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Abstract. The Hawkes process having a kernel in the form of a linear combination of
exponential functions �(t) =

P
j=1
P �j e

¡�j t has a nice recursive structure that lends itself
to tractable likelihood expressions. When P = 1 the kernel is �(t) = �e¡�t and the inverse
of the compensator can be expressed in closed-form as a linear combination of exponential
functions and the LambertW function having arguments which can be expressed as recursive
functions of the jump times.
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1. Hawkes Processes

1.1. The (Standard) Exponential Hawkes Process of Arbitrary Order.

A uni-variate linear self-exciting counting process Nt is one that can be expressed as

�(t) =�(t)�+
Z
¡1

t

�(t¡ s)dNs

=�(t)�+
X
tk<t

�(t¡ tk)
(1)

where �(t) is some baseline which factors in sources of non-stationarity, see (150). [11][5][10][4][6,
11.3] Here, �:R+!R+ is a kernel function which expresses the positive in�uence of past events
ti on the current value of the intensity process, and � is a scaling factor for the baseline intensity
�(t). For comparison with the multivariate case see Equation (78). The Hawkes process of order
P is a de�ned by the exponential kernel

�(t)=
X
j=1

P

�j e
¡�j t (2)
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The intensity of the exponential Hawkes process is written as

�(t) =�(t)�+
Z
0

tX
j=1

P

�j e
¡�j(t¡s)dNs

=�(t)�+
X
j=1

P X
k=0

N�t

�j e
¡�j(t¡tk)

=�(t)�+
X
j=1

P

�j
X
k=0

N�t

e¡�j(t¡tk)

=�(t)�+
X
j=1

P

�jBj(Nt)

(3)

where Bj(i) is given recursively by

Bj(i) =
X
k=1

i¡1

e¡�j(ti¡tk)

=e¡�j(ti¡ti¡1)
X
k=1

i¡1

e¡�j(ti¡1¡tk)

=e¡�j(ti¡ti¡1)
 
1+

X
k=1

i¡2

e¡�j(ti¡1¡tk)

!
=e¡�j(ti¡ti¡1)(1+Bj(i¡ 1))

(4)

since e¡�j(ti¡1¡ti¡1)= e¡�j0=e¡0=1. A uni-variate Hawkes process is stationary if the branching
ratio is less than one. X

j=1

P
�j
�j

< 1 (5)

If a Hawkes process is stationary then the unconditional mean is

�=E[�(t)] = E[�(t)]
1¡E[�(t)]

= E[�(t)]
1¡

R
0

1P
j=1
P �j e

¡�j tdt

= E[�(t)]
1¡

P
j=1
P �j

�j

(6)

where E(�) is the Lebesgue integral over the positive real axis. For consecutive events, the dual-
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predictable projection is expressed (10)

�(ti¡1; ti) =
Z
ti¡1

ti

�(t)dt

=
Z
ti¡1

ti

0@�(t)+X
j=1

P

�jBj(Nt)

1Adt
=
Z
ti¡1

ti

�(s)ds+
Z
ti¡1

ti X
j=1

P

�j
X
k=0

i¡1

e¡�j(t¡tk)dt

=
Z
ti¡1

ti

�(s)ds+
X
j=1

P

�j
X
k=0

i¡1 Z
ti¡1

ti

e¡�j(t¡tk)dt

=
Z
ti¡1

ti

�(s)ds+
X
k=0

i¡1 Z
ti¡1

ti

�(t¡ tk)dt

=
Z
ti¡1

ti

�(s)ds+
X
k=0

i¡1 X
j=1

P
�j
�j
(e¡�j(ti¡1¡tk)¡ e¡�j(ti¡tk))

=
Z
ti¡1

ti

�(s)ds+
X
j=1

P
�j
�j
(1¡ e¡�j�ti)Aj(i¡ 1)

(7)

compared with the multivariate compensator in Equation (86)where there is the recursion

Aj(i) =
X
tk6ti

e¡�j(ti¡tk)

=
X
k=0

i¡1

e¡�j(ti¡tk)

=1+ e¡�j�tiAj(i¡ 1)

(8)

with Aj(0)=0 since the integral of the exponential kernel (16) isZ
ti¡1

ti

�(t)dt =
Z
ti¡1

ti X
j=1

P

�j e
¡�j (t¡tk)dt

=
X
j=1

P
�j
�j
(e¡�j ti¡ e¡�jti¡1)

(9)

If �0(t) does not vary with time, that is, �0(t)=�0 then (20) simpli�es to

�(ti¡1; ti) =(ti¡ ti¡1)�0+
X
k=0

i¡1 X
j=1

P
�j
�j
(e¡�j(ti¡1¡tk)¡ e¡�j(ti¡tk))

=(ti¡ ti¡1)�0+
X
k=0

i¡1 Z
ti¡1¡tk

ti¡tk
�(t)dt

=(ti¡ ti¡1)�0+
X
j=1

P
�j
�j
(1¡ e¡�j(ti¡ti¡1))Aj(i¡ 1)

(10)

Similarly, another parametrization is given by

�(ti¡1; ti) =
Z
ti¡1

ti

��0(s)ds+
X
j=1

P
�j
�j
(1¡ e¡�j(ti¡ti¡1))Aj(i¡ 1)

=�
Z
ti¡1

ti

�0(s)ds+
X
j=1

P
�j
�j
(1¡ e¡�j(ti¡ti¡1))Aj(i¡ 1)

=��0(ti¡1; ti)+
X
j=1

P
�j
�j
(1¡ e¡�j(ti¡ti¡1))Aj(i¡ 1)

(11)
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where � scales the predetermined baseline intensity �0(s). In this parametrization the intensity is
also scaled by �

�(t) =��0(t)+
X
j=1

P

�jBj(Nt) (12)

this allows to precompute the deterministic part of the compensator �0(ti¡1; ti)=
R
ti¡1

ti �0(s)ds.

1.1.1. Maximum Likelihood Estimation.

The log-likelihood of a simple point process is written as

lnL(N(t)t2[0;T ]) =
Z
0

T

(1¡�(s))ds+
Z
0

T

ln�(s)dNs

=T ¡
Z
0

T

�(s)ds+
Z
0

T

ln�(s)dNs

(13)

which in the case of the Hawkes model of order P can be explicitly written [8] as

lnL(ftigi=1:::n) =T ¡�(0; T )+
X
i=1

n

ln�(ti)

=T +
X
i=1

n

(ln�(ti)¡�(ti¡1; ti))

=T ¡�(0; T )+
X
i=1

n

ln�(ti)

=T ¡�(0; T )+
X
i=1

n

ln

0@��0(ti)+
X
j=1

P X
k=1

i¡1

�j e
¡�j(ti¡tk)

1A
=T ¡�(0; T )+

X
i=1

n

ln

0@��0(ti)+
X
j=1

P

�jBj(i)

1A
=T ¡

Z
0

T

��0(s)ds¡
X
i=1

n X
j=1

P
�j
�j
(1¡ e¡�j(tn¡ti))

+
X
i=1

n

ln

0@��0(ti)+
X
j=1

P

�jBj(i)

1A

(14)

where T = tn and Bj(i) [7] is de�ned by (4) If the baseline intensity is constant �0(t)=1 then the
log-likelihood can be written

lnL(ft1; :::; tng) =T ¡�T ¡
X
i=1

n X
j=1

P
�j
�j
(1¡ e¡�j(T¡ti))

+
X
i=1

n

ln

0@�+X
j=1

P

�jBj(i)

1A (15)

Note that it was necessary to shift each ti by t1 so that t1=0 and T = tn. Also note that T is just
an additive constant which does not vary with the parameters so for the purposes of estimation
can be removed from the equation.

1.1.2. The case when P=1 and the Lambert W Function: Transcendental Recursion.
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The Hawkes process of order P =1 is a de�ned by the exponential kernel

�(t)=�e¡� t (16)

The intensity of the exponential Hawkes process is written as

�(t) =�0(t)�+
Z
0

t

�e¡�(t¡s)dNs

=�0(t)�+
X
k=1

N�t

�e¡�(t¡tk)

=�0(t)�+
X
k=1

N�t

�e¡�(t¡tk)

=�0(t)�+�
X
k=1

N�t

e¡�(t¡tk)

=�0(t)�+�B(Nt)

(17)

where B(t) is given by equation (4). A uni-variate Hawkes process is stationary if the branching
ratio is less than one.

�
�
< 1 (18)

If a Hawkes process is stationary then the unconditional mean is

�=E[�(t)] = �0
1¡

R
0

1�(t)dt

= �0
1¡

R
0

1�e¡� tdt

= �0
1¡ �

�

(19)

For consecutive events, let�ti= ti¡ ti¡1, then the compensator, also known as the dual predictable
projection, is (10)

�(ti¡1; ti) =
Z
ti¡1

ti

�(t)dt

=
Z
ti¡1

ti

(�0(t)+�Bj(Nt))dt

=
Z
ti¡1

ti

�0(s)ds+
Z
ti¡1

ti

�
X
k=1

i¡1

e¡�(t¡tk)dt

=
Z
ti¡1

ti

�0(s)ds+�
X
k=1

i¡1 Z
ti¡1

ti

e¡�(t¡tk)dt

=
Z
ti¡1

ti

�0(s)ds+
X
k=1

i¡1 Z
ti¡1

ti

�(t¡ tk)dt

=
Z
ti¡1

ti

�0(s)ds+
X
k=1

i¡1
�
�
(e¡�(ti¡1¡tk)¡ e¡�(ti¡tk))

=
Z
ti¡1

ti

�0(s)ds+
�
�
(1¡ e¡��ti)Aj(i¡ 1)

(20)
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compared with the multivariate compensator in Equation (86) where there is the recursion

Aj(i) =
X
tk6ti

e¡�(ti¡tk)

=
X
k=0

i¡1

e¡�(ti¡tk)

=1+ e¡��tiAj(i¡ 1)

(21)

with Aj(0)=0 since the integral of the exponential kernel (16) is

Z
ti¡1

ti

�(t)dt =
Z
ti¡1

ti

�e¡� (t¡tk)dt

=�
�
(e¡� ti¡ e¡�ti¡1)

(22)

If �0(t) does not vary with time, that is, let �0(t)=�0 and �ti= ti¡ ti¡1 then (20) simpli�es to

�(ti¡1; ti) =�ti�0+
X
k=1

i¡1
�
�
(e¡�(ti¡1¡tk)¡ e¡�(ti¡tk))

=�ti�0+
X
k=1

i¡1 Z
ti¡1¡tk

ti¡tk
�(t)dt

=�ti�0+
�
�
(1¡ e¡��ti)Aj(i¡ 1)

(23)

Similarly, another parametrization is given by

�(ti¡1; ti) =
Z
ti¡1

ti

��0(s)ds+
�
�
(1¡ e¡��ti)Aj(i¡ 1)

=�
Z
ti¡1

ti

�0(s)ds+
�
�
(1¡ e¡��ti)Aj(i¡ 1)

=��0(ti¡1; ti)+
�

�
(1¡ e¡��ti)Aj(i¡ 1)

(24)

where � scales the baseline intensity �0(s). In this parametrization the intensity is also scaled by �

�(t) =��0(t)+�Bj(Nt) (25)

this allows the baseline(apriori) part of the compensator be de�ned by �0(ti¡1; ti)=
R
ti¡1

ti �0(s)ds .

1.1.3. Maximum Likelihood Estimation.

The log-likelihood of a simple point process is written as

lnL(N(t)t2[0;T ]) =
Z
0

T

(1¡�(s))ds+
Z
0

T

ln�(s)dNs

=T ¡
Z
0

T

�(s)ds+
Z
0

T

ln�(s)dNs

(26)
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which in the case of the Hawkes model of order P can be explicitly written [8] as

lnL(ftigi=1:::n) =T ¡�(0; T )+
X
i=1

n

ln�(ti)

=T +
X
i=1

n

(ln�(ti)¡�(ti¡1; ti))

=T ¡�(0; T )+
X
i=1

n

ln�(ti)

=T ¡�(0; T )+
X
i=1

n

ln

0@��0(ti)+
X
j=1

P X
k=1

i¡1

�j e
¡�j(ti¡tk)

1A
=T ¡�(0; T )+

X
i=1

n

ln

0@��0(ti)+
X
j=1

P

�jRj(i)

1A
=T ¡

Z
0

T

��0(s)ds¡
X
i=1

n X
j=1

P
�j
�j
(1¡ e¡�j(tn¡ti))

+
X
i=1

n

ln

0@��0(ti)+
X
j=1

P

�jRj(i)

1A

(27)

where T = tn and we have the recursion[7]

Rj(i) =
X
k=1

i¡1

e¡�j(ti¡tk)= e¡�j(ti¡ti¡1)(1+Rj(i¡ 1)) (28)

If we have constant baseline intensity �0(t)=1 then the log-likelihood can be written

lnL(ft1; :::; tng) =T ¡�T ¡
X
i=1

n=Nt X
j=1

P
�j
�j
(1¡ e¡�j(T¡ti))

+
X
i=1

n

ln

0@�+X
j=1

P

�jRj(i)

1A (29)

Note that it was necessary to shift each ti by t1 so that t1=0 and T = tn. Also note that T is just
an additive constant which does not vary with the parameters so for the purposes of estimation
can be removed from the equation.

1.2. An Expression for the Density of the Duration Until the Next Event When P =1.

The simplest case occurs when the baseline intensity �0(t) = 1 is constant unity (apparently
this is the 'shot noise' case) and P =1 where we have

�(ftig)=�+
X
ti<t

X
j=1

1

�j e
¡�j (t¡ti)=�+

X
ti<t

�e¡� (t¡ti) (30)

where

E[�(t)]= �

1¡ �

�

(31)

is the expected value of the unconditional mean intensity.
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an=
X
k=0

n

e�tk (32)

bn=
X
k=0

n

e�(tk¡tn) (33)

cn=
X
k=0

n X
l=0

n

e�(tk+tl¡tn) (34)

The expected time of the next point can be obtained by integrating out the (unit exponentiallly
distributed, the fundamental normal shot noise) " appearing in the inverse compensator

�¡1(";�; �)=

tan

A1(n)
� e¡�t+

an
�A1(n)

� e¡�tnW
��
�
A1(n) � e

�bn¡�"
�

�
+

e¡�tn

�A1(n)

�
an "¡

�

�
cn

� (35)

so that

E[�¡1(";�; �)jFt] =
Z
0

1
�¡1(";�; �)d" (36)

The recursive equations with initial conditions b0=1 and d0= e�t0 are

an =an¡1e¡��tn+1
bn =bn¡1 e¡��tn+1
cn =cn¡1e¡��tn+ e�tn+2an¡1

(37)

It would be nice to have expressions like this involving the Lambert W function for P > 1 but
neither Maple nor Mathematica were able to �nd any solutions in terms of �known� functions for
P > 1. It is noted that Equation (42) has the formZ

0

1
(p+ qW (re¡sx+t)+ux)e¡xdx (38)

which is a function of 6 variables, fp; q; r; s; t; ug, for which it would be a very nice thing to have
a closed form expression, in order to avoid a recourse to numerical or Monte Carlo integration. It
seems that such an expression is very likely to exist because if we drop the variable s from Equation
(38) we get a closed-form expression of the formZ

0

1
(p+ qW (re¡x+t)+ux)e¡xdx= qW (ret)+ q

W (ret)
¡ q+u+ p¡ q

ret
(39)

We can break this problem down into a more manageable one by calculating some more integrals
to see if we can �nd a pattern. Let us begin with the integralZ

0

1
W (e¡sx)e¡xdx=W (1)+

�
¡1
s

�
¡1
s

�
¡
�
1
s

�
¡ s¡

�
1+ 1

s
;¡W (1)

s

��
(40)

whose closed-form expression was found by Vladimir Reshetnikov. [24]

1.2.1. The Case of Any Order P =n.
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For general values of the order P , the equation whose root is to be sought is given by the
expression

'P(x("))=

 Y
k=1

P

�k

!
(�x¡ ("+�T ))e

P
k=1
P �k(x+T )+ :::

:::+
X
m=1

P
 Y
k=1

P �
�k m=k
�k m=/ k

!X
k=0

n

e

P
j=1
P �j

�
x+

(
T j=/m
tk j=m

�
¡ e

P
j=1
P �j

�
T+

(
x j=/m
tk j=m

� (41)

where T = tn is arrival time of the most recent point and it is noted that the product of piece-wise
functions can be written as

Y
k=1

P �
�k m= k
�k m=/ k

=�m

 Y
k=1

m¡1

�k

! Y
k=m+1

P

�k

!

=�m
Y
k=1

P

k=/m

�k

(42)

and the sums likewise

X
j=1

P

�j

�
x+

�
T j=/ m
tk j=m

�
=�m(x+ tk)+

X
j=1

m¡1

�j(x+T )+
X

j=m+1

P

�j(x+T )

=�m(x+ tk)+
X
j=1

P

j=/m

�j(x+T )

=�m;k(x; x)

(43)

and X
j=1

P

�j

�
T +

�
x j=/ m
tk j=m

�
=�m(T + tk)+

X
j=1

m¡1

�j(x+T )+
X

j=m+1

P

�j(x+T )

=�m(T + tk)+
X
j=1

P

j=/m

�j(x+T )

=�m;k(x; T )

(44)

so that (41) can be rewritten as

'P(x("))= �(x; ")+
X
j=1

P

�j
X
k=0

NT

(�j;k(x; x)¡�j;k(x; T )) (45)

to be compared with the multivariate case in Equation (68), where

�m;k(x; a)= e
(a+tk)�m+(x+T )

P
j=1
P

j=/m

�j

(46)

�m=�m
Y
k=1

P

k=/m

�k=
Y
k=1

P �
�k k=m
�k k=/ m

(47)

�(x; ")= ((x¡T )�¡ ")��(x) (48)

�(x)= e(x+T )
P

k=1
P �k (49)

�=
Y
k=1

P

�k (50)
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The derivative given by

'P
0 (x("))= �(��(x)+ � (x; "))+

X
m=1

P

�m
X
k=0

n

(��m;k(x)¡ �m�m;k(T )) (51)

where

�=
X
k=1

P

�k (52)

�m=
X
j=1

P

j=/m

�j (53)

is needed so that the Newton sequence can be expressed as

xi+1 =xi¡
'2(xi)
'2
0 (xi)

=x
i
¡

�(xi; ")+
P
m=1
P �m

P
k=0
n (�m;k(xi; xi)¡�m;k(xi; T ))

�(��(xi) + �(xi; "))+
P
m=1
P �m

P
k=0
n (��m;k(xi)¡ �m�m;k(T ))

(54)

and simpli�ed a bit(at least notationally) if we let

�(x; d)=
X
m=1

P

�m
X
k=0

n �
�m;k(x)

�
1 d=0
� d=1

¡�m;k(T )

�
1 d=0
�m d=1

�
(55)

then

xi+1(") =xi(")¡
'P(xi("))
'P
0 (xi("))

=xi¡
�(xi("); ")+ �(xi("); 0)

�(��(xi("))+ �(xi("); "))+ �(xi("); 1)

(56)

so that

�P
¡1("; t0:::T )= lim

m!1
xm(") (57)

which leads to the expression for the expected arrival time of the next pointZ
0

1
�P
¡1("; t0:::T )e¡"d"=

Z
0

1
lim
m!1

xm(")e¡"d" (58)

Fatou's lemma[9] can probably be invoked so that the order of the limit and the integral in
Equation (58) can be exchanged, with perhaps the introduction of another function, which of course
would greatly reduce the computational complexity of the equation. The sequence of functions is
known as a Newton sequence [2, 3.3p118] There is also the limit

lim
x!1

'P(xi("))
'P
0 (xi("))

= lim
x!1

�(xi("); ")+ �(xi("); 0)
�(��(xi("))+ �(xi("); "))+ �(xi("); 1)

=1
�

(59)

There is more to be done here. [3] Actually, the notion of viscosity solutions and energy functional
minimization in an in�nite dimensional setting can be invoked to prove uniqueness and convergence
(58) so that

xm(")¡!
�P
¡1

x(") asm!1 (60)

which means that xm(") �¡1-converges to x("). [6, Ch.3 Def.7 p.43]

1.3. Filtering, Prediction, Estimation, etc.
The next occurrence time of a point process, given the most recent time of occurrence of a point

of a process, can be predicted by solving for the unknown time tn+1 when ftng is a sequence of
event times. Let

�next(tn; �)= ftn+1: �(tn; tn+1)= �g (61)
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where

�(tn; tn+1)=
Z
tn

tn+1

�(s;Fs)ds (62)

and Fs is the �-algebra �ltration up to and including time s and the parameters of � are �xed. The
multivariate case is covered in Section (1.4.1). The idea is to integrate over the solution of Equation
(61) with all possible values of ", distributed according to the unit exponential distribution. The
reason for the plural form, time(s), rather than the singular form, time, is that Equation (61)
actually has a single real solution and N number of complex solutions, where N is the number
of points that have occurred in the process up until the time of prediction. This set of complex
expected future event arrival times is deemed the constellation of the process, which becomes more
detailed with the occurance of each event(the increasing �-algebra �ltration). We shall ignore the
constellation for now, and single out the sole real valued element as the expected real time until
the next event. After all, does it even make sense to say �something will probably happen around
9.8+ i7.2 seconds from now?� where i is the imaginary unit, i= ¡1

p
. The recursive equations for

the resemble the heta functions of number theory if you one extends from real valued � 2R to a
complex �= i.

1.4. Calculation of the Expected Number of Events Any Given Time From Now.
The expected number of events given any time from now whatsoever can be calculated by

integrating out " since the process which is adapted to the compensator will be closer to being a
unit rate Poisson process the closer the parameters are to being correct and the model actually
being a good model of the phemenona it is being applied to. Let Ft be all points up until now, let

E(tn+1)=
Z
0

1
�¡1(";�; �; Ftn)e¡"d"

then iterate the process, by proceeding as if the next point of the process will occur at the predicted
time, simply append the expectation to the current state vector, and project the next point,
repeating the process as fast ast the computer will go until some su�cient stopping criteria is met.
This equation seems very similiar to the in�nite horizon discounted regulator of optimal control;
see [1, 1.1].

1.4.1. Prediction.
The next event arrival time of the m-th dimension of a multivariate Hawkes process having the

usual exponential kernel can be predicted in the same way as the uni-variate process in Section
(1.3), by solving for the unknown tn+1 in the equation�

tn+1
m : "=�m(tnm; tn+1m )=

Z
tn
m

tn+1
m

�m(s;Fs)ds
�

(63)

where �m(tnm; tn+1m ) is the compensator from Equation (86) and Fs is the �ltration up to time s
and the parameters of �m are �xed. As is the case for the uni-variate Hawkes process, the idea is
to average over all possible realizations of " (of which there are an uncountable in�nity) weighted
according to an exponential unit distribution. Another idea for more accurate prediction is to model
the deviation of the generalized residuals from a true exponential distribution and then include
the predicted error when calculating this expectation.

Let the most recent arrival time of the pooled and m-th processes respectively be given by

T =max (Tm:m=1:::M) (64)

Tm =max (tnm:n=0:::Nm¡ 1)= tNm¡1
m (65)

and

N�Tm
n
=
X
k=0

N�
n �

1 tk
n<Tm

0
(66)

count the number of points occurring in the n-th dimension before the most recent point of the
m-th dimension and

N�(tjm<tk
n) (67)
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then the next arrival time for a given value of the exponential random variable " of the m-th
dimension of a multivariate Hawkes process having the standard exponential kernel is found by
solving for the real root of

'm(x(");FT)= �m(x; ")+
X
l=1

P X
i=1

M

�m;i;l

X
k=0

N�Tm
i

(�m;i;l;k(x; x)¡�m;i;l;k(x; Tm)) (68)

which is similar to the uni-variate case

'P(x("))= �(x; ")+
X
j=1

P

�j
X
k=0

N�T

(�j;k(x; x)¡�j;k(x; T )) (69)

where

FT = f�:::; �:::; �:::; t01:::tN1
1 6T ; :::; t0m:::tNm

m 6T ; :::; t0M:::tNM
M 6T g (70)

is the �ltration up to time T , to be interpreted as the set of available information, here denoting
�tted parameters and observed arrival times of all dimensions, and where

�m(x; ")= ((x¡Tm)�m¡ ")�m�m(x) (71)

�m(x)= e
(x+Tm)

P
j=1
P P

n=1
M �m;n;j (72)

can be seen to be similar to the uni-variate equations �(x; ") = ((x ¡ T )� ¡ ")��(x) and �(x) =
e(x+T )

P
k=1
P �k and

�m=
Y
j=1

P Y
n=1

M

�m;n;j (73)

�m;p;k=
Y
j=1

P Y
n=1

M �
�m;n;j n= p and j= k
�m;n;j n=/ p or j=/ k

(74)

�m;i;l;k(x; a)= e

P
j=1
P P

n=1
M �m;n;j

(
a+tk

n n=i and j=l
x+Tn n=/ i orj=/ l (75)

For comparison, the uni-variate case is Equation (45) where

�m;k(x; a)= e
(a+tk)�m+(x+T )

P
j=1
P

j=/m

�j

= e

P
j=1
P �j

(
a+tk j=m
x+T j=/m (76)
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