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Abstract: A new concept of exponential-geometric mean is introduced 
and its properties are analyzed. 

 
The concepts and properties of means of a set of numbers are well studied in calculus. In [1], a 
mean μ of a set of numbers nixi ,...,2,1,   is defined as the value that satisfies the condition: 

   nn xxxxxx ,...,,max,...,,min 2121   . 
In this short note I introduce a new so-called exponential-geometric mean and give some of its 
properties. 
 
Definition: A lower (upper) exponential-geometric mean μ of two positive numbers a and b is: 

 ba baba ab baba   10  . 
 
We can see that the exponential-geometric mean μ of any two positive numbers a and b conforms to 
the general definition of the mean. Indeed, without loss of generality, let’s assume ba  , then: 
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Note that the other two combinations ba aaba and ba bbba may not suit the general definition of 
the mean. 
 
Examples: The lower and upper exponential-geometric means of numbers 
1) 2 and 3 are 35.23232 23    and 55.23232 32   . 

2) 2 and 2.5 are 21.25.225.22 25.2    and 26.25.225.22 5.22   . 

3) 0.5 and 0.7 are 58.07.05.07.05.0 5.07.0    and 61.07.05.07.05.0 7.05.0   . 
 
It is well known the following relationships between harmonic, geometric and arithmetic means: 
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Lemma 1: For the lower and upper exponential-geometric means of two positive numbers a and b 
the following holds true: 
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Proof: It is sufficient to prove the leftmost inequality, since it is equivalent with the rightmost 
shown below. 
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Now, without loss of generality, let us denote 1,  cacb . Then, 
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For the function  
x

xxy
x

x






1
2 1

,   11 y  and it is monotonously increasing at 1x . Its limit for 

x  is 2
1
2lim

1






 x
x x

x

x
. □ 

 
Lemma 2: For the lower exponential-geometric mean (LEGM), harmonic mean (HM), geometric 
mean (GM), arithmetic mean (AM) and upper exponential-geometric mean (UEGM) the following 
relations hold true: 

1) 2GMHMAMUEGMLEGM  ; 
2) UEGMHMAMLEGM  ; 
3) LEGMHMAMUEGM  ; 
4) HMAMLEGMUEGM  ; 
5) GMUEGMLEGM  . 

Proof: The 1st is rather straightforward: 
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The 2nd is obvious since HMLEGM   and UEGMAM  .  
The 3rd and 4th can be proved by the method used in Lemma 1. 
The 5th is also obvious. If we take into account the 1st relation, then 

UEGMLEGMUEGMLEGM  . □ 
 
The exponential-geometric means and their properties allow to estimate cumbersome and 
inconvenient expressions (and their limits). For example: 
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