  We do not in general show the 
interaction charge strength g, but scale this into the gauge bosons µµ GgG → . 
 As soon as one substitutes the non-Abelian (2.3) into Maxwell’s 
equation (2.2), while the terms based on µννµ GG ∂−∂  continue to zero out by 
identity in the usual way (via 0=dd  which as shown in section 1 confines the 
gauge fields), one nonetheless arrives at a residual non-zero magnetic charge: 

[ ] [ ] [ ]( )
[ ] [ ] [ ] [ ] [ ] [ ]( )µνσµσνσµνσνµνσµνµσ

µσνσνµνµσσµν

GGGGGGGGGGGGi

GGGGGGiP

∂+∂+∂+∂+∂+∂−=
∂+∂+∂−=

,,,,,,

,,, . (2.4) 

This is a longhand version of idGidGP 22 −=−=  used in (1.1).  The balance 
of this paper will largely be devoted to studying this σµνP  monopole closely.  
In sections 2 through 5 we will essentially study its symmetry properties and 
show how these coincide with those of QCD.  In section 6 through 9 we shall 
study the circumstances under which it is topologically stable.  In sections 10 
through 12 we shall study a Gaussian ansatz for fermion wavefunctions which 
gives this monopole a short interaction range and yields calculable mass and 
binding energy predictions according with experimental observations. 
 To begin, we make use of the commutator relationship [ ]µσµσ GkiG ,=∂  

to replace the various µσG∂   in (2.4).  Expanding, νσµνσµ GkGGkG −  appears 
throughout, so these terms drop out.  Re-consolidating yields: 

[ ][ ] [ ][ ] [ ][ ]( )νµσµσνσνµσµν kGGkGGkGGP ,,,,,, ++−= .  (2.5) 
Now, by way of brief preview, in the t’Hooft model [1] which we shall 

review in detail in section 9, the spin 1 gauge fields are specified as a function 
of radial distance r using the ansatz ( )rGxG baba µµ ε= .  Solutions of Lagrangian 

(9.2) infra are then used to find ( )rG  and lead to the t’Hooft monopole 
solutions.  Here, we will instead seek an inverse relation σ

σνν JIG ≡  for 

Maxwell’s (2.1) to replace each µG  above with a µJ  which can then be used 
to introduce fermion field wavefunctions ψ  via ψγψ µµ =J .  The ansatz we 
employ will then be based on the radial behavior of these spin ½ fermion 
fields.  Using spin ½ fermion fields rather than spin 1 gauge fields to 
introduce an ansatz about the radial behavior of the µG , is the primary 
difference between the monopoles to be developed here, and the t’Hooft 
monopoles. 

Proceeding using [ ]µσµσ GkiG ,=∂ , inverse σνI  is specified in terms of a 

σµ ↔  symmetrized configuration space operator based on the
σµα

α
µσ DDg ∂−∂  contained (2.1), with a hand-added Proca mass, by: 
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[ ]( ) [ ]( ) ν
µσµσµ

α
α

α
αµσ

σν δ=++−+− }{
2
12 ,, GkikkmGkikkgI . (2.6) 

We also use a νσ ↔  symmetrized [ ]}{2
1 , νσνσσνσν GkCikBkAgI ++≡  to 

calculate σνI .  In doing so, we keep in mind that the σG  is an NxN matrix for 

the Yang-Mills gauge group SU(N), so any time σG  appears in a denominator 
we must actually form a Yang-Mills matrix inverse.  So that expressions we 
develop have a similar “look” to familiar expressions from QED, we use a 
“quoted denominator” notation 1"/"1 −≡ MM  to designate a Yang-Mills matrix 

inverse.  Thus, "/"1
1 σσ GG =−

, etc.  This inverse from (2.6) is calculated to be: 
[ ]

[ ]
[ ]","

","

,

2

2

}{2
1

α
α

α
α

α
α

α
α

νσνσ
σν

σν Gkimkk

Gkikkm

Gkikk
g

I
+−

−−
+

+−
= , (2.7) 

and can only be formed if we simultaneously impose the covariant gauge 
condition, in configuration space: 
( )( ) 0}{

2
1

}{2
1 =∂−∂∂∂−∂∂ σµσµ

νσνσ GG . (2.8) 

Note that the often-employed [ ] 0, =∂= σ
σ

σ
σ GGki  is not a gauge condition here; 

this is replaced by (2.8). 
 Now, inverse (2.7) has many interesting properties which we shall not 
take the time to explore here which would require an entire separate paper to 
do them justice.  Special cases of interest include [ ] 0, →∂= σνσν GGki ;  0=m ; 

both 0→∂ σνG  and 0=m ; and on shell 02 =− mkk α
α  for 0≠m , or 0=α

α kk  

for 0=m .  We will also note that when working towards a quantum path 
integral formulation, [ ] σ

σ
σ

σ GGki ∂=,  in (2.7) is replaced by a gauge-invariant 

perturbation ( ) σ
σσ

σσ
σ GGGGV +∂+∂=− , contracted from a perturbation tensor 

( ) νµµννµµν GGGGV +∂+∂=− . But our interest at the moment is in the low-
perturbation limit, which is specified by [ ] 0, →∂= σνσν GGki .  Thus, using (2.7) 

in the inverse relation σ
σνν JIG = , we “turn off” all the perturbations by setting 

[ ] 0, =∂= σνσν GGki .  When we do so, all the inverses (quoted denominators) in 

(2.7) become ordinary denominators. We then reduce using the fact that in 
momentum space, current conservation ( ) 0=∂ xJ µ

µ  becomes ( ) 0=kJk µ
µ  (see 

[4] after I.5(4)).  We thus obtain: 
σ

α
α

σν
ν J

mkk

g
G

2−
−= . (2.9) 
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The above is just like the expressions we encounter for inverses with a Proca 
mass in QED.  It says, not unexpectedly, that in the low-perturbation limit, 
when we set 0→∂ σν G  (and in a deeper analysis, 

( ) 0→+∂+∂=− νµµννµµν GGGGV ) QCD looks like QED.   
The point of developing this inverse, is to be able to use (2.9) in (2.5) 

and then deploy fermion wavefunctions via ψγψ µµ =J .  Because (2.5) 

contains six different appearances of νG , there are six independent 

substitutions of (2.9) into (2.5), and what we must presume to be six 
independent Proca masses m.  To track this, we will use the first six letters of 
the Greek alphabet ζεδγβα ,,,,,  to carry out the internal index summations 
and to label each of these six Proca masses.  This substitution yields: 



























−−
−



























−−
−



























−−
−=

ν

ζζ
ζ

ζ
µζ

εε
ε

ε
εσ

µ

δδ
δ

δ
σδ

γγ
γ

γ
γν

σ

ββ
β

β
νβ

αα
α

α
αµ

σµν

k
mkk

Jg

mkk

Jg

k
mkk

Jg

mkk

Jg

k
mkk

Jg

mkk

Jg
P

,,

,,

,,

2
)(

2
)(

2
)(

2
)(

2
)(

2
)(

. (2.10) 

Here, we see six massive vector boson propagators each coupled with 
a current vector αJ .  We raise the indexes on all the currents and absorb the 

αµg .  We use µµ
i

i JTJ = , 1...3,2,1 2 −= Ni  to explicitly introduce the SU(N) 

generators.  We factor out the resulting commutators [ ]ji TT , .  And finally, we 

employ ψγψ µµ
ii TJ =  and the like to introduce fermion wavefunctions.  With 

this, and moving all currents into the same numerator, (2.10) becomes: 

[ ]
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−−

−=

ν

ζζ
ζ

µσ

εε
ε

µ

δδ
δ

σν

γγ
γ

σ

ββ
β

νµ

αα
α

σµν

ψγψψγψ

ψγψψγψ

ψγψψγψ

k
mkk

TT

mkk

k
mkk

TT

mkk

k
mkk

TT

mkk

TTP

ji

ji

ji

ji

,
1

,
1

,
1

,

2
)(

2
)(

2
)(

2
)(

2
)(

2
)(

. (2.11) 
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The above monopole now contains fermion wavefunctions in three 
additive terms.  In the next three sections, we shall show how these are the 
wavefunctions of the three colored quarks of QCD. 

 
3.  Yang-Mills Magnetic Monopoles Contain Three Fermions and 
Fermion Propagators 
 
 Let us first take a close look at the fermion term 

( )2
)(/ ββ

βνµ ψγψψγψ mkkTT ji −  and the other two like-terms in (2.11).  First, we 

focus on ψγψψγψ νµ
ji TT , and refer to sections 6.2 and 6.14 of [5].  If these two 

spacetime indexes µ, ν,  had been summed with one another in the form of 
ψγψψγψ µ

µ
ji TT , then this would represent Moeller scattering.  But because 

these are free spacetime indexes, the Feynman diagram associated with this 
term will be that for Compton scattering.  The two lowest-order diagrams for 
this, as will be developed in the discussion to follow, are shown in Figure 1 
below.  Specifically, the left vertex contains the factor νγjT  and the right 

vertex contains µγiT , with the free indexes µ, ν shown at the end of the 

respective boson lines.  For the four-momentum of the wavefunctions, we 
designate σp  to represent the initial incoming momentum of the rightmost ψ , 

and σp′  to represent the final, outgoing momentum of the leftmost ψ .  Thus, 

we rewrite this term as )()( pTTp ji ψγψψγψ νµ′ . 

 
Figure 1 

 Appearing in the center of the numerator is ψψ .  For Compton 
scattering, these two wavefunctions have no intervening vertex and so are 
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represented by a single fermion line in the middle of the diagram.  The four-
momentum is either σσσρ kps +≡)(  for the left diagram of Figure 1, or 

σσσρ kpt ′−≡)(  for the right diagram, with σk  and σk′  respectively 
representing the four-momentum added to or subtracted from the fermion 
wavefunctions at the νγjT   vertex.    In terms of the Mandelstam variables, 

sss =)()( σ
σ ρρ , while ttt =)()( σ

σ ρρ , which explains the choice of s, t labels.  

For notational compactness, we shall often make use of σρ  while keeping in 

mind that this may represent either of )(s
σρ  or )(t

σρ  as defined above.  

Because these wavefunctions are directly back to back in the form of ψψ  

with no intervening vertex µγ , the momenta of the two wavefunctions in ψψ  

are equal ( ) ( ) σσσ ρψψ == pp , so we may set uu=ψψ , where u  and u  are a 

Dirac spinor and its adjoint.  For U(1),  is a 4x4 Dirac matrix 
because each spinor has four components.  But for SU(N), it is important to 

keep in mind that  is a ( ) ( )NN ××× 44  matrix. 

Next, we sum uu  over all spins states, uuspinsΣ .  Often, this spin sum 

is written as mpuu +/=Σspins  (see e.g., [5], section 5.5).  But there is an 

implied covariant (real) normalization mEN +=2  in this expression.  So to 
be fully explicit, this should really be written (see [5], problem solution 5.9): 

( )m
m

N
uu +/+Ε

=∑ ρ
2

spins
, (3.1) 

where m+/ρ  is also a  matrix for SU(N), and where we have 

made use of α
α ργρ =/  using the s and t-channel σρ  as defined above, with 

Ε≡0ρ .  So we use the foregoing including (3.1) in (2.11) to obtain 
( )

2
)(

2

2
)(

spins

2
)(

2
)( ββ

β

νµ

ββ
β

νµ

ββ
β

νµ

ββ
β

νµ ψγργψψγγψψγγψψγψψγψ
mkk

TmT

m

N

mkk

TuuT

mkk

TuuT

mkk

TT jijijiji

−
+/

+Ε
=

−
Σ

→
−

=
−

 (3.2) 

for top line term in (2.11), and similarly for the other two like-terms. 
 Now, let us take a moment to discuss propagators.  In general, a 
propagator (times -i) is specified by ( )2

spins / mpp −Σ σ
σ , where σp  and m are 

the four-momentum and rest mass of the propagating particle.  For fermions, 
we specifically employ (3.1) including σρ  as defined above, so that: 

uu=ψψ

uu=ψψ

( ) ( )NN ××× 44



-13- 
 

 
 

( )( ) ( ) 1
222

2

2

2

spins 1 −−/+Ε
=

−/+Ε
=

−/+/
+/

+Ε
=

−
+/

+Ε
=

−
Σ

m
m

N

mm

N

mm

m

m

N

m

m

m

N

m
ρ

ρρρ
ρ

ρρ
ρ

ρρ σ
σ

σ
σ

. (3.3) 

For mN +Ε=2 , the propagator becomes the familiar ( ) ( )mm −/=−/
− ρρ /11 .  

Of course, having a  (or even a 4x4) matrix such as m−/ρ  in a 
denominator is really not a proper mathematical expression, but merely a 
convenient shorthand to designate a matrix inverse.  Thus, as we have done 
previously in section 2, we will use a quoted denominator "/"1 m−/ρ  to gently 

remind us of this.  With the earlier definitions of σρ , (3.3) has two alternative 
formulations corresponding to s and t channel diagrams in Figure 1: 

( ) ( ) ( ) 1
22

2

2

2

spins

""

1 −−/+/+Ε
=

−/+/+Ε
=

−++
+/+/

+Ε
=

−
Σ

mkp
m

N

mkpm

N

mkpkp

mkp

m

N

ms σ
σ

. (3.4) 

( ) ( ) ( ) 1
22

2

2

2

spins

""

1 −−′/−/+Ε
=

−′/−/+Ε
=

−′−′−
+′/−/

+Ε
=

−
Σ

mkp
m

N

mkpm

N

mkpkp

mkp

m

N

mt σ
σ

. (3.5) 

Now, let us closely contrast (3.2) with (3.4) and (3.5).   The final term 
in (3.2) contains at its center, the expression( ) ( )2

)(/ ββ
βρ mkkm −+/ .  This 

looks intriguingly like the fermion propagator in the second terms of (3.4) and 
(3.5).  However, )(βm  in (3.2) started out in (2.10) as a gauge boson mass in 

the denominator of a gauge boson propagator ( )2
)(/ ββ

βνβ mkkg − , with βk  

being the associated four-momentum.  By contrast, the numerator of (3.2), 
with either mkpms +/+/=+/ )(ρ  or mkpmt +′/−/=+/ )(ρ  contains a fermion mass 

m and associated Dirac-daggered four-momentum p/ .  That is, (3.2) looks to 
have “apples” (bosons) in the denominator and “oranges” (fermions) in the 
numerator.  So the question arises: is there some way to mix “apples” and 
“oranges” and actually treat (3.2) – and therefore the terms in (2.11) – as a 
fermion propagator?  And if so, what is required for us to be able to do so? 
 First, the generalized expression (3.3) does not discriminate fermions 

from bosons.  If the spinsΣ  in the left term of (3.3) operates on uu , then 
2m−σ

σ ρρ  in the denominator produces a fermion propagator.  If the spinsΣ  

operates on an expression νµ εε *  with boson polarization vectors, 2m−σ
σ ρρ  

produces a boson propagator.   That is, it is the spinsΣ  in the numerator of a 

propagator such as (3.3) which sets the tone for whether the propagator is that 
of a fermion or a boson.  This suggests, because m+/ρ  is in the numerator of 

( ) ( )NN ××× 44
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(3.2), and of (2.11) via uu=ψψ , that the denominators 2
)(ββ

β mkk −  in (2.11) 

and (3.2) should be associated with fermions, not bosons.   
 Second, more fundamentally, it is instructive to consider spontaneous 
symmetry breaking, because that entails a similar mixing of apples and 
oranges.  In weak SU(2)W, for example, we start with three massless gauge 
bosons µµµ 221 ,, WWW  each with two degrees of freedom for a subtotal of six, 
and a complex scalar doublet φ  which contains four scalar degrees of 
freedom, for a total of ten degrees of freedom.  After spontaneous symmetry 
breaking, three of the scalar degrees of freedom are “swallowed” by the three 
gauge bosons via the Goldstone mechanism.  The gauge bosons become 
massive, each with three degrees of freedom for a total of nine, and the 
remaining scalar degree of freedom goes to the Higgs field.  We still end up 
with ten degrees of freedom, but they are redistributed from the scalars 
(“apples”) to the gauge bosons (“oranges”).  In SU(2)W×U(1)Y electroweak 
theory, we start with four massless gauge bosons rather than three, but the 
photon remains massless.  So twelve degrees of freedom before symmetry 
breaking (eight from the four massless gauge bosons and four from the 
complex scalar doublet) remain twelve degrees of freedom afterwards (three 
massive vector bosons, one massless photon, and one Higgs field). 
 Equation (2.11), which is what we are working with at the moment, 
started in (2.10) with a total of six Proca (presumed massive) boson 
propagators, thus totaling 18 degrees of freedom.  So if we want to mix apples 
and oranges in (3.2) using a Goldstone-like mechanism that shifts degrees of 
freedom from one particle type to another, we must be sure to end up with 
eighteen degrees of freedom in total once we are all done. 

Consequently, let us now introduce the hypothesis that each of 
2

)(ββ
β mkk − , 2

)(δδ
δ mkk −  and 2

)(ζζ
ζ mkk −  in the (2.11) denominators are to 

be associated with the fermion masses and momenta in the muu +/∝Σ ρspins  of 

their respective numerators in (3.2).  We shall validate this “propagator 
hypothesis” by showing that it leads to QCD.  This means that (2.11) will now 
contain three massive fermion propagators, and therefore three fermions, 
which is highly desirable if we are attempting to demonstrate that the Yang-
Mills magnetic monopole is a baryon.  And since a massive fermion contains 
four degrees of freedom, (2.11) will now contain a total of twelve degrees of 
freedom for the fermions.  This leaves six of the 18 degrees of freedom for the 
three remaining vector bosons propagators, and so means that these bosons 
must drop down to two degrees of freedom apiece and thus become massless, 
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i.e., that we must now set their Proca masses to zero, 0,, )()()( =εγα mmm .  

Now, the 18 degrees of freedom that initially belonged three apiece to six 
massive vector bosons have been redistributed: 12 of these now belong to the 
3 fermions, and only 6 belong to the 3 remaining bosons.  That this hypothesis 
leads to the requirement that the gauge bosons remain massless, is one of 
several results we shall soon derive that are fully consistent with QCD and 
indeed are required by QCD. 
 To implement this, using (3.2) in (2.11) and the s and t channel 
diagrams in Figure 1, we promote ββββ ρ kpk s +=→ )(  and 

ββββ ρ kpk t ′−=→ )(  to the momentum of the associated fermion lines in the 
middle of both of Figures 1, and similarly for the other terms in (2.11).  Thus, 
at the νγjT  vertex of the s-channel Figure 1, we are taking the original 

incoming gauge boson momentum βk  and adding it to the incoming fermion 
momentum βp  to arrive at ββ kp + .  And, at the νγjT  vertex of the t-channel 

Figure 1, we are taking the original incoming gauge boson momentum βk , 

associating it with the outgoing momentum by setting ββ kk ′−→ , and then 
adding this to  the incoming fermion momentum βp  to obtain ββ kp ′− .  The 
final fermion momentum, in either diagram, is then 

ββββββ qpkkpp +≡′−+=′ .  We then generally label all objects associated 
with these three fermions with either β, δ or ζ, while setting 0,, )()()( =εγα mmm  

to balance the degrees of freedom, and we show the initial and final fermion 
momenta.  With all of this, (2.11) now becomes: 

[ ]

( )

( )

( )
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δ

δδ
ν
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µ

δδ
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γ
γ

σ
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ββ
ν

ββ
µ

ββ

ββ

β

α
α

σµν

ρρ
ψγργψ

ρρ
ψγργψ

ρρ
ψγργψ

k
m

pTmTp

m

N

kk

k
m

pTmTp

m

N

kk

k
m

pTmTp

m

N

kk

TTP

ji

ji

ji

ji

,
)()(1

,
)()(1

,
)()(1

,

2
)(

)()()()(

)()(

2
)(

2
)(

)()()()(

)()(

2
)(

2
)(

)()()()(

)()(

2
)(

.(3.6) 

The Higgs / Goldstone mechanism has long been known to enable massless 
gauge bosons to become massive by swallowing degrees of freedom from 
scalars.  Here, fermions become massive by swallowing degrees of freedom 
from massive bosons, which then revert to massless bosons.  This turns out to 
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be perfect for QCD, which is known to require massless gluons and which is 
expected to have massive quarks. 

Looking closely at (3.6), we now also see a path to choosing 
normalizations N which simultaneously: 1) are covariant; 2) retain the original 

mass dimensionality of +3 for uu ; and 3) greatly simplify (3.6).  Specifically, 
we now choose the covariant, mass dimension-preserving normalizations: 

( ) ( ) ( ) ε
ε

ζζζγ
γ

δδδα
α

βββ kkmNkkmNkkmN )()(
2

)()()(
2

)()()(
2

)( ;; +Ε=+Ε=+Ε= . (3.7) 

Using these in (3.6), and re-labeling 3;2;1 →→→ ζδβ , yields the further 
simplified expression:  
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−=

ν

ζ
ζ

νµ

µ

δ
δ

νµ

σ

β
β

νµ

σµν

ρρ
ψγργψ

ρρ
ψγργψ

ρρ
ψγργψ

k
m

TmT

k
m

TmT

k
m

TmT

TTP

ji

ji

ji

ji

,

,

,

,

2
)3(

)3()3()3()3(

2
)2(

)2()2()2()2(

2
)1(

)1()1()1()1(

. (3.8) 

By virtue of (3.7) explicitly preserving the mass dimensionality, (3.8) retains a 
mass dimension +3 which one expects for a source current density σµνP  
corresponding with the second spacetime derivatives of a gauge potential µG  
with mass dimension +1.  We also removed the initial and final p  and p′  
which appeared in (3.6), which are now regarded to be implicit in (3.8).  The 
above should be contrasted with [6.103] and [6.104] in [5]. 

Now we return to the commutator [ ]ji TT , .  This operates to 

antisymmetrically commute the vertices ( )( )νµ γγ ji TT , and so visibly restores 

the antisymmetric character of the spacetime indexes, thus: 

[ ] ( ) ( ) [ ]
""

,
2

][

2 mm

m

m

TmT
TT jiji

−/
≡

−
+/=

−
+/ ∨

ρ
ψγγψ

ρρ
ψγργψ

ρρ
ψγργψ νµ

β
β

νµ

β
β

νµ

. (3.9) 

where in the final term, we have defined the shorthand operator 

1=
+/
+/≡∨ m

m

ρ
ρ

. (3.10) 

This operator allows us to write consolidated expressions with "" m−/ρ  
fermion propagator denominators and clearly display the spacetime 
symmetries, while at the same time providing a placeholder to restore the full 
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propagator.  The “quasi-commutator” [ ]νµ γγ ∨  says that one inserts (3.10) into 

the final term of (3.9) at the location designated by ˅, and then commutes µγ  

and νγ  with one another in antisymmetric combination about the m+/ρ  in the 
numerator to arrive at the next to last term in (3.9). 

Using the compact notation of (3.9) (which we shall momentarily re-
expand), we now write (3.8) as: 

[ ] [ ] [ ]
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∨∨∨ ν
νµ

µ
νµ

σ
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σµν
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ρ
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k
m

k
m

k
m

P ,
""

,
""

,
"" )3()3(

)3()3(

)2()2(

)2()2(

)1()1(

)1()1( . (3.11) 

This explicitly highlights the antisymmetric commutation [ ]νµ GG ,  of free 
indexes µ, ν with which everything started back in (2.5), and even further 
back, in the underlying field density [ ]νµµννµµν GGiGGF ,−∂−∂=  of (2.3) 
which is the heart of non-commuting Yang-Mills field theory.  This also 
illustrates the “clean” compactness provided by quasi-commutator [ ]νµ γγ ∨ . 

All that now remains in (3.11) is the final commutator with momentum 
terms such as σk .  Going back to the earlier-employed [ ]µσµσ GkiG ,=∂  which 

tells us that commuting a spacetime field with σk  is just a clever way to take 
its derivatives, we can similarly write [ ]σµνµνσ kMMi ,=∂  for a second rank 

tensor field )( σµν xM .  So, if we also use (3.11) to define a second rank Dirac 

“quasi-covariant” [ ]νµνµ γγσ ∨≡− ∨i2 , we may finally consolidate (3.11) to: 















−/
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−/
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∨∨∨

""""""
2

)3()3(

)3()3(
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)2()2(

)1()1(

)1()1(

mmm
P

ρ
ψσψ

ρ
ψσψ

ρ
ψσψ µσ

ν
σν

µ
νµ

σσµν . (3.12) 

This is our final expression for a Yang-Mills magnetic monopole σµνP .  We 
shall now explore its symmetries and other properties in a variety of ways. 
 
4.  Yang-Mills Magnetic Monopoles Contain Spin 0, 1 and 2 Terms in 
“Vector (V)” and “Axial (A)” Variants, Consistent w ith Nuclear 
Phenomenology 
 

Before proceeding further with development, we pause in this section 
to first evaluate the compact expression in (3.9) explicitly, so we can see what 
is contained in each of the terms in the monopole (3.12).  Separating the terms 
with α

α γρρ =/  and m yields: 
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[ ] ( ) [ ]
22

][

2

][ ,

"" m

m

mm

m

m −
+

−
=

−
+/=

−/
∨

β
β

νµ

β
β

ναµ
α

β
β

νµνµ

ρρ
ψγγψ

ρρ
ψγγγψρ

ρρ
ψγργψ

ρ
ψγγψ . (4.1) 

The second separated term contains the ordinary second rank Dirac covariants 
[ ]νµµν γγσ ,2 =− i .  But the former term contains a third rank formation of 

Dirac matrices ][ ναµ γγγ , summed over the α index with αρ .  So, we expand 

the numerator in this term to write: 
ψγγγψρψγγγψρψγγγψρψγγγψρψγγγψρ νµνµνµνµναµ

α
]3[

3
]2[

2
]1[

1
]0[

0
][ +++= .(4.2) 

Then, we evaluate each of the six independent components for 
31,23,12,03,02,01=µν .  The terms where either the µ or ν index is equal to 

the middle α index drop out because of the νµ,  antisymmetry.  Applying the 

Dirac relation 32105 γγγγγ i=  in various combinations to the remaining terms, 

then using µνµν η=g  in geodesic (flat spacetime tangential) coordinates to 

lower indexes, the result can be covariantly-summarized via the Levi-Civita 

tensor (in a basis where g−=0123ε ) as: 

ψγγψρεψγργψ βα
µναβνµ 5

][
][ 2i=/ . (4.3) 

Therefore, the explicit evaluation of (4.1), using the earlier-defined second 
rank Dirac “quasi-covariant” [ ]νµνµ γγσ ∨=− ∨i2  and (3.10) for ∨ , and also the 
ordinary covariant [ ]νµµν γγσ ,2 =− i , is: 

[ ] ( )
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5][
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2""2"" mm
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+/=
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β
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ρρ
ψγγψρε

ρρ
ψσψ

ρρ
ψγργψ

ρ
ψγγψ

ρ
ψσψ . (4.4) 

This expression contains both a second rank antisymmetric tensor ψσψ µν , 

and a first rank axial vector ψγγψ β 5] .  This is the first of many instances 
where we shall discover that Yang-Mill magnetic monopoles inherently 
contain certain chiral asymmetries that introduce axial objects which may 
account for the chiral asymmetries and the many axial objects observed in 
strong interaction hadron phenomenology.  This sort of non-chiral result will 
provide one very strong basis upon which to experimentally validate the thesis 
that baryons are Yang-Mills magnetic monopoles. 
 Let us now go one step further, and use the Gordon decomposition 
(see, e.g., [6] at 343-345) : 

( ) ( ) ψσψψγψ να
α

νν





 −′++′= ipp
g

pp
m 22

1  (4.5) 
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where g is the gyromagnetic g-factor, with an axial wavefunction 

Aψψγψ =→ 5 , to further decompose (4.4) into: 

( ) ( ) ψγσψ
ρρ

ρεψγψ
ρρ
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ψσψ
ρρρ

ψσψ
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β
β
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δαβ
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β
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−

−
=

−/

∨

,(4.6) 

with ppq −′=  as previously defined.  This illustrates a) why (3.10) is 
desirable for compactness and b) how when fully-expanded, this compact 
notation reveals not only the second rank (spin 2) antisymmetric tensor 

ψσψ µν  and first rank (spin 1) axial vector ψγγψ β 5  of (4.4), but also a second 

rank (spin 2) axial tensor ψγσψ βδ 5i  (in the form of an axial magnetic moment 

term summed with δq ) and a zero-rank (spin 0) pseudoscalar ψγψ 5 .  Most 

importantly, the magnetic monopole of (3.12) is built out of the term expanded 
in (4.4) and  (4.6), and so contains all of these spin 0, 1 and 2 “vector” and 
“axial” objects.  This will be very important to understanding the 
phenomenology of the observed strong interaction mesons, and in the next 
section, we shall show how these terms are indicative of the types of “vector 
(V)” and “axial (A)” mesons which mediate nuclear interactions. 
 
5.  Fermi-Dirac Exclusion Requires Using SU(3)C Quantum 
Chromodynamics for Yang-Mills Magnetic Monopoles, Yielding the 
Correct Baryon and Meson Color Wavefunctions  
 

Returning to the main development, the Yang-Mills magnetic 
monopole σµνP  (3.12), when contracted to the differential three-form used in 
section 1, namely νµσ

σµν dxdxdxPP = , is an NxN matrix for SU(N).  We have 

not yet chosen a particular Yang-Mills gauge group to associate with (3.12), 
and in principle, are free to use σµνσµν

i
i PTP =  with [ ]kj

i
ijk TTiTf ,−=  generators 

and structure constants for whatever gauge group we wish to explore.  But, 
(3.12) does contain exactly three fermion wavefunctions )1(ψ , )2(ψ  and )3(ψ  

and their associated propagators, so one is certainly motivated to consider the 
Yang-Mills gauge group SU(3).  But is there anything that might require us to 
apply SU(3) via purely deductive logic? 

The answer is yes:  The Fermi-Dirac Exclusion Principle (with which 
Pauli’s name is also often associated) requires that no two fermions within a 
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given system may simultaneously occupy the same quantum state.  So if we 
regard σµνP  in (3.12) as a “system” containing three fermion wavefunctions 
and associated propagators, then we must utilize a gauge group that enables 
each of these three fermions to be distinguishable from one another with 
unique quantum numbers, similarly to how every electron within a given atom 
must possess a unique set of quantum numbers n, l, m, s generally associated 
with energy, orbital angular momentum and spin.  The natural gauge group to 
achieve this exclusion, of course, is SU(3) (or SU(3)xU(1) as we shall 
momentarily discuss).   

In fact, this is where QCD usually starts:  If we understand baryons as 
containing three fermions which are quarks, and we know that Fermi-Dirac 
exclusion mandates these three quarks not simultaneously occupy the same 
quantum state, then we must introduce SU(3) or a variant thereof to enforce 
exclusion.  So we call the quarks Red, Green, Blue as a matter of convention, 
set up an SU(3) Dirac Lagrangian for these quarks, impose gauge symmetry, 
and arrive at SU(3)C QCD.   

In the present development, we discover that Yang-Mills magnetic 
monopoles naturally contain three fermions, we similarly require exclusion 
and so introduce SU(3)C, and we thereby arrive at exactly the same SU(3)C 
QCD theory, with no contradiction, simply from a different starting point. 

Accordingly, we now take the formal step of imposing quantum 
exclusion upon the three fermions in (3.12) by introducing the gauge group 
SU(3)C with generators 8...1; == iT ii λ  normalized to ( ) 2

12 =itr λ , and assigning 

these three fermions to one of three exclusive color eigenstates R, G, B, with 
associated quantum eigenvalues, as follows:  
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These fermions are now specified in precisely the same way as the three 
colored quarks of QCD with SU(3)C.  Similarly, referring back to sections 1 
and 2, the eight associated gauge bosons now become µµ λ i

iGG ≡ .  And 

because of (2.2), all of the non-linear gluon interactions of QCD will be 
present here too.  Further, earlier, between (3.3) and (3.6), we determined 
these gauge bosons must be massless for the quarks to acquire their expected 
non-zero mass.  So these µG  now have all the required characteristics to be the 
eight bi-colored, massless gluons of QCD.  The thesis that baryons are Yang-
Mills magnetic monopoles does not contradict QCD in any way!  Moreover, 
when combined with the Exclusion Principle, this thesis actually mandates 
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QCD!  But as shown in section 1, there is a bonus in this approach to QCD:  
the confinement of gauge fields is built into the theory from the start, whereas 
in many instances it is imposed by separate, ad-hoc mechanisms, see for 
example, the MIT bag model in, e.g., [7] section 18.  This emergence of QCD 
also validates the “propagator hypothesis” which earlier yielded (3.6) from 
(2.11).  Now, let’s use (5.1) in the σµνP  of (3.12). 
 In the section 3, the spin sum (3.1) played a central role.  From (5.1), 
let us form the three spin sum operands: 

















=
















=
















=

BB

GG

RR

ψψ
ψψψψψψ

ψψ
ψψ

00

000

000

;

000

00

000

;

000

000

00

)3()3()2()2()1()1(
.(5.2) 

We see very explicitly that each of these is a 3x3 color matrix in which the 
non-zero elements are 4x4 Dirac matrices ψψ  (and the zeros are all 4x4 
zeros).  If we then start with (3.12) and backtrack through section 3 by 
applying [ ]νµνµ γγσ ∨=∨

2
i ; (3.9); (3.7); (3.1) and uu=ψψ , and if we then 

substitute (5.2) into the backtracked result, we may obtain (with Σ→Σspins  for 

notational compactness): 
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 Then, forward tracking again through section 3, we reapply spin sums 
and normalizations, and arrive back at: 
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The difference between (5.4) and (3.12) is that when we explicitly use the 
colored wavefunctions BGR ψψψ ,,  rather than )1(ψ , )2(ψ  and )3(ψ , the 

character of σµνP  as a 3x3 color matrix is made explicit.  And, in a step that 
will have great topological significance, extracting the trace, we write:   
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The above is identical to (3.12), but for the fact that when we wish for the 
colored wavefunctions to appear explicitly in lieu of )1(ψ , )2(ψ  and )3(ψ  in an 

analogous form, we are required to employ the trace equation.  
 Now, we have pointed out at the start of this section that developing 
Yang-Mills magnetic monopoles and then applying exclusion yields the basic 
required elements of QCD such as three colors of quark and eight bi-colored 
massless gluons, plus the added bonus of a gauge field confinement naturally 
built in from the start.  But there is more:  First, let us associate each color 
wavefunction with the spacetime index in the related σ∂  operator in (5.5), i.e., 

R~σ , G~µ  and B~ν .  Keeping in mind that σµνPTr  is antisymmetric in all 
spacetime indexes, we express this antisymmetry with wedge products as 

BGR ∧∧∧∧ ~νµσ  .  So the natural antisymmetry of the magnetic 

monopole σµνP  leads straight to the required antisymmetric color singlet 
wavefunction [ ] [ ] [ ]GRBRBGBGR ,,, ++  for a baryon (see [5] equation [2.70], 
and compare the top line term [ ] [ ] [ ]µσνσνµνµσ GGGGGG ,,, ∂+∂+∂  of (2.4)).  
That is, (5.5) has what is known to be the required antisymmetric color 
wavefunction for a baryon!  Indeed, one can argue that the antisymmetric 
indexes in σµνP  should have been a tip-off that magnetic monopoles would 
make good baryons. 
 Next, we showed in (1.3) that the invariance of ∫∫ F  under a gauge-

like transformation ][' µνµνµνµν GFFF ∂−=→  means that no gauge bosons µG  
(now gluons µµ λ i

iGG ≡ ) are allowed to flow across a closed surface 

surrounding a Yang-Mills magnetic monopole.  So for SU(3)C, the gluons are 
confined.  So far, so good.  But that only tells us what cannot flow.  To find 
out what can flow, we return to ∫∫∫∫∫∫∫ −== 2GiFP  from (1.1).  Because 

νµσ
σµν dxdxdxPP = , let us multiply both sides of (5.5) by the anticommuting 

volume element νµσ dxdxdx , form matching trace equations, take the triple 

integral, then apply Gauss’ / Stokes’ law to the right hand side and rename 
spacetime indexes.  What we get is: 
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The Gaussian integration has removed the σ∂  operators from (5.5), 
and what remains by inspection in (5.6) is the symmetric color singlet 
wavefunction BBGGRR ++ .  This is precisely the symmetric color 
combination required for a meson!  But look at the context in which this 
meson wavefunction is revealed: if the integrand in (5.6) is in fact 
representative of mesons, then (5.6) taken together with section 1 makes a 
very clear statement: Mesons, not gluons, are what net flow across any closed 
surface surrounding a Yang-Mills magnetic monopole.  But one can say the 
exact same thing about what flows in and out of baryons!  And, the observed 
phenomenology of strong interactions makes very clear that baryons in fact 
emit and absorb mesons, and not individual quarks or gluons (see [8] 
especially 14.2 and [9] for a full exposition of experimentally-observed 
mesons and their spin classifications as scalars, vectors, tensors, etc. and axial 
variants).  So this revelation of meson flow across the surface of a Yang-Mills 
magnetic monopole further supports the thesis that baryons are Yang-Mills 
magnetic monopoles, not only theoretically, but based on experimentally-
observed phenomenology.  (5.6) says that Yang-Mills magnetic monopoles 
interact by emitting and absorbing mediating mesons!  

Importantly, however, the usual approaches to QCD do not provide a 
compelling deductive rationale for why mesons and not gluons are allowed to 
flow in and out of baryons, that is, they do not provide a natural deductive 
explanation for confinement and meson-based interaction.  Often, confinement 
and meson flow are simply introduced through ad hoc mechanisms, again, see 
[7] section 18.  Starting with Yang-Mills magnetic monopoles, this is fully 
explained on a deductive foundation, and so QCD is strengthened and 
supplemented, again, without contradiction. 
 Now, let’s go a few steps step further: (5.6) tells us that mesons, with 

BBGGRR ++  color structure, flow in and out of Yang-Mills magnetic 
monopoles.  But what types of mesons?  From (4.4) and (4.6) which expand 
the terms in (5.6), we see that the mesons which flow are: second rank (spin 2) 
antisymmetric tensor ψσψ µν  mesons, which are designated 

phenomenologically as 2+; first rank (spin 1) axial vector ψγγψ β 5]  mesons 

designated as 1+; second rank (spin 2) axial tensor ψγσψ δβ 5]i  mesons  2-; and 

most importantly, zero-rank (spin 0) pseudoscalar ψγψ 5  mesons designated 0-, 
which include the various π and K  mesons and remaining generational 
mesons which dominate nuclear interactions and which Yukawa originally 
predicated in 1935 to be carrier particles of the strong nuclear force.  This is 
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amply demonstrated to be experimentally true, see again, the extensive 
evidence at [8], [9].  In fact, the only mesons we have not yet come across 
when combining (4.4) and (4.6) with (5.6) are the spin 0 scalar ψγψ 5  mesons 
0+ and the spin 1 vector ψγψ ν  mesons 1-.  But these two will also make an 
appearance, as follows: 
 Designate axial wavefunctions via 32105 γγγγγ i=  as VA ψγψ 5= , where a 

“vector” (V) wavefunction Vψ  is defined as a wavefunction for which the 

related current density VVJ ψγψ µµ =  transforms as a Lorentz four-vector in 

spacetime.  Based on combining the relationship 32105 γγγγγ i=  with duality 
based on the work of Reinich [10] later elaborated by Wheeler [11] which 
uses the Levi-Civita formalism (see [12] at pages 87-89), it turns out that there 
is a whole system of “chiral duality” that is an integral, albeit (apparently) 
heretofore undeveloped feature of the Dirac algebra.  For example, given a 
duality relationship ασ

µνασµν ε AA !2
1* ≡ , one may write 32105 γγγγγ i=  in the 

alternative form 5* γσσ µνµν i= .  Then, one may form AVVV i ψσψψσψ µνµν *=  by 

sandwiching between V wavefunctions.   
Further, it is also well known because the second rank duality operator 

1** −=  , that one can form continuous global rotations using θθθ sin*cos* +=e  
(this is not to exclude local duality, which is also of interest).  For example: 

AVVVAV

AVVVVV

i

i

ψσψθψσψθψσψ

ψσψθψσψθψσψ
µνµνµν

µνµνµν

cossin

sincos

+→

+→ . (5.7) 

Similar transformations may be developed for first / third and zeroth / fourth 
rank duality, with the result that tensors mix with axial tensors, vectors with 
axial vectors, and scalars with pseudoscalars.  So in the end, we expect that 
the Yang-Mills magnetic monopoles will allow all of the spin 0±, 1± and 2± 
“vector” and “axial” mesons to pass through the closed surfaces (5.6).  And 

32105 γγγγγ i=  can also be used to rewrite a spin s “vector” meson as a spin 4-s 
“axial” meson and a spin s “axial” meson as a spin 4-s “vector” meson.  So 3± 
and 4± mesons will be permitted to flow as well.  Further, there is nothing to 
prevent composite mesons such as qqqq .  And, when 32105 γγγγγ i=  is applied 
to (3.10) as part of a Gordon decomposition (really, recomposition) of a vector 
current, it turns out that baryon and meson physics is endemically, organically 
non-chiral, which is consistent with what is experimentally observed, all with  

32105 γγγγγ i=  being the mainspring.  Duality angle θ  comes to be associated 
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with the strength of the running strong coupling Sα , and this in turn bears 

well-studied relationships, [13], [14] to experimental momentum transfer Q. 
 So, while we shall leave the development of this chiral duality to a 
separate paper, we simply note for now that fully developing the chiral duality 
of Dirac’s equation and applying this to (4.6) may be one way to 
experimentally confirm the thesis that Baryons are Yang-Mills magnetic 
monopoles: simply probe nucleons at varying energies, study the chiral / spin 
s± characteristics of the meson debris that emerges from those probes, and 
correlate those chiral properties to the probe energies that were applied. 
 
6.  Yang-Mills Magnetic Monopoles Require the Topologically-Stable 
Gauge Group SU(3)C×U(1) 
 
 Now, let us examine the topological stability of the Yang Mills 
magnetic monopole baryons, by looking at several further aspects of (5.4) and 
(5.5).  First, using the eight generators iλ  of SU(3)C let us write the left hand 
side of (5.5) as σµνσµν λ i

i PP = .  The off diagonal entries in (5.4) are manifestly 

zero, and as already discussed after (5.5), this leads to baryons and mesons 
respectively having [ ] [ ] [ ]GRBRBGBGR ,,, ++  and BBGGRR ++ color singlet 
wavefunctions, as required by QCD.  This means that for the left and right 
hand sides of (5.4) to match up while having these required wavefunction 

color symmetries, all six of the 
σµν

iP  which sum with off-diagonal generators 

must be zero, i.e., 07,6,5,4,2,1 =σµνP .  Therefore: 
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(Again, ( ) 2
12 =itr λ .)  However, because the assumed gauge group is the simple 

gauge group SU(3)C with all traceless generators, the trace of (6.1) is also 
zero, 0Tr =σµνP .  This contradicts (5.5), which has a non-zero trace, and leads 
us directly to an examination of topology. 
 In order for σµνσµν λ i

i PP =  above to acquire a non-zero trace, we can no 

longer use SU(3)C alone, but must cross SU(3)C with a U(1) gauge group for 
which the generator has a non-zero trace.  In particular, the U(1) generator 
will need to be a 3x3 unit matrix 33xI  times some constant number.  We 
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designate this U(1) generator as 15λ , which we take for now to be a 3x3 
remnant of the 15T  generator of a simple gauge group )4( ≥NSU .  If we 

normalize this to ( ) 2
1215Tr =λ , then 

336
115

xI=λ . This should be reminiscent of 

electroweak theory in which a U(1)Y generator is crossed with the three 
SU(2)W isospin generators iI  to form SU(2)W×U(1)Y with the (left-chiral) 
quarks having the U(1)Y 2x2 hypercharge matrix generator 223

1
xIY = , the 

(left-chiral) leptons having the 2x2 hypercharge matrix generator 221 xIY −= , 

and a non-compact embedding of the electromagnetic group with charge 
generator 32/ IYQ +=  across SU(2)W×U(1)Y.   

Once we employ SU(3)C×U(1), rather than SU(3)C alone, we can now 
ensure that σµνσµν

156
3Tr PP =  on the left hand side of (5.5) will be non-

vanishing to match its non-vanishing right hand side, and that (5.6) will then 
describe a non-zero flow across the closed monopole surface of objects with 
the color symmetry BBGGRR ++  of a meson.  Specifically, with 
SU(3)C×U(1) and 15and8...1=i , we write (5.4) as: 
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The non-vanishing trace equation (5.5) then becomes: 
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So the left and right hand sides are now both non-zero, but this is only 
achieved using SU(3)C×U(1) rather than SU(3)C alone.  We see that with (6.1) 
alone, i.e., with a simple gauge group SU(3)C alone, the right hand term would 
become zero.  This U(1) factor, which prevents the right hand sides of (6.2) 
and (6.3) from vanishing, is very important to providing topological stability. 
 In section 7, we will examine the possible physical meaning of the 
quantum numbers associated with this new U(1) factor.  But first, we point out 
the very vital benefit flowing from (6.3): this U(1) factor, by making (6.3) 
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non-zero, will allow us to ensure that these Yang-Mills magnetic monopole 
baryons are topologically stable.  This is vital, because even though Yang-
Mills magnetic monopoles with Fermi-Dirac exclusion lead us to all of the 
symmetries of QCD and baryons, to wit: gauge field confinement, three 
colored fermions, a [ ] [ ] [ ]GRBRBGBGR ,,, ++  baryon wavefunction, mesons 

with  BBGGRR ++  wavefunctions, and spin 0, 1 and 2 “vector” and “axial” 
mesons but no gluons flowing across the baryon surface, we still cannot 
identify the Yang-Mills magnetic monopole with the physical, observed 
baryons, for example, proton and neutrons, until we have established that this 
magnetic monopole is a topologically stable with finite spatial expanse and 
finite total energy, and with the correct set of flavor quantum numbers (most 
importantly, electric charge and baryon number) which characterize the 
observed physical baryons.  SU(3)C×U(1) does just that! 
 Specifically, as is pointed out by Cheng and Li [15] at 472-473: 
“Topological considerations lead to the general result that stable monopole 
solutions occur for any gauge theories in which a simple gauge group G is 
broken down to a smaller group H = h × U(1) containing an explicit U(1) 
factor.”  Further, “the stable grand unified monopole . . . is expected to have 
both the ‘ordinary’ and the colour magnetic charges.”  So, while SU(3)C alone 
is incapable of supporting a topologically stable colored magnetic monopole, 
the group SU(3)C×U(1) – when understood to be the residual group following 
symmetry breaking of a larger simple grand unified gauge group 

U(1)×SU(3)C⊃G  – will support topologically stable configurations.  Indeed, 
in this context, the thesis of this paper is that the stable “colour magnetic 
charges” referred to by Cheng and Li are baryons.   

Weinberg makes a similar point in his definitive treatise [16] at 442:  
“The Georgi-Glashow model” [which was the basis for 

t’Hooft’s monopole model in [1] discussed at length in section 
9 below] “was ruled out as a theory of weak and 
electromagnetic interactions by the discovery of neutral 
currents, but magnetic monopoles are expected to occur in 
other theories, where a simply connected gauge group G is 
spontaneously broken not to U(1), but to some subgroup 
H’×U(1), where H’  is simply connected. . . .  There are no 
monopoles produced in the spontaneous breaking of the gauge 
group SU(2)×U(1) of the standard electroweak theory, which is 
not simply connected. . . .  But we do find monopoles when the 
simply connected gauge group G of theories of unified strong 
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and electroweak interactions, such as SU(4)×SU(4) or SU(5) or 
Spin(10, is spontaneously broken to the gauge group 
SU(3)×SU(2)×U(1) of the standard model. . . .” 
Consequently, the thesis that Yang-Mills magnetic monopoles are 

baryons, together with the exclusion principle as applied in (5.1), not only 
leads us to SU(3)C of QCD with no contradiction and delivers color 
confinement and the flow of mesons across monopole surface.  Via the non-
zero and non-trivial right hand side of (6.3), this thesis additionally forces us 
to employ the non-simple gauge group SU(3)C×U(1) with a U(1) factor to 
ensure that the monopoles are non-vanishing.  Not only does this, in turn, lay 
the foundation for a topologically stable monopole achieved by embedding 
this group in some (presently unspecified) simple group 

U(1)×SU(3))4( C⊃≥= NSUG , but the right side of (6.3) will itself be the 

expression from which we may calculate a finite baryon rest mass, as we shall 
later see in section 11, based on a Gaussian ansatz borrowed from [3]. 
 So, what we learn from (6.1) through (6.3) is the following:  First, we 
must start from a simple GUT gauge group )4( ≥NSU  because all the 
generators of this group are traceless and therefore the gauge theory based on 
these groups will be renormalizable, as will be in hidden form, any smaller 
group )4( ≥⊂ NSUH  theory which emerges from )4( ≥NSU  following 
symmetry breaking.  It is through the traceless )4( ≥NSU  generators that we 
ensure renormalizability.  But the traceless matrices of )4( ≥NSU  will cause 

the monopole trace terms of such a theory to be zero, 0Tr =σµνP .  Therefore, 
such a theory with a simple gauge group will itself will have no stable 
monopoles.  The only way to simultaneously have renormalizability and have 
stable monopoles, as the above excerpts from [15], [16] illustrate, is to start 
with a simple G and break this down to a smaller group H = h × U(1).   And, 
once we break symmetry and end up with U(1)×SU(3))4( C→≥NSU , we 

simultaneously have two benefits:  First, the U(1)×SU(3)C  theory will inherit 

the renormalizability of )4( ≥NSU  as a hidden symmetry.  Second, the 
monopoles of U(1)×SU(3)C  will become non-zero as in (6.3), and the U(1) 

factor emerging from breaking symmetry will make the monopoles 
topologically stable.  So the tracelessness of (6.1) based on S(3)C, contrasted 
with the non-zero-non-trivial trace of (6.2) and (6.3) based on U(1)×SU(3)C , is 

a concrete illustration of the topological theorem that magnetic monopoles 
only exist in a theory with H = h × U(1) that is broken from a larger G.   
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This is what directly yields the monopole stability of the topological 
theorems as discussed above, and as we shall see, this is what will provide us 
with the ability to calculate finite monopole rest masses, for example, the 
proton and neutron “current” rest masses, and to obtain the electron rest mass 
from the up and down quark masses well within experimental errors and only 
about 3% from the experimental means for quark masses, and to obtain 
binding energies clearly in accord with measured nuclear phenomenology. 
 
7.  Protons and Neutrons Naturally Fit Fundamental SU(3)C’×U(1)B-L 
Representations of Yang-Mills Magnetic Monopoles 
 
 Now let us take a closer look at the groups 

U(1)×SU(3))4( C⊃≥= NSUG  which we came upon in section 6 and which 

will undergird the topological stability for the Yang-Mills magnetic monopole.  
Volovok, in [17] Section 12.2.2, employs an SU(4) group in which the 
normalized ( ) ( )1,1,1,3diag

62
115 −−−=λ  is associated with the difference between 

baryon number and lepton number, LB − .  Specifically, 
( ) ( )3

1
3
1

3
115

3
22 ,,,1diag −−−==− λBL  provides a very natural fundamental 

representation for fermion eigenstates of one lepton and three (colored) 
quarks.  The Volovok model then goes on to use preon eigenstates, but we 
shall not do so here.  Instead, we shall show how this same approach, with the 

15λ  generator of SU(4) being proportional to LB − , may be used to directly 
represent protons and electrons on the one hand, and neutrons and neutrinos 
on the other, in relation to the Yang-Mills magnetic monopoles that we have 
developed this far. 
 Following [17], and using the simple gauge group SU(4), let us 
normalize via ( ) 2

12 =iTr λ  the two 15λ  and 8λ  generators, and define a third 

embedded electric charge generator ( )815

3
28

3
2 2 λλλ +−=−−≡ LBQ  sitting 

across these, as such: 
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In the fundamental representation we may then specify associated 
eigenvectors with the flavor quantum numbers: 
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These quantum numbers are chiral symmetric, i.e., they are the same for both 
left and right handed states.  Moreover, these exactly fit the expected baryon, 
lepton, and electric charge quantum numbers for the fermion quadruplet 

BGR uude ,,, .  In contrast to many approaches which attempt to place all three 

colors of the same flavor of quark in the same multiplet, that is, BGR uuu ,,  or 

BGR ddd ,, , the assignments (7.1) and (7.2) put one (red) down quark together 

with two (green and blue) up quarks in the fundamental representation.  This 
flavor assemblage is exactly what we find in a proton!  Moreover, because the 
election is the final member of this quadruplet, this representation yields a 
quadruplet for which all the generators remain traceless, which as discussed 
previously, yields a renormalizable gauge theory.  Further, this 
renormalizability will be preserved during symmetry breaking to separate the 
electron from the three quarks comprising the proton.  And the zero trace of 
the Q generator in (7.1) is what makes the combination of a proton plus and 
electron, which corresponds to a H1 hydrogen atom, electrically neutral. 

Because the color triplet in the SU(3) subgroup is a mix of flavor and 
color BGR uud ,,  and not a pure mono-flavored color triplet BGR ,, , specifically  

because u and d also have a weak isospin relation between them, we shall refer 
to (7.2) as the “proton representation” of the “isospin-modified color group” 
C’, designated CPSU ′)3( .  With (7.1) and (7.2), we now associate the CPSU ′)3(  

subgroup which we have hitherto argued is a baryon, with perhaps the most 
important baryon of all, namely, the proton.  The unbroken SU(4) group 
contains a proton and an electron.  So we shall name this the SU(4)P “protium” 
group because it contains the precise same constituents as H1 hydrogen, which 
is the most abundant chemical substance in the material universe.  At the 
presumably very high GUT energies where this group is unbroken, the quarks 
may of course transform into electrons and vice versa.  But because SU(4)P is 
a simple gauge group with all traceless matrices, the magnetic monopoles of 
this simple group itself will be topologically unstable, with 0Tr =σµνP , recall 
the discussion in section 6. 
 When symmetry breaking, we will wish to choose the Higgs sector 
such that this group breaks down via LBCPP USUSU −′ ×→ )1()3()4( , where the 

U(1)B-L factor now represents the baryon minus lepton number generator 



-31- 
 

 
 

( )3
1

3
1

3
1 ,,,1)(diag −=− LB  of (7.1).  Then, referring to (6.2) and (6.3), and using 

the CPSU ′)3(  subgroup for the three quarks, we see that 1;1Tr === QBPσµν .  

Specifically:  σµνPTr  now represents a topologically stable magnetic 
monopole containing two up quarks and one down quark, with color 
symmetry [ ] [ ] [ ]GRBRBGBGR ,,, ++ , with its gauge fields confined, with 

mesons BBGGRR ++  allowed to pass through the surface to mediate its 
interactions, with baryon number 1+=B  and electric charge 1+=Q , and it 
most naturally pairs with the electron with 1=L  and 1−=Q  from which it 
becomes broken at high energy when LBCPP USUSU −′ ×→ )1()3()4( .  This is 

thus perfectly situated to represent an actual physical proton.  Because this 
group is LBCP USU −′ × )1()3( , the non-zero trace of the U(1) “remnant” generator 

( )3
1

3
1

3
1 ,,)(diag =B  is what prevents the term on the right hand side of (6.3) from 

being zeroed by the term on the left, and because of this U(1) factor, the 
topological theorems tell us that this Yang-Mills magnetic monopole proton is 
a stable field configuration, as it must be to represent the physical proton.  
Finally, as we shall soon see by borrowing a Gaussian ansatz from [3], 

1;1Tr === QBPσµν  is the term from which one can calculate explicitly that 

this magnetic monopole baryon proton has a finite, calculable energy!  
 Neutrons are developed in a somewhat similar manner to protons.  
Here, we note that 8

3
2 λ  in (7.1) has the required eigenvalues to represent the 

electric charges of the three quarks in a neutron, plus a neutrino, and that the 
15

3
22 λ−≡− LB  of (7.1) will also properly characterize the baryon and lepton 

numbers of these fermions.  So for neutrons and neutrinos, in contrast to (7.1), 
we use: 
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λλ QLB  (7.3) 

and then may specify the associated eigenvectors with the indicated quantum 
numbers: 
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Here, the electric charge generators Q do not sit irregularly embedded across 
15λ  and 8λ  as they do for the proton.  Instead, the Q are directly, regularly 

embedded into 8λ  alone.  Here, the quadruplet BGR ddu ,,,ν  contains a 

neutrino, together with one up quark and two down quarks.  This specifies a 
neutron and a neutrino, and so we shall refer to this as the SU(4)N “neutrium” 
group.  This too has a traceless (neutral sum) charge generator.  Here, a 
“neutron representation” of the “isospin-modified color group” C’  contains a 
neutron triplet of quarks BGR ddu ,, , and we shall designate this as CNSU ′)3( .  

When SU(4)N is broken down to SU(3)NC’×U(1)B-L, the SU(3) magnetic 
monopole containing three quarks now has 0;1Tr === QBPσµν  with 

wavefunction type [ ] [ ] [ ]GRBRBGBGR ,,, ++ , and thus represents a neutron. 
 
8.  Protons and Neutrons and Electrons and Neutrinos Emerge from 
Spontaneous Symmetry Breaking of a Simple SU(4)B-L Group Down to 
SU(3)C’×U(1)B-L 
 
 Exactly how do we break these SU(4) symmetries?  The Georgi-
Glashow SU(5) model [18] provides a good template, so let’s briefly review 
that first.  This model has 5x5-1=24 generators iT .  One specifies a set of 24 
real Higgs scalars 241; K=iiφ  in the adjoint representation of SU(5), and 

from those, the 5x5 vacuum matrix i
iT φ=Φ .  Because the diagonal 

generators 381524 ,,, λλλλ  can be combined to form any 5x5 traceless matrix 
that one wishes, one uses these to form a hypercharge generator 

( )2
1

2
1

3
1

3
1

3
1 ,,,,)2/(diag −−−=Y , which is 8

9
3515

18
6524

6
102/ TTTY −−−=  with 

the 
2
12

)(Tr =iT  normalization.  Then, using the regularly-embedded generator 

( )2
1

2
13 ,,0,0,0)(diag −=I , one also irregularly embeds the electric charge 

32/ IYQ += , which leads to  ( )0,1,,,2/)diag( 3
1

3
1

3
13 −−−=+= IYQ .  The right-

chiral quintuplet  ( )RCCBGR veddd −,,,,  then matches up perfectly with these 
3,, IYQ  to form the fundamental SU(5) representation. 

 Symmetry breaking is specified using the Y generator such that 
( ) ( ) ( )2

1
2
1

3
1

3
1

3
1 ,,,,diagdiag −−−==Φ GUTi

i vT φ , that is, 2/YvGUT=Φ , where 

GUTv  is a vacuum expectation value  at which the symmetry breaking takes 

place.  The rest follows:  Given the irregular embedding 
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8
9

3515
18

6524
6
102/ TTTY −−−= , we must now set GUTv6

10
24 −=φ , 

GUTv18
65

15 −=φ  and GUTv9
35

8 −=φ  with the remaining 0=iφ , to obtain 

( ) ( )2
1

2
1

3
1

3
1

3
1 ,,,,diag −−−=Φ GUTv .  Thus, GUTGUT vCv 222

3
52

8
2

15
2

24 ==++ φφφ , 

where 3
52 =C  is the Clebsch-Gordon coefficient.  If we then irregularly embed 

the usual 81, K=iiλ of SU(3)C into the 3x3 matrix in the upper left of SU(5) 

to form iλ ′ , and assign the 3,2,1, =iI i  of weak SU(2)W to the regularly 
embedded 2x2 matrix in the lower right, we find that the vacuum 

2/YvGUT=Φ  commutes such that [ ] 0, =′Φ iλ , 81K=i , and [ ] 0, =Φ iI , 

3,2,1=i , i.e., that the vacuum remains invariant under both SU(3)C and 

SU(2)W local gauge transformations i
iie θλ ′  and i

iiIe θ .  Additionally, the Y 
generator used to break the symmetry of course commutes with itself, 
[ ] [ ] 02/,, ==Φ YYvY GUT , and so also leaves the vacuum invariant under θiYe  

U(1)Y transformations.   This is how we arrive at SU(3)C×SU(2)W×U(1)Y 
following symmetry breaking, as it is these three subgroups which commute 
with the vacuum i

iT φ=Φ .  The further embedded 32/ IYQ +=  then leaves 

the ability to engage in a second stage of symmetry breaking, using an SU(2) 
Higgs doublet in the fundamental representation of SU(2) at another vev 
v~246 GeV which happens to be the Fermi vacuum.  From this, one obtains 
the electromagnetic interaction. 
 An important feature of all of this, of course, is that by virtue of the 
topological theorems discussed earlier, the product group following SU(5) � 
SU(3)C×SU(2)W×U(1)Y symmetry breaking will contain stable magnetic 
monopoles, by virtue of SU(5) being a simple gauge group.  And, of course, 
we are ensured that the broken theory will retain the renormalizability of the 
unbroken theory. 
 With Georgi-Glashow SU(5) [18] as a backdrop, we are now ready to 
break the symmetry of the protium and neutrium groups via 

LBCPP USUSU −′ ×→ )1()3()4(  and LBCNN USUSU −′ ×→ )1()3()4( .  As reviewed 

above, in Georgi and Glashow, symmetry is broken using hypercharge 
generator ( )2

1
2
1

3
1

3
1

3
1 ,,,,)2/(diag −−−=Y .  Here, we will instead use the 

generator LB −  of both (7.1) and (7.3), with ( )3
1

3
1

3
1 ,,,1)(diag −=− LB , to 

break the symmetry of both the protium and neutrium groups.  In the former 
case, this will separate the electron from the proton, and in the latter, this will 
separate the neutrino from the neutron.  In SU(5), we broke symmetry by 



-34- 
 

 
 

requiring (defining) that ( ) ( ) ( )2
1

2
1

3
1

3
1

3
1 ,,,,diagdiag −−−≡=Φ GUTi

i vT φ .  Here, 

in contrast, we require that: 
( ) ( ) ( ) ( ) ( )LBvLBvvT GUTGUTGUTi

i −=Φ−=−≡=Φ ,i.e.,diag,,,1diagdiag 3
1

3
1

3
1φ , (8.1) 

 Because 15
3
8λ−≡− LB  is regularly embedded in both PSU )4(  and 

NSU )4( , the symmetry breaking is somewhat easier than in SU(5).  We merely 

set GUTv3
8

15 −=φ  and the remaining 0=iφ  to obtain ( ) ( )3
1

3
1

3
1 ,,,1diag −=Φ GUTv .  

By inspection, GUTv2
3
82

15 =φ , yielding a Clebsch Gordon coefficient 
3
82 =C .  

Because [ ] 81,0, K==Φ iiλ , the vacuum is invariant under the SU(3)C’ 

subgroup which for PSU )4(  contains the proton triplet BGR uud ,, , and which 

for NSU )4(  contains the neutron triplet BGR ddu ,, .  Additionally, of course, 

[ ] 0, =−Φ LB  is self-commuting, which yields the LBU −)1(  subgroup for both 
the proton and neutron quark triplets.   

For present purposes, where stable magnetic monopoles are of primary 
interest, the fact that we now have developed non-simple gauge groups 

LBC USU −′ × )1()3(  out of the simple gauge groups SU(4)P and SU(4)N for both 

protons and neutrons which we denote in consolidated form as SU(4)P,N, tells 
us that these colored CSU ′)3(  magnetic monopoles will be topologically stable 

objects.  Further, with L=0 for the fermions in the CSU ′)3(  representation, 

BLB UU )1()1( →− .  Topologically speaking, referring again to Weinberg’s [16] 
at 442, the homotopy groups associated with this symmetry breaking are: 

( ) ( )
( ) ( ) ( ) ZUUSU

USUUSUSU

BBC

BCLBCNP

==×=
×=×

′

′−′

)1()1()3(

)1()3()1()3(/)4(

111

1,2

πππ
ππ

. (8.2) 

The final terms, ( ) ( ) ( ) ZUUSU BBC ==×′ )1()1()3( 111 πππ , tell us that the 

topologically-stable magnetic monopoles are formed out of the CSU ′)3(  triplet 

of Fermions each with B=1/3 from BU )1( , and so these stable CSU ′)3(  

monopoles have B=1.  The baryons are now stable magnetic monopoles! 
Returning to (6.2) and (6.3) where this topological discussion began, 

following symmetry breaking the leptons separate from the quarks and σµνP  
is formed only from the unbroken SU(3)C’ subset of quarks, for which L=0.  
Thus, after symmetry breaking, σµνσµν

15BPCP −=  with 
3
8=C .   So the trace 

equation corresponding to (6.3) is then developed from the CSU ′)3(  subgroup, 

using the U(1) generator ( ) ( )3
1

3
1

3
1 ,,diag =B  for which 1Tr =B .  Taking the trace 
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of each side of σµνσµν
15BPCP −=  thus yields σµνσµν

15PCTrP −= , which 

combined with (6.3) then yields: 












−/
∂+

−/
∂+

−/
∂−=−=

∨∨∨

""""""
2Tr 15

BB

BB

GG

GG

RR

RR

mpmpmp
CPPC

ψσψψσψψσψ µσ
ν

σν
µ

νµ
σσµνσµν . (8.3) 

Contrasting (6.3) with (8.3), we see that σµνσµν
156

3Tr PP =  in (6.3) is 

replaced above by CPP /Tr 15
σµνσµν −=  where the Clebsch-Gordon 3

8=C , 

that is, we see that the coefficient of σµν
15P  is different.  In the (6.3) where the 

U(1) group was tacked on to SU(3), this coefficient emerged from establishing  

336
115

xI=λ  normalized to ( ) 2
1215 =λTr , hence 

6
315Tr =λ .  In (8.3), this coefficient 

is now replaced simply by -1/C, which is a remnant from NPSU ,)4(  following 

symmetry breaking. 
It is the presence of this Clebsch-Gordon coefficient in (8.3) which 

now incorporates the symmetry breaking which moved us from 

LBCPP USUSU −′ ×→ )1()3()4(  and LBCNN USUSU −′ ×→ )1()3()4( .  Referring to 

(8.2), σµνP  in (8.3) is now the topologically-stable magnetic monopole 
( ) ( ) ( ) ZUUSU BBC ==×′ )1()1()3( 111 πππ  that we obtain following symmetry 

breaking, and the very presence of this coefficient C, rather than a 
normalization constant from the tacked-on U(1) of section 6, tells us that this 
is a stable monopole that emerged following symmetry breaking from a larger 
gauge group.  In other words, if a monopole has a Clebsch-Gordon C next to 
it as in (8.3), that signals that the monopole is topologically stable, because it 
emerged following symmetry breaking from a larger group. 
 For the stable proton monopole of CPSU ′)3( , the “red” quark will be 

associated with the down quark, see (7.2), and the “green” and “blue” quarks 
with the two up quarks, as a chosen convention.  So we now write (8.3) as: 















−/
∂+

−/
∂+

−/
∂−=−=

∨∨∨

""""""
2CTr P15P

uBuB

uBuB

uGuG

uGuG

dRdR

dRdR

mpmpmp
CPP

ψσψψσψψσψ µσ
ν

σν
µ

νµ
σσµνσµν . (8.4) 

This expression, we associate directly with a physical proton and its duu 
constituents.  For the stable neutron monopole of CNSU ′)3( , see (7.4), we 

similarly write: 















−/
∂+

−/
∂+

−/
∂−=−=

∨∨∨

""""""
2CTr N15N

dBdB

dBdB

dGdG

dGdG

uRuR

uRuR

mpmpmp
CPP

ψσψψσψψσψ µσ
ν

σν
µ

νµ
σσµνσµν . (8.5) 

This is now regarded as a physical neutron, with udd constituents. 
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9.  Using a Gaussian Ansatz for Fermion Wavefunctions, the t’Hooft 
Monopole Model Fully Specifies the Dynamical Properties of Yang-Mills 
Magnetic Monopole Baryons 
 
 For the most part, the discussion thus far has attempted to show that 
Yang-Mills magnetic monopoles have all of the necessary symmetry 
characteristics to be regarded as baryons, and in sections 6 through 9, to show 
they have the topological stability based on symmetry breaking, and the 
correct baryon and electric charge quantum numbers, to further be regarded as 
protons and neutrons.  Now, we will want to explore how these objects behave 
in spacetime, because to pass the test of being a proton or a neutron, these 
magnetic monopoles will have to be different from the magnetic monopoles 
with which we are familiar in two very important, and indeed, distinguishing 
features: First, they will have to interact only at short range, because that is 
what baryons do.  They must not possess the inverse square field strength 
which characterizes other known monopoles.  Second, they will have to 
possess masses on the order of 1 GeV.  In contrast, the known magnetic 
monopoles are extremely massive.  In GUT theories their mass is set by the 
scale of symmetry breaking, which can be 1016 GeV or more, and even in the 
t’Hooft model, they are on the order of the WM×137 , which is over 10 TeV.  

So our monopoles here will have to obtain their masses in a very different 
way, with a much smaller mass scale. 
 In order to explore the radial behavior of the Yang-Mills magnetic 
monopole baryons, as well as their expected masses, it will now be helpful to 
carefully contrast the monopole developed here, with that laid out in t’Hooft’s 
original paper [1].  It will be helpful in this section for the reader to have 
available the original t’Hooft paper, which can be found at 
www.phys.uu.nl/~thooft/gthpub/magnetic_monopoles.pdf.  Where there are 
differences in notation, these will be noted in the discussion below. 
 For each of PSU )4(  and NSU )4( , we start with 15 Higgs scalar fields 

151; K=iiφ .  As in SU(5) reviewed above, we then form the 4x4 vacuum 

matrix in the adjoint SU(4) representation (t’Hooft uses aQ ): 

151; K==Φ aT a
aφ . (9.1) 

We have already used this expression in (8.1) to break symmetry via the 
LB −  generator of SU(4).  We next specify a Lagrangian density in exactly 

the same way as in the t’Hooft model [1], namely (t’Hooft uses aGµν ): 
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( )2

8
12

2
1

2
1

4
1 a

a
a

a
a

aa
a DDFF φφλφφµφφ µ

µ
µν

µν −−−−=L . (9.2) 

This specifies physical dynamics identical to t’Hooft’s [2.1].  The gauge fields 
are related to the Yang-Mills field strength tensor according to (2.3), 
reproduced below with explicit internal symmetry indexes via µµ

i
iGTG ≡ , 

µνµν
i

i FTF ≡  and [ ]kj
i

ijk TTiTf ,−=  (t’Hooft uses 
ν

aW ): 
νµµννµµν cb

abcaaa GGfGGF +∂−∂= . (9.3) 

Finally, the gauge-covariant derivative of the Higgs vacuum field is: 
cb

abcaa GfD φφφ µµµ +∂= . (9.4) 

The potential ( ) ( )22
8
122

2
1

aaV φλφµφ −−=  in (9.2) minimizes at: 

( ) ( ) 0/ 2
12 =−−=∂∂ aaaaaV φφφλφµφφ α . (9.5) 

This allows us to define a symmetry-breaking vev energy v according to 

(t’Hooft uses 2
4
122 vQF a == ): 

2
4
122 Tr2/2 va ≡Φ==− αφφλµ . (9.6) 

So up to this juncture, we fully follow the t’Hooft model [1], aside from the 
fact that we employ the gauge groups PSU )4(  and NSU )4(  developed in 

section 7, while t’Hooft uses the SO(3) model of Georgi and Glashow [19].  
But from here, we shall diverge onto a different path. 
 In the t’Hooft model, the next step – which we shall not employ here – 
is to hypothesize the form of an explicit radial solution to the foregoing, in 
which both fields aGµ  and aφ  in (9.2) are written as functions of the space 

coordinates ax  and a
axxr =2 , using the ansatz ( )rGxG bab

a
µµ ε=  and 

( )rxaa φφ = , see [2.8] in [1].  Boundary conditions are then imposed at ∞→r , 

(9.2) is solved, and three main results are obtained: First, it is shown that there 
is a radial magnetic field strength that falls off via an inverse square relation 

2/1 r , [2.21] in [1].  This is clearly indicative of a magnetic monopole, but this 
would not be helpful for a baryon which interacts only at short range.   
Second, the total flux over a closed surface is shown to satisfy the Schwinger 
and in certain cases Dirac Quantization conditions 1=eg  and neg 2

1= , where 

e and g are the electric and magnetic charges respectively, with the strength of 
this inverse square law given by 2/ rg .  This is now not only a monopole, but 
a Schwinger / Dirac monopole.   
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Finally, keeping in mind that the canonical energy-momentum tensor 
for a given field ϕ  is given by: 

( ) L
L µν

ν

µµν

ϕ
ϕ gT −

∂∂
∂∂= , (9.7) 

and requiring L to be stationary under small variations in ( )rφ  and ( )rG , so 

that L
µνµν gT −= , thus L−=00T  for 100 =g , the total energy of the system 

(9.2) is LxdxdTEp −=−=== ∫∫∫∫∫∫
33000

L .  This expression LE −=  

([2.10] in [1]) then gives the mass of the magnetic monopole, which is found 
to be on the order of the large vev v obtained in (9.6), which mass scale would 
not be suitable for a baryon. 

Following t’Hooft, we shall also use the energy equation: 
LE −=  (9.8) 

to obtain the monopole mass, but as we shall see, by using a different ansatz 
for aGµ , we will not only be able to uncover a short range interaction, but will 

also be able to obtain a much smaller mass.  For the moment, as regards the 
monopole mass, it is worth noting that the vev mass scale for the t’Hooft 
monopole enters through the parameterizations in [3.1] of [1].  Particularly, as 
regards the pure Yang-Mills gauge field sector of the Lagrangian density, 

µν
µν a
a FF4

1
gauge −=L  , given vF 2

1=  as noted earlier, the mass scale appears 

through the parameterizations eFWw 2/=  and eFrx = .  The remaining 

energy in the system based on ( )2

8
12

2
1

2
1 a

a
a

a
a

aV DD φφλφφµφφ µ
µ −−−=L , which 

involves the Higgs vacuum aφ , appears through the additional 

parameterizations eFQq 2/=  and 22 // WH MMe== λβ .  The term with 
a

aDD φφ µ
µ  mixes both parameterizations, and as we shall discuss in section 11, 

also generates the vector boson masses. 
 While the energies based on vacuum terms with aφ  will be determined 
by the (very large) symmetry breaking vev, the monopole energies developed 
from the pure gauge field sector µν

µν a
a FF4

1
gauge −=L  may in fact be decoupled 

from the vev, and shown by different means to be on an MeV to GeV order of 
magnitude.  So, let us now examine what is different about the monopoles 
being developed here in relation to the t’Hooft monopoles, and lay the 
foundation for these monopoles to a) have short range and b) have MeV to 
GeV-order energies. 
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 In the discussion to follow, we shall also introduce an ansatz about the 
behavior of the gauge fields µµ

i
iGTG ≡  as a function of radial distance, but 

shall do so in a different way.  The first step of this ansatz is already to be 
found in (2.10), where as discussed following (2.5), rather than go straight to a 
condition such as t’Hooft’s ( )rGxG bab

a
µµ ε= , we instead employed (2.9) in 

(2.5), wherein (2.9) is the inverse σ
σνν JIG ≡  of the classical Maxwell’s 

charge equation ][ νµ
µ

µν
µ

ν GDFJ ∂=∂=  of (2.1) taken with zero perturbation

0→∂ σνG .  That is, at the point in development where t’Hooft uses 

( )rGxG bab
a

µµ ε= , we instead use σ
σµµ

aa JIG ≡  based on Maxwell’s µν
µ

ν FJ ∂= , 

for zero perturbation, and then use ψγψ µµ
ii TJ =  in (2.11) to introduce fermion 

wavefunctions.  When we then follow this to the end of the trail in sections 2 
through 5 including applying Fermi-Dirac exclusion at the start of section 5, 
we end up with a magnetic monopole (5.5) which contains three colored quark 
wavefunctions and has all of the color symmetries expected in QCD, plus 
confined gauge fields, plus mediation of interactions by mesons.  One may 
therefore think of (5.5) as being what emerges when one combines both of 
Maxwell’s classical electric and magnetic charge equations (2.1), (2.2) in a 
non-commuting (Yang-Mills) gauge theory (2.3) and then applies Fermi-Dirac 
exclusion to Dirac wavefunctions that may be introduced via the currents 

ψγψ νν =J . 
 Now, in place of the ansatz ( )rGxG bab

a
µµ ε=  used by t’Hooft, and given 

that (5.5) which later became (8.3) contains terms of the form ( )CC ψσψ νµσ ∨∂   

which contain Dirac wavefunctions ( BGRC ,,=  for shorthand), we shall 
instead borrow from equation [14] of Ohanian’s [3], and will employ 
Gaussian wavefunctions with radial behavior specified by a Gaussian ansatz: 

( ) ( ) ( )












 −
−=

−

2

2
04

3
2

2

1
exp)(

D

rr
pur πλψ , (9.9) 

where D  (presently unspecified) has dimensions of length, ( )0000 ,, zyxr =  

designates the space coordinate of the center peak of the Gaussian, r is a radial 
coordinate distance from 0r , and )( pu  is a four-component Dirac spinor.  

(Because ψ  represents a fermion, it makes sense to consider what occurs 
when mc/hD =  is the reduced Compton wavelength of the associated fermion, 
which will be further explored in section 11.)  That is, t’Hooft’s ansatz 
introduces radial behaviors through the spin 1 vector gauge fields via 
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( ) ( )rGxrG bab
a

µµ ε= .  The ansatz (9.9), in contrast, introduces radial behaviors 

through the spin ½ fermion fields in (8.3) via (9.9), and in particular, 
hypothesizes that these fermion fields behave radially in spacetime as 
Gaussians.  One may, if one wishes, employ some other ansatz than that of 
(9.9) if desired, but (9.9) seems to be a very natural course to explore, and 
provides a way to do definitive exploratory calculations of energies and 
interactions based on the monopole (8.3), particularly because of its easy 
integrability and other good behaviors discussed below. 

The key distinguishing point of the present approach in relation to the 
t’Hooft monopole is this: t’Hooft introduces radial behaviors at the gauge 
field level.  Here, we introduce radial behaviors at the fermion field level.  
Any sensible fermion field ansatz may be used with the present model, and 
indeed, it will be up to experimental observation to validate the correct ansatz.   
But, the ansatz in the present model must be introduced via the fermions, not 
via the gauge bosons.  This is the central difference between this approach 
and the t’Hooft model. 
 Based on our ansatz choice (9.9), we easily show via 0† γuu =  and 

0† γψψ =  that: 

( ) ( ) 000
2

2
0

3

†
2

2
0

3

† exp
1

exp
1

2
3

2
3 Juu

rr
uu

rr ==








 −−=








 −−= ψγψγ
ππ

ψψ
DDDD

 (9.10) 

is a probability density which Lorentz transforms as the time component of a 
current four-vector.  The Gaussian itself will thus experience Lorentz 

contractions 22 /1/1 cv−∝  at relativistic energies.  By inspection, at the 
boundary, ( ) 0=∞→rψ  and ( ) 0† =∞→rψψ .  When integrated over the 

entirety of a three-dimensional space at a given time, from -∞ to +∞ over xd3 , 
this Gaussian of course integrates to unity: 

( )
1exp

1 3
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2
0

32
3 =









 −
−∫∫∫ xd

rr

DDπ
. (9.11) 

Consequently, combining (9.10) and (9.11): 
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†3† exp
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DD

. (9.12) 

A primary reason to choose (9.9), is that this ansatz guarantees finite, 
well-behaved results both at ∞→r , and when integrating out to infinity.  
That is, (9.9) inherently comes packaged with precisely the types of boundary 
conditions and finite integrability that will result in finite, stable, well-behaved 
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solutions.  It should also be noted based on the mathematics of Gaussians that 
the variance (square standard deviation) 2

2
12
D=σ .  With the ansatz (9.9), we 

will need to re-normalize u so that it is dimensionless, because the +3 mass 
dimension of ψψ †  on the left hand side of (9.10) is balanced on the right-

hand side by 3/1 D , leaving uu†  dimensionless.   Earlier, in (3.7), we 

normalized such that uu†  carried the +3 mass dimension, so we will soon 
need to change this.  But the context for doing so will be our examination of 
the magnetic monopole baryon masses in Sections 11 and 12, and the 
normalization will be driven by empirical data. 

 
10.  Yang-Mills Magnetic Monopoles with a Gaussian Ansatz Interact 
only at Very Short Range as is Required for Nuclear Interactions 
 
 There are many beneficial consequences to using (9.9) in place of 

( )rGxG bab
a

µµ ε=  to specify how the monopoles behave as a function of radial 

distance.  First, of course, Gaussians are well-behaved, finite, stable functions 
when integrated over an infinite spatial volume as in (9.12).  Second, and 
related to this, the boundary conditions at ∞→r  are implicitly imposed: 
because (9.9) is a Gaussian, we know that ( ) 0=∞→rψ .  This means that the 

field strength tensor µνF  based on these Gaussian will also be well behaved.  
To see this explicitly, we first extract the integrand from (5.6) (ignoring for 
the moment the terms µννµ GG ∂−∂  from (2.3) which can also be included 
when we extract the integrand because dd=0, but d≠0, see (11.1) infra where 
we shall include these terms): 
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Then, we make use of (9.9) or (9.10) in (10.1) to write: 

( )

( )

( )

( )




























−/








 −−+

−/








 −−+

−/








 −−

−=

∨

∨

∨

""

1
exp

""

1
exp

""

1
exp

2Tr

32

2
0

32

2
0

32

2
0

2
3

2
3

2
3

BB

BB

BB

B

GG

GG

GG

G

RR

RR

RR

R

m

uurr

m

uurr

m

uurr

rF

ρ
σ

π

ρ
σ

π

ρ
σ

π

νµ

νµ

νµ

µν

DD

DD

DD

, (10.2) 
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where BGR rrr 000 ,,  designate the space coordinates of the central Gaussian 

peaks for each of the R, G, B quarks. Clearly, at the boundary, 
( ) 0Tr =∞→rF µν .  Similarly, using (9.10), the radial derivative of ψψ †  is: 

( ) ( )
uu

rrrr

r
†

2

2
0

5

0† exp2
2
3 









 −−−−=
∂
∂

DDπ
ψψ  , (10.3) 

and this also approaches zero at ∞→r .  Because a typical term in the 
magnetic monopole density (5.5) or (8.3) is of the form CC ψσψ νµσ ∨∂  with 

colors BGRC .,= , (10.3) implies that that in space coordinates ( )ϕθ ,,rxi = ,  
the radial component: 
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 . (10.4) 

The underlying mathematical function ( )22 /exp Drr −  becomes zero at ∞→r , 

thus, via (5.5) or (8.3), so too will the monopole density 0)(Tr =∞→rPσµν . 
 This type of good boundary behavior and finite integrability are good 
characteristics to have for stability.  But just as compelling is that the inherent 
concentration of the Gaussian wavefunctions about central peaks at 

( )0000 ,, zyxr = , together with a rapid decline in intensity just a few standard 

deviations way from the center, result in the type of short range – not inverse 
square – interaction that definitely needs to occur if we are going to be able to 
associate these Yang-Mills magnetic monopoles with physical baryons like 
the proton and the neutron.  Indeed, even if one were to use a different ansatz 
than (9.9), so long as one selects well-behaved fermion wavefunctions which 
are concentrated near a central peak and taper to zero at infinity, one will also 
have well-behaved magnetic monopoles which interact only over short range 
and not via inverse square.  Let us now examine this more closely. 
 First, we write the surface integral of (10.2) as in (5.6), over a given 
surface at Rr = , as: 
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Now, we need to be careful, because due to the Gaussian, this is not an inverse 
square field strength.  For an inverse square field, it does not matter whether 
the charges are centered within the surface, situated near the edge of the 
surface, or arbitrarily distributed in between.  Nor does the shape of the 
surface matter.  The total flux across the surface will be the same no matter 
what, precisely because the surface area 24 RA π=   runs reciprocally to the 

inverse square relationship 2/ Rg , so that the magnetic field flux gF
Rr

=∫∫ =
 is 

constant, independent of R no matter what the configuration or location of the 
surface about the charges.  So, in evaluating (10.5), which does not use an 
inverse square relation, let us simplify calculation by stipulating that the 
surface is a spherical surface of radius R which is also situated such that the 
three r0’s are at the center of the sphere.  Further, because (10.5)  contains 
three quarks, each of which will have Gaussians centered at very close albeit 
different coordinates BGR rrr 000 ,, , we stipulate that R is sufficiently large so 

that any physical separation between respective quarks may be neglected and 
we may regard each of these quarks to be centered at the same central 
coordinate location 0r .  Further, let us choose our coordinates such that 00 =r

.  All of these are simplifying stipulations, and if one wanted to do so, one 
could discard them and simply make careful use of unit vectors rrr /ˆ

r=  to 
further develop (10.5) as a three-body system, but that is not necessary for the 
preliminary calculations we shall do here. 
 With 00 =r , in polar coordinates ( )φθµ ,,,rtx = , and using the surface 

integral ∫∫ =
=

Rr
ddrR φθθπ 222 sin4 ,  for each term from (10.5) we write:  
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Based on these stipulations and (10.6), and adding the further simplifying 
stipulations that BGR DDDD ==≡ , BGR mmmm ==≡  and BGR pppp /=/=/≡/  

this means that (10.5), using (3.10) and [ ]νµνµ γγσ ∨=− ∨i2 , evaluates  to: 
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. (10.7) 

That is, g′  is the total flux of magnetic monopole charge that will be observed 
to flow across the closed surface at r=R, and it is indeed dependent on the 
radius R of the closed surface.  Figure 2 below, illustrates this total flux in 
(10.7) for 1=D , hence 2

12 =σ , as a function of the spherical surface radius R. 
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Figure 2 

This is a magnetic-type flux because it is specified by ∫∫=′ FRg Tr)( .  

But it obviously is of a very different character than the usual ∫∫= Fg  for a 

monopole with an inverse square law, such as the t’Hooft monopole.  For this 
more familiar monopole, g is a constant, independent of R, and would be 
represented by a constant, horizontal line at the height g if drawn on Figure 2.  
But for the monopole of Figure 2, the total magnetic flux ∫∫=′ FRg Tr)(  is 

clearly dependent on R, as it must be if this monopole is to represent a baryon, 
such as a proton or neutron, which interacts only at very short range. 

In Figure 2, coefficient A merely determines the amplitude (height) of 
the curve (and note that 2γ  has imaginary elements to cancel the i in A).  With 

a standard deviation 
2

1=σ  the flux in Figure 2 peaks at σ21==R  and 

falls off rapidly thereafter.  In general, because D
2

1=σ  (see after (9.12)), we 

see that by about D34 ≈σ  from the center, the total magnetic flux is virtually 
non-existent!  So: (10.7), which is drawn in Figure 2, demonstrates clearly that 
while the magnetic monopole we have been developing here is indeed a 
magnetic monopole because its flux over closed surfaces is specified by 

∫∫=′ FRg Tr)( , this monopole does not produce an inverse-square field 

because the total flux depends upon R.  Rather, it produces a field that falls off 
very sharply just a few standard deviations from its center.  Such short range 
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fields are hallmarks of nuclear interactions, and further qualify Yang-Mills 
magnetic monopoles for serious consideration as baryons. 
 So, to summarize:  we have applied an ansatz to the fermions rather 
than to the gauge bosons to specify the radial behavior of these Yang-Mills 
magnetic monopoles.  Using a Gaussian for the ansatz (for which one may 
wish to substitute some other ansatz so long as it is applied to the fermions 
and not the gauge bosons), we have demonstrated (using some simplifying 
stipulations which can be lifted by more carefully using unit vectors rrr /ˆ

r=  
to specify the fields of this three-body system) that these Yang-Mills magnetic 
monopoles do interact only at very short range, as do real, physical baryons 
such as protons and neutrons.  In the next section, we shall show that this short 
range is on the order of 2 Fermi, as it is expected to be from empirical data. 

But, as discussed at the start of Section 9, it is also necessary for the 
masses and energies associated with these monopoles to be in the MeV and 
GeV range, because that too is observed in the physical world.  The energy 
physics of these monopoles will now be the focus of Sections 11 and 12, 
which will validate using well-established empirical data, that these Yang-
Mills magnetic monopoles truly are baryons. 
 
11.  The Electron Mass is Predicted from Up and Down Quark Masses to 
about 3% from the Experimental Mean 
 
 We begin our examination of the energies associated with the magnetic 
monopoles with (8.3), which we rewrite using [ ]νµνµ γγσ ∨=∨

2
i .  We then take 

the Gaussian surface integral ∫∫∫∫∫ = PF TrTr  as in (5.6) and extract the 

integrand.  Finally, referring back to (2.3), we reintroduce the terms 
µννµ GG ∂−∂  which are removed from the monopole via dd=0, but do not zero 

out for the field strength F=dA, and which we left out of (10.1).  Thus: 
[ ] [ ] [ ]
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ψγγψψγγψψγγψ νµνµνµ
µννµµν . (11.1) 

This is another way of expressing (10.1) in light of (2.3), and may be thought 
of as a way of rewriting the fundamental Yang-Mills field relation 

[ ]νµµννµµν GGiGGF ,−∂−∂=  in (2.3) to capture much of our development so 

far.  (Note: The above is quadratic in µG  and so can be used to do exact 
calculations with the Gaussians employed in path integrals, see, e.g., 
Appendix A of [4].)  
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 Now, back in (2.7), we derived the inverse for the classical Maxwell 
field equation µν

µ
ν FJ ∂=  of (2.1).  But just prior to (2.9), we made the 

simplifying choice to develop the magnetic monopole in the low-perturbation 
limit by setting 0→∂ σνG , which we noted was more generally equivalent with 

setting a gauge invariant perturbation vector ( ) 0→+∂+∂=− νµµννµµν GGGGV .  
Thus, all of our results thus far display the behavior of Yang-Mills magnetic 
monopoles for low, indeed, zero perturbation.  We continue to examine zero 
perturbation, so consistently with the development thus far, we set 0→∂ σνG  

in (11.1) as well.  Thus, we now reduce (11.1) via 0→∂ σνG , back to: 
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This is (10.1) with [ ]νµνµ γγσ ∨=∨
2
i .  Next, as in (8.4) and (8.5), we write this as 

two distinct expressions, one for the proton, and one for the neutron: 
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In the foregoing, we have suppressed the color designations as they will not be 
needed for the calculations following.  In combining the two like terms for the 
up quark in (11.3) and the down quark in (11.4), and because we will shortly 
be integrating these over d3x from -∞ to +∞ as part of the energy tensor, we 
make the simplifying stipulation that any physical separation between 
respective quarks may be neglected, as we did following (10.5). 
 Now, let us return to the t’Hooft monopole Lagrangian density (9.2).  

As noted following (9.8), the portion ( )2

8
12

2
1

2
1 a

a
a

a
a

aV DD φφλφφµφφ µ
µ −−−=L  of 

this density which involves the Higgs vacuum aφ  will be determined by the 
GUT symmetry breaking scale at which the quarks are separated from the 
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leptons via the symmetry breaking of (8.1).  For example, using (9.4) in the 
“kinetic energy” term a

aDD φφ µ
µ  of (9.2) yields: 

( )e
c

d
bade

abc
cba

abc
a

a
a

a GGffGfDD φφφφφφφφ µ
µµ

µµ
µ

µ
µ +∂+∂∂−=−= 22

1
2
1

kineticL . (11.5) 

When we then apply GUTv3
8

15 −=φ  and the remaining 0=iφ  to break the 

symmetry as was done following (8.1), the final term becomes a sum of 
Lagrangian vector boson mass terms: 

( ) µ
µ

µ
µ GGMGGffgv c
bac

abGUT
2

2
115

153
822

2
1

massboson Σ−→−=L , (11.6) 

where we have rescaled bb gGG µµ →  to restore the interaction charge strength 

heretofore absorbed into the bosons following (2.3).  So the masses of the 
vector bosons clearly flow from this term, and the boson mass scale will be set 
by the extraordinarily high GUTv  energy at which quark and leptons decay into 

one another. 
 But as we shall now see, the pure gauge field sector µν

µν a
a FF4

1
gauge −=L  

of (9.2) does not necessarily have to have its mass scale determined by GUTv .  

As pointed out following (9.8), t’Hooft uses the parameterizations 
eFWw 2/=  and eFrx =  to set the scale for the magnetic monopole mass to 

be the same as the symmetry breaking energy scale GUTv .  But this is only 

because the t’Hooft model does not introduce any other mass scale which 
would not be arbitrary, and this in turn, is because the t’Hooft ansatz 

( )rGxG bab
a

µµ ε=  introduces radial behaviors into µν
aF  via the gauge fields aGµ .   

Consequently, the masses of the monopoles become tied to the masses of the 
massive gauge bosons that emerge following symmetry breaking, and these 
are in turn tied to the GUT scale, as shown in (11.6) above. 

Here, in important contrast, the Gaussian ansatz (9.9) introduces radial 
behaviors into µν

aF  via the fermion wavefunctions ψ .  Consequently, the 

monopole mass scales which emerge out of µν
µν a
a FF4

1
gauge −=L  via (9.7) and 

(9.8) will be tied to the masses of the fermions, rather than to the gauge boson 
masses which in turn are tied to the GUT energy.  Of course, the fermions 
have now been developed into up and down quarks, and the magnetic 
monopoles have been developed into protons and neutrons.  So with this 
ansatz (9.9), the masses of the proton and neutron should be related in a 
precise way to the masses of the up and down quarks, and not to the GUT 
scale.  We shall now show exactly how this is so. 
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 We first return to (9.7), which specifies the canonical energy 
momentum tensor.  The total energy of the dynamical system specified by L  
is given by xdTpE 3000

∫∫∫==  as noted earlier.  If Yang-Mills magnetic 

monopoles truly are baryons, then because we have turned off perturbations 
by setting 0→∂ σνG  throughout, E in this integral should give the “bare” 

proton and neutron masses absent perturbations.  Following t’Hooft, we 
require xdL 3

∫∫∫= L  to be stationary under small variations in the fields, 

which allows us to obtain the total energy from (9.8), namely, LE −= .  Now 
the question becomes, which terms from L do we use? 
 The Lagrangian density (9.2), of course, contains multiple terms.  We 
shall explore here, the energies specifically arising from the pure gauge field 
term µν

µν a
a FF4

1
gauge −=L , that is: 

∫∫∫∫∫∫∫∫∫ ==−=−= xdFFxdFFxdLE a
a 3

2
13

4
13

gauge Tr µν
µν

µν
µνL . (11.7) 

In exploring the pure gauge terms separately from those terms which contain 
the vacuum Φ , we are simultaneously doing two things:  First, via 0→∂ σνG , 

we are turning off all perturbations.  Second, by developing the energy only 
out of µν

µν a
a FF4

1
gauge −=L , we are turning off the vacuum.  So the energies we 

obtain will be the barest energies resulting from the intrinsic structure of these 
monopoles with all perturbations and all vacuum effects turned off. 

Next we substitute (11.3) and (11.4) into the above to write, for 
protons and neutrons respectively: 
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The above are a bit busy, but if we schematically refer to the terms with up 
quarks as “u terms” and the terms with down quarks as “d terms,” the 
important pattern to glean from (11.8) and (11.9) is that: 

( ) 222
P 442)( uuddudduuE ++=+∝ , (11.10) 

( ) 222
N 442)( dududuuddE ++=+∝ . (11.11) 
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This also means that the difference between the neutron and proton energies is 
schematically given by the relationship: 

( )22
PN 3 udEEE −∝−≡∆ . (11.12) 

According to PDG’s latest survey [20], the unbound neutron mass is 
939.565379 MeV, the unbound proton mass is 938.272046 MeV, and so their 
difference E∆  is 1.293333 MeV.  Meanwhile, the electron mass is known 
with great precision, and is listed in 2012 PDG data [21] as me = 0.510998928 
MeV.  This is all well known, and it is believed that the discrepancy between 
1.293333 MeV and 0.510998928 MeV all arises due to the dynamical, non-
linear interactions within the proton or neutron.  If the “noise” of all this 
interaction was to be shut off, it is believed, then this discrepancy would 
vanish, and the electron mass me would be virtually identical to 

ProtonNeutron EEE −≡∆ .  (Because neutrinos emitted during beta decay 

ν++→ −epn  have such a small (<2 eV) mass, we neglect any such mass.) 
But as just noted following (11.7), the proton and neutron expressions 

(11.8) and (11.9), or (11.3) and (11.4), were all developed for zero 
perturbation 0→V , because we have zeroed out any perturbative terms 
throughout this development, and are further designed from the pure gauge 
fields only to filter out all vacuum effects.  In common nomenclature, wherein 
the “current quark mass” is understood to represent the “constituent” or 
“effective quark mass,” reduced by the mass of the respective “constituent 
quark coverings” arising from gluon fields and vacuum condensates 
surrounding the “current quarks,” we have in this development turned off all 
“coverings,” of any origin.  So, having stripped out the coverings, and solely 
looking at the “current quark masses,” what (11.12) tells us is that the E∆  we 
will deduce from (11.8) and (11.9) is not from the difference between the 
total, covered masses of the proton and neutron, but only from the difference 
between that portion of the total mass that is directly contributed by the 
current quark masses.  In other words, (11.12) as based on (11.8) and (11.9) is 
a difference between two bare, uncovered nucleon masses, which turns off the 
noise, and gets to the underlying undiluted “signal” arising from the current 
quarks only.  As such, we should expect that 

ProtonNeutronElectron EEEE −≡∆=   

because our neglect of all perturbations and vacuum effects allows us to look 
at uncovered nucleon masses. 

The “current” (uncovered) masses of the up and down quarks are 
MeVmd

7.
3.8.4 +

−=  and MeVmu
7.
5.3.2 +

−=  based on the most recent PDG data [22].  

So based particularly on (11.12), we should see if the electron rest mass can in 
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fact be described in relation to these current quark masses, based on the 
relationships (11.8) and (11.9).  Indeed, precisely because our development 
has turned off all perturbations and vacuum effects, we should not only expect 
this to work, but this must work in in order to validate the thesis we have 
presented.  That is, we arrive at a point where our thesis and the development 
so far may be contradicted, if nature chooses to do so.  So, let’s do the 
calculations: 

First, subtracting (11.8) from (11.9) to flesh out (11.12), we write: 

[ ] [ ] [ ] [ ]
∫∫∫ 
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Then, we use the ansatz (9.9) in (11.13) to obtain: 
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Above, ( ) ( )pupd ,  are Dirac spinors for the up and down quarks, respectively. 

Now, we may make use of (9.11) refashioned via scaling 2/DD → , namely: 

( )
12exp

2 3
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2
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32
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2
3

=








 −−∫∫∫ xd
rr

DDπ
 (11.15) 

to evaluate the Gaussian integral in (11.14).  This means that: 

( )
( ) 3
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2exp
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DDD ππ
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rr . (11.16) 

 Then, we use (11.16) in (11.14) to obtain: 
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 Now, as a test hypothesis, let us see what occurs if we regard 
mc/hD =  as the reduced bare (uncovered, “current”) Compton wavelength of 

the associated quarks.  With 1== ch , this allows us via D/1=m  to directly 
employ quark masses in (11.17) instead of D , thus: 
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By our test hypothesis mc/hD = , the mass scale for E∆  has now been 
established, as has the mass scale for the proton and neutron masses, and it is 
not the GUT scale.  Importantly, and appropriately insofar as experimental 
observations are concerned, this mass scale is set by the masses of the up and 
down quark that comprise the neutron and the proton, rather than by the GUT 
energy of symmetry breaking.  So the Gaussian ansatz (9.9), if we use 

mc/hD = , gets us into the right “ballpark” in orders of magnitude.  And, it 
makes simple sense that the proton and neutron masses should be related in 
some fashion to the masses of the quarks of which they are comprised.  We 
see that all the mass dimensions in (11.18) are correct, so long as we choose a 
normalization in which the Dirac spinors are dimensionless.  We shall do so 
momentarily.  But next, we come to the 2"" m−/ρ  propagator denominators. 
 For this, we refer back to Figure 1 at the start of section 3, and also 
keep in mind section 12.2 of [5].  Specifically, we consider the circumstance 
in which the interactions shown in Figure 1 occur essentially at a point.  In 
that situation, the propagator disappears, the s and t channels become 
indistinguishable, and we can set 22"" mm →−/ρ  in (11.18) above.  So, also 

applying (3.10) which defines 1=∨  and reverting from the quasi-commutator 
to the ordinary commutator, (11.18) becomes: 

( )
[ ] [ ] [ ] [ ]( )uuuumddddmE ud νµ

νµ
νµ

νµ γγγγγγγγ
π

,,,,
2

3
2
32

1 ⋅−⋅⋅−=∆ . (11.19) 

 The remaining terms [ ] [ ]dddd νµ
νµ γγγγ ,,  and [ ] [ ]uuuu νµ

νµ γγγγ ,,  are 

scalar numbers.  They need to be normalized via the Dirac spinors into a 
dimensionless constant number K, so the only question now is to find the right 
normalization.  For the moment, [ ] [ ] [ ] [ ]uuuuddddK νµ

νµ
νµ

νµ γγγγγγγγ ,,,, =≡  

is defined to be a dimensionless experimental constant, and we take this K to 
be an unknown.   Now, (11.9) may be further reduced to: 

( )
( )ud mmKE −⋅−=∆

2
3

2

3
2
1

π
. (11.20) 

Now, we simply plug the experimental MeVmd
7.
3.8.4 +

−=  and MeVmu
7.
5.3.2 +

−=  

from [22] into the above, to obtain: 

( ) ( ) ( ) ( )
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2/3.28.432/3 ππ
. (11.21) 
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This displays the predicted ProtonNeutron EEE −≡∆  based on the up and down 

quark masses.  Following (11.12) we suggested that this difference should turn 
out to be the electron rest mass, because we have turned off all the “noise” that 
distorts what is otherwise the electron mass into a E∆  of 1.293333 MeV 
between the observed, unbound, noisy, fully covered proton and neutron 
masses.  The experimental electron mass, of course is me = 0.510998928 
MeV.  Using the high-side “down” and the low-side “up” masses, the high end 
of the term ( ) ( ) MeVmm ud 704.2/3 2

3

=− π .  Using the low-side “down” and high-

side “up” masses, the low end of the term ( ) ( ) MeVmm ud 286.2/3 2
3

=− π .  Using 

the experimental mean for the up and down, however – and this is the striking 
result – this anticipated value of ( ) ( ) MeVmm ud 476.2/3 2

3

=− π   And, the mean 

(denoted by the overbar) of the range between .286MeV and .704MeV is 
0.495 MeV.  The electron mass 0.510998928 MeV is perhaps one of the most 
tightly known natural constants, and so the 0.495 MeV electron mass 
predicted from the median of the experimental data differs only about 3% 
removed from the actual experimental mass!  Not only is this prediction in the 
right ballpark, it is centered in the middle of a fairly wide experimental range, 
and so would appear to provide direct and compelling experimental 
confirmation that Yang-Mills magnetic monopoles as developed here, truly 
are baryons! 
 Given the closeness of the ( ) ( )2

3

2/3 πud mm −  to the experimental 

electron mass based on the quark mass data, let us now regard the electron 
mass me to in fact be related to the quark current masses, precisely, by 

EmE e ∆≡=Electron , and let us introduce this as a hypothesis supported by the 

experimental data.  That is, we now hypothesize based on empirical data that: 

( )
( )ude mm

π
E MeV.m −=∆≡=

2
3

2

3
5109989280 . (11.22) 

This filters out the “noise” of the interactions within the proton and neutron, 
and shows the real “signal” behind the noise, which signal is the electron 
mass.  It also makes general sense that the electron mass turns out to be a 
constant times the difference between the up and down quark masses, with the 
only real question being: what is the mathematical and physical basis for 
specifying that constant?  As it turns out, the factor of 3 emerges from the 

( )223 ud −  schematic in (11.12) (and also happens to be the number of quarks in 

each nucleon) and the factor of ( ) 2
3

2 −π  comes straight from Gaussian 
integration over three dimensions.  Given that the electron mass is known with 
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much more precision than the loosely-determined quark masses, we then use 
the electron mass to reverse the tables and predict with precision, the 
difference between these quark masses: 

( )
MeV292.68267793==− eud mmm

3

2 2
3

π  (11.23) 

This is a very precise number, and may be used to better constrain our 
the data for the current quark masses.  Specifically, using MeVmd

7.
3.8.4 +

−=  and 

MeVmu
7.
5.3.2 +

−= , (11.23), in light of a MeV2.1
0.15.2 +

− spread between the midpoint 

experimental data, tells us that the actual spread is slightly higher than the data 
indicates.  Since there is more error on the high side of the down mass and less 
error on the low side of the up mass, the down mass is likely higher than 4.8 
MeV, perhaps between 4.9 and 5.0 MeV and the up mass is likely a touch 
lower, perhaps 2.25 MeV.  On average, the true masses should be about 3% 
higher based on (11.21).  If we use (11.22) in an identity as: 

( )
du

e

du

ud
d mm

m

mm

mm
m

/13

2

/1

2
3

−
=

−
−= π , (11.24) 

then because ud mm −  is now known with great precision from (11.23), the 

experimental determination of these quark masses can be made more precise 
to the degree that we can better tighten the ratio du mm / .  

Now, let’s tie up the normalization, taking (11.22) as a given, 
empirical relationship.  We combine (11.20) with (11.22) to find that: 

[ ] [ ] [ ] [ ]uuuuddddK νµ
νµ

νµ
νµ γγγγγγγγ ,,,,2 ===− . (11.25) 

The experimental constant 2−=K , now known, may now be discarded.  What 
counts is that the spinors themselves now be normalized such that they accord 
with the empirically-based relation (11.25).  We shall work with the “up” 
spinors, since the calculation is the same for either up or down.  We first 
expand (11.25) using µνµν η=g : 

[ ] [ ]
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νµ . (11.26) 

We will want to calculate this with a sum over particle spin states for all the 
spinors.  We first make use of ( ) ( )mmpNuu +Ε+/=Σ /2  (see (3.1)) with an 

undetermined real normalization N.  Via µ
µγpp =/ , (11.26) becomes: 
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It is easy to show using Dirac spinors in the usual way, summing both particle 
spin states, that ( )mEmNuum += /4 22 .  On the other hand, we recognize that 

uup µ
µ γ  is a variant of the conservation equation 0=∂ µ

µ J  written in 

momentum space.  So we mandate 0=uup µ
µ γ  by continuity.  Thus, we can 

use these two results in (11.27) to write: 

( ) [ ] [ ] [ ] [ ]uuuudddd
mE

m
N νµ

νµ
νµ

νµ γγγγγγγγ ,,,,1922 2

2
4 ==

+
−=− , (11.28) 

which means that:  

m

mE
N

m

mE
N

2!4

1
;

62

1 2

4

+=+= . (11.29) 

This is a dimensionless covariant normalization which keeps the Dirac 
spinors dimensionless, and which embeds into the Dirac algebra, the empirical 
relationships (11.22) and (11.23) between the quark and electron masses.  In 
other words, the normalization (11.29) fully implements (hard-wires) the 

relationship (11.22), ( ) ( )2
3

2/3e πud mmm −≡  – which appears to yield the 

correct experimental relation between the electron mass and the up and down 
quark masses – into the Dirac algebra via the normalization of the Dirac 
spinors.  To be clear:  this is an empirical normalization, handed to us by 

nature, which reflects that ( ) ( )2
3

2/3e πud mmm −≡  appears to be an 

experimentally-correct mass relationship.  We note, simply as an observation, 
via the Levi-Civita tensor in spacetime, that µναβ

µναβ εε−=!4 , and that 

( ) 12/ =+ mmE  in the fermion rest frame mE = .  Also, for any 4x4 matrix M 

in spacetime, the determinant 3210 δγβα
αβγδε MMMMM =  has 24 additive 

terms. So the factor of !4 , while it emerges to implement an experimental 
mass observation, is a real integer number which does play a central role in 
field theory in four spacetime dimensions. 
 Moreover, we also observe that 234!4 ××=  is the number of known 
fermions of all flavors and colors and generations, and further describes the 
way in which these fermions are structured, as can be seen from Figure 3 
below in which: LRGB represents leptons as a fourth color of quark at high 
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energies as discussed in section 7; τµ ,,e  represents the three fermion 

generations; and ⇓⇑,  represent isospin up and isospin down: 

              =⇑⇓→←
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Figure 3 

Therefore, if we let !424==fn  represent the number of fermions known in 

the natural world, the normalization (11.29), which applies to each individual 
fermion in this chart of 24, may be written on an entirely physical basis, 
without any “mysterious” numbers, as: 

( )
( )

( )
( )2

2

2

2
4

224

1

2

1

m

mE

m

mE

n
N

f

+=+= . (11.30) 

While beyond the scope of this paper, this is suggestive of some sort of 
fermion “completeness relation” that entails accounting for all twenty-four of 
the fermion flavors shown in Figure 4 when normalizing individual Dirac 
spinors.  We write (11.30) as N4, because this is the power in which the 
normalization enters invariant amplitudes.  So an amplitude which sums over 
all fermions will be summing a term with a 1/24 coefficient, over 24 distinct 
terms, one for each flavor of fermion in Figure 3. 
 Let us finally tie up one remaining aspect of section 10 and Figure 2, 
as to the short range of the nuclear interaction.  In section 10, the reduced 
wavelength D  was simply a parameter of the Gaussian ansatz (9.9).  And we 
noted following (9.12) and again following Figure 2 that the Gaussian 
standard deviation D

2
1=σ .  But now, following (11.18), we set mc/hD =  

to be the reduced Compton wavelength of the current quarks, and this led to 
the empirically-correct mass relationships (11.21)-(11.23).  But given the 
current quark masses MeVmd

7.
3.8.4 +

−=  and MeVmu
7.
5.3.2 +

−= , and using the 

conversion scale ( )GeVGeVF 197./107.51 1 == − , this means that Fu 65.85~D  

and Fd 04.41~D , to which the standard deviation in Figure 2 is related by 
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D
2

1=σ .  This, of course, gives the nuclear interaction a short range, but not 

short enough, because the nuclear interaction is known to have a range on the 
order of 1 to 2 Fermi.  So how do we explain this? 
 We now keep in mind that we have been using current quark masses 
which turn off any coverings due to perturbations of vacuum effects.  But 
when we actually observe nuclear interactions, we are of course observing 
interactions based on the effective, constituent quark masses.  If for very rough 
measure, we take these to be equal to 1/3 of the mass of the proton or neutron, 
say 939 MeV/3=313 MeV, then we have F63.~D  and F45.~

2
1 D=σ .  So 

now, the standard deviation for Figure 2 is slightly less than .5 F.  Figure 2 
and the discussion following then tells us that the nuclear interaction virtually 
ceases to be effective at about F2~34 D≈σ .  So now, Figure 2, with D  based 
on constituent quark masses, depicts just the right distance for the short range 
of nuclear interactions, which are now predicted to become insignificant at 
about 2 F. 
  
12.  Quark Confinement Results from Predicted Binding Energies which 
Coincide Extremely Closely with Nuclear Binding Energies 
  

Finally, with the empirical fermion normalization (11.30) in place, we 
can directly derive the proton and neutron masses.  However, because we have 
turned off all perturbation and turned off the vacuum, the masses in (11.8) and 
(11.9) are not expected to be the observed masses.  Rather, these will the 
structural proton and neutron masses based only on the current quark masses, 
with no perturbations and no accounting for vacuum condensates.  These, 
once again, are “signal” relationships with “noise” stripped out.  While these 
masses are given formally in (11.8) and (11.9), the schematic relationships 
(11.10) through (11.12) provide a shortcut to calculate these masses.  If we 
compare (11.12) to our eventual result (11.22) for the electron mass, we may 
schematically express this as: 

( ) ( ) ( )2
3

2/33 Electron
22

Electron πud mmEudE −=⇒−∝ . (12.1) 

The key thing that we learn via the Gaussian integration, is to use the three-
dimensional Gaussian integration number ( )2

3

2π  as a divisor to find the correct 
mass relationships.  Careful consideration of (11.8) through (11.11) and the 
Gaussian ansatz should make clear that the proton and neutron structural 
(noise-free signal) masses follow an identical pattern, i.e.: 

( ) ( )2
3

2/4444 P
22

P πudud mmmmEuuddE ++=⇒++∝ , (12.2) 
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( ) ( )2
3

2/4444 N
22

N πdduu mmmmEduduE ++=⇒++∝ . (12.3) 

Then, making use of the mid-valued experimental quark masses from [22] 
(which we know from (11.21) are low by about 3%), we obtain: 

( ) ( ) MeVmmmmE udud 733.12/44 2
3

P =++= π , (12.4) 

( ) ( ) MeVmmmmE dduu 209.22/44 2
3

N =++= π . (12.5) 

This proves in energy terms, that these magnetic monopoles are topologically 
stable with definite, finite energies. 

Now, while (12.4) and (12.5) seem odd at first blush in light of EN = 
939.565379 MeV and EP = 938.272046 MeV, this is actually a fascinating and 
very revealing result:  We have turned off all perturbative terms, which means 
that “interaction” energy and other “noise” accounts for about 99.8% of the 
observed mass of the proton and neutron, according to the above.  The 
underlying quarks, absent interactions and absent vacuum effects, appear to 
contribute only about 0.2% of the total.  But of even more interest, is this:  If 
the “naked” proton and neutron masses were simply a linear sum of their 
component quark masses which are  MeVmd

7.
3.8.4 +

−=  and MeVmu
7.
5.3.2 +

−=  

based on the best PDG data, we would expect to have about MeVE 4.9Proton =  

and MeVE 9.11Neutron=  based on the PDG experimental means.  So here, “the 

whole is a lot less than the sum of the parts,” and there is a stunning energy 
diminution.  What does this mean that we can put three quarks together and 
have a system where the total mass is less than 20% of the mass of the 
component quarks, before we turn on the perturbative interactions?  Imagine 
putting ten pounds of anything into a black box, and then finding that the 
black box weighs less than two pounds.  It means that there is a fantastically-
large, intrinsic, negative binding energy holding these quarks together in a 
confined system! 

We can calculate this inherent binding energy B directly:  Using the 
additive relationships ud mmMeVE 24.9Proton +== ,  dmmMeVE 29.11Neutron +== µ  

for mean data per above, and (12.4) and (12.5), the inherent proton and 
neutron binding energies, respectively, are simply: 

( ) ( ) MeVMeVMeVmmmmmmB ududdu 667.7733.14.92/442 2
3

P =−=++−+= π  (12.6) 

( ) ( ) MeVMeVMeVmmmmmmB dduuud 691.9209.29.112/442 2
3

N =−=++−+= π . (12.7) 

For a system with an equal number of protons and neutrons, the average 
binding energy per nucleon will then be: 

( ) MeV.MeVMeVB 67982/691.9667.7 =+=  (12.8) 
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This is a fascinating result, because these are exactly the magnitudes of per-
nucleon binding energies that are observed throughout nuclear physics for all 
elements from He4 and C12 through the balance of the periodic table, as shown 
in Figure 4 below which can be obtained in like-form from virtually any 
hardcopy or online reference on nuclear physics.  Is (12.8) a prediction that 
the per-nucleon binding energy is between 8 and 9 MeV, which is exactly 
what is observed throughout Figure 4?  If so, then the validation of the thesis 
that baryons are Yang-Mills magnetic monopoles advances well beyond 
predicting the electron rest mass from the quark masses in (11.21)-(11.23), to 
perhaps predicting the precisely-known binding energies that permeate nuclear 
physics.  How might this work? 

 
Figure 4 

Based on the data in Figure 4 and (12.6)-(12.8), what one might 
observe as a preliminary matter is the following:  First, when we state that the 
neutron and proton masses are EN = 939.565379 MeV and EP = 938.272046 
MeV, we have to be careful to be clear that these are unbound masses for free 
nucleons, as we were with emphasis following (11.12).  Fuse a proton and a 
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neutron into a deuteron (H2 nucleus), however, and the mass of each is 
reduced by a well-established binding energy per nucleon of 

MeVB
H

112283.12/2 = , the first non-zero data point in Figure 4.  (In general, 

for the discussion to follow, we shall use binding energies calculated from 
nuclei masses in [23].)  Fuse two of these into a four-nucleon alpha particle 
(He4 nucleus) and the binding energy per nucleon spikes rapidly to just over 7 
MeV per nucleon, entering the range predicted in (12.8).  Why is He4 
understood to spike so quickly, whereby the Li and Be nuclei drop back down 
to under 6 MeV per nucleon before C and N rise back to about 7.5 MeV per 
nucleon before the heavier elements move smack into the middle of what is 
predicted by (12.8)?  Because for the He4 nucleus, all of the nuclei (two 
protons and two neutrons, one each with spin up, one each with spin down) 
can remain in a ground state, but for any element that has more than 4 nuclei, 
the remainder of the nuclei must go into higher energy states because of the 
fermion Exclusion Principle.  This means that some of the nuclei in Li and Be 
must “steal” some of the energy that is otherwise available for binding, and 
instead use this energy to excite to a higher energy state to be able to coexist 
in the same nucleus with the first four nucleons of the alpha particle.  All of 
these observations are part of the known understanding of Figure 4. 

So based on these observations, one might fashion the following 
preliminary explanation of what (12.6) – (12.8) are saying:  Each nucleon 
apparently has what we shall refer to as a “latent binding energy,” or “energy 
available for binding.”  When a nucleon is free, all of that binding energy is 
contained within the nucleon, and serves to confine the quarks within the 
nucleon through intra-nucleon binding.  This confinement is structural based 
on differential spacetime geometry, as established in section 1.  But to fuse 
one nucleon with another nucleon, some of that internal “latent” binding 
energy must become devoted to binding together the two nucleons.  So in the 
deuteron, MeVB

H
112283.12/2 =  per nucleon is channeled into the fusion of the 

two nucleons (and thus is released as fusion energy) and the total masses 
(including the observed masses) of the proton and neutron drop slightly by an 
equivalent amount.  Some, but not all, of the latent binding energy has now 
gone into inter-nucleon binding, rather than intra-nucleon binding.  As one 
goes up the nuclear mass scale, more and more of the latent binding energy is 
apparently channeled into inter-nucleon binding, and less into intra-nucleon 
binding.  And some of that energy – for which Li and Be are good examples – 
can be channeled into providing the energy needed for the “fifth” and 
additional nucleons to excite into a higher energy state so that they can fuse to 
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the rest of the nucleus.  So what (12.6)-(12.8) appear to be saying, in this 
context, is that each nucleon has available for binding, a maximum latent 
binding energy of about 7.7 MeV per proton and 9.7 MeV per neutron.  How 
much of that is used, and what it is used for, depends on the particular nucleus 
that one seeks to fuse together. 
 Let’s go a step further and look at Fe56 and Ni62, which have the 
highest binding energy per nucleon of any nuclei, and are highly illustrative.  
Fe56 contains 30 neutrons and 26 protons.  Based on (12.6) and (12.7) (which 
again, are based on quark masses that appear to be about 3% off on the low 
side), one would expect a total binding energy of 490.072 MeV.  The observed 
experimental biding energy is a remarkably-close, slightly higher 492.253892 
MeV.  Ni62 contains 34 neutrons and 28 protons.  Based on (12.6) and (12.7), 
(again, about 3% low) one would expect a total binding energy of 544.17 
MeV.  The empirical binding energy is the slightly higher 545.259 MeV.  
What does this mean? 
 First, the closeness of these numbers is further validation of the thesis 
of this paper that baryons are indeed Yang-Mills magnetic monopoles.  
Second, however, the empirical binding energies should in principle be 
slightly lower rather than slightly higher than the theoretical maximum 
available for binding via (12.6) and (12.7), otherwise it would become 
possible to de-confine quarks which must in principle be impossible based on 
section 1 as well as a general understanding of confinement principles.  As we 
shall momentarily show, the 3% correction noted in earlier in (11.21) will fix 
this, so that no nucleus will exceed the maximum available latent binding 
energy.  Rather, these “lightest per nucleon” nuclei Fe56 and Ni62 will use up 
just a tad less than the total available binding energy, with (12.6) and (12.7) 
(with energy numbers we will shortly update) establishing in principle energy 
limits. 
 As to the lighter elements, the amount of latent binding energy used 
for actual binding is lower, but let’s look at the very lightest nuclei containing 
more than one nucleon.  First, the H2 deuteron which consists of one proton 
and one neutron, as a “two body” system, is the very simplest composite 
nucleus, and is known to have a binding energy MeVB

H
224566.22 = .  This is 

intriguingly close to the mass of the up quark MeVmu
7.
5.3.2 +

−= , especially since 

there is a good likelihood that the up mass is just slightly smaller, as suggested 

following (11.23).  Might it be that MeVBMeVm
Hu 224566.23.2 2

??
7.
5. === +

−  are 

one and the same, i.e., that the deuteron binding energy is another “signal,” 
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like the electron mass, which cuts through the “noise” of the nucleons to tell 
us what is really going in inside?  Specifically, might it be that the deuteron 
binding energy is a signal that tells us the exact current mass of the up quark?  
If this is so, then the up and down quark masses can be calculated to six-
decimal precision in MeV using 2H

B  and (11.23). 

 Based on the tantalizing closeness of these energies, let us introduce 
the hypothesis that this is so, i.e., that: 

MeV2.224566=≡ 2Hu Bm , (12.9) 

in which case, via (11.23), we may obtain with similar precision: 
( )

MeV4.907244=

+=+= MeVMeVmmm ued 224566.26826779329.2
3

2 2
3

π
, (12.10) 

and the ratio: 
.4533229=du mm / . (12.11) 

Both of these masses fit well within the current quark masses MeVmu
7.
5.3.2 +

−=  

and MeVmd
7.
3.8.4 +

−=  given in [22] and the ratio )5(46./ =du mm  in equation 

[5] of [24].  We shall momentarily discuss the theoretical basis upon which 
this hypothesis might be justified, but first, let’s do some calculations.  

If hypothesis (12.9) is true, then via (12.6) and (12.7) we may do a 
more precise calculation: 

( ) ( )
V7.640679Me=

−=++−+= MeVmmmmmmB ududdu 715697.1MeV  9.3563762/442 2
3

P π  (12.12) 

( ) ( )
V9.812358Me=

−=++−+= MeVmmmmmmB dduuud 226696.2MeV 12.0390542/442 2
3

N π . (12.13) 

Based on the discussion preceding (12.9), this says that every proton in a 
nucleus has a latent (maximum available) binding energy of 7.640679 MeV, 
and every neutron has available 9.812358 MeV.  For a free, unbound nucleon, 
all of this energy is used to confine the quarks within the nucleon.  But when 
one nucleon binds to another, some of this energy is released as fusion energy, 
and an equivalent deficit of energy goes into binding the nucleons.  For Fe56, 
with 26 protons and 30 neutrons, we may calculate that this maximum 
available binding energy is: 

MeV493.028394=×+×= MeVMeVB 812358.930640679.726)Fe( 56
max  (12.14) 

What does the empirical data show to be the actual binding energy?  
492.253892 MeV!  So precisely 99.8429093% of the available binding energy 
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predicted by this model of nucleons as Yang-Mills magnetic monopoles goes 
into binding together the Fe56 nucleus.  The remaining 0.1570907%, which is 
equal to .774502 MeV total, or a relatively scant 13.83040 KeV per nucleon, 
goes into confining the quarks within the nucleons.  A calculation similar to 
(12.14) based on (12.12) and (12.13) for Ni62 reveals a predicted available 
binding energy of 547.559184 MeV compared to an empirical binding energy 
of 545.2590 MeV.  So Ni62 uses 99.57992% of the available binding energy, 
with the balance continuing to confine the quarks.  Calculations for other 
nuclei and isotopes and isobars reveal that no known nucleus ever gets up to 
using 100% of the available binding energy, and that Fe56 achieves the 
maximum utilization at 99.8429093%.  This appears to provide compelling 
experimental validation that baryons, including protons and neutrons, are 
indeed Yang-Mills magnetic monopoles. 

What would it mean to get over 100%?  It would mean that the balance 
has been tipped, so that the energies within individual nucleons would no 
longer confine the quarks, but would free them.  The peak in Figure 4 at Fe56, 
is nature saying that she will never allow quarks to be de-confined from a 
nucleon, any more than she will allow material signals to reach the speed of 
light!  Fe56 is the closest that one can come to taking all the energy that is used 
to confine the quarks inside a nucleon, and using it to instead bind nuclei 
together. But even here, we never get to the point where we can remove the 
quark from a nucleus; we only approach a natural limit.  There is always at 
least 13.83040 KeV per nucleon continuing to confine the quarks, even for 
Fe56.  After reaching these peaks at Fe56 and Ni62, the Figure 4 curve heads 
back down into the fission zone, and the quarks again become more tightly 
confined inside the nucleon.  While quarks always stay confined, however, 
this does suggest that Fe56 and Ni62 and other nuclei which commit a very high 
percentage of available binding energy to inter-nucleon binding are the best 
nuclei to use, experimentally, in order to observe the behaviors of quarks 
inside the nucleons.  This is because for these nuclei, the intra-nucleon 
energies confining the quarks inside the nuclei are at their lowest strength, 
having all been channeled into inter-nucleon binding.  In these nuclei, quarks 
have more freedom, asymptotic and otherwise, than in any other nuclei. 
 While the hypothesis (12.9) that 2Hu Bm ≡  appears to be confirmed 

based on the empirical data, both directly and via (12.12) to (12.14) deduced 
therefrom, it is important to try to understand the theoretical reasons why 
(12.9) would make sense.  Figure 4, which is entirely empirical, makes clear 
that to fuse a nucleon to any given nucleus, the amount of energy which is 
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either liberated (fusion) or needs to be supplied (fission) is a discreet amount 
of energy.  For example, in fusing a proton and a neutron into a deuteron, one 
will liberate exactly 2.224566 MeV (equation (12.9)) of energy, each and 
every time, as opposed to some continuous spread of energy.  To add another 
neutron to a deuteron to form the tritium H3 isotope with a total 8.481799 
MeV binding energy, one will liberate exactly another 6.257233 MeV, which 
is the difference between the H2 and H3 binding energies.  Not a continuous 
spread.  The same, discrete amount of energy, each and every time.   What 
determines that precise energy values like these, and no others, will be 
released (or must be supplied)?  Hypothesis (12.9), which leads to predictions 
such as (12.14) which are borne out by empirical data binding, adds new 
information to the semi-empirical Bethe-Weizsäcker mass formula which 
accounts for binding energies in general terms based on nucleus volume in 
light of limited nuclear range, surface versus central position of particular 
nuclei, Coulomb repulsion between protons, and exclusion based on both spin 
and internal symmetry quantum numbers.  What (12.9) adds to all of these 
considerations, is this: 
 Take a proton and a neutron.  Think of each as a resonant cavity.  Try 
to fuse them into a deuteron.  Experiments tell us that the same amount of 
energy – 2.224566 MeV – will be released each and every time following a 
successful fusion.   Some attribute of these two nucleons must determine that 
this amount of energy is 2.224566 MeV, and not some other energy.  So what 
is that attribute?  Each of these nucleons contains up quarks and down quarks.  
These have associated Compton wavelengths.  Not unlike in the early Bohr / 
deBroglie models used to explain atomic spectra, those wavelengths will 
establish preferred, discreet resonant energy levels which can be detected, to 
the exclusion of all other energies which cannot be detected.  And nature will 
follow least action principles and so choose a lower energy level (such as that 
set by the up quark) over a higher energy level (such as that set by the down 
quark) whenever it can.  So to create a two body system – a deuteron – from a 
proton and a neutron, the energy released resonates precisely with the mass of 
the down quark, which is why 2.224566 MeV is both the mass of the up quark 
and the energy released in this simplest, most elemental fusion of a proton and 
a neutron into a deuteron.  The energy released from this fusion (and 
presumably other fusions) appears to depend on what wavelengths “fit” with 
respect to the components being fused.  And at least for fusing a deuteron, the 
wavelength / mass that “fits” is established directly, equivalently by the mass 
of the up quark which is contained twice in a proton and once in a neutron. 
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 To start with a deuteron H2 and add another neutron to form an H3 
tritium nucleus (which does not add the complication of a p—p repulsion that 
occurs for He3) then also becomes a problem of asking: what resonates?  But 
now, the problem is a three body problem.  One of the “cavities” is now a 
deuteron.  So while the empirical answer is 6.257233 MeV, there is no simple 
apparent way to get this number, at least linearly, from (12.9) and (12.10).  
But, to find the basis for this 6.257233 MeV energy needed to go from H2 to 
H3 adds another consideration to the semi-empirical mass formula: what is the 
lowest energy, most natural resonance of the two systems that one is trying to 
fuse, namely, an H2 and a neutron?  That resonance is 6.257233 MeV, and 
some careful analysis of the resonance between a two body system and a one-
body system, together with some employment of the quark masses (12.9), 
(12.10), should yield that number.   

So, in sum, (12.9) becomes justified for a deuteron on the basis of the 
proposition that the fusion resonance for a cavity (proton) that already 
contains a quark with a mass of 2.224566 MeV with a second cavity (neutron) 
that also contains a quark with a mass of 2.224566 MeV, is just that mass: 
2.224566 MeV.  For other nuclei, this introduces a resonant cavity analysis to 
supplement the other considerations in the semi-empirical mass formula. 

This also leads one to consider the technological possibility that a new 
type of “resonant fusion” in which nuclei are bathed in oscillations at their 
known binding energies, might serve to catalyze fusion and extract energy 
without the need to supply excessive heat or large particle accelerations.  
 And, (12.12) and (12.13) modify our thinking about Bethe-Weizsäcker 
in one other very important way: the first two terms of this formula, 

3/2AaAa sV + , where A is the number of nucleons, are designed to account for 

the volume and surface geometry of a larger nucleon based upon the fact that 
because of the short range of the nuclear force (see Figure 2 in section 10 and 
the discussion at the end of section 11 suggesting a standard deviation of 

F45.~
2

1 D=σ  for nuclear interactions and a virtual cessation of interaction 

at around F2~34 D≈σ ), each nucleon will only interact with its immediately-
adjacent neighbors, and nucleons on the surface will have less neighbors with 
which to interact.  But (12.12) and (12.13) introduce the same considerations 
from a different standpoint:  it sets in very precise terms, a maximum available 
binding energy, and that energy limit flows from the Gaussian distribution of 
Figure 2 for the field flux across any closed surface.  That is why the first two 
terms of Bethe-Weizsäcker are 3/2AaAa sV + , rather than 3/42 AaAa sV + . 
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 To further develop this preliminary understanding of nuclear binding, 
it will be very useful to carefully scour the wealth of data for various nuclear 
isotopes and isobars to see exactly how much binding energy is added or 
subtracted each time a proton or neutron is added to or removed from a 
nucleus, and compare those with the predicted binding energies in (12.12) and 
(12.13), as this may provide a more “granular” insight into the specific data 
points on nuclear binding charts such as Figure 4.  For example, start with 
Fe56.  Add a single neutron to turn it into the Fe57 isotope.  The empirical data 
shows that this adds 931.919288 MeV (with no new electron) to the atomic 
weight of Fe56 while adding one more neutron with an unbound mass of 
939.565379 MeV.  So, the additional binding energy introduced (and the 
fusion energy released) by adding this one neutron is: 

MeV7.646090=− )Fe()Fe( 5657 BB  (12.15) 
This empirical binding energy differs from the theoretical prediction of  

V7.640679Me  in (12.12) for the intrinsic binding energy of a proton, by a 
paltry 5.412 KeV, or 0.0708%.  Apparently, adding one neutron to Fe56, 
within a small fraction of one percent, liberates an intrinsic binding energy 
virtually equal to that of a single proton.  Similar exercises for other isotopes 
and isobars of all nuclei should be quite instructive, and with (12.12) and 
(12.13) available for guidance, can help us better understand what happens 
each time one adds or subtracts a proton or a neutron to or from a nucleus, and 
how the biding energies are allocated. 

But the seven parts in ten thousand closeness of the empirical energy 
(12.15) to a predicted energy in (12.12), taken together with all of the other 
predictions in Sections 11 and 12 which appear to be experimentally 
supported, cannot be dismissed as coincidence.  There are too many such 
predictions, they are all intertwined, and they all come too close to 
observational data to be merely coincidental. 
 All of this, and especially the 99.8429093% of the available binding 
energy which goes into binding together the Fe56 nucleus, and the fact that 
nothing goes over100%, brings us full circle back to where we started in 
section 1, when we showed how Yang-Mills magnetic monopoles naturally 
confine their gauge fields, and how this was due to the very structure of 
spacetime via Gauss’ / Stokes’ integration and the geometric relationship 
dd=0.  Now, in (12.12) and (12.13), when we are finally looking at energies, 
we see that once three quarks are put into a baryon, the very structure of the 
baryon creates an intrinsic latent binding energy that is equal to more than 
80% of the component quark masses.  This latent binding energy is 
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fundamental to the structure of baryons.  As we showed in section 1, 
confinement flows from the very structure of spacetime, and as we showed 
here, it explains with precision the experimental data for nucleon binding of 
the heaviest elements and especially explains why Figure 4 has a maximum 
binding energy per nucleon which is never exceeded and grows smaller as one 
moves away from the fusion / fission boundary. 

So, expressed in terms of proton and neutron energies, quark 
confinement is signaled by the fact that for three quarks in a baryon, there is 
an inherent negative latent binding energy that is equal to more than 80% of 
the quark masses themselves, and that even for the most tightly bound nuclei, 
some small amount of energy from this binding energy reservoir is always 
retained to keep the quarks confined.  This is how the energy physics of a 
baryon conspires to keep the quarks confined.  When nucleons are fused, some 
of that binding energy migrates into a negative binding energy holding the 
nucleons together to form nuclei and a positive equivalent is released as fusion 
energy.  If one can maximize the latent binding energy that goes into inter-
nucleon binding, the confinement of the quarks within any given nucleon does 
loosen up, because the latent binding energy is used less for confinement and 
more for actual inter-nucleon binding.  In an iron nucleus, for example, quarks 
will come close (within 0.16% per nucleon) of being able to deconfine from 
the nucleus.  But one never quite goes beyond that, because precisely at the 
point where the quarks comes closest to deconfinement, one starts onto the 
downward fission slope where more, not less, of the latent binding energy 
starts to go back into keeping quarks confined.  So, the well-known empirical 
peak in Figure 4 is fundamentally a confinement phenomenon whereby quarks 
step back from the brink of becoming de-confined in Fe56, and remain 
confined in principle no matter what the element.  Iron-56 thus is seen to sit at 
the theoretical crossroads of fission, fusion, and quark confinement. 
 Knowing now that nucleons very likely are Yang-Mills magnetic 
monopoles, and given the stark binding energy “tea leaves” just noted, it may 
become possible to develop a more coherent and detailed granular 
understanding of nuclear structure.  Such an understanding, in light of what 
has been developed here, now boils down to understanding in detail, how 
collections of such magnetic monopoles – which monopole collections we 
now understand to be nuclei when the monopoles are protons and neutrons – 
organize and structure themselves. 
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Conclusion 
 
The very vast preponderance of the material universe consists of 

baryons, and particularly, protons and neutrons.  The results developed here, 
especially the empirical concurrences developed in sections 11 and 12, firmly 
validate that for non-commuting Yang-Mills gauge fields, the long-sought and 
ever-elusive magnetic monopoles of Maxwell do exist in the physical world, 
everywhere and anywhere that there is matter in the universe, hiding in plain 
sight, in the form of protons and neutrons! 

These Yang-Mills Magnetic Monopoles naturally confine their gauge 
fields, naturally contain three colored fermions in a color singlet, and mesons 
also in color singlets are the only particles they are allowed to emit or absorb.   
SU(3)C QCD as it has been extensively studied and confirmed is understood in 
broader context, with no contradiction, to be a consequence of baryons being 
Yang-Mills magnetic monopoles.  Protons and neutrons are naturally 
represented in the fundamental representation of this group.  The t’Hooft 
monopole Lagrangian with a Gaussian ansatz for fermion wavefunctions 
demonstrates that these monopoles can be made to interact only at very short 
range as is required for nuclear interactions.  These monopoles are 
topologically stable following symmetry breaking from an SU(4) group using 
the B-L (baryon minus lepton number) generator.  The mass of the electron is 
accurately predicted based on the masses of the up and down quarks to about 
3% from the experimental mean for the quark masses, and confinement of 
quarks occurs energetically via fantastically strong negative binding energies.  
And, the predicted binding energies per nucleon are completely consistent 
with experimental data.  All of this compels serious consideration and further 
development of baryons as Yang-Mills magnetic monopoles. 
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