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Why Baryons Are Yang-Mills Magnetic Monopoles
Jay R. Yablon
Schenectady, New York 12309

Abstract: We demonstrate that Yang-Mills Magnetic Monopolasirally
confine their gauge fields, naturally contain thi@#ored fermions in a color
singlet, and that mesons also in color singletsthgeonly particles they are
allowed to emit or absorb. SUERCD as it has been extensively studied
and confirmed is understood in broader contexthwid contradiction, to be a
consequence of baryons being Yang-Mills magnetiopmes. Protons and
neutrons are naturally represented in the fundamlengpresentation of this
group. We use the t'Hooft monopole Lagrangian \&itBaussian ansatz for
fermion wavefunctions to demonstrate that theseopales can be made to
interact only at very short range as is requiredriaclear interactions, and
we establish topological stability following symmédireaking from an SU(4)
group using the B-L (baryon minus lepton numbenegator. Finally, the
mass of the electron is accurately predicted basethe masses of the up and
down quarks to about 3% from the experimental nieathe quark masses,
and confinement of quarks occurs energeticallyfardastically strong
negative binding energies that accord very welhvexperimental nuclear
data. All of this makes Yang-Mills magnetic mariep worthy of serious
consideration and further development as baryons.
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Introduction and Summary

The thesis of this paper is simple: magnetic motedensities which
come into existence in a non-Abelian Yang-Mills gautheory of non-
commuting fields are synonymous with baryon deesiti Baryons, including
the protons and neutrons which form the vast prde@ance of matter in the
universe, are Yang-Mills magnetic monopoles! Caosely, magnetic
monopoles, long pursued since the time of Maxwllje always been hiding
in plain sight as baryons.

We first show how Yang-Mills magnetic monopolesunally confine
their gauge fields for the same formal reasons thate are no magnetic
monopoles in Abelian gauge theories (section 1 helWe replace the gauge
fields of a Yang-Mills magnetic monopole with assted currents via an
inverse relationG, =1,,J° based on Maxwell's classical chromoelectric

charge equations” =g F* and then introduce fermion fields via currents

J¥=yTy*y, we find that these magnetic monopoles naturadiytain three

fermions and associated propagators (sections Zandfter showing some
ways in which these propagators may be mathemigtiegbanded (section 4),
we employ Fermi-Dirac statistics to require thatheaf the three fermions
contained in this magnetic monopole system mustgsss unique quantum
numbers, and thisompelgsthe introduction of SU(3)QCD. We thus uncover
a natural system containing three colored quarksclwinas the precise
antisymmetric color wavefunctiorF{G,B]+G[BH+B[R,G] expected of a
baryon, and which passes through its closed swfadgects with the

symmetric wavefunction configuratiofR+ GG + BB expected of a meson.
Thus, we naturally arrive at all the required feasuof QCD including three
valence quarks and gluons and quark-anti-quarls gaiesons). SU(38)QCD
as it has been extensively studied and confirmetheseby understood in
broader contextwith no contradiction to be anatural consequencef
baryons being Yang-Mills magnetic monopoles (s&chp

These magnetic monopoles, however, cannot be statiée with the
gauge group SU(3) alone, and will vanish unlessemploys a product group
SU(3)xU(1) with a U(1) generator for which the ®ao non-vanishing. This
leads us to obtain the required SU(3)xU(1) fromamér group SU(4) via
spontaneous symmetry breaking, to both ensure mal@ability and provide
topological stability (section 6). Close considena of this SU(4) group
reveals that itsA*® generator can naturally represent the differeretgvdéen
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baryon number and lepton numbe®-L, and that the SU(3) subgroup
provides a natural fundamental representation fotops and for neutrons
(section 7) which emerge as distinct entities f@llay spontaneous symmetry
breaking (section 8).

The t'Hooft [1] and Polyakov [2] model may be usedthout
alteration to specify the dynamics of this magneticnopole system which
includes protons and neutrons. However, rathen thpply anansatz
Gi =£,,%G(r) to thespin 1 gauge fieldso determine radial behaviors, we

apply aGaussian ansatg/(r)= u(p)(r#?) *eW2S"*" as in [3] to thespin %
fermion fields Because Gaussians are well-behaved and eatstyrable, the
monopoles vanish at the boundaries, have finiteutable energies, and are
indeed stable (section 9). Moreover, unlike theviim monopoles which all
exhibit inverse square-law field strengths, monepdbased on the Gaussian
ansatzfrom [3] interactonly at extremely short rangevhich is precisely what
is to be expected and is experimentally observeddoyons such as protons
and neutrons (section 10).

Finally, integrating the energy tensor of these me&ig monopoles
over an entire spatial voluntEx with all gauge field interactions and vacuum
effects turned off (zero perturbation) allows usotmain expressions for the
“uncovered” proton and neutron mass as a functibrthe up and down
“current quark” masses. For experimental validatiwe show how the
observed electron masg.=0.510998928 MeV may be predicted from the
2012 PDG values of the up and down quark masgesy, not only within
experimental errors,but with only a 3% difference from the mean
experimental datavhich itself has a spread about the mean of about for
the down mass and 50% for the up mass. Specificalis predicted that
m, =3(m, - m,)/(277), with the (277 divisor directly emergent from three-
dimensional Gaussian integration (section 11). Tireovered” masses of
the proton and neutron turn out to be more than 8@%aller than the total
mass of the three quarks that they contain. Ehiswderstood as being due to
a fantastically strong binding energy which condirtbe quarks. Moreover,
latent (available) binding energi@sfor the proton and neutron are predicted
to be B, = 7.640679eV and B, =9.812358MeV , which accords well with

empirical per-nucleon binding data for many nueed provides a basis to
better understand nuclear bonding and fusion. Iliging is shown how
nuclear binding is intimately related to quark donement, with extremely
tight empirical data concurrence (section 12).
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1. Yang-Mills Magnetic Monopoles Naturally Confinetheir Gauge Fields
through Spacetime Geometry

First, we demonstrate how Yang-Mills magnetic marep naturally
confine their gauge fields. We use the languageifbérential forms, and
assume the reader has sufficient familiarity withist so no tutorial
explanations are required.

In an Abelian (commuting field) gauge theory sushQED, the field
strength tensoF is specified in relation to the vector potentiauge field
(e.g., photonA according td&==dA. The magnetic monopole source denBity
is then specified classically (for high-acti®fg) = [ d*xe(¢)>>n where the

Euler Lagrange equation may be applied) by thesulak field equation
P=dF=ddA=0. This makes use of the geometric law that tkeermr
derivative of an exterior derivative is zerdg=0. In integral form, this

becomesm P= ”de = ”jddG: ﬁ F= ﬁdA: 0. All of the foregoing “zeros”
are what tell us that there are no magnetic momspol an Abelian gauge
theory such as QED. This absence of magnetic nweogharges at all
attainable experimental energies is well borneithe 140 years since James
Clerk Maxwell published his 1878 Treatise on Electricity and Magnetism

In a non-Abelian (non-commuting field) Yang-Millsugge theory such
as QCD, the fundamental difference is that thel fegtength tensdf is now
specified in relation to the vector gauge fieldgmtal G (e.g., gluon in QCD)
according toF =dG-iG?*. For SU(N), bottF andG are NxN matrices. In
this relationship,G? =[G”,GVde#d>g expresses the non-commuting nature of
the gauge fields and the non-linearity of Yang-Mdlauge theory. Therefore,
althoughddG=0 as always because of the exterior geometry,cthssical
(high-action) magnetic monopole density becomes tmen-zero
P=dF = ddG-iG?)=-idG?. For SU(N),P is also an NxN matrix. In
integral form, using Gauss’/ Stokes’ law, this bees:
[[[P=[[]oF =[[[ ddc-ic?)=-i[[[dc* = ffF = ffdc-iffc* =-iff6* .(1.1)

and from the last two terms above, we also dehieecbompanion equation:
ffdc=o0. (1.2)
Of course, (1.2), albeit with the different fieldme, is just the relationship
j':ﬁdAz 0 which tells us that there are no magnetic monapaleAbelian
gauge theory. But in light of (1.1), which prove&deis with a non-zero
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magnetic monopold[[P =-iffG*#0, what can we learn from (1.2), which

is the Yang-Mills analogue to the Abelian “no maftin monopole”
relationshipﬁ dA=07?

If we perform a local transformatiof — F'=F-dG on the field
strengthF, which in expanded form is written &" - F*'=F* -9"G",
then we find from (1.1) as a direct and immediasutt of the Abelian “no
magnetic monopole” relationshﬁdG =0 in (1.2), that:

[[[P=§F - f{F =f(F-dc)=§fF. (1.3)

This means that the flow of the field strengﬁqz :-iﬁGZ across a two

dimensional surface is invariant under the localggalike transformation
F& L F*'=F# -9"G*. We know in QED that invariance under the
similar transformationa” - A“'= A* +9#A\ means the gauge parameferis
not a physical observable. We know in gravitatich@ory that invariance
under g - g”'=g*’ +0"“N\"* likewise means the gauge vectaf is not a
physical observable. In this case, the invariamde ﬁF under the

transformationF* — F*'=F* -9“G* tells us the gauge fiel” is not an
observable over the surface through which the fﬁid = —iﬁGz is flowing.

But G# are simply the gauge fields, which in QCD, aredhen fields. So,
simply put: the Yang-Mills gauge field§”, including gluons in SU(3) are
not observables across any closed surface surmmi@dmagnetic monopole
densityP. No matter what may transpire inside the volumgresented by
mP , the gauge fields remain confined.

Taking this a step further, we see that the osigf this gauge field
confinement rest in the 140-year old mystery awhy there are no magnetic
monopoles in Abelian gauge theory. In differenf@ms, the statement of
this isddG=0. In integral form, this becomq'§dG:0, equation (1.2). Yet

it is precisely this same “zero” which rend%‘&: R ﬁF' =ﬁ|: invariant under

Fv o F™'=F# -9G# in (1.3). So the physical observation that thame
no magnetic monopoles in Abelian gauge theory laées into a symmetry
condition in non-Abelian gauge theory that gaugednoflow is not an
observable over the surface of a magnetic chakgain: In Abelian gauge
theory there are no magnetic monopoles. In noni&beheory, this absence
of Abelian magnetic monopoles translates into theeg no flow of gauge
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bosons (e.g., gluons) across any closed surfacgeuswting a Yang-Mills
magnetic monopole. Consequentllige absence of gluon flux, hence color,
across surfaces surrounding non-Abelian chromo-reignmonopoles is
fundamentally equivalent to the absence of magmetioopoles in Abelian
gauge theory.And, because this is turn originatesdd=0, we see thathis
confinement is mandated by the differential forne®ngetry, imposed by
spacetime itself The very same “zero” which in Abelian gauge tlyesays
that there are no magnetic monopoles, in non-Abaj@uge theory says that
there is no observable flux of Yang-Mills gaugddseacross a closed surface
surrounding a Yang-Mills magnetic monopole. Wenadt find a net flow of
gluons across a closed monopole surface in YantgMihuge theory any
more than we find Abelian magnetic monopoles inctetelynamics, for
identical geometric reasons.

2. Yang-Mills Magnetic Monopoles Contain Fermion Wavefunctions

While gauge field confinement is a necessary preseg for Yang-
Mills magnetic monopoles to be considered baryamtiidates,” it is by no
means sufficient. At minimum, we must also shoat tthese monopoles are
capable of naturally containing three fermions umtadble color eigenstates,
because we know that baryons contain three colqueaks. So, we now
show how the hypothesis that Yang-Mills magnetimopoles are baryons is
fully consistent with SU(3) QCD as it has been extensively studied and
confirmed, replete with three valence quarks ammgg and quark-anti-quark
pairs (mesons), and that QCD can in fact be vieagethe veryconsequence
of this thesis. This will be the central focus etsons 2 through 5.

For this purpose, we start with the classical 6ohoelectric” and

“chromomagnetic” Maxwell field equations, usimy’ =0* —iG*:

3’ =9,F* =9,D¥G" =0,D*G" -9,D'G* =(g"'9,D’ -0"D" )G, (2.1)
PH =0°F* +0*F" +0"F™ (2.2)
together with the Yang-Mills field strength tensor:

F =9“G" -0"G* -i|G*,G"|=D*G" -D"G* =D*G". (2.3)

Above, group generatord' are related by the group structure relation
f%T =i[T,T*|, andF* =T'F* andG* =T'G,* areNxN matrices for any
given SU(N) (same fod” and P?*"). (2.2) and (2.3) respectively are just
expanded restatements of the classical field oelakips P=dF and
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F =dG-iG* which we used in (1.1). We do not in general shiwe
interaction charge strenggf but scale this into the gauge bos@@’ - G*.

As soon as one substitutes the non-Abelian (218 Maxwell’s
equation (2.2), while the terms baseda®” —90"G* continue to zero out by
identity in the usual way (vidd=0 which as shown in section 1 confines the
gauge fields), one nonetheless arrives at a rdsiduazero magnetic charge:
P =-i(0°|c#,6" |+a%|c",G7|+8v|G7,G*)) L (2.4)

=-ifoecr.6*]+[6*.076 | +[p+cY 67 ]+ |6 04G7 ]+ [orae . 6#] +[c7 0¥ G¥])
This is a longhand version ¢f = -idG? =-2idG used in (1.1). The balance
of this paper will largely be devoted to studyimistP?" monopole closely.
In sections 2 through 5 we will essentially stutdysymmetry properties and
show how these coincide with those of QCD. Inisec® through 9 we shall
study the circumstances under which it is topolalycstable. In sections 10
through 12 we shall study a Gausssnsatzfor fermion wavefunctions which
gives this monopole a short interaction range aettly calculable mass and
binding energy predictions according with experitaénbservations.

To begin, we make use of the commutator relatipnstc = i|jk*,c*|
to replace the varioug’G* in (2.4). ExpandingG*“k’G" -G*k°G" appears
throughout, so these terms drop out. Re-consaiiglgields:

P =—(|c*,c"| k7 |+|c".c7| k*|+|c?.6#| k")) (2.5)

Now, by way of brief preview, in the t'Hooft modfl] which we shall
review in detail in section 9, thepin 1 gauge fieldare specified as a function
of radial distance using theansatzG,, = #abbe(r). Solutions of Lagrangian

(9.2) infra are then used to fin@(r) and lead to the t'Hooft monopole
solutions. Here, we will instead seek an inverskation G, =1_,J° for

Maxwell's (2.1) to replace ead3” above with aJ# which can then be used
to introduce fermion field wavefunctiong via J* = ¢y*y . Theansatzwe
employ will then be based on the radial behavioth&fsespin %2 fermion
fields Using spin % fermion fields rather than spin 1 gaufjelds to
introduce an ansatz about the radial behavior oé ¥, is the primary
difference between the monopoles to be developesl had the t'Hooft
monopoles.

Proceeding using’G* = i[k”,G”], inversel ,, is specified in terms of a
U - o sSymmetrized configuration space operator based the
g“’a,D? -9“D? contained (2.1), with a hand-added Proca mass, by:
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o (- 9% (KK, + k.G, |-m?)+ k#k? +1ilk*, G |) = 5%, . (2.6)
We also use ao v symmetrized |, = Ag,, +Bk,k, +1Cilk,,G, | to
calculatel ,,. In doing so, we keep in mind that t@& is an NxN matrix for

the Yang-Mills gauge group SU(N), so any tit@€ appears in a denominator
we must actually form &ang-Mills matrix inverse So that expressions we
develop have a similar “look” to familiar expresssofrom QED, we use a
“quoted denominator” notation/"M"=M ™ to designate a Yang-Mills matrix
inverse. Thusg® =1/"G", etc. This inverse from (2.6) is calculated to be
k,k, +3ilk,,G, |
| = "m’ -kk, —ilk?,G,|"
v "k, -m? +i[k?,G, |"
and can only be formed if we simultaneously imptse covariant gauge
condition, in configuration space:
(0,0, -10,,G, Jo#a° -18%“G?)=0. (2.8)
Note that the often-employe‘tk”,GU] =0’G, =0 isnota gauge condition here;
this is replaced by (2.8).

Now, inverse (2.7) has many interesting propesiagh we shall not
take the time to explore here which would requimesatire separate paper to
do them justice. Special cases of interest incl{ifes,]=9,G6, ~ 0; m=0;
both d,G, -~ 0andm=0; and on shelk“k, —-m? =0 for m#0, or k?k, =0
for m=0. We will also note that when working towards aawum path
integral formulation,i[k”,GJ]:a”GJ in (2.7) is replaced by a gauge-invariant
perturbation-v =(5°G, +G,37)+G°G,, contracted from a perturbation tensor
—vW:(aﬂGV+GVa/')+G/‘GV. But our interest at the moment is in the low-
perturbation limit, which is specified bik,,G,]=9,G, ~ 0. Thus, using (2.7)
in the inverse relatiow, = 1,37, we “turn off” all the perturbations by setting
ifk,,G,]=0,G6, =0. When we do so, all the inverses (quoted dendwis)in

(2.7) become ordinary denominators. We then redisteg the fact that in
momentum space, current conservatin“(x)=0 becomesk,J“(k)=0 (see

[4] after 1.5(4)). We thus obtain:

g P
G =—32% 399, 2.9
Y K%k, -m? (29)

o

~dy *

: (2.7)
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The above is just like the expressions we encodaotenverses with a Proca
mass in QED. It says, not unexpectedly, that & ldw-perturbation limit,

when we set 0,G, - 0 (and in a deeper analysis,
~v# = (3G’ +G'0")+G*G" ~ 0) QCD looks like QED.

The point of developing this inverse, is to be ableise (2.9) in (2.5)
and then deploy fermion wavefunctions v =gy*w. Because (2.5)
contains six different appearances @&,, there are six independent

substitutions of (2.9) into (2.5), and what we mgsesume to be six
independent Proca massas To track this, we will use the first six letteok
the Greek alphabetr,3,y,d,6,¢ to carry out the internal index summations

and to label each of these six Proca masses. sihitution yields:

o _ gaﬂ‘Ja gVﬁ‘]ﬁ ke
i P ——
o ~Ma 5~ M)

) 9", 2 g%J, 2} KX | - (2.10)
k) 6 k)
| Kk, —my)” Kks =My,

T ngE gﬂ(\]( V_
ek, —m,? Kk, m |
KK~y ¢ ~Mey ]

Here, we sesix massive vector boson propagateech coupled with
a current vectorld,. We raise the indexes on all the currents andrabhe

g%. We useJ” =T'J*, i=123.N*-1 to explicitly introduce the SU(N)
generators. We factor out the resulting commma{udrTjJ. And finally, we

employ J* :z/_/'l'iy"z// and the like to introduce fermion wavefunctiona/ith
this, and moving all currents into the same nunoerg2.10) becomes:

[{ 1 GT Yy, y"w} kg}

a _ 2 B _ 2
kk, M, kkﬁ m s

(1 gwywrmyw) L. 2.11)
k’k, ’

_ 2 o _ 2
m,"  Kk; —my,

[ 1 t//TiV"t//l//ij”t//J k"_

£ _ 2 7 _ 2
Kk —my~ k7K, =g
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The above monopole now contains fermion wavefunstio three
additive terms. In the next three sections, wdl sw how these are the
wavefunctions of the three colored quarks of QCD.

3. Yang-Mills Magnetic Monopoles Contain Three Femions and
Fermion Propagators

Let us first take a close look at the fermion term
uTy Ty wikPk, -m,,?) and the other two like-terms in (2.11). First, we
focus onyT, y*wyT 'y, and refer to sections 6.2 and 6.14 of [5]. #sih two
spacetime indexes, v, had been summed with one another in the form of
YT y"wyT,y,w, then this would represent Moeller scattering. t Because

these ardree spacetime indexes, the Feynman diagram assoaidatedhis
term will be that for Compton scattering. The tlewest-order diagrams for
this, as will be developed in the discussion tdofe) are shown in Figure 1

below. Specifically, the left vertex contains tfaetor T, and the right
vertex containsT,y”, with the free indexeg, v shown at the end of the
respective boson lines. For the four-momentumhef wavefunctions, we
designatep’ to represent the initial incoming momentum of tightmosty ,
and p'? to represent the final, outgoing momentum of Eh‘ﬁrﬂostzz. Thus,
we rewrite this term ag(p')T, y“wyT, ' ¢ (p) -

T ’ v w(p # v
V}kﬂ W(P )T,J’l (ﬂ+ m)T/?’ ‘//(P) ﬂ,](’a u’kg W(‘D )T[}’ /E‘D+nl)fiy i//(j?) ‘u!k’ﬂ
pﬁp/}—m: P Pg—m

1y >t {1y 7 4
pcr(:) = pa+kc p o = pﬁ_k o B
w(p) ) y(p) w(p) wip)
_ 1V _ N:
Z"P““ e £!§+ m (#H— M) Zw'“ﬁ = E|‘+ JL (p * m)
o )'cr o ro
P s-channel : P70 s =38 F P t-channel: p7p_ =t p
Figure 1

Appearing in the center of the numerator¢g/ . For Compton
scattering, these two wavefunctions have no intenge vertex and so are
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represented by a single fermion line in the midufi¢he diagram. The four-
momentum is eitherp’ = p? +k for the left diagram of Figure 1, or

’o=p’-K? for the right diagram, withk’ and k'“ respectively
representing the four-momentum added to or suleaétom the fermion
wavefunctions at thd, ) vertex. In terms of the Mandelstam variables,

,o”(s)pa(s) =s, while ,o”(t),oa(t) =t, which explains the choice af t labels.

For notational compactness, we shall often makeofis®” while keeping in
mind that this may represent either gfy or p°w as defined above.
Because these wavefunctions are directly back tk ba the form ofyy
with no intervening vertex* , the momenta of the two wavefunctionsyig

are equalp’(y)= p"(z?/):p", so we may sefy = uu, whereu andu are a

Dirac spinor and its adjoint. For U(l)l/(z:ua is a 4bdrac matrix
because each spinor has four components. ButU@N)S it is important to

keep in mind thag/¢ =uu  is g x N)x(4x N) matrix.

Next, we sumuu over all spins stateg, u. Often, this spin sum

spinsu

is written as¥__uu=p+m (see e.g., [5], section 5.5). But there is an

spins

implied covariant (real) normalizatiohl® = E+m in this expression. So to
be fully explicit, this should really be writtenefs [5], problem solution 5.9):

_ 2

ZSpins uu = N (Ip + m)’ (31)

CE+m
where p+m is also a(4xN)x(4xN) matrix for SU(N), and where we have

made use ofp = y? p, using the s and t-channgl’ as defined above, with

p° =E. So we use the foregoing including (3.1) in (3.tblobtain

GTYVWTyy YTy amyy 4Ty S yy - N ¢y (p+mTy 'y (32)
Kk, —my° Kk, —my,° Kk, —my,° E+m Kk, —m,°

for top line term in (2.11), and similarly for tisher two like-terms.

Now, let us take a moment to discuss propagatdrs.general, a
propagator (timesi} is specified byzspmsl(p” P, —mz), where p? andm are
the four-momentum and rest mass of the propaggtnticle. For fermions,
we specifically employ (3.1) including’ as defined above, so that:
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2 pins _ N2  p+m _ N2 p+m _ N? 1 _ N? ( _ )—1(33)
o°p,-m E+mp’p,-m* E+m(p+m)p-m) E+mp-m E+m pmm
For N> =E+m, the propagator becomes the familigr—m)™ =1/(p-m).
Of course, having #4xN)x(4xN) (or even a 4x4) matrix suclpasn in a
denominator is really not a proper mathematicalresgion, but merely a
convenient shorthand to designatenatrix inverse Thus, as we have done
previously in section 2, we will use a quoted demator1/" p —m' to gently
remind us of this. With the earlier definitions of , (3.3) has two alternative
formulations corresponding to s and t channel @iangrin Figure 1:

zspin.':, N? y_)+k+m N 2 1 N 2 .
) = = ~m)*.(3.4
- " Eem(pekf (pek), n  Evmiprkon e R MO
S 2 Ly , ,

e - : : N™ (p-k-m)*.(3.5)

t-m?  E+m(p-k)°(p-K), -n? ) E+m"p-K -ni “E+m

Now, let us closely contrast (3.2) with (3.4) aBdb]. The final term
in (3.2) contains at its center, the expresq;onm)/(kﬂkﬂ —m(ﬂ)z). This
looks intriguingly like the fermion propagator inet second terms of (3.4) and
(3.5). Howeverm, in (3.2) started out in (2.10) asgauge bosomass in
the denominator of a gauge boson propag@t@r/(kﬁkﬂ—mﬂ)z), with k”
being the associated four-momentum. By contrdst, fumerator of (3.2),
with either g, +m=p+k+m or p,, +m= p-Kk'+m contains dermionmass
m and associated Dirac-daggered four-momentum That is, (3.2) looks to

have “apples” (bosons) in the denominator and “gesi (fermions) in the
numerator. So the question arises: is there sometw mix “apples” and
“oranges” and actually treat (3.2) — and therefive terms in (2.11) — as a
fermion propagator? And if so, what is requiredus to be able to do so?
First, the generalized expression (3.3) does marichinate fermions

from bosons. If thez .,  in the left term of (3.3) operates ami, then
p°p,—nt in the denominator produces a fermion propagatibrthe >,
operates on an expressigrt e, with boson polarization vectorg’p, - m?
produces a boson propagator. That is, it isZfg, in the numerator of a

propagator such as (3.3) which sets the tone fathen the propagator is that
of a fermion or a boson. This suggests, becgusen is in the numerator of
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(3.2), and of (2.11) vigzy = uu, that the denominatore’k,, —m;* in (2.11)

and (3.2) should be associated with fermions, nebhs.

Second, more fundamentally, it is instructive tms&ider spontaneous
symmetry breaking, because that entails a similatingy of apples and
oranges. In weak SU(g) for example, we start with three massless gauge

bosonsW* W W each with two degrees of freedom for a subtotaixf
and a complex scalar doublet which contains four scalar degrees of

freedom, for a total of ten degrees of freedomteA§pontaneous symmetry
breaking, three of the scalar degrees of freedarisavallowed” by the three

gauge bosons via the Goldstone mechanism. Theeghagons become
massive, each with three degrees of freedom footal of nine, and the

remaining scalar degree of freedom goes to the Higdd. We still end up

with ten degrees of freedom, but they are redisteith from the scalars
(“apples”) to the gauge bosons (“oranges”). In HW(xU(1)Y electroweak

theory, we start with four massless gauge bosotierahan three, but the
photon remains massless. So twelve degrees didnedbefore symmetry
breaking (eight from the four massless gauge bosors four from the

complex scalar doublet) remain twelve degrees eddom afterwards (three
massive vector bosons, one massless photon, arndigge field).

Equation (2.11), which is what we are working wahthe moment,
started in (2.10) with a total of six Proca (presdmmassive)boson
propagators thus totaling 18 degrees of freedom. So if watvt@a mix apples
and oranges in (3.2) using a Goldstone-like medmarthat shifts degrees of
freedom from one particle type to another, we nhestsure to end up with
eighteen degrees of freedom in total once we adoak.

Consequently, let us now introduce the hypothebhist teach of

kk; —m*, k°k; —my* and k‘k, —m,,* in the (2.11) denominators are to
be associated with tffermionmasses and momenta in thg, uu 0 p+m of

their respective numerators in (3.2). We shallidzé this “propagator
hypothesis” by showing that it leads to QCD. Tinisans that (2.11) will now
contain three massive fermion propagators, andetber three fermions,
which is highly desirable if we are attempting &ntbnstrate that the Yang-
Mills magnetic monopole is a baryon. And since assive fermion contains
four degrees of freedom, (2.11) will now contaitotal of twelve degrees of
freedom for the fermions. This leaves six of tBedkgrees of freedom for the
three remaining vector bosons propagators, and esmsthat these bosons
must drop down to two degrees of freedom apiecetlaunsl become massless,
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i.e., that we must now set their Proca masses tto, z8,,,m,,m,, =0.

Now, the 18 degrees of freedom that initially beled three apiece to six
massive vector bosons have been redistributedf fli2see now belong to the
3 fermions, and only 6 belong to the 3 remainingdns. That this hypothesis
leads to the requirement that the gauge bosonsimemassless, is one of
several results we shall soon derive that are fotlgsistent with QCD and
indeed are required by QCD.

To implement this, using (3.2) in (2.11) and thearsd t channel

diagrams in  Figure 1, we promotek? - pf =pf+kf and
k? - pPu = p? -k'? to the momentum of the associated fermion line&én
middle of both of Figures 1, and similarly for tbther terms in (2.11). Thus,
at the T,)” vertex of the s-channel Figure 1, we are taking tmiginal

incoming gauge boson momentuk? and adding it to the incoming fermion
momentump” to arrive atp” +k”. And, at theT, )" vertex of the t-channel

Figure 1, we are taking the original incoming gabgson momentunk?
associating it with the outgoing momentum by sgttkf — —k'”, and then
adding this to the incoming fermion momentysfi to obtain p? —k'”. The
final fermion momentum, in either diagram, is then
p'? =pf+k? -K'* =p”+qg?. We then generally label all objects associated
with these three fermions with eithgrd or ¢, while settingm,,,m,,,m,, =0

to balance the degrees of freedom, and we shownitied and final fermion
momenta. With all of this, (2.11) now becomes:

1 N’ "Zw)( Pp) TV (/Pun + M) )TJ V'5/(Pg) K
k7K, Egy + My, PPos~my’

N 2

()

1
{ k’k, Ez + M,

2
1 Ny

pépa - ma)z

W5 (P5)T V" (/p@ + %)Tj Y t//@(p,;)J k#}

(3.6)

+ [ wm(p})'l'iy”(,p(() +””kz))TJV’w<z>(pz)J kv:l
Kk By +my P oMy’ |
The Higgs / Goldstone mechanism has long been krtowanable massless
gauge bosons to become massive by swallowing degreéreedom from

scalars. Here, fermions become massive by swalpwiegrees of freedom
from massive bosons, which then revert to masslessens. This turns out to
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be perfect for QCD, which is known to require masslgluons and which is
expected to have massive quarks.

Looking closely at (3.6), we now also see a pathckmosing
normalizationdN which simultaneously: 1) are covariant; 2) retdia original
mass dimensionality of +3 fauu ; and 3) greatly simplify (3.6). Specifically,
we nowchoosehe covariant, mass dimension-preserving normahizs:

Nes) = (E</3) + m(ﬁ))k”ka; Neg' = (E(é) + m((,))kyky; Ne)' = (E(Z) + mm)k"’kg. (3.7)
Using these in (3.6), and re-labeling - 1.6 - 2;¢ - 3, yields the further
simplified expression:

41/ (1)Ty (ﬁ(l) +m(1) )T yv w(l)
P’y —my’
pow =fri 71| + [meV (P, + Mo )T, W(Z)} . (3.8)
P :05 m(z)2
N [l// @V (4’(3>+m<3))T Y w(s)}
i PP, My’

By virtue of (3.7) explicitly preserving the massensionality, (3.8) retains a
mass dimension +3 which one expects for a sourceerudensity p

corresponding with the second spacetime derivatiesgauge potentiaB”
with mass dimension +1. We also removed the Initial final p and p’
which appeared in (3.6), which are now regardeldetamplicit in (3.8). The
above should be contrasted with [6.103] and [6.104%].

Now we return to the commutato[Ti,T"J. This operates to
antisymmetrically commute the verticéE v )(Tj Y ) and so visibly restores
the antisymmetric character of the spacetime insletkels:

fr 7] (””m)T v ‘//V[”(ﬂ”m) Yo _elyarl (3.9)
P’ o, P’ p, "p-m'
where in the final term, we hadeflnedthe shorthand operator
=PIy (3.10)
p+m

This operator allows us to write consolidated eggi@ens with " p—-m"

fermion propagator denominators and clearly displdye spacetime
symmetries, while at the same time providing a ghadtder to restore the full
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propagator. The “quasi-commutatdy”s y*| says that one inserts (3.10) into
the final term of (3.9) at the location designabgd/, and then commuteg”

and ) with one another in antisymmetric combination dtibe p+m in the

numerator to arrive at the next to last term i).3.
Using the compact notation of (3.9) (which we smadimentarily re-
expand), we now write (3.8) as:

pow — _ [w(l)[yﬂﬂyv]wm}ka + [‘ﬂ(z)[yﬂﬂyv]w(a}kﬂ + [‘/’(m[yﬂﬂyv]‘/’(s)}ku . (3.11)
Py My P ~My" Py My

This explicitly highlights the antisymmetric comnmatibn [G”,G"J of free
indexesu, v with which everything started back in (2.5), ancere further
back, in the underlying field densitF* =9“G” —a”G”—i[G”,G“J of (2.3)
which is the heart of non-commuting Yang-Mills @etheory. This also
illustrates the “clean” compactness provided bysqnammutator[y"u y ]

All that now remains in (3.11) is the final commiotawith momentum
terms such a&“. Going back to the earlier-employeé€iG* = i[k”,G"J which
tells us that commuting a spacetime field with is just a clever way to take
its derivatives, we can similarly write’M*" = [M ”V,k"J for a second rank

tensor fieldM*(x° ) So, if we also use (3.11) tiefinea second rank Dirac

“quasi-covariant”-2ig*" = [y"my"J , we may finally consolidate (3.11) to:

pow — _z(ag l//(l)U”DV 40(1) + o w(Z)JVEU ‘//(2) +9¥ w(B)UUDu w(3) . (3_12)
Py My P~ My Py My

This is our final expression for a Yang-Mills magoenonopoleP*" . We
shall now explore its symmetries and other propsiiti a variety of ways.

4. Yang-Mills Magnetic Monopoles Contain Spin 0, Bnd 2 Terms in
“Vector (V)" and “Axial (A)” Variants, Consistent w ith Nuclear
Phenomenology

Before proceeding further with development, we paiasthis section
to first evaluate the compact expression in (3X@lieitly, so we can see what
is contained in each of the terms in the monopd®l&2). Separating the terms

with p = p,y” andmyields:
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dvovle _ o e+ myy _ ooy v milyt vl 4.1)
"p-m p’py —m? plpg-m?  pPfp,-m’
The second separated term contains the ordinaondaank Dirac covariants
-2ig" =[y" ,y“J. But the former term contains a third rank foriomtof
Dirac matricesy**y” y*!, summed over the index with po,. So, we expand
the numerator in this term to write:
LYY VI = Py Y Y+ Py vy W+ oYy + payty? y iy (4.2)
Then, we evaluate each of the six independent coeme for
v = 010203122331. The terms where either theor v index is equal to
the middlea index drop out because of they antisymmetry. Applying the
Dirac relationy® =iy°%'y?y? in various combinations to the remaining terms,
then usingg,,, =7, in geodesic (flat spacetime tangential) coordimédte

lower indexes, the result can be covariantly-sunmedrvia the Levi-Civita
tensor (in a basis whe®,,,=+/—J) as:

Wy py i = 26" p Ly VY (4.3)
Therefore, the explicit evaluation of (4.1), usitige earlier-defined second
rank Dirac “quasi-covariant™ 2i g** =[y”uy"J and (3.10) for,, and also the
ordinary covariant-2ig* =|y* |, is:

porry _iglyorly e erm)yy | goty e wd ey vy | (a.4)
"p-m' 2 "p-m' 2 pfp,-m* pfp,-mt pfp,-m?

This expression contains both a second rank antismic tensoryo* 'y,

and a first rankaxial vector ¢y”!y°w . This is the first of many instances

where we shall discover that Yang-Mill magnetic mpoles inherently
contain certain chiral asymmetries that introdug@laobjects which may
account for the chiral asymmetries and the manwyladibjects observed in
strong interaction hadron phenomenologihis sort of non-chiral result will
provide one very strong basis upon which to expemntally validate the thesis
that baryons are Yang-Mills magnetic monopoles.

Let us now go one step further, and use the GordBmomposition
(see, e.q., [6] at 343-345) :

oy =§n@{(p' +p) +3(p- p)aiam}lﬂ (.5)
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where g is the gyromagnetic g-factor, with an axial wavefion
W - vy =y,, to further decompose (4.4) into:

_O-NDV — v

L

pomt PPy (4.6)
_i gllvaﬂp[a(pr_l_ p)/?] wa_iggﬂvaﬂ(p,_p)gp[a

2m  pfp,-m? 2m2  pfp,-m’

with q=p —p as previously defined. This illustrates a) whyl(B is

desirable for compactness and b) how when fullyaexed, this compact

notation reveals not only the second rank (spinaglisymmetric tensor

wo*y and first rank (spin 1) axial vectgry”y*w of (4.4), but also a second
rank (spin 2) axial tensagic?® y°y (in the form of an axial magnetic moment
term summed withg,) and a zero-rank (spin 0) pseudoscalgfy . Most
importantly, the magnetic monopole of (3.12) isltboiit of the term expanded
in (4.4) and (4.6), and so contains all of thgs@ §, 1 and 2 “vector” and
“axial” objects.  This will be very important to derstanding the
phenomenology of the observed strong interactiosom®& and in the next

section, we shall show how these terms are indieaif the types of “vector
(V)" and “axial (A)” mesons which mediate nucleatdractions.

Gy

5. Fermi-Dirac Exclusion Requires Using SU(3)Quantum
Chromodynamics for Yang-Mills Magnetic Monopoles, Yelding the
Correct Baryon and Meson Color Wavefunctions

Returning to the main development, the Yang-Millsagmetic
monopole P*" (3.12), when contracted to the differential thfeem used in
section 1, namely = P# dx,dx,dx,, is an NxN matrix for SU(N). We have

not yet chosen a particular Yang-Mills gauge grou@ssociate with (3.12),
and in principle, are free to ug =T'P* with f*T :—i[TJ',Tk] generators
and structure constants for whatever gauge groupvisie to explore. But,
(3.12) does contain exactly three fermion waveflonsty ), ¢, and ¢,

and their associated propagators, so one is cigrtamtivated toconsiderthe
Yang-Mills gauge group SU(3). But is there anythihat mightrequire us to
apply SU(3) via purely deductive logic?

The answer is yes: The Fermi-Dirac Exclusion Rpiec(with which
Pauli’'s name is also often associated) requiresritbawo fermions within a
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given system may simultaneously occupy the samatqoastate. So if we
regard P#" in (3.12) as a “system” containing three fermioavefunctions
and associated propagators, thennugstutilize a gauge group that enables
each of these three fermions to be distinguish&iade one another with
unique quantum numbers, similarly to how everytetecwithin a given atom
must possess a unique set of quantum numbeérsn, s generally associated
with energy, orbital angular momentum and spine fhtural gauge group to
achieve this exclusion, of course, is SU(3) (or BKJ(1) as we shall
momentarily discuss).

In fact, this is where QCD usually start$f we understand baryons as
containing three fermions which are quarks, andkmew that Fermi-Dirac
exclusion mandates these three quarks not simuoltshe occupy the same
guantum state, then we must introduce SU(3) orreamathereof to enforce
exclusion. So we call the quarks Red, Green, Bhia matter of convention,
set up an SU(3) Dirac Lagrangian for these quarkppse gauge symmetry,
and arrive at SU(3)QCD.

In the present developmenwe discover that Yang-Mills magnetic
monopoles naturally contain three fermions, we Isirlyi require exclusion
and so introduce SU(g@)and we thereby arrive at exactly the same StJ(3)
QCD theory, with no contradiction, simply from &felient starting point

Accordingly, we now take the formal step of impasiquantum
exclusion upon the three fermions in (3.12) byddtrcing the gauge group

SU(3) with generatorsT' = A;i = 1.8 normalized tor (¥ | =1, and assigning
these three fermions to one of three exclusiveragilgenstates R, G, B, with
associated quantum eigenvalues, as follows:

Y 0 %1 (5.1)
Yo E‘/‘S =5A :0> :[ 0 (¢ E‘/lg == :%> :[‘//e}‘/’@) E‘/lg =-i A :‘%> =0

0 0 A
These fermions are now specified in precisely thmes way as the three
coloredquarksof QCD with SU(3}. Similarly, referring back to sections 1

and 2, the eight associated gauge bosons now be@meiG”. And

because of (2.2), all of the non-linear gluon iattions of QCD will be
present here too. Further, earlier, between (@) (3.6), we determined
these gauge bosonsustbe massless for the quarks to acquire their egdect
non-zero mass. So these now have all the required characteristics to lee th
eight bi-colored, masslegguonsof QCD. The thesis that baryons are Yang-
Mills magnetic monopoles does not contradict QCLamy way! Moreover,
when combined with the Exclusion Principle, thissis actually mandates




-21-

QCD! But as shown in section 1, there is a bonusimdpproach to QCD:
the confinement of gauge fields is built into thedry from the start, whereas
in many instances it is imposed by separate, adrhechanisms, see for
example, the MIT bag model in, e.g., [7] section T#is emergence of QCD
also validates the “propagator hypothesis” whichieayielded (3.6) from
(2.11). Now, let's use (5.1) in the*" of (3.12).

In the section 3, the spin sum (3.1) played araénbvle. From (5.1),
let us form the three spin sum operands:

Wy 0 0 0 0 0 00 O
w(l)éz(l): 0 0 0y l//(g#/(z){o wG&G 0} ¢/<3)¢/(3)={0 0 (l }(52)
0O 00O 0O 0 0 0 0 ¢ty
We see very explicitly that each of these is a 8a®r matrix in which the
non-zero elements are 4x4 Dirac matriggg (and the zeros are all 4x4
zeros). If we then start with (3.12) and backtrabkough section 3 by
applying o* :‘—Z[y”my”J; (3.9); (3.7); (3.1) andyy =uwu, and if we then

substitute (5.2) into the backtracked result, wg wiatain (withz ;. - = for
notational compactness):
L oo Yl 20 o) W 0 0
K7k, pRppRp - Mg - - . (53)
Pallv =—i 0 yiall l//Gy{Vfl//Gwaale 0
k ky P Pss — Mg _ _
a 1
0 0 1 UV s

kk, pBZpB( - mBZ
Then, forward tracking again through section 3,reepply spin sums
and normalizations, and arrive back at:

aU LI{/RO-IJDV[//T 0 0
Pr — Mg _
Payv - _2 0 a/.l wGaVDU l//G O . (54)
IIpG — mGII B
0 0 av l)[/Bo-UD” l//B
llpB mBlI

The difference between (5.4) and (3.12) is thatrwive explicitly use the
colored wavefunctionsi, ¢, 5 rather thany ., ¢, and ¢, the

character ofP*" as a 3x3 color matrix is made explicit. And, istep that
will have great topological significance, extragtitme trace, we write:
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TP = z(acr ‘//RJ'UEVI/IR +a/1 wGJVDU l//f +0V ‘/'/B g’ I/IBJ (5.5)
"Pr Mg’ "Ps — Mg Ps —M

The above is identical to (3.12), but for the fdwt when we wish for the
colored wavefunctions to appear explicitly in lietiy ,, , ¢, andg, in an
analogous formye are required to employ the trace equation

Now, we have pointed out at the start of thisisacthat developing
Yang-Mills magnetic monopoles and then applyingl@sion yields the basic
required elements of QCD such as three colors afkgand eight bi-colored
massless gluons, plus the added bonus of a gaelgecbnfinement naturally
built in from the start. But there is more: Fjrdt us associate each color

wavefunction with the spacetime index in the relad€ operator in (5.5), i.e.,
o~R, u~G andv~B. Keeping in mind thaTrP?" is antisymmetric in all
spacetime indexes, we express this antisymmetrii witgdge products as
oCuCv~RLGLB . So the natural antisymmetry of the magnetic
monopole P#" leads straight to the required antisymmetric caorglet
wavefunction RG, B|+G[B,R]+ RG] for a baryon (see [5] equation [2.70],
and compare the top line terar|Gc#,G"|+o%|c",G7|+a"|G?,G*| of (2.4)).
That is, (5.5) has what is known to be the requisgdisymmetric color
wavefunction for a baryon!Indeed, one can argue that the antisymmetric

indexes inP?" should have been a tip-off that magnetic monopulesid
make good baryons.

Next, we showed in (1.3) that the invariance@i: under a gauge-
like transformationF* — F*'=F* -9"G*' means that no gauge bosah$
(now gluons G*=1G*) are allowed to flow across a closed surface

surrounding a Yang-Mills magnetic monopole. So$at(3), the gluons are
confined. So far, so good. But that only tellswigat cannot flow. To find
out whatcan flow, we return tO”JP:ﬁF :_iﬁez from (1.1). Because

P =P*dx,dx,dx,, let us multiply both sides of (5.5) by the antiwouting
volume elementdx,dx, dx,, form matching trace equations, take the triple

integral, then apply Gauss’ / Stokes’ law to thghtihand side and rename
spacetime indexes. What we get is:

(e free =—ffree? = ff| £57e £ £a e 059
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The Gaussian integration has removed &ieoperators from (5.5),
and what remains by inspection in (5.6) is the swtnim color singlet
wavefunction RR+GG+BB. This is precisely the symmetric color
combination required for a mesonBut look at the context in which this
meson wavefunction is revealed: if the integrand (}6) is in fact
representative of mesons, then (5.6) taken togetiitbr section 1 makes a
very clear statement:. Mesons, not gluons, are whtlow across any closed
surface surrounding a Yang-Mills magnetic monopaBut one can say the
exact same thing about what flows in and out ofbas! And, the observed
phenomenology of strong interactions makes vergrcieat baryons in fact
emit and absorb mesons, and not individual quanksglaons (see [8]
especially 14.2 and [9] for a full exposition of peximentally-observed
mesons and their spin classifications as scalapxs, tensors, etc. and axial
variants). So this revelation of meson flow acriessurface of a Yang-Mills
magnetic monopole further supports the thesis blaayons are Yang-Mills
magnetic monopoles, not only theoreticalbyt based on experimentally-
observed phenomenolagy(5.6) says that Yang-Mills magnetic monopoles
interact by emitting and absorbing mediating mesons

Importantly, however, the usual approaches to QGat provide a
compelling deductive rationale for why mesons aatigiuons are allowed to
flow in and out of baryons, that is, they do nobyde a natural deductive
explanation for confinement and meson-based intierac Often, confinement
and meson flow are simply introduced through admechanisms, again, see
[7] section 18. Starting with Yang-Mills magneticonopoles, this is fully
explained on a deductive foundation, and so QCDstiengthened and
supplemented, again, without contradiction.

Now, let’s go a few steps step further: (5.6)stels that mesons, with

RR+GG+BB color structure, flow in and out of Yang-Mills magic
monopoles. But what types of mesons? From (4d)(4.6) which expand
the terms in (5.6), we see that the mesons whash ire: second rank (spin 2)

antisymmetric  tensor oy  mesons, which are designated
phenomenologically as*2first rank (spin 1) axial vectogy”'y°w mesons

designated as"1second rank (spin 2) axial tenagro”'’y°y mesons 2and

most importantly, zero-rank (spin 0) pseudoscalgy mesons designated 0
which include the varioust and K mesons and remaining generational
mesons which dominate nuclear interactions and lwhakawa originally
predicated in 1935 to be carrier particles of ttierg) nuclear force. This is
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amply demonstrated to be experimentally true, sga&ina the extensive
evidence at [8], [9]. In fact, the only mesons nave not yet come across

when combining (4.4) and (4.6) with (5.6) are thin® scalanyy®y mesons

0" and the spin 1 vectaﬁy“zp mesons 1 But these two will also make an

appearance, as follows:
Designate axial wavefunctions vja=iy°*?> asy, = ¢, , where a

“vector” (V) wavefunctiony,, is defined as a wavefunction for which the
related current density* =y, y*w, transforms as a Lorentz four-vector in
spacetime. Based on combining the relationgiipiy*/?y* with duality
based on the work of Reinich [10] later elabordbydWheeler [11] which
uses the Levi-Civita formalism (see [12] at pagés38), it turns out that there
is a whole system of “chiral duality” that is artagral, albeit (apparently)
heretofore undeveloped feature of the Dirac algelfar example, given a
duality relationship* A" =1&*°A, , one may write y®=iy%"?/ in the
alternative formg*” =i* g*y®. Then, one may formy, o*"y, =i*w,c"y, by
sandwiching between V wavefunctions.

Further, it is also well known because the secam#t duality operator

** = -1 , that one can form continuous global rotationagig® = cosd + *sing
(this is not to exclude local duality, which is@lsf interest). For example:
&vawl/lv - COSQIZV ler//v ti Siné@vawl//;\_ (57)
W TP, — isinby, o™y, +cosby, ay,

Similar transformations may be developed for firgtird and zeroth / fourth
rank duality, with the result that tensors mix wakial tensors, vectors with
axial vectors, and scalars with pseudoscalars.inSbe end, we expect that
the Yang-Mills magnetic monopoles will allow all dfe spin 6, 1* and 2
“vector” and “axial” mesons to pass through theselb surfaces (5.6). And
y® =iy%y?/ can also be used to rewrite a spitvector” meson as a spinsi-
“axial” meson and a spis“axial” meson as a spin g¢vector’ meson. So*3
and 4 mesons will be permitted to flow as well. Furthigvere is nothing to

prevent composite mesons suchagqg. And, wheny® =iy%Y4?/ is applied

to (3.10) as part of a Gordon decomposition (realgomposition) of a vector
current, it turns out that baryon and meson phyisiemdemically, organically
non-chiral which is consistent with what is experimentalhserved, all with
v =iy%Yy?/ being the mainspring. Duality angté comes to be associated
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with the strength of the running strong coupling, and this in turn bears
well-studied relationships, [13], [14] to experint@mmomentum transfe).

So, while we shall leave the development of thigat duality to a
separate paper, we simply note for now that fulyedoping the chiral duality
of Dirac’s equation and applying this to (4.6) még one way to
experimentally confirm the thesis that Baryons &m@ng-Mills magnetic
monopoles: simply probe nucleons at varying ensrgtudy the chiral / spin
s* characteristics of the meson debris that emerges those probes, and
correlate those chiral properties to the probegiasithat were applied.

6. Yang-Mills Magnetic Monopoles Require the Topalgically-Stable
Gauge Group SU(33xU(1)

Now, let us examine the topological stability dfetYang Mills
magnetic monopole baryons, by looking at sevendhé&n aspects of (5.4) and

(5.5). First, using the eight generato¥sof SU(3): let us write the left hand
side of (5.5) aP* =AP*". The off diagonal entries in (5.4) are manifestly
zero, and as already discussed after (5.5), thidsléo baryons and mesons
respectively havingR[G,B]+G[B,R|+B[R,G] and RR+ GG+ BBcolor singlet
wavefunctions, as required by QCD. This means fibathe left and right
hand sides of (5.4) to match up while having thesspiired wavefunction
color symmetries, all six of th®”" which sum with off-diagonal generators

must be zero, i.ep * —0o. Therefore:

7124567

auv
| 2= 2R, 0 0
P*™=AR™= 0 - }LR™+IR” 0 . (61)
0 0 _2;\/§P80;UV _%F)?’O;UV

(Again, tr (Ai )2 =1.) However, because the assumed gauge group sntipde
gauge group SU(3)with all tracelessgenerators, the trace of (6.1) is also
zero, TrP*” =0. This contradicts (5.5), which has a non-zerodrand leads
us directly to an examination of topology.

In order for P = Ap*" above to acquire a non-zero trace, we can no
longer use SU(3)alone, butmustcross SU(3) with a U(1) gauge group for
which the generator has a non-zero trace. Inquéati, the U(1) generator
will need to be a 3x3 unit matrix,,, times some constant number. We
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designate this U(1) generator a8, which we take for now to be a 3x3
remnant of theT™ generator of a simple gauge grogu(N =4). If we

normalize this torr(#°f =1, then #* = 1|, .. This should be reminiscent of

electroweak theory in which a U{l)generator is crossed with the three
SU(2)y isospin generators' to form SU(2)xU(1)y with the (left-chiral)
quarks having the U(¥)2x2 hypercharge matrix generat¥r=11,,,, the
(left-chiral) leptons having the 2x2 hyperchargetnrageneratorY = -1l ,,,,

and anon-compactembedding of the electromagnetic group with charge
generatorQ =Y /2+1°% across SU(2)xU(1)y.

Once we employ SU(g8¥U(1), rather than SU(3)alone, we can now
ensure thatTrP* =2 R.”" on the left hand side of (5.5) will be non-
vanishing to match its non-vanishing right handesiand that (5.6) will then
describe a non-zero flow across the closed monopaot@ce of objects with

the color symmetry RR+GG+BB of a meson. Specifically, with
SU@BxxU(1) andi = 1.8 andl5, we write (5.4) as:

| L™+ 2R 0 0
Po/xv =/]|Plaz4v = 0 ﬁplsauv _2%/5 Pgapv +%P30/JV 0
0 0 LP. - LR™ -1 ].(6.2)
g7 Y= Yr 0 0
Pr — Mg -
=2 0 gn e Ve 0
P —Mg o
0 0 or YTV
" Ps —Mg"

The non-vanishing trace equation (5.5) then becomes

TP = 2 R = ‘2("” Vo Vn yqu¥eT Ve 500" Ve J 6.3)
\/6 Pr — Mg Pe —Mg Pe —Mg

So the left and right hand sides are now both ren;zbut this is only
achieved using SU(8¥U(1) rather than SU(3)alone. We see that with (6.1)
alone, i.e., with a simple gauge group SJ@pne, the right hand term would
become zero.This U(1) factor, which prevents the right handesicbf (6.2)
and (6.3) from vanishing, is very important to pdiwg topological stability.

In section 7, we will examine the possible phylsiteeaning of the
guantum numbers associated with this new U(1) fadBut first, we point out
the very vital benefit flowing from (6.3%his U(1) factor, by making (6.3)
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non-zero, will allow us to ensure that these YanlsMnagnetic monopole
baryons are topologically stahleThis is vital, because even though Yang-
Mills magnetic monopoles with Fermi-Dirac exclusitead us to all of the
symmetries of QCD and baryons, to wit: gauge fietwhfinement, three
colored fermions, aR[G,B|+G[B,R]+B[R G| baryon wavefunction, mesons

with RR+ GG + BB wavefunctions, and spin 0, 1 and 2 “vector” angi&h
mesons but no gluons flowing across the baryonasarfwe still cannot
identify the Yang-Mills magnetic monopole with thghysical, observed
baryons, for example, proton and neutrons, untihaee established that this
magnetic monopole is a topologically stable withité spatial expanse and
finite total energy, and with the correct sefflaor quantum numbers (most
importantly, electric charge and baryon number) clvhcharacterize the
observed physical baryons. SW8)(1) does just that!

Specifically, as is pointed out by Cheng and Lb][Jt 472-473:
“Topological considerations lead to the generalltethat stable monopole
solutions occur for any gauge theories in whichiraple gauge grougs is
broken down to a smaller grotgh = h x U(1) containing an explicit U(1)
factor.” Further, “the stable grand unified monlgpo. . is expected to have
both the ‘ordinary’ and the colour magnetic chargeso, while SU(33 alone
is incapable of supporting a topologically stabdéoced magnetic monopole,
the group SU(3xU(1) — when understood to be the residual grolipviang
symmetry breaking of a larger simple grand unifigchuge group
G O SU(3)CxU(1) — will support topologically stable configurationdndeed,

in this context, the thesis of this paper is ttie stable “colour magnetic
charges” referred to by Cheng and Li are baryons
Weinberg makes a similar point in his definitivedtise [16] at 442:
“The Georgi-Glashow model” [which was the basis for
t'Hooft's monopole model in [1] discussed at lengilsection
9 below] “was ruled out as a theory of weak and
electromagnetic interactions by the discovery ofutrs
currents, but magnetic monopoles are expected torroin
other theories, where a simply connected gaugepg®us
spontaneously broken not to U(1), but to some suhgr
H' xU(1), whereH’ is simply connected. . . . There are no
monopoles produced in the spontaneous breakingeofjauge
groupSWU2)xU(1) of the standard electroweak theory, which is
not simply connected. . . . But we do find monegalvhen the
simply connected gauge gro@of theories of unified strong
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and electroweak interactions, suchSag4)xSU4) or SU5) or

Spin(10, is spontaneously broken to the gauge group

SUI)xSWU2)xU(1) of the standard model. . . .”

Consequently, the thesis that Yang-Mills magnetionapoles are
baryons, together with the exclusion principle agliad in (5.1), not only
leads us to SU(3) of QCD with no contradiction and delivers color
confinement and the flow of mesons across monopatace. Via the non-
zero and non-trivial right hand side of (6.3), tthesis additionally forces us
to employ the non-simple gauge group SUKR)(1) with a U(1) factor to
ensure that the monopoles are non-vanishing. Nigtaoes this, in turn, lay
the foundation for a topologically stable monopatshieved by embedding
this group in some (presently unspecified) simpleroug
G =SU(N =4) OSU(3). xU(1), but the right side of (6.3) will itself be the
expression from which we may calculate a finiteybarrest mass, as we shall
later see in section 11, based on a Gaussiaatzborrowed from [3].

So, what we learn from (6.1) through (6.3) is thiowing: First, we
must start from a simple GUT gauge gro®u(N >4) because all the
generators of this group are traceless and therelfier gauge theory based on
these groups will be renormalizable, as will behidden form, any smaller
group H OSU(N =4) theory which emerges fronsU(N = 4) following
symmetry breaking. It is through the traceless(N > 4) generators that we
ensure renormalizability. But the traceless masriof su(N = 4) will cause
the monopole trace terms of such a theory to be, ZaP*” =0. Therefore,
such a theory with a simple gauge group will itseifl have no stable
monopoles. The only way ®multaneoushhave renormalizability and have
stable monopoles, as the above excerpts from [16],illustrate, is to start
with a simpleG and break this down to a smaller grdtip= h x U(1). And,
once we break symmetry and end up w8(N =4) - SU(3). xU(1), we
simultaneously have two benefits: First, tg(3). xU(1) theory will inherit
the renormalizability of SU(N>4) as a hidden symmetry. Second, the
monopoles ofSU(3).xU(1) will become non-zero as in (6.3), and the U(1)

factor emerging from breaking symmetry will makee thmonopoles
topologically stable. So the tracelessness of) (Baked on S(3) contrasted
with the non-zero-non-trivial trace of (6.2) and3)Bbased orsU(3). xU(1), is

a concrete illustration of the topological theorémat magnetic monopoles
only exist in a theory witld = h x U(1) that is broken from a largéx
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This is what directly yields the monopole stabildf/the topological
theorems as discussed above, and as we shalhgegs what will provide us
with the ability to calculate finite monopole restasses, for example, the
proton and neutron “current” rest masses, and taimbhe electron rest mass
from the up and down quark masses well within expental errors and only
about 3% from the experimental means for quark essand to obtain
binding energies clearly in accord with measureclear phenomenology.

7. Protons and Neutrons Naturally Fit FundamentalSU(3)xU(1)s..
Representations of Yang-Mills Magnetic Monopoles

Now let us take a closer look at the groups
G =SU(N =4) 0SU(3). xU(1) which we came upon in section 6 and which
will undergird the topological stability for the Wg-Mills magnetic monopole.
Volovok, in [17] Section 12.2.2, employs an SU(4pup in which the
normalizeddiag(#**)= - (3-1-1-1) is associated with the difference between

baryon number and lepton number,B-L. Specifically,
L—Bzszdiag()llf’):(J,—l 1 -1) provides a very natural fundamental

3 3" 3
representation for fermion eigenstates of one lepaod three (colored)
quarks. The Volovok model then goes on to usempeagenstates, but we
shall not do so here. Instead, we shall show Hsvsame approach, with the
A generator of SU(4) being proportional B>-L, may be used to directly
represent protons and electrons on the one handpeutrons and neutrinos
on the other, in relation to the Yang-Mills magonatonopoles that we have
developed this far.
Following [17], and using the simple gauge group(4, let us

normalize viaTr(/liz):% the two A** and 4° generators, and define a third
embedded electric charge generatpe B-L_%AS:_%(\EABMB) sitting
across these, as such:

-1000 00 0 O —1000(71)
0 00 02 0 0 0o -1 o0 of\/l
B-L=-/845=| = ° ;o2A=| 3 ; Q=B-L-2A°= ’
e 0 011 0 ¥ oo—%oQ & 0 0 20
0 00} 00 0 -1 0 0 0 2

In the fundamental representation we may then Bpeassociated
eigenvectors with th#avor quantum numbers:
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’ do 8 8 (7.2)
0 =|B=0,L=1,Q=-1) g E‘B:%;L:O;Q:—%> 0 E‘B:%;L:O;Q:%> 0 E‘B:%;L:O;Q:%>
0 0 0 Ug

These quantum numbers are chiral symmetric, hey, are the same for both
left and right handed states. Moreover, thesetBxfcthe expected baryon,
lepton, and electric charge quantum numbers for fémmion quadruplet
edg,Us,Ug. In contrast to many approaches which attempiaoe all three

colors of the same flavor of quark in the same ipleit, that is,u;,ug,uy or
d,,ds,d;, the assignments (7.1) and (7.2) put one (red)ndguark together

with two (green and blue) up quarks in the fundasalerepresentation. This
flavor assemblage is exactly what we find in a @nbt Moreover, because the
election is the final member of this quadrupleis trepresentation yields a
qguadruplet for which all the generators remaindiegs, which as discussed
previously, vyields a renormalizable gauge theory. Further, this
renormalizability will be preserved during symmelbmgaking to separate the
electron from the three quarks comprising the proté\nd the zero trace of
the Q generator in (7.1) is what makes the combinatiba proton plus and
electron, which corresponds to & lWydrogen atom, electrically neutral.
Because the color triplet in the SU(3) subgroup mix of flavor and
color dg,ug,u; and not a pure mono-flavored color tripRG,B, specifically

becausel andd also have aveak isospinelation between them, we shall refer
to (7.2) as the “proton representation” of the $gim-modified color group”
C’, designatedsU@@)... With (7.1) and (7.2), we now associate ®ig(3) .

subgroup which we have hitherto argued is a baryothn perhaps the most
important baryon of all, namely, the proton. Thebroken SU(4) group
contains a proton and an electron. So we shalkerthm the SU(4)“protium”
group because it contains the precise same cosrstitas M hydrogen, which
is the most abundant chemical substance in theri@ateniverse. At the
presumably very high GUT energies where this griswmbroken, the quarks
may of course transform into electrons and vicesaerBut because SUMiB
a simple gauge group with all traceless matrides,nhagnetic monopoles of
this simple group itself will be topologically uasie, with TrP** =0, recall
the discussion in section 6.

When symmetry breaking, we will wish to choose Higgs sector
such that this group breaks down \8&J(4), - SUQ®) . XU @, , Where the

U(1)s.. factor now represents the baryon minus lepton mungenerator
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diagB-L)=(-11,1,1) of (7.1). Then, referring to (6.2) and (6.3), arging

3’3’3

the SU@) .. subgroup for the three quarks, we see that* =|B=1Q=1).

Specifically:  TrP*" now represents a topologically stable magnetic
monopole containing two up quarks and one down kquarth color
symmetry R[G,B]+G[B,R|]+B[R,G|], with its gauge fields confined, with

mesons RR+GG + BB allowed to pass through the surface to mediate its
interactions, with baryon numbes =+1 and electric charg® = +1, and it

most naturally pairs with the electron with=1 and ¢=-1 from which it
becomes broken at high energy wheb(4), » SUQ) o XU@4_, . This is

thus perfectly situated to represent an actual aysproton. Because this
group isSU@) .« XU (V),_, , the non-zero trace of the U(1) “remnant” generato

diagB) =(£,1,1) is what prevents the term on the right hand sid€.8) from
being zeroed by the term on the left, and becadishi® U(1) factor, the
topological theorems tell us that this Yang-Millagmetic monopole proton is
a stable field configuration, as it must be to espnt the physical proton.
Finally, as we shall soon see by borrowing a Gamsansatzfrom [3],

TrP* =|B=1Q=1) is the term from which one can calculate explcitiat

this magnetic monopole baryon proton has a ficédulable energy!
Neutrons are developed in a somewhat similar nratmeprotons.

Here, we note thacJtZ—é/l8 in (7.1) has the required eigenvalues to repretbent
electric charges of the three quarks in a neufprs a neutrino, and that the
B-L= —ZTG/FS of (7.1) will also properly characterize the baryand lepton

numbers of these fermions. So for neutrons antfines, in contrast to (7.1),
we use:

-1 000 00 0 O
0 200 02 0 0

B-L=—,/8)= 3 =2 pB=| 38 (7.3)
05 0 010 Q=% 00-1 0
0 0014 00 0 -4

and then may specify the associated eigenvectdhsthe indicated quantum

numbers:
0

0 (7.4)
. = B:%;L:O;Q:—%>
0 0

o O o

=|B=0,L=1Q=0) Ug s\Bz%;LzO;Qz%) = Bz%;LzO;Q:—%)

o O O <
o
@
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Here, the electric charge generat@rslo not sit irregularly embedded across
A® and A as they do for the proton. Instead, Qeare directly, regularly
embedded intoA’ alone. Here, the quadrupletug,d,d, contains a
neutrino, together with one up quark and two dowarks. This specifies a
neutron and a neutrino, and so we shall referiwah the SU(4) “neutrium”

group. This too has a traceless (neutral sum)gehgenerator. Here, a
“neutron representation” of the “isospin-modifiealar group”C’ contains a

neutron triplet of quarksi,,d;,d;, and we shall designate this 88(3),. -
When SU(4y is broken down to SU(R)*xU(1)s.., the SU(3) magnetic
monopole containing three quarks now hasP* =|B=1,Q=0) with

wavefunction typer[G, B]+G[B,R]+ §R,G|, and thus represents a neutron.

8. Protons and Neutrons and Electrons and NeutrimbEmerge from
Spontaneous Symmetry Breaking of a Simple SU) Group Down to
SURBX*xU(1)s-L

Exactly how do we break these SU(4) symmetriesie Georgi-
Glashow SU(5) model [18] provides a good templatelet’'s briefly review

that first. This model has 5x5-1=24 generafbts One specifies a set of 24
real Higgs scalargg;i =1... 24n the adjoint representation of SU(5), and
from those, the 5x5 vacuum matri® =T'g. Because the diagonal

generatorsA**, A, 2, A* can be combined to form any Sx@celessmatrix
that one wishes, one uses these to form a hyp@ehaenerator
diagY /2) = (-4,-1,-1 1,1), which is Y/2=-J0T2 56715 _5GT8 jth

the Tr(T‘Z):% normalization. Then, using the regularly-embeddederator
diag(l3):(0,0,0,%,—%), one also irregularly embeds the electric charge
Q=Y/2+1%, which leads to diagQ) =Y /2+1®=(-1,-1,-1 10). The right-
chiral quintuplet (ds,ds,dg,€,~V.), then matches up perfectly with these
Q.Y, 12 to form the fundamental SU(5) representation.

Symmetry breaking is specified using the generatorsuch that
diag(®) = diag(T'@ ) = veyr (- 4,-3,-%,1,1), that is, ® =vg,; Y /2 where
Vgur IS @ vacuum expectation value at which the symyrmeteaking takes
place. The rest follows: Given the irregular eddirg
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Y/2=-d0T2_s6T5_s3T¢  we must now set @,=-v,

— _5/6 — _5/3
as __1_86VGUT and @ __T3

diadq)) = Veur (_%’_%'_%'%'%)' Thus, @42 +@52 +¢§2 :%VZGUT =C*’eur,
whereC? =2 is the Clebsch-Gordon coefficient. If we thergularly embed
the usuald',i =1... ®f SU(3) into the 3x3 matrix in the upper left of SU(5)

to form A'', and assign thd',i= 12®f weak SU(2) to the regularly
embedded 2x2 matrix in the lower right, we find tththe vacuum
® =vg,; Y/2 commutes such thad,A''|=0, i=1..8, and |®,1'|=0,
i=123, i.e., that the vacuum remains invariant underhb8tJ(3: and

Vgur With the remainingg = 0 to obtain

SU(2)y local gauge transformationg’'® and €''%. Additionally, the Y
generator used to break the symmetry of course adasnmwith itself,

[CD,Y] :VGUT[Y,Y]IZ:O, and so also leaves the vacuum invariant uredér

U(1l)y transformations. This is how we arrive at SUKHU(2)yxU(1)y
following symmetry breaking, as it is these threbgroups which commute

with the vacuum® =T'g. The further embedde@ =Y /2+1° then leaves

the ability to engage in a second stage of symm@gking, using an SU(2)
Higgs doublet in thdundamentalrepresentation of SU(2) at another vev
v~246 GeV which happens to be the Fermi vacuum. Rlosp one obtains
the electromagnetic interaction.

An important feature of all of this, of course,tieat by virtue of the
topological theorems discussed earlier, the produmip following SU(5)>
SURBXxSUR)wxU(1)y symmetry breaking will contain stable magnetic
monopoles, by virtue of SU(5) being a simple gaggmup. And, of course,
we are ensured that the broken theory will retha renormalizability of the
unbroken theory.

With Georgi-Glashow SU(5) [18] as a backdrop, we mow ready to
break the symmetry of the protium and neutrium pgsouvia
SU@), - SUQ)xU @, and SU@), - SUR)*xU@, . As reviewed
above, in Georgi and Glashow, symmetry is brokemgusypercharge

generator diagY /2) = (-1,-1,-1,4,1).  Here, we wil instead use the

generatorB-L of both (7.1) and (7.3), wittdiagB-L)=(-1,2,), to

break the symmetry of both the protium and neutrgroups. In the former
case, this will separate the electron from thegrpand in the latter, this will
separate the neutrino from the neutron. In SW{, broke symmetry by
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requiring (defining) thatdiag(®) = diadT' @) = vgyr (-1,-1,-1,3,1). Here,
in contrast, we require that:
diag(®) = diadT'9) = Veur (- 12,3,3) = vy diag(B - L) e, ® = vg (B~ L), (8.1)

BecauseB - L =—,/24*° is regularly embedded in botBu(4), and
su(@4), , the symmetry breaking is somewhat easier th&uU(b). We merely
set @, = —/2Ve,; and the remainingg = @ obtaindiad®) = vg,,(-14,4,3).
By inspection,qs2 :%VZGUT, yielding a Clebsch Gordon coefficieaf® = 2.
Because [(D,/} iJ=O,i =1...8, the vacuum is invariant under the SU(3)
subgroup which forSU(4), contains the proton tripled,,us,u;, and which
for SU(4), contains the neutron triplet,,d;,d;. Additionally, of course,
[®,B-L]=0 is self-commuting, which yields the (1), , subgroup for both
the proton and neutron quark triplets.

For present purposes, where stable magnetic moe®pot of primary
interest, the fact that we now have developed mmple gauge groups
SU@R). xU (1), out of the simple gauge groups S(dhd SU(4y for both

protons and neutrons which we denote in consoliledem as SU(4)y, tells
us that these coloregU(3). magnetic monopoles will be topologically stable

objects. Further, with.=0 for the fermions in theSU(3). representation,
U@®,, -U@,. Topologically speaking, referring again to Waesrdjs [16]
at 442, the homotopy groups associated with tmsnsgtry breaking are:
n,(SU@) 5y I SU@)e xU )5, )= 2, (SUG)e xU 1)) (682)
=,(SU@))x U W,) =1 ©.)=2

The final terms, 75,(SU@). )x 75U @), )= U @)5)=2, tell us that the
topologically-stable magnetic monopoles are formetof the SU(3)... triplet
of Fermions each witlB=1/3 from U (l);, and so these stabl8U(3).

monopoles havB=1. The baryons are now stable magnetic monopoles!
Returning to (6.2) and (6.3) where this topologidelcussion began,

following symmetry breaking the leptons separatenfthe quarks andP™"
is formed only from the unbroken SU¢3subset of quarks, for whidb=0.

Thus, after symmetry breakin@;P*” = -BR,”" with c=,/2. So the trace
equation corresponding to (6.3) is then developewch fthe SU(3). subgroup,
using the U(1) generatatiadB)=(4,4,1) for which TrB =1. Taking the trace

3'3'3
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of each side of CP* =-BR,”™ thus yields CTrP* =-R.*", which
combined with (6.3) then yields:
Y 0 vee 1 Ok
CTrP™ = —p,% = —2c[a”f,”Ra Ve ,gu¥ed Yo | gv¥e0 ‘/’,?J- (8.3)
Pr — Mg Pe —Mg Pg —Mg
Contrasting (6.3) with (8.3), we see tHatP™ =-2 B in (6.3) is
replaced above byrrP* =-p,*" /C where the Clebsch-Gordo@ = /¢,

that is, we see that the coefficientBf”" is different. In the (6.3) where the

U(1) group was tacked on to SU(3), this coefficiemterged from establishing
A$=11,, normalized toTr(/llsz):%, henceTr*=2. In (8.3), this coefficient

is now replaced simply by -@/ which is a remnant fronsU(4), following

symmetry breaking.

It is the presence of this Clebsch-Gordon coefficie (8.3) which
now incorporates the symmetry breaking which moved from
SU@), - SUQ) e XU, and SU@), - SUQ) XU, . Referring to

(8.2), P* in (8.3) is now the topologically-stable magnetiwonopole
75(SUQE) )x (U @),)=7U@),)=2 that we obtain following symmetry
breaking, andthe very presence of this coefficient C, ratherntha
normalization constant from the tacked-on U(1) eft®n 6, tells us that this
is a stable monopole that emerged following symyaeaking from a larger
gauge group In other words, if a monopole has a Clebsch-God next to
it as in (8.3), that signals that the monopoleootogically stable, because it
emerged following symmetry breaking from a largeyugp.

For the stable proton monopole 8U(3).., the “red” quark will be
associated with the down quark, see (7.2), andgreen” and “blue” quarks
with the two up quarks, as a chosen conventionw&aow write (8.3) as:
arf [//dRa—#uvwdR + a/l I/IUGUVJU qu + av [//uBa—aJ# wuB] . (84)

P T Mg " P T My " P T M”
This expression, we associate directly with a piatsproton and its duu
constituents. For the stable neutron monopole s8ti(3),., see (7.4), we
similarly write:

CTrP*p = —PISUW P = —ZC[

" HoV " Voo " ool
CTrPrfqu - _PlsrquN - _ZC(ag quU ‘//uﬁ +a;1 deJ l//dG +av dea de] . (85)

Pur — Mg Pac ~Mye Pes —Myg

This is now regarded as a physical neutron, witd adnstituents.
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9. Using a Gaussia\nsatz for Fermion Wavefunctions, the t'Hooft
Monopole Model Fully Specifies the Dynamical Propdres of Yang-Mills
Magnetic Monopole Baryons

For the most part, the discussion thus far hasmgted to show that
Yang-Mills magnetic monopoles have all of the neeeg symmetry
characteristics to be regarded as baryons, anectioss 6 through 9, to show
they have the topological stability based on symynétrreaking, and the
correct baryon and electric charge quantum numbefsyther be regarded as
protons and neutrons. Now, we will want to exploogv these objects behave
in spacetime, because to pass the test of beimgtanpor a neutron, these
magnetic monopoles will have to be different frame tmagnetic monopoles
with which we are familiar in two very importantachindeed, distinguishing
features: First, they will have to interact onlysiort range, because that is
what baryons do. They musebt possess the inverse square field strength
which characterizes other known monopoles. Sectimely will have to
possess masses on the order of 1 GeV. In contrestknown magnetic
monopoles are extremely massive. In GUT theohes imass is set by the
scale of symmetry breaking, which can bé°XBeV or more, and even in the
t'Hooft model, they are on the order of thg7xm,,, which is over 10 TeV.

So our monopoles here will have to obtain their seasin a very different
way, with a much smaller mass scale.

In order to explore the radial behavior of the §aills magnetic
monopole baryons, as well as their expected magsesl, now be helpful to
carefully contrast the monopole developed herd) tiat laid out in t'Hooft's
original paper [1]. It will be helpful in this sion for the reader to have
available the original t'Hooft paper, which can bé&und at
www.phys.uu.nl/~thooft/gthpub/magnetic_monopolek.pdVhere there are
differences in notation, these will be noted in dmcussion below.

For each ofSU(4), and SU(4),, , we start with 15 Higgs scalar fields

@;i =1...15. As in SU(5) reviewed above, we then form the #s¢uum
matrix in theadjoint SU(4) representation (t'Hooft us€g ):
®=T%;a=1..15. (9.1)

We have already used this expression in (8.1) aalborsymmetry via the
B-L generator of SU(4). We next specify a Lagranglansity in exactly

the same way as in the t'Hooft model [1], namekidbft usesG;,):
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£ =-1FLF/M -1D,@D'd -1 10 e -1 A(ps ). 92)
This specifies physical dynamimenticalto t'Hooft’s [2.1]. The gauge fields
are related to the Yang-Mills field strength tensaccording to (2.3),
reproduced below with explicit internal symmetrydéixes viaG* =T'G*,

F/=T'F" and f*T = —i[TJ',TkJ (tHooft usesW,"):

F.* =0*G,” -0"G," + f_, G*G*. (9.3)

Finally, the gauge-covariant derivative of the Higgcuum field is:

D.@g=0¢+f,G, " (9.4)
The potentiaV (p) = -1 1/°p° —%/\((paz)z in (9.2) minimizes at:

V(@) 0g, = -1ip, -1 Mg Jp = 0. (9.5)

This allows us to define a symmetry-breaking veergg v according to
(tHooft usesF? =(Q,)” = 1v?):
—2u% A =@ ¢f =2Tro? =1v2, (9.6)
So up to this juncture, we fully follow the t'Hoafhodel [1], aside from the
fact that we employ the gauge groufdJ(4), and SU(4), developed in
section 7, while t'Hooft uses the SO(3) model ofoe and Glashow [19].
But from here, we shall diverge onto a differentpa

In the t'Hooft model, the next step — which welshat employ here —
is to hypothesize the form of an explicit radialusion to the foregoing, in
which both fieldsG; and ¢ in (9.2) are written as functions of the space

coordinates x, and r?=xx*, using the ansatz G2=¢,,%G(r) and
¢. =x.¢(r), see [2.8] in [1]. Boundary conditions are theyposed ar — oo,
(9.2) is solved, and three main results are obdaiRest, it is shown that there

is a radialmagneticfield strength that falls off via an inverse squaglation

1/r?,[2.21] in [1]. This is clearly indicative of aagnetic monopole, but this
would not be helpful for a baryon which interactslyoat short range.
Second, the total flux over a closed surface isvshto satisfy the Schwinger

and in certain cases Dirac Quantization conditiegs-1 andeg=1n, where

e andg are the electric and magnetic charges respectivwatly the strength of
this inverse square law given lgy'r>. This is now not only a monopole, but
a Schwinger / Dirac monopole.
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Finally, keeping in mind that the canonical enenggmentum tensor
for a given fieldg is given by:

0f
-g”e, 9.7
50,9) ° ©-D

and requiringL to be stationary under small variationsq'(r) and G(r), SO
that T# =-g*' ¢, thusT® =-¢ for g% =1, the total energy of the system
(9.2) is p°=E= jJIT°°d3x: —” £d®x=-L. This expressionE = -L

([2.10] in [1]) then gives the mass of the magnet@nopole, which is found
to be on the order of the large wewbtained in (9.6), which mass scale would
not be suitable for a baryon.

Following t'Hooft, we shall also use the energy &tpn:
E=-L (9.8)
to obtain the monopole mass, but as we shall seasing a differenansatz
for G;, we will not only be able to uncover a short rangeeiaction, but will

also be able to obtain a much smaller mag®r the moment, as regards the
monopole mass, it is worth noting that the vev msesale for the t'Hooft
monopole enters through the parameterizations.ij [ [1]. Particularly, as
regards the pure Yang-Mills gauge field sector ltd tagrangian density,
Lame=—%F5F/ , given F=1v as noted earlier, the mass scale appears

gauge w' a

T™ =9“¢

through the parameterizations=W/F? and x=eFr. The remaining
energy in the system based gn=-1 DﬂqoaD“q/f—%,uZ%q/f—%/]( qu)z, which
involves the Higgs vacuum¢®, appears through the additional
parameterizationsq=Q/F2% and g=A/e=M3i/M}. The term with
D, D*¢ mixes both parameterizations, and as we shalugssm section 11,

also generates the vector boson masses.
While the energies based on vacuum terms wittwill be determined

by the (very large) symmetry breaking vev, the npmie energies developed
from the pure gauge field sectey,,  =-1F:F/ may in fact be decoupled

auge MY a
from the vev, and shown by different means to bammiMeV to GeV order of
magnitude. So, let us now examine what is diffeldyout the monopoles
being developed here in relation to the t'Hooft mpoles, and lay the
foundation for these monopoles to a) have shogegaand b) have MeV to
GeV-order energies.

a
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In the discussion to follow, we shall also introdwanansatzabout the
behavior of the gauge fields# =T'G* as a function of radial distance, but
shall do so in a different way. The first steptlos ansatzis already to be
found in (2.10), where as discussed following (2r&)her than go straight to a
condition such as t'Hooft'sG? = ¢, xG(r), we instead employed (2.9) in
(2.5), wherein (2.9) is the inverse, =1,J° of the classical Maxwell's
charge equation)” =9 ,F* =9, ,D¥*G" of (2.1) taken with zero perturbation
0,G, - 0. That is, at the point in development where t'Hoases
G? = £,,,%06(r), we instead use? =1,,J* based on Maxwell's)* =9 ,F*,

for zero perturbation, and then ugé =¢T y*y in (2.11) to introduce fermion
wavefunctions. When we then follow this to the efdhe trail in sections 2
through 5 including applying Fermi-Dirac exclusiahthe start of section 5,
we end up with a magnetic monopole (5.5) which aimstthree colored quark
wavefunctions and has all of the color symmetriegeeted in QCD, plus
confined gauge fields, plus mediation of interatsidoy mesons.One may
therefore think of (5.5) as being what emerges wie® combines both of
Maxwell’s classical electric and magnetic chargauaiipns (2.1), (2.2) in a
non-commuting (Yang-Mills) gauge theory (2.3) amehtapplies Fermi-Dirac
exclusion to Dirac wavefunctions that may be introetl via the currents
' =yyy.

Now, in place of thansatzG: =¢,,xG(r) used by t'Hooft, and given

that (5.5) which later became (8.3) contains teahthe form a”(zfxca#uvwc)

which contain Dirac wavefunctionsC(= R,G,B for shorthand), we shall

instead borrow from equation [14] of Ohanian’s [&nd will employ
Gaussian wavefunctiongith radial behavior specified by a Gaussiasatz

2

wlr) = u(p) )+ exr{—l(r_?)} (9.9)
2 i

where & (presently unspecified) has dimensions of lengths (xo,yo,zo)

designates the space coordinate of the centergighk Gaussiam,is a radial

coordinate distance from,, and u(p) is a four-component Dirac spinor.

(Becausey represents a fermion, it makes sense to consithat wccurs

when x =i/mc is the reduced Compton wavelength of the assatfatenion,
which will be further explored in section 11.) Thg, t'Hooft's ansatz
introduces radial behaviors through the spin 1 aregauge fields via



-40-

Gi(r)=£,.xG(r). Theansatz(9.9), in contrast, introduces radial behaviors

through the spin % fermion fields in (8.3) via (9.@nd in particular,
hypothesizes that these fermion fields behave ligdia spacetime as
Gaussians. One may, if one wishes, employ somer atisatzthan that of
(9.9) if desired, but (9.9) seems to be a very na@tcourse to explore, and
provides a way to do definitive exploratory caltidas of energies and
interactions based on the monopole (8.3), partiulbecause of its easy
integrability and other good behaviors discussddvibe

The key distinguishing point of the present apphoiacrelation to the
t'Hooft monopole is thist’'Hooft introduces radial behaviors at the gauge
field level. Here, we introduce radial behaviorsthe fermion field level.
Any sensible fermion fieldansatzmay be used with the present model, and
indeed, it will be up to experimental observatiorvalidate the corre@nsatz
But, theansatzin the present model must be introduced via tihenifens, not
via the gauge bosonsThis is the central difference between this apphoac
and the t'Hooft model.

Based on ournsatzchoice (9.9), we easily show via' =uy® and
' =wy° that:

2 2
Wy = 3— ex;{— (r-ro) ]UTU - 3- ex;{—MJGVOU =gy’ = 3° (9.10)
R g

% 12
is a probability density which Lorentz transfornssthe time component of a
current four-vector. The Gaussian itself will thexperience Lorentz
contractions01/+/1-v*/c? at relativistic energies. By inspection, at the
boundary, ¢/(r — ©)=0 and ¢'y(r -~ ©)=0. When integrated over the

entiretyof a three-dimensional space at a given time, frorto +o over d*x,
this Gaussian of course integrates to unity:

)2

M- ex{—(r o) Jd3x=1- 9.11)
2R3 K

Consequently, combining (9.10) and (9.11):

Wiypd*x = ulu[|[——ex ——202 d*x=u'u=upu. (9.12)
mlxs (r ;Lr )

A primary reason to choose (9.9), is that #msatzguarantees finite,
well-behaved results both at - «, and when integrating out to infinity.
That is, (9.9)nherentlycomes packaged with precisely the types of boyndar
conditions and finite integrability that will resuh finite, stable, well-behaved
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solutions. It should also be noted based on thenaatics of Gaussians that
the variance (square standard deviatioR)=<#?. With theansatz(9.9), we

will need to re-normalizel so that it is dimensionless, because the +3 mass
dimension ofy'y on the left hand side of (9.10) is balanced onrtpbt-

hand side byl/i*, leaving u'u dimensionless. Earlier, in (3.7), we

normalized such that'u carried the +3 mass dimension, so we will soon
need to change this. But the context for doingvébbe our examination of
the magnetic monopole baryon masses in Sectionantl 12, and the
normalization will be driven by empirical data.

10. Yang-Mills Magnetic Monopoles with a Gaussiansatz Interact
only at Very Short Range as is Required for Nucleamteractions

There are many beneficial consequences to usir) (@ place of
G2 = £,,%G(r) to specify how the monopoles behave as a funaforadial
distance. First, of course, Gaussians are weldpedh finite, stable functions
when integrated over an infinite spatial volumeirag9.12). Second, and
related to this, the boundary conditions rat- o are implicitly imposed:
because (9.9) is a Gaussian, we know it - «)=0. This means that the
field strength tensoF* based on these Gaussian will also be well behaved.
To see this explicitly, we first extract the intagd from (5.6) (ignoring for
the moment the terms“G* -9"G* from (2.3) which can also be included
when we extract the integrand becaddeO, butd#0, see (11.1) infra where
we shall include these terms):

Py HoV Py HoV P Hov

T =-z(‘{’R” Ve (90 Yo ¥a0 wf‘}. (10.1)
Pr —Mg P —Mg P —Mg

Then, we make use of (9.9) or (9.10) in (10.1) tew

ex{— (r—rOR)ZJ 1 urd™ ug

Kol ) mng " PR
2 o v
TrF* (r)=-2 +e><{_ : —ro;;) J 1 U0 |, (10.2)
K’G HTZKGS "pG _rnG"

B

+exp{_(r_roa)2J 1 U™ u,
x

)R Py
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where r;,ls. s designate the space coordinates of the centrabgimn
peaks for each of the R, G, B quarks. Clearly, la¢ tboundary,
TrF“(r - )=0. Similarly, using (9.10), the radial derivative@'y is:

2
)=t ,{ -x) j , (10.3)
and this also approaches zerorat. o. Because a typical term in the
magnetic monopole density (5.5) or (8.3) is of them 4%y .oy, with
colors C = R,G.B, (10.3) implies that that in space coordinaiés: (r,6,4),
the radial component:

ot ?caﬂuvwc :i‘zcaﬂmv‘/’c L) exr{_ (r _ro)zJ DCUNDVUC' _ (10.4)

Pc _mc" or "/pc _mc" B 77%715 1 ":pc —m

The underlying mathematical functiorexd-r?/x?) becomes zero at — o,
thus, via (5.5) or (8.3), so too will the monopdensity TrP*" (r — )= Q
This type of good boundary behavior and finiteegrability are good
characteristics to have for stability. But justcasnpelling is that the inherent
concentration of the Gaussian wavefunctions aboemtral peaks at
fo = (xo, yo,zo), together with a rapid decline in intensity justesv standard

deviations way from the center, result in the tgpeshort range rot inverse
square— interaction that definitely needs to occur if are going to be able to
associate these Yang-Mills magnetic monopoles witiasical baryons like
the proton and the neutron. Indeed, even if oneweuse a differeransatz
than (9.9), so long as one selects well-behavediéer wavefunctions which
are concentrated near a central peak and taperdoat infinity, one will also
have well-behaved magnetic monopoles which intesabt over short range
and not via inverse square. Let us now examirgentiare closely.

First, we write the surface integral of (10.2)iag5.6), over a given
surface atr = R, as:

ex;{— (r _ rOR)ZJ 1 GRJﬂDV Ug
7(’Rz ITEKRS ”,{DR _mR"

— 2 el
r-:rRrF = —Zﬁr:R + eXF{_ (r rOG) j 1 UcOo UG dedx/ ' (105)

he' ) mrg e e

2 - v
r—r 1 usoc™u
+eXF{_( OB) j 5 B

7LB2 77'27,83 P —Mg"
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Now, we need to be careful, because due to thedizan)ghis inot an inverse

square field strength. For an inverse square,fieldoes not matter whether
the charges are centered within the surface, stluaear the edge of the
surface, or arbitrarily distributed in between. rN#pes the shape of the
surface matter. The total flux across the surfatkebe the same no matter

what, precisely because the surface afead47R®> runs reciprocally to the
inverse square relationshgg R?, so that the magnetic field fluﬁFR: gis

constantjndependendf R no matter what the configuration or location of th
surface about the charges. So, in evaluating J1@Qbich doesnot use an
inverse square relation, let us simplify calculatiby stipulating that the
surface is aphericalsurface of radiu® which is also situated such that the
threerg's areat the center of the sphereFurther, because (10.5) contains
three quarks, each of which will have Gaussianseced at very close albeit
different coordinateg,r,s. 1,z » We stipulate thaR is sufficiently large so
that any physical separation between respectivekguaay be neglected and
we may regard each of these quarks to be centdrédeasame central
coordinate locatiorr,. Further, let us choose our coordinates suchrghato

All of these are simplifying stipulations, anfdone wanted to do so, one
could discard them and simply make careful userif vectorsf =r/r to
further develop (10.5) as a three-body systemihattis not necessary for the
preliminary calculations we shall do here.

With r, = 0, in polar coordinates” = (t,r,8,), and using the surface
integral 47R* = ﬁr:er sin® @&y, for each term from (10.5) we write:

2 2 2\ 23
2 ex;{—er 1 oueo™uc )Ly gy o R _R]uau (10.6)
=R A )RS P —m” 2| NG A" )" Pc—Me

Based on these stipulations and (10.6), and adifiagfurther simplifying
stipulations thal =X =A; =Z;, M=my=m; =m, and p= p; = ps = Ps

this means that (10.5), using (3.10) angl o** —[y DV’J, evaluates to:
R (R 3u __ 1R (R \wPerm)yu 0.7

TrF— \F J mgex;{ sz pgEre ( )

That is, g’ is the total flux of magnetlc monopole charge thiditbe observed

to flow across the closed surfaceraR, and it is indeed dependent on the
radiusR of the closed surface. Figure 2 below, illusisatieis total flux in

(10.7) forz =1, henceo? =1, as a function of the spherical surface radius

g=
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, R? R?
05l Ag :Aﬁ":l;rF_ = exp[—?}
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Figure 2

This is a magnetic-type flux because it is speditiy g'(R) :j':fTrF .
But it obviously is of a very different charact&ah the usual =§:§F for a

monopole with an inverse square law, such as theoft monopole. For this
more familiar monopoleg is a constant, independent of, Rnd would be
represented by a constant, horizontal line at thghtg if drawn on Figure 2.
But for the monopole of Figure 2, the total magnéhix g'(R)=ﬁTrF IS
clearly dependent oR, as it must be if this monopole is to represeaiyon,

such as a proton or neutron, which interacts oneey short range.
In Figure 2, coefficienA merely determines themplitude(height) of

the curve (and note that” has imaginary elements to cancel itiieA). With
a standard deviatiorar:% the flux in Figure 2 peaks aR=1= V20 and
falls off rapidly thereafter. In general, because =7 (see after (9.12)), we

see that by abouto =3k from the center, the total magnetic flux is vittya
non-existent! So: (10.7), which is drawn in Fig@redlemonstrates clearly that
while the magnetic monopole we have been developieig is indeed a
magnetic monopole because its flux over closedasad is specified by
g'(R)=ﬁTrF, this monopole does_not produce an inverse-sqtiatd

because the total flux depends upbnRather, it produces a field that falls off
very sharply just a few standard deviations frogncinter. Such short range
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fields are hallmarks of nuclear interactions, aodhfer qualify Yang-Mills
magnetic monopoles for serious consideration agobar

So, to summarize: we have appliedaasatzto the fermions rather
than to the gauge bosons to specify the radial\behaf these Yang-Mills
magnetic monopoles. Using a Gaussian fomtigatz(for which one may
wish to substitute some otha&nsatzso long as it is applied to the fermions
and not the gauge bosons), we have demonstrated @sme simplifying
stipulations which can be lifted by more carefulbing unit vectors =r/r
to specify the fields of this three-body systengttthese Yang-Mills magnetic
monopoles do interact only at very short rangelaaseal, physical baryons
such as protons and neutrons. In the next sestiershall show that this short
range is on the order of 2 Fermi, as it is expetddae from empirical data.

But, as discussed at the start of Section 9,alss necessary for the
masses and energies associated with these monopdiesn the MeV and
GeV range, because that too is observed in thegaiygorld. The energy
physics of these monopoles will now be the focuSextions 11 and 12,
which will validate using well-established empilidata, that these Yang-
Mills magnetic monopoles truly are baryons.

11. The Electron Mass is Predicted from Up and DowQuark Masses to
about 3% from the Experimental Mean

We begin our examination of the energies assatiaith the magnetic
monopoles with (8.3), which we rewrite usiog® =%[V”uy”J. We then take

the Gaussian surface integrﬁTrF =mTrP as in (5.6) and extract the

integrand.  Finally, referring back to (2.3), weinteoduce the terms
0#G" —0"G* which are removed from the monopole &@&=0, but do not zero
out for the field strengtk=dA, and which we left out of (10.1). Thus:
TIE™ = 34G" — 3" GH _i(wf[yﬂgyv]lf/,q +‘//'('3[V#Dyv]l'/'/e +€Uf[y”uy”]4'1'13], (11]_)
Pr — Mg Pe —Mg Pe —Mg
This is another way of expressing (10.1) in ligh{z3), and may be thought
of as a way of rewriting the fundamental Yang-Milfgeld relation
F* =0“G" —6”G”—i[G”,G”J in (2.3) to capture much of our development so
far. (Note: The above is quadratic & and so can be used to dmact
calculations with the Gaussians employed in pattegrals, see, e.g.,
Appendix A of [4].)
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Now, back in (2.7), we derived the inverse for thessical Maxwell
field equation J”=9,F* of (2.1). But just prior to (2.9), we made the
simplifying choice to develop the magnetic monopaléhe low-perturbation
limit by settingd,G, — 0, which we noted was more generally equivalent with
setting a gauge invariant perturbation vectar” =(6“GV +G”6")+G"G” - 0.
Thus, all of our results thus far display the betlwef Yang-Mills magnetic
monopoles for low, indeed, zero perturbation. \WWetioue to examineero
perturbation so consistently with the development thus far,se® G, - 0

in (11.1) as well. Thus, we now reduce (11.1)3j&, — 0, back to:
TR = _i[af [yﬂgyv]‘f/R .\ Ef [y”DyV ]l)f/G + Ef’ [yﬂuyv ]lf/B J ] (11_2)
Pr — Mg Pe —Mg Pg — Mg
This is (10.1) withg** :iZ[y”Dy"J. Next, as in (8.4) and (8.5), we write this as
two distinct expressions, one for the proton, ane for the neutron:
—— :_i(wd[y”uy"]wd Lwlerle, +wu[y”ay”]qu

: "/pd _md" _Ilpu _rnu ‘pu _mu , (113)
=_i(t//d[y“uy”]¢/d Loy ]wJ
Py —my" o —mS”
TrE# =_i(‘//u[yﬂDVV]‘//u +17/d [yﬂDyV]t//d +$d [y/nyl/]t/de
- P —m” :Pd -my" Py —my" (11.4)
_ _i(t//u[y”uy”]wu sl J
P —mS” Py My

In the foregoing, we have suppressed the cologdatbns as they will not be
needed for the calculations following. In combmihe two like terms for the
up quark in (11.3) and the down quark in (11.4)) because we will shortly
be integrating these ovex from <o to +o as part of the energy tensor, we
make the simplifying stipulation that any physica¢éparation between
respective quarks may be neglected, as we didwWoilp (10.5).

Now, let us return to the t'Hooft monopole Lagreamgdensity (9.2).

As noted following (9.8), the portios, =-1D,¢D"¢ -1 g ¢ —%/1( aqf)z of
this density which involves the Higgs vacuwh will be determined by the
GUT symmetry breaking scale at which the quarks saearated from the
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leptons via the symmetry breaking of (8.1). Foaraple, using (9.4) in the
“kinetic energy” termD ¢ D“¢" of (9.2) yields:

Sineic = ~3D,4D" ¢ =-3(0,00'F +21,,0' PG} + 1, 1 GG P g).  (11.5)
When we then applyg, :—\/vaUT and the remainingg = Qo break the

symmetry as was done following (8.1), the finalntebecomes a sum of
Lagrangian vector boson mass terms:

2
£boson mass = _%VGUT gz(% fable aC:LSGZGcH) - _%ZM ZG;{GH ’ (116)
where we have rescaled, - gG; to restore the interaction charge strength

heretofore absorbed into the bosons following (2.30 the masses of the
vector bosons clearly flow from this term, and bleson mass scale will be set
by the extraordinarily higlv,,; energy at which quark and leptons decay into

one another.
But as we shall now see, the pure gauge fieldbsegtt =-1F; F/”

uge — uv' a
of (9.2) does not necessarily have to have its mass scédentieed byvg; .

As pointed out following (9.8), t'Hooft uses the rameterizations
w=W/F?% and x=eFr to set the scale for the magnetic monopole mass to
be the same as the symmetry breaking energy secgle But this is only

becausethe t'Hooft model does not introduce any other mssale which
would not be arbitrary and this in turn, is because the t'Hoeaifhsatz

G2 =£,,,%,G(r) introduces radial behaviors inf/" via the gauge fieldS; .

Consequently, the masses of the monopoles becewchéotithe masses of the
massive gauge bosons that emerge following symnietrgking, and these
are in turn tied to the GUT scale, as shown inGLabove.

Here, in important contrast, the Gaussaasatz(9.9) introduces radial

behaviors intoF/* via the fermion wavefunctiong. Consequently, the

monopole mass scales which emerge outeQf =-1F2 F/ via (9.7) and

(9.8) will be tied to thanasses of the fermignsther than to the gauge boson
masses which in turn are tied to the GUT energy. cérse, the fermions
have now been developed into up and down quarkd, the magnetic
monopoles have been developed into protons andamsut So with this
ansatz(9.9), the masses of the proton and neutron shbaldelated in a
precise way to the masses of the up and down quarks not to the GUT
scale. We shall now show exactly how this is so.
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We first return to (9.7), which specifies the cawal energy
momentum tensor. The total energy of the dynansgalem specified by
is given by E=p°=[[[T®d*x as noted earlier. If Yang-Mills magnetic
monopoles truly are baryons, then because we hamed off perturbations
by setting 0,G, — 0 throughout,E in this integral should give the “bare
proton and neutron masses absent perturbationslowkny t'Hooft, we
require L :I”Szdsx to be stationary under small variations in thddfie

which allows us to obtain the total energy fronBf9namely,E = -L. Now
the question becomes, which terms fromo we use?

The Lagrangian density (9.2), of course, contamutiple terms. We
shall explore here, the energies specifically agdrom the pure gauge field

term g .= —+F; F/, thatis:
E=-L=~[[[Sed>x=%[[[FaFid°x=3Tr[[[F, F*d°. (11.7)

In exploring the pure gauge terms separately froose terms which contain
the vacuum®, we are simultaneously doing two things: Firsd, G, - 0,

we are turning off all perturbations. Second, leyaloping the energy only
out of ¢ .=-1F2F/, we are turning off the vacuum. So the energies w

gauge ' a !
obtain will be the barest energies resulting frév@ intrinsic structure of these
monopoles with all perturbations and all vacuune&f turned off.

Next we substitute (11.3) and (11.4) into the abtwewrite, for
protons and neutrons respectively:

I A 0 72 wu[yﬂuy”]wu] vlonles _wlnnlo.)
= zm[ Py my" "2 ) "/p:—m," "2 "/pu”—rm" . ,(11.8)
_ _;J.J.J.[wﬁ[y/’gyj]lf/d Ellfi[yu[yv]ltf/d +4a‘l:[yyuy/]il/u Z/‘('j[yﬂuyv]“/'/d +4$:[yﬂtyj]f{/u %?[Vyuyv]lf/u]dgx
Py My Py —My p.—m, Py —My p—m, p—m,
=_1 au[yﬂuyv]wu wd[yﬂmyv]wdj au[yy[yv]l)l/u ad[yyuyv]wd 3
By ZIII[ pomt pemt | pemt gm0 -(11.9)
_ _;J.J.J.[w::[yyg}/]i”u El‘lj[yﬂuyv]lf/u +4aﬁ [yﬂ[yj]l‘/'/d Z/:[yy[yv]‘f/u +4&S [yyuy/]lf/d El‘r'j [y/‘DyV]l’f/d ]dgx
pP—m, p.—m, Py —My p—m Py —My Py —My

The above are a bit busy, but if we schematicafemrto the terms with up
quarks as U terms” and the terms with down quarks ab térms,” the
important pattern to glean from (11.8) and (11shat:

E.(duu) O (d +2u)’ = d? + 4ud + 4u?, (11.10)
E, (udd) O (u+2d)’ = u® + 4ud + 4d?. (11.11)
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This also means that thigferencebetween the neutron and proton energies is
schematically given by the relationship:
AE =E, - E, 03(d?-u?). (11.12)
According to PDG'’s latest survey [20], tmboundneutron mass is
939.565379 MeV, thenboundproton mass is 938.272046 MeV, and so their
difference AE is 1.293333 MeV. Meanwhile, the electron mas&newn
with great precision, and is listed in 2012 PDGadafl] asm. = 0.510998928
MeV. This is all well known, and it is believedatithe discrepancy between
1.293333 MeV and 0.510998928 MeV all arises duthéodynamical, non-
linear interactions within the proton or neutroti the “noise” of all this
interaction was to be shut off, it is believed, rthihis discrepancy would
vanish, and the electron masse would be virtually identical to
AE = Eygyon— E (Because neutrinos emitted during beta decay

n - p+e +v have such a small (<2 eV) mass, we neglect arly s1ass.)

But as just noted following (11.7), the proton arelitron expressions
(11.8) and (11.9), or (11.3) and (11.4), were allvaloped for zero
perturbationV - 0, because we have zeroed out any perturbative terms
throughout this development, and are further desiginom the pure gauge
fields only to filter out all vacuum effects. lommon nomenclature, wherein
the “current quark mass” is understood to repregbat “constituent” or
“effective quark mass,” reduced by the mass of rispective “constituent
qguark coverings” arising from gluon fields and wvacu condensates
surrounding the “current quarksye have in this development turned off all
“coverings,” of any origin. So, having stripped out the cowgs, and solely
looking at the “current quark masses,” what (1118} us is that thé\E we
will deduce from (11.8) and (11.9) is not from tHi#ference between the
total, coveredmasses of the proton and neutrbat only from the difference
between that portion of the total mass that is alye contributed by the
current quark massesln other words, (11.12) as based on (11.8) ata®j is
a difference between two barejcoverechucleon masses, which turns off the
noise and gets to the underlying undilutesighal’ arising from the current
quarks only. As such, we should expect th@t =AE=E E

because our neglect of all perturbations and vaceffiects allows us to look
at uncovered nucleon masses.

The “current” (uncovered) masses of the up and dowarks are
m, = 48'7MeV and m, = 23'] MeV based on the most recent PDG data [22].

So based particularly on (11.12), we should séeeifelectron rest mass can in

Proton*®

Neutron - Proton
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fact be described in relation to these current kjuaasses, based on the
relationships (11.8) and (11.9). Indeed, precidgmgause our development
has turned off all perturbations and vacuum effegesshould not only expect
this to work, but this must work in in order to idate the thesis we have
presented. That is, we arrive at a point wheretloesis and the development
so far may be contradicted, if nature chooses tos@o So, let's do the

calculations:

First, subtracting (11.8) from (11.9) to flesh ¢Lt.12), we write:

”J- l// [y oy ]l/ld ¢y [pryv]wd l// [J/ oy ]l// v, [nyyu]wu d°x, (11.13)
Ip md ! d _md Hlpu _mu lpu rnu
Then, we use thansatz(9.9) in (11.13) to obtain:

L exp{—Z(r - ro)zja[y“uy”]da[ymn]d

Kdz Py My’
o . A d°x.  (11.14)
LIS faby b
-~ _exg -2
s % ",

Above, d(p), u(p) are Dirac spinors for the up and down quarks,aetbyely.
Now, we may make use of (9.11) refashioned viairsgal — x/+/2, namely:

m 2 ;{— fxzo) =1 (11.15)

to evaluate the Gaussian integral in (11.14). Threams that:
_ 2

[ 16ex —2% dox=— s (11.16)
R K (2m): 22

Then, we use (11.16) in (11.14) to obtain:
AE = _% ]3_ d[y”gy"]dd[yﬂuyv]d : ]; u[y'”gy"]uu[yﬂmyv]u ,(1117)

(n)r,  "pe—my" @n)r,° "p-m"

Now, as atest hypothesjslet us see what occurs if we regard
X =h/mc as the reduceblare (uncovered, “current”) Compton wavelength of
the associated quarks. With=c=1, this allows us viam=1/A to directly
employ quark masses in (11.17) instead.othus:
AE = -13 md33 d[V”Dy"]dd[Vyzgyu]d mu3 u[y oy ]uu[yﬂmyv] .(11.18)

(277): "pa—My" (277): Py My

o
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By our test hypothesist =7/mc, the mass scale foAE has now been
establishedas has the mass scale for the proton and neutrassesand it is
not the GUT scale. Importantly, and appropriatelgofar as experimental
observations are concerned, this mass scale /4be masses of the up and
down quark that comprise the neutron and the protther than by the GUT
energy of symmetry breaking. So the Gaussaasatz (9.9), if we use
K =hlmc, gets us into the right “ballpark” in orders of gm#ude. And, it
makes simple sense that the proton and neutronesyad®uld be related in
some fashion to the masses of the quarks of winelp &re comprised. We
see that all the mass dimensions in (11.18) aneciprso long as we choose a
normalization in which the Dirac spinors are dimenkess. We shall do so

momentarily. But next, we come to thp—ni'* propagator denominators.

For this, we refer back to Figure 1 at the stérsextion 3, and also
keep in mind section 12.2 of [5]. Specifically, wensider the circumstance
in which the interactions shown in Figure 1 occssemtially at a point. In
that situation, the propagator disappears, shand t channels become

indistinguishable, and we can sgb—mi'* . nm? in (11.18) above. So, also
applying (3.10) which defines=1 and reverting from the quasi-commutator

to the ordinary commutator, (11.18) becomes:

ot =3 S ol ol o - il iy, o) 1209
T)?

The remaining termﬂ[y”,y’]da[yﬂ,n]d andﬁ[y”,y"]uﬁ[yﬂ,yv]u are

scalar numbers. They need to be normalized viaDinac spinors into a
dimensionless constant numitérso the only question now is to find the right

normalization. For the momenk =dly*,y*]dd[y,.y,]d =uly*.y* Judly,.», Ju
is definedto be a dimensionlegxperimentatonstant and we take thiK to
be an unknown. Now, (11.9) may be further reduoed

AE =-1K 33 _(m,-m,). (11.20)
(27):

Now, we simply plug the experimentah, = 48°7 MeV and m, = 23"/ MeV
from [22] into the above, to obtain:
AE = -3K 3(m, —m,)/(277)} = -1k (48'7 - 23"1)/(2m)' MeV
= -1K [476?2MeV = -1K [{.286MeV t0.704MeV) .  (11.21)
= -1K [J495MeV
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This displays thepredicted AE=E,,,,,—E based on the up and down

guark masses. Following (11.12) we suggestedhimtifference should turn
out to be the electron rest mass, because we hanedtoff all the “noise” that
distorts what is otherwise the electron mass intaEa of 1.293333 MeV
between the observed, unbound, noisy, fully covegremton and neutron
masses. The experimental electron mass, of casrsg = 0.510998928
MeV. Using the high-side “down” and the low-sidg” masses, the high end

of the term3(m, - m,)/(277): = 704MeV . Using the low-side “down” and high-

side “up” masses, the low end of the tesfm, - m,)/(277)} = 286MeV. Using
the experimental mean for the up and down, howeand this is the striking
result — this anticipated value gfm, -m,)/(277): = 476Mev And, the mean

(denoted by the overbar) of the range between .286Mnd .704MeV is
0.495 MeV. The electron mass 0.510998928 MeV ikgges one of the most
tightly known natural constants, and so the 0.498VMelectron mass
predictedfrom the median of the experimental data diffendy cabout 3%
removed from the actual experimental mass! Nog anthis prediction in the
right ballpark, it is centered in the middle ofaarlly wide experimental range,
and so would appear to provide direct and compellexperimental
confirmation that Yang-Mills magnetic monopoles developed here, truly
are baryons!

Given the closeness of them,-m,)/(277); to the experimental

electron mass based on the quark mass data, lebwsgegard the electron
massme to in fact be related to the quadirrent massesprecisely by
Ececron=M. =AE, and let us introduce this as a hypothesis supgdmy the

experimental data. That is, we now hypothesizedas empirical data that:
m, =0510998928MeV = AE = ﬁ(md -m,). (11.22)
7[ 2

Proton

This filters out the “noise” of the interactionstkin the proton and neutron,
and shows the real “signal” behind the noise, whsamal is the electron

mass. It also makes general sense that the electass turns out to be a
constant times the difference between the up amthadmark masses, with the
only real question being: what is the mathemataadl physical basis for
specifying that constant? As it turns out, theedaof 3 emerges from the
3(d2—u2) schematic in (11.12) (and also happens to beuh#ar of quarks in

each nucleon) and the factor dgm)* comes straight from Gaussian
integration over three dimensions. Given thateleetron mass is known with
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much more precision than the loosely-determinedlgossses, we then use
the electron mass to reverse the tables and predibt precision the
difference between these quark masses:
271)

my —m, =—( 3)

This is a very precise number, and may be useetterbconstrain our
the data for the current quark masses. Specificading m, = 48", MeV and
m, = 23, MeV, (11.23), in light of a25;2 MeVspread between the midpoint
experimental data, tells us that the actual spiealightly higher than the data
indicates. Since there is more error on the higé sf the down mass and less
error on the low side of the up mass, the down nsBkely higher than 4.8
MeV, perhaps between 4.9 and 5.0 MeV and the ups nsasikely a touch

lower, perhaps 2.25 MeV. On average, the true esasBould be about 3%
higher based on (11.21). If we use (11.22) indemiity as:

m, =M "M _ () m (11.24)
1-m,/m, 3 1-m,/m,

then becausemn, —m, is now known with great precision from (11.23)e th
experimental determination of these quark massedeamade more precise
to the degree that we can better tighterréiti® m,/m, .

Now, let's tie up the normalization, taking (11.22s a given,
empirical relationship. We combine (11.20) with.@2) to find that:
-2=K = d[y”,y“]dd[yﬂ,yv]d = u[y”,y”]uu[yy,y,,]u. (11.25)
The experimentatonstantK =-2, now known, may now be discarded. What
counts is that the spinors themselves now be naedsduch thathey accord
with the empirically-basedrelation (11.25). We shall work with the “up”
spinors, since the calculation is the same foreeithp or down. We first
expand (11.25) using,, =77,

m, = 2.682677929MeV (11.23)

—2=uly*, v |wly,.y, Ju=8 _ - _ - oz
b bl =8 e i vy iy

We will want to calculate this with a sum over paet spin states for all the
spinors. We first make use @fuu=N?(p+m)/(E+m) (see (3.1)) with an

—uyy uuy®yu— Uy uuyyPu - uy uuy°V3UJ . (11.26)

undetermined real normalizatidh Via p= pﬂy“, (11.26) becomes:
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—g N (-Uy°y1(p+m)y°y1u—uy°y2(p+m)y°y2u-uy°y3(p+m)V‘VU]
sy (prmyyEus sy (prmyyturuyd (prmlyyt ). (11.27)

E+m
- N U u—mul= N? - -
—48E+m(pﬂuy u rrw)—48E+mu(p mu

It is easy to show using Dirac spinors in the usugy, summing both particle
spin states, thatuu = 4N?m?/(E + m). On the other hand, we recognize that

pﬂﬂy"u is a variant of the conservation equationJ” =0 written in

momentum space. So we mandqﬂlgﬁy” u =0 by continuity. Thus, we can
use these two results in (11.27) to write:

4 m2 ) ) - -
~2= 10N =dly.yJddly, .y Jd =dy v July, pJu,  @1.28)
which means that:
1 VE+m 5 1 E+m
—_— NETI. = =, 11.29
N6 vm N TUa 2m (11.29)

This is adimensionless covariant normalizati@arich keeps the Dirac
spinors dimensionless, and which embeds into thaclilgebra, the empirical
relationships (11.22) and (11.23) between the gaark electron masses. In
other words, the normalization (11.29) fully implemts (hard-wires) the

relationship (11.22),m, =3(m, -m,)/(27)> — which appears to yield the
correct experimental relation between the elecinaiss and the up and down

guark masses — into the Dirac algebra via the nlaraten of the Dirac
spinors. To be clear: this is ampirical normalization handed to us by

nature, which reflects thatm =3(m,-m,)/(27)° appears to be an

experimentally-correct mass relationship. We nsit@ply as an observation,
via the Levi-Civita tensor in spacetime, that=-¢ . c*%, and that

(E +m)/2m =1 in the fermion rest fram& =m. Also, for any 4x4 matri
in spacetime, the determinaftl|=¢,,,M “°M”M"*M** has 24 additive

terms. So the factor of!, while it emerges to implement axperimental
mass observation, is a real integer number whias giday a central role in
field theory in four spacetime dimensions.

Moreover, we also observe théit=4x3x2 is the number of known
fermions of all flavors and colors and generaticarsg further describes the
way in which these fermions are structured, as lmarseen from Figure 3
below in which:LRGB represents leptons as a fourth color of quarkigt h
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energies as discussed in section €/u,7 represents the three fermion

generationsand 1, represent isospin up and isospin down:
« 3=eur - ~3=eur -

1 Ve V, V, e u T
= uR CR tR dR sR bR
LRGB U, Cs Ig d; S b
! U, Cg tg d; sz by
~2=Nl-
Figure 3

Therefore, if we letn, =24=4! represent the number of fermions known in

the natural world, the normalization (11.29), whagplies toeach individual
fermion in this chart of 24, may be written on an entirelyysical basis,
without any “mysterious” numbers, as:

oo LESME 1 (Exmf
n, (2mf 24 (2m)
While beyond the scope of this paper, this is sstpge of some sort of
fermion “completeness relation” that entails acdounfor all twenty-four of
the fermion flavors shown in Figure 4 when normatzindividual Dirac
spinors. We write (11.30) as* because this is the power in which the
normalization enters invariant amplitudes. So mpléude which sums over
all fermions will be summing a term with a 1/24 ffmgéent, over 24 distinct
terms, one for each flavor of fermion in Figure 3.

Let us finally tie up one remaining aspect of gectlO and Figure 2,
as to the short range of the nuclear interactiém.section 10, the reduced
wavelengthi was simply a parameter of the Gaussasatz(9.9). And we
noted following (9.12) and again following Figure tBat the Gaussian
standard deviatiorr =% . But now, following (11.18), we set =h/mc

to be the reduced Compton wavelength ofdheent quarks, and this led to
the empirically-correct mass relationships (11.@1)23). But given the

current quark massesy, =48, MeV and m, =23, MeV, and using the
conversion scaleF = 507GeV " = 1(197GeV), this means thak, ~8565F
and &, ~4104F, to which the standard deviation in Figure 2 imtex by

(11.30)
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a—:%x. This, of course, gives the nuclear interactishart range, but not

short enough, because the nuclear interactionagvikrio have a range on the
order of 1 to 2 Fermi. So how do we explain this?

We now keep in mind that we have been usingent quark masses
which turn off any coverings due to perturbatiorisvacuum effects. But
when we actuallyobservenuclear interactions, we are of course observing
interactions based on tleéfective, constituerguark masses. If for very rough
measure, we take these to be equal to 1/3 of tlss wfahe proton or neutron,
say 939 MeV/3=313 MeV, then we hawe~ 63F and o=—+1k ~A5F. So

now, the standard deviation for Figure 2 is slighéss than .5 F. Figure 2
and the discussion following then tells us thatribelear interaction virtually
ceases to be effective at abaut= 3%k ~2F . So now, Figure 2, witii based
on constituentguark masses, depicts just the right distancéhi®ishort range
of nuclear interactions, which are now predictecbgmzome insignificant at
about 2 F.

12. Quark Confinement Results from Predicted Bindig Energies which
Coincide Extremely Closely with Nuclear Binding Enegies

Finally, with the empirical fermion normalizatio@1(.30) in place, we
can directly derive the proton and neutron masstsvever, because we have
turned off all perturbation and turned off the vaecy the masses in (11.8) and
(11.9) are not expected to be tbbservedmasses. Rather, these will the
structural proton and neutron masses based only on the ¢uuank masses,
with no perturbations and no accounting for vacucondensates. These,
once again, are “signal” relationships with “noisgtipped out. While these
masses are given formally in (11.8) and (11.9), sbleematic relationships
(11.10) through (11.12) provide a shortcut to clalimithese masses. If we
compare (11.12) to our eventual result (11.22)tler electron mass, we may
schematically express this as:

Erearor 03(02 -U?)= Eqpnre, = 3(m, —m, ) /(272)2. (12.1)
The key thing that we learn via the Gaussian iraign, is to use the three-
dimensional Gaussian integration numk@r): as a divisor to find the correct

mass relationships. Careful consideration of (Lth8ough (11.11) and the
Gaussianansatz should make clear that the proton and neutronctsirail
(noise-free signal) masses follow an identicalgratti.e.:

E. 0d®+4ud+4u’ = E, = (md +4,/mm, +4mu)/(2n)%, (12.2)

Electron



57-

E,Ou®+4ud+4d° = E, = (mu +4,/m,m, +4md)/(2n)% : (12.3)
Then, making use of the mid-valued experimentalriquaasses from [22]
(which we know from (11.21) are low by about 3%# @btain:

E, = (m, +4/mm, +4m,)i(277)} = 1733MeV , (12.4)
E, = (mu +4./m,m, +4md)/(2n)% = 2209MeV . (12.5)

This proves in energy terms, that these magneticopales are topologically
stable with definite, finite energies.

Now, while (12.4) and (12.5) seem odd at first blus light of Ey =
939.565379 MeV anllp = 938.272046 MeV, this is actually a fascinatimgl a
very revealing result: We have turned off all parative terms, which means
that “interaction” energy and other “noise” accaufidr about 99.8% of the
observed mass of the proton and neutron, accortinthe above. The
underlying quarks, absent interactions and absaotiwn effects, appear to
contribute only about 0.2% of the total. But oeavmore interest, is this: If
the “naked” proton and neutron masses were simplipear sum of their

component quark masses which arey, =487 Mev and m, = 23"/ MeV
based on the best PDG data, we would expect to &lavetE, = 94MeV
and E,,.,=119MeV based on the PDG experimental means. So here, “th

whole isa lot lessthan the sum of the parts,” and there is a stunemergy
diminution. What does this mean that we can pregehguarks together and
have a system where the total mass is less than &fO#e mass of the
component quarks, before we turn on the pertureatiteractions? Imagine
putting ten pounds of anything into a black boxd @hen finding that the
black box weighs less than two poundsmeans that there is a fantastically-
large, intrinsic, negative binding energy holdingese quarks together in a
confined system!

We can calculate this inherent binding eneBydirectly: Using the
additive relationshipsg,,,= 94MeV=m, +2m,, Eo.=119MeV=m,+2m,

for mean data per above, and (12.4) and (12.5),irtherent proton and
neutron binding energies, respectively, are simply:

B, =2m, +m, -(md +4,/mm, +4mu)/(2n)% = 94MeV - 1733MeV = 7667MeV (12.6)
By =2m, +m, —(m, +4/mm, +4m, )/(27)} = 119MeV - 2209MeV = 9691MevV . (12.7)
For a system with an equal number of protons androes, theaverage
binding energyer nucleorwill then be:

B =(7667MeV + 969IMeV )/2 = 8679MeV (12.8)
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This is a fascinating result, because these aretlgxfie magnitudes of per-
nucleon binding energies that are observed thrautghaclear physics for all
elements from Heand C? through the balance of the periodic table, as show
in Figure 4 below which can be obtained in likeafiofrom virtually any
hardcopy or online reference on nuclear physics.(12.8) a prediction that
the per-nucleon binding energy is between 8 ande¥ Mvhich isexactly
what is observed throughout Figure 4fso, then the validation of the thesis
that baryons are Yang-Mills magnetic monopoles adga well beyond
predicting the electron rest mass from the quarkses in (11.21)-(11.23), to
perhaps predicting the precisely-known binding gresrthat permeate nuclear
physics. How might this work?

Average binding energy per nucleon (MeV)

odH__| L | | | | | l | | |
0 20 40 60 80 100 120 140 160 180 200 220 240
Mumber of nucleons in nucleus, A

Figure 4
Based on the data in Figure 4 and (12.6)-(12.8)atwdme might
observe as a preliminary matter is the followirkgrst, when we state that the
neutron and proton masses &e= 939.565379 MeV anétp = 938.272046
MeV, we have to be careful to be clear that theseirgboundmasses fofree
nucleons, as we were with emphasis following (1)L.12use a proton and a
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neutron into a deuteron tHhucleus), however, and the mass of each is
reduced by a well-established binding energyer nucleon of
B,./2=1112283eV, the first non-zero data point in Figure 4. (kngral,

for the discussion to follow, we shall use bindeigergies calculated from
nuclei masses in [23].) Fuse two of these intow-hucleon alpha particle
(He" nucleus) and the binding energy per nucleon spikgislly to just over 7
MeV per nucleon, entering the range predicted i8.8L Why is Hé
understood to spike so quickly, whereby the Li 8ednuclei drop back down
to under 6 MeV per nucleon before C and N rise kackbout 7.5 MeV per
nucleon before the heavier elements move smacktianiddle of what is
predicted by (12.8)? Because for the?Hheicleus, all of the nuclei (two
protons and two neutrons, one each with spin up, each with spin down)
can remain in a ground state, but for any elenteatititas more than 4 nuclei,
the remainder of the nuclenustgo into higher energy states because of the
fermion Exclusion Principle. This means that sah#e nuclei in Li and Be
must “steal” some of the energy that is otherwigailable for binding, and
instead use this energy to excite to a higher gnsta@je to be able to coexist
in the same nucleus with the first four nucleonshef alpha particle. All of
these observations are part of the known understgrd Figure 4.

So based on these observations, one might fasienfdllowing
preliminary explanation of what (12.6) — (12.8) are sayingaclt nucleon
apparently has what we shall refer to as a “labemding energy,” or “energy
availablefor binding.” When a nucleon is freall of that binding energy is
contained within the nucleon, and servesctmfine the quarks within the
nucleon throughntra-nucleonbinding. This confinement is structural based
on differential spacetime geometry, as establishesection 1. But to fuse
one nucleon with another nucleon, some of thatrmade“latent” binding
energy must become devoted to binding togethetvibenucleons. So in the
deuteron,B,, /2=1.1122881eV per nucleon is channeled into the fusion of the

two nucleons (and thus is released as fusion ephexgg the total masses
(including theobservedmasses) of the proton and neutron drop slightlary
equivalent amount. Some, but not all, of the latending energy has now
gone intointer-nucleonbinding, rather thamntra-nucleonbinding. As one
goes up the nuclear mass scale, more and more dditdnt binding energy is
apparently channeled into inter-nucleon binding] &8s into intra-nucleon
binding. And some of that energy — for which LdaBe are good examples —
can be channeled into providing the energy needaedtHe “fifth” and
additional nucleons to excite into a higher enesigye so that they can fuse to
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the rest of the nucleus. So what (12.6)-(12.8)eapfo be saying, in this
context, is that each nucleon has available fodibgy a maximum latent

binding energy of about 7.7 MeV per proton and &V per neutron. How

much of that is used, and what it is used for, ddpeon the particular nucleus
that one seeks to fuse together.

Let's go a step further and look at®Feind NF? which have the
highest binding energy per nucleon of any nucled are highly illustrative.
Fe’® contains 30 neutrons and 26 protons. Based af)(&2d (12.7) (which
again, are based on quark masses that appearaboloé 3% off on the low
side), one would expect a total binding energy3ii.872 MeV. The observed
experimental biding energy is a remarkably-clofigh8y higher 492.253892
MeV. Ni®® contains 34 neutrons and 28 protons. Based af)(&2d (12.7),
(again, about 3% low) one would expect a total ingdenergy of 544.17
MeV. The empirical binding energy is the slighttigher 545.259 MeV.
What does this mean?

First, the closeness of these numbers is furtakdation of the thesis
of this paper that baryons are indeed Yang-Millsgnetic monopoles.
Second, however, the empirical binding energiesulshan principle be
slightly lower rather than slightly highethan the theoretical maximum
available for binding via (12.6) and (12.7), othemsvit would become
possible to de-confine quarks which must in prilecipe impossible based on
section 1 as well as a general understanding dfreament principles. As we
shall momentarily show, the 3% correction note@anlier in (11.21) will fix
this, so thatno nucleuswill exceedthe maximum available latent binding
energy. Rather, these “lightest per nucleon” rive&® and NF? will use up
just a tad less than the total available bindingrgy, with (12.6) and (12.7)
(with energy numbers we will shortly update) estbhgin principle energy
limits.

As to the lighter elements, the amount of latanting energy used
for actual binding is lower, but let’s look at thery lightest nuclei containing
more than one nucleon. First, thé ¢euteron which consists of one proton
and one neutron, as a “two body” system, is they wmplest composite
nucleus, and is known to have a binding eneBgy=222456avieV. This is

intriguingly close to the mass of the up quatk=23*] MeV, especially since
there is a good likelihood that the up mass isglightly smaller, as suggested
following (11.23). Might it be thamm, = 23"/ Mev?z?BHz = 2224566 MeV are
one and the same.e., that the deuteron binding energy is anotkgnal,”
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like the electron mass, which cuts through the sabiof the nucleons to tell
us what is really going in inside? Specificallyight it be that the deuteron
binding energy is a signal that tells us éxactcurrent mass of the up quark?
If this is so, then the up and down quark massesbeacalculated to six-

decimal precision in MeV using ., and (11.23).

Based on the tantalizing closeness of these egerlgit us introduce
thehypothesighat this is so, i.e., that:

m, =B, = 2.224566 MeV , (12.9)
in which case, via (11.23), we may obtain with &gamprecision:

_(2n)f _
m, = 3 m, + m, = 2.6826779329MeV + 2.224566 MeV , (12.10)

=4.907244MeV

and the ratio:

m, /m, =.4533229. (12.11)
Both of these masses fit well within the currenadumassesn, = 23" MeV
and m, = 48"]MeV given in [22] and the ration,/m, = 46 (5)n equation
[5] of [24]. We shall momentarily discuss thieeoretical basis upon which
this hypothesis might be justified, but first, fetlo some calculations.

If hypothesis (12.9) is true, then via (12.6) and{)L2%e may do a
more precise calculation:

B, = 2m, +m, —(md +4,/m,m, +4mu)/(2n)% =9.356376MeV - 1.71569MeV (12 1)
= 7.640679M&/

By = 2m, +m, - (m, +4,/mm, +4m, )/(277)} =12.039054MeV - 2.226696VieV (12.13)
=9.812358MeV/
Based on the discussion preceding (12.9), this Hagis every proton in a
nucleus has a latent (maximum available) bindingrgy of 7.640679 MeV,
and every neutron has available 9.812358 MeV. afmge, unbounducleon,
all of this energy is used to confine the quarks withie nucleon. But when
one nucleon binds to another, some of this energgiéased as fusion energy,
and an equivalent deficit of energy goes into bigdihe nucleons. For Pe
with 26 protons and 30 neutrons, we may calculag this maximum
availablebinding energy is:
B,., F€°) =26%7.64067MeV +30x9.812358/eV = 493.02839MeV (12.14)

What does the empirical data show to be dbwial binding energy?
492.253892 MeV So precisely 99.8429093% of theailablebinding energy
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predicted by this model of nucleons as Yang-Millagmetic monopoles goes
into binding together the Fenucleus. The remaining 0.1570907%, which is
equal to .774502 MeV total, or a relatively scaBi8B040 KeVper nucleon
goes into confining the quarks within the nucleoms.calculation similar to
(12.14) based on (12.12) and (12.13) fof’Nieveals a predictedvailable
binding energy of 547.559184 MeV compared to anigogb binding energy
of 545.2590 MeV. So Nf uses 99.57992% of thavailable binding energy,
with the balance continuing to confine the quarkSalculations for other
nuclei and isotopes and isobars reveal tltaknown nucleus ever gets up to
using 100% of the available binding energgnd that F&€ achieves the
maximum utilization at 99.8429093%. This appearprtovide compelling
experimental validation that baryons, including tprns and neutrons, are
indeed Yang-Mills magnetic monopoles.

What would it mean to get over 100%? It would m#weat the balance
has been tipped, so that the energies within iddali nucleons would no
longer confine the quarks, but would free theme Peak in Figure 4 at Fe
is nature saying that she witlever allow quarks to be de-confined from a
nucleon, any more than she will allow material aigno reach the speed of
light! Fe*is the closest that one can come to taking aletiergy that is used
to confine the quarks inside a nucleon, and using iinstead bind nuclei
together. But even here, we never get to the peirdgre we can remove the
guark from a nucleus; we only approach a natunaitli There is alwayst
least 13.83040 KeV per nucleon continuing to confine tuarks, even for
Fe®. After reaching these peaks aFand NF? the Figure 4 curve heads
back down into the fission zone, and the quarksnagacome more tightly
confined inside the nucleon. While quarks alwalgs £onfined, however,
this does suggest that®and NP? and other nuclei which commit a very high
percentage of available binding energy to interlemt binding are the best
nuclei to use, experimentally, in order to obsettve behaviors of quarks
inside the nucleons. This is because for thesdenuibhe intra-nucleon
energies confining the quarks inside the nuclei aréheir lowest strength,
having all been channeled intater-nucleonbinding. In these nuclei, quarks
have more freedom, asymptotic and otherwise, thamy other nuclei.

While the hypothesis (12.9) that, =B . appears to be confirmed

based on the empirical data, both directly and(¥#12) to (12.14) deduced
therefrom, it is important to try to understand theoretical reasons why
(12.9) would make sense. Figure 4, which is elytieenpirical, makes clear
that to fuse a nucleon to any given nucleus, thewmnof energy which is
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either liberated (fusion) or needs to be supplfess$ipn) is adiscreetamount
of energy. For example, in fusing a proton aneatmon into a deuteron, one
will liberate exactly 2.224566 MeV (equation (13.9f energy, each and
every time,as opposed to some continuous spread of enefgyadd another
neutron to a deuteron to form the tritiun? I$otope with a total 8.481799
MeV binding energy, one will liberate exactly anatt.257233 MeV, which
is the difference between the’ lAnd H binding energies. Not a continuous
spread. The same, discrete amount of energy, @adtevery time. What
determines that precise energy values like thesd, reo others, will be
released (or must be supplied)? Hypothesis (1&Bigh leads to predictions
such as (12.14) which are borne out by empiricah danding, adds new
information to the semi-empirical Bethe-Weizsackeass formula which
accounts for binding energies in general terms dase nucleus volume in
light of limited nuclear range, surface versus r@nposition of particular
nuclei, Coulomb repulsion between protons, andustah based on both spin
and internal symmetry quantum numbers. What (128dd)s to all of these
considerations, is this:

Take a proton and a neutron. Think of each @sanant cavity Try
to fuse them into a deuteron. Experiments teltha the same amount of
energy — 2.224566 MeV — will be released each amulyetime following a
successful fusion. Some attribute of these twdemns must determine that
this amount of energy is 2.224566 MeV, and not sother energy. So what
is that attribute? Each of these nucleons contginguarks and down quarks.
These have associated Compton wavelengths. Nieunl the early Bohr /
deBroglie models used to explain atomic spectraséhwavelengths will
establish preferred, discreet resonant energydewbich can be detected, to
the exclusion of all other energies which cannotétcted. And nature will
follow least action principles and so choose a logreergy level (such as that
set by the up quark) over a higher energy levaeti{sas that set by the down
guark) whenever it can. So to create a two bogdyesy — a deuteron — from a
proton and a neutron, the energy released resopiaeiselywith the mass of
the down quark, which is why 2.224566 MeV _is bdta mass of the up quark
and the energy released in this simplest, mostexiéahfusion of a proton and
a neutron into a deuteron. The energy releasenh filois fusion (and
presumably other fusions) appears to depend on waatlengths “fit” with
respect to the components being fused. And at feafusing a deuteron, the
wavelength / mass that “fits” is established disgaquivalently by the mass
of the up quark which is contained twice in a pnoémd once in a neutron.
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To start with a deuteron®hand add another neutron to form an H
tritium nucleus (which does not add the complicatid a p—p repulsion that
occurs for H&) then also becomes a problem of asking: what stssf But
now, the problem is a three body problem. Onehef ‘cavities” is now a
deuteron. So while the empirical answer is 6.2372@V, there is no simple
apparent way to get this number, at least linedroym (12.9) and (12.10).
But, to find the basis for this 6.257233 MeV enengeded to go from Ho
H? adds another consideration to the semi-empirig@stiormula: what is the
lowest energy, most natural resonance of the twetesys that one is trying to
fuse, namely, an Hand a neutron? That resonance is 6.257233 Me¥, an
some careful analysis of the resonance betweem &dddy system and a one-
body system, together with some employment of tharlg masses (12.9),
(12.10), should yield that number.

So, in sum, (12.9) becomes justified for a deutemorthe basis of the
proposition that the fusion resonance for a cayjyoton) that already
contains a quark with a mass of 2.224566 MeV wisieeond cavity (neutron)
that also contains a quark with a mass of 2.22486¥, is just that mass:
2.224566 MeV. For other nuclei, this introducegsonant cavity analysis to
supplement the other considerations in the semir&apmass formula.

This also leads one to consider the technologicssipility that a new
type of “resonant fusion” in which nuclei are bathi@ oscillations at their
known binding energies, might serve to catalyzeofusaand extract energy
without the need to supply excessive heat or lpagécle accelerations.

And, (12.12) and (12.13) modify our thinking ab®#the-Weizsacker
in one other very important way: the first two ternof this formula,

a, A+a A, whereA is the number of nucleons, are designed to acdount

the volume and surface geometry of a larger nucbam®d upon the fact that
because of the short range of the nuclear forae Kggure 2 in section 10 and
the discussion at the end of section 11 suggestisgiandard deviation of
0 =4k ~A5F for nuclear interactions and a virtual cessatibmteraction

at arounddo = 3k ~2F ), each nucleon will only interact with its immetdiky-
adjacent neighbors, and nucleons on the surfadénawk less neighbors with
which to interact. But (12.12) and (12.13) introdithe same considerations
from a different standpoint: it sets in very psecterms, a maximum available
binding energy, and that energy limit flows frone tBaussian distribution of
Figure 2 for the field flux across any closed scefa That is why the first two

terms of Bethe-Weizsécker agg A+ a A*?, rather thara, A> +a A*°.
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To further develop thigreliminary understanding of nuclear binding,
it will be very useful to carefully scour the wemalf data for various nuclear
isotopes and isobars to see exactly how much kgndmergy is added or
subtracted each time a proton or neutron is addedrtremoved from a
nucleus, and compare those with the predicted bgndnergies in (12.12) and
(12.13), as this may provide a more “granular” ghsiinto the specific data
points on nuclear binding charts such as FigureFér example, start with
Fe®. Add a single neutron to turn it into the’Fisotope. The empirical data
shows that this add831.919288 MeV (with no new electron) to the atomic
weight of Fe’® while adding one more neutron with ambound mass of
939.565379 MeV. So, the additional binding enenglyoduced (and the
fusion energy released) by adding this one neusron
B (Fe’’) — B (Fe™) = 7.646090MeV (12.15)
This empirical binding energy differs from theéheoretical predictionof
7.640679M¥ in (12.12) for the intrinsic binding energy of eofon, by a
paltry 5.412 KeV, or 0.0708%. Apparently, addingemeutronto Fe®,
within a small fraction of one percent, liberatesiatrinsic binding energy
virtually equal to that of a singlgroton Similar exercises for other isotopes
and isobars of all nuclei should be quite instuestiand with (12.12) and
(12.13) available for guidance, can help us baitederstand what happens
each time one adds or subtracts a proton or aaretdgror from a nucleus, and
how the biding energies are allocated.

But theseven parts in ten thousawctbseness of thempirical energy
(12.15) to apredictedenergy in (12.12), taken together with all of titber
predictions in Sections 11 and 12 which appear ¢o experimentally
supported, cannot be dismissed as coincidence.reTére too many such
predictions, they are all intertwined, and they atbme too close to
observational data to be merely coincidental.

All of this, and especially the 99.8429093% of thailable binding
energy which goes into binding together th&®Reucleus, and the fact that
nothing goes overl00%brings us full circle back to where we started in
section 1, when we showed how Yang-Mills magnetmnapoles naturally
confine their gauge fields, and how this was dudhi® very structure of
spacetime via Gauss’ / Stokes’ integration and ghemetric relationship
dd=0. Now, in (12.12) and (12.13), when we are findoking at energies,
we see that once three quarks are put into a batlgervery structure of the
baryon creates an intrinsic latent binding eneifgpt is equal to more than
80% of the component quark masses. This latentlifmn energy is
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fundamental to the structure of baryons. As wewsb in section 1,

confinement flows from the very structure of spamet and as we showed
here, it explains with precision the experimentafadfor nucleon binding of
the heaviest elements and especially explains whyr& 4 has a maximum
binding energy per nucleon which is never exceedwtigrows smaller as one
moves away from the fusion / fission boundary.

So, expressed in terms of proton and neutron esgrgguark
confinement is signaled by the fact that for thgearks in a baryon, there is
an inherent negative latent binding energy thaqgsal to more than 80% of
the quark masses themselves, and that even fondisetightly bound nuclei,
some small amount of energy from this binding eypawservoir is always
retained to keep the quarks confined. This is hlogvenergy physics of a
baryon conspires to keep the quarks confined. Wieteons are fused, some
of that binding energy migrates into a negativedlrig energy holding the
nucleons together to form nuclei and a positive\eent is released as fusion
energy. If one can maximize the latent bindingrgpehat goes into inter-
nucleon binding, the confinement of the quarks witmy given nucleon does
loosen up, because the latent binding energy id less for confinement and
more for actual inter-nucleon binding. In an irrcleus, for example, quarks
will come close (within 0.16% per nucleon) of beiaigle to deconfine from
the nucleus. But one never quite goes beyond Heatause precisely at the
point where the quarks comes closest to deconfingnome starts onto the
downward fission slope whemmore, not lessof the latent binding energy
starts to go back into keeping quarks confin&d, the well-known empirical
peak in Figure 4 is fundamentally a confinementyoineenorwhereby quarks
step back from the brink of becoming de-confined Fig®, and remain
confinedin principle no matter what the element. Iron-56 thus is seesit at
the theoretical crossroads of fission, fusion, qnark confinement.

Knowing now that nucleons very likely are Yang-8limagnetic
monopoles, and given the stark binding energy féases” just noted, it may
become possible to develop a more coherent andiledetaranular
understanding of nuclear structure. Such an utatedig, in light of what
has been developed here, now boils down to undhelisig in detail, how
collections of such magnetic monopoles — which monopole ctilles we
now understand to be nuclei when the monopolepm@tons and neutrons —
organize and structure themselves.
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Conclusion

The very vast preponderance of the material unéversnsists of
baryons, and particularly, protons and neutronke fiesults developed here,
especially the empirical concurrences developeseations 11 and 12, firmly
validate that for non-commuting Yang-Mills gaugeldis, the long-sought and
ever-elusive magnetic monopoles of Maxwell do ekisthe physical world,
everywhere and anywhere that there is matter irutiigerse, hiding in plain
sight, in the form of protons and neutrons!

These Yang-Mills Magnetic Monopoles naturally caoefitheir gauge
fields, naturally contain three colored fermionsaigolor singlet, and mesons
also in color singlets are the only particles they allowed to emit or absorb.
SU(3k QCD as it has been extensively studied and cogefirre understood in
broader context, with no contradiction, to be asemuence of baryons being
Yang-Mills magnetic monopoles. Protons and newtrare naturally
represented in the fundamental representation isf gloup. The t'Hooft
monopole Lagrangian with a Gaussiansatz for fermion wavefunctions
demonstrates that these monopoles can be madetadnonly at very short
range as is required for nuclear interactions. s&henonopoles are
topologically stable following symmetry breakingiin an SU(4) group using
the B-L (baryon minus lepton number) generatore mass of the electron is
accurately predicted based on the masses of tmdiglown quarks to about
3% from the experimental mean for the quark massed, confinement of
qguarks occurs energetically via fantastically sroegative binding energies.
And, the predicted binding energies per nucleon ca@pletely consistent
with experimental data. All of this compels sesaonsideration and further
development of baryons as Yang-Mills magnetic mahes

Acknowledgement

The author wishes to express grateful thanks gpdeaiation to Dr.
Andrej (Andy) Inopin of Kharkov, Ukraine for all dfis feedback in helping
the author develop and review this manuscript, @anaorking with me on
various occasions since 2005 when he first got merasted in quark and
color confinement which forms a central part ostpaper.



-68-

References

[1] t'Hooft, G., Magnetic Monopoles in Unified Gauge Theorilsiclear
Physics B79, 276-284, (1974)

[2] A.M. Polyakov,Particle Spectrum in the Quantum Field Thealg TP

Lett. 20, 194-195 (1974)

[3] Ohanian, H. C.What is spin?Am. J. Phys. 54 (6), 500-505 (June 1986)
[4] Zee, A.,Quantum Field Theory in a Nutshdfrinceton (2003)

[5] Halzen, F., and Martin A. DQuarks and Leptons: An Introductory
Course in Modern Particle Physic$. Wiley & Sons (1984)

[6] Ryder, L.,Quantum Field TheoryCambridge (1996)

[7] Close, F. E.An Introduction to Quarks and Partgnscademic Press
(21979)

[8] J. Beringer et al.(PDG), PR D86, 010001 (20%2g specificallyChapter
14. Quark Modelhttp://pdg.lbl.gov/2012/reviews/rpp2012-rev-quark-
model.pdf

[9] J. Beringer et al. (Particle Data Group), PR6D810001 (2012)
http://pdg.lbl.gov/2012/tables/rpp2012-sum-mesaifs.p

[10] Reinich, G.Y.Electrodynamics in the General Relativity Thedrsans.
Am. Math. Sog Vol. 27, pp. 106-136 (1925)

[11] Wheeler, J. A.Geometrodynami¢c#cademic Press, pp. 225-253 (1962)
[12] Misner, C. W., Thorne, K. S., and WheeleAJ.Gravitation, W. H.
Freeman & Co. (1973)

[13] K. Hagiwaraet al, Quantum, Chromodynamics , Physical Review D66,
010001-1 (2002)Qttp://pdg.lbl.gov/2002/qcdrpp.pdf

[14] S. Bethke, The 2009 World AverageoS, Eur. Phys. J. C64, 689 (2009)
http://arxiv.org/abs/0908.1135

[15] Cheng, T-P and Li, L-Fauge theory of elementary particle physics
Oxford (1984) (2011 reprint)

[16] Weinberg, S.The Quantum Theory of Fields, Volume II, Modern
Applications Cambridge (1996)

[17] Volovok, G. E.,The Universe in a Helium DropleClarendon Press —
Oxford (2003)

[18] Howard Georgi and Sheldon Glashdwwity of All Elementary-Particle
Forces Physical Review Letters, 32 at 438 (1974)

[19] Georgi, H. and Glashow, S. Unified Weak and Electromagnetic
Interactions without Neutral Current®hys. Rev. Lett. 28, 1494-1497 (1972)




-69-

[20] J. Beringer et al. (Particle Data Group), P&PD010001 (2012)
http://pdg.lbl.gov/2012/tables/rpp2012-sum-barypds.

[21] J. Beringer et al. (Particle Data Group), P&PD010001 (2012)
http://pdg.lbl.gov/2012/tables/rpp2012-sum-leptpds.

[22] J. Beringer et al. (Particle Data Group), P&PD010001 (2012)
http://pdg.lbl.gov/2012/tables/rpp2012-sum-quardt.p

[23] http://physics.nist.gov/cuu/Constants/index.html

[24] J. Beringer et al. (Particle Data Group), P8, 010001 (2012)
http://pdg.lbl.gov/2012/reviews/rpp2012-rev-quarksses.pdf




