Exponential-geometric mean

Farrukh Ataev Rakhimjanovich November 2012

Abstract: A new concept of exponential-geometric mean is introduced and its properties are analyzed.

The concepts and properties of means of a set of numbers are well studied in calculus. In [1], a mean μ of a set of numbers x_i , $i = 1,2,...,n$ is defined as the value that satisfies the condition:

$$
\min(x_1, x_2, ..., x_n) \le \mu \le \max(x_1, x_2, ..., x_n).
$$

In this short note I introduce a new so-called exponential-geometric mean and give some of its properties.

Definition: A lower (upper) exponential-geometric mean μ of two positive numbers *a* and *b* is: $\mu_0 = a + b \int a^b b^a \quad \mu_1 = a + b \int a^a b^b.$

We can see that the exponential-geometric mean *μ* of any two positive numbers *a* and *b* conforms to the general definition of the mean. Indeed, without loss of generality, let's assume $a \le b$, then:

$$
a \leq a+b \sqrt{a^b b^a} \leq b \Rightarrow a^{a+b} \leq a^b b^a \leq b^{a+b} \Rightarrow \begin{cases} a^a \leq b^a \\ a^b \leq b^b \end{cases}
$$

$$
\left(a \leq a+b \sqrt{a^a b^b} \leq b \Rightarrow a^{a+b} \leq a^a b^b \leq b^{a+b} \Rightarrow \begin{cases} a^a \leq b^b \\ a^a \leq b^a \end{cases} \right).
$$

Note that the other two combinations $\int_a^b a^b a^b a^b$ and $\int_a^b b^b$ may not suit the general definition of the mean.

Examples: The lower and upper exponential-geometric means of numbers 1) 2 and 3 are $\mu = {}^{2+3/2} 2^3 \cdot 3^2 \approx 2.35$ and $\mu = {}^{2+3/2} 2^2 \cdot 3^3 \approx 2.55$. 2) 2 and 2.5 are $\mu = 2 + 2\sqrt[5]{2^{2.5} \cdot 2.5^2} \approx 2.21$ and $\mu = 2 + 2\sqrt[5]{2^2 \cdot 2.5^2} \approx 2.26$. 3) 0.5 and 0.7 are $\mu = \frac{0.5 + 0.7}{0.5}$ $0.5^{0.7} \cdot 0.7^{0.5} \approx 0.58$ and $\mu = \frac{0.5 + 0.7}{0.5}$ $0.5^{0.5} \cdot 0.7^{0.7} \approx 0.61$.

It is well known the following relationships between harmonic, geometric and arithmetic means:

$$
\frac{2ab}{a+b} \le \sqrt{ab} \le \frac{a+b}{2}.
$$

Lemma 1: For the lower and upper exponential-geometric means of two positive numbers *a* and *b* the following holds true:

$$
\sqrt[a+b]{a^b b^a} \le \frac{2ab}{a+b} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt[a+b]{a^a b^b}.
$$

Proof: It is sufficient to prove the leftmost inequality, since it is equivalent with the rightmost shown below.

$$
a+b\sqrt{a^b b^a} \leq \frac{2ab}{a+b} \Rightarrow a^{\frac{b}{a+b}} b^{\frac{a}{a+b}} \leq \frac{2ab}{a+b} \Rightarrow \frac{a+b}{2} \leq a^{\frac{a}{a+b}} b^{\frac{b}{a+b}}.
$$

Now, without loss of generality, let us denote $b = ac$, $c \ge 1$. Then,

$$
\frac{a+ac}{2} \leq a^{\frac{a}{a+ac}} (ac)^{\frac{ac}{a+ac}} \Rightarrow \frac{a(1+c)}{2} \leq ac^{\frac{c}{1+c}} \Rightarrow 1 \leq \frac{2c^{\frac{c}{1+c}}}{1+c}.
$$

c

For the function $y(x)$ *x* $y(x) = \frac{2x^{1+x}}{1}$ *x* $^{+}$ $=\frac{2x^{1+}}{1}$ 1 $\frac{2x^{1+x}}{1}$, $y(1)=1$ and it is monotonously increasing at $x \ge 1$. Its limit for $x \rightarrow +\infty$ is $\lim_{x \rightarrow +\infty} \frac{2x}{1} = 2$ $\lim \frac{2x^{1+x}}{1}$ $^{+}$ x^{1+x} *x* $\lim_{x\to+\infty}\frac{2x}{1+x}=2$. \Box

Lemma 2: For the lower exponential-geometric mean (LEGM), harmonic mean (HM), geometric mean (GM), arithmetic mean (AM) and upper exponential-geometric mean (UEGM) the following relations hold true:

1)
$$
LEGM \cdot UEGM = AM \cdot HM = GM^2
$$
;
\n2) $LEGM \cdot AM \le HM \cdot UEGM$;
\n3) $UEGM - AM \ge HM - LEGM$;
\n4) $UEGM - LEGM \ge AM - HM$;
\n5) $LEGM + UEGM \ge GM$.

Proof: The 1st is rather straightforward:

1

 $\rightarrow +\infty$ 1 + x

 $^{+}$

$$
LEGM \cdot UEGM = {}^{a+b} \sqrt{a^b b^a} \cdot {}^{a+b} \sqrt{a^a b^b} = ab = \frac{a+b}{2} \cdot \frac{2ab}{a+b} = AM \cdot HM = \left(\sqrt{ab}\right)^2 = GM^2.
$$

The 2nd is obvious since $LEGM \le HM$ and $AM \le UEGM$. The $3rd$ and $4th$ can be proved by the method used in Lemma 1. The $5th$ is also obvious. If we take into account the $1st$ relation, then $LEGM + UEGM \geq \sqrt{LEGM \cdot UEGM}$.

The exponential-geometric means and their properties allow to estimate cumbersome and inconvenient expressions (and their limits). For example:

$$
1) \left(\sin^{2} \alpha\right)^{\sin^{2} \alpha} \cdot \left(\cos^{2} \alpha\right)^{\cos^{2} \alpha} \ge \frac{1}{2} \text{ for } \alpha \neq \frac{\pi k}{2}, k \in \mathbb{Z}.
$$

\n
$$
2) \tan x + \cot \sqrt{x} \left(\tan x\right)^{\cot x} \cdot \left(\cot x\right)^{\tan x} \le 1 \text{ for } x \in \left(\pi k, k \in \mathbb{Z}; \frac{\pi}{2} + \pi k, k \in \mathbb{Z}\right) \Rightarrow
$$

\n
$$
\left(\tan x\right)^{\cot x} \left(\cot x\right)^{\tan x} \le 1 \text{ for } x \in \left(\pi k, k \in \mathbb{Z}; \frac{\pi}{2} + \pi k, k \in \mathbb{Z}\right).
$$

\n
$$
3) \lim_{x \to \sqrt{x} \cdot 1} \frac{x+1}{2} \text{ for } x > 0 \Rightarrow x^{\frac{x}{x+1}} \ge \frac{x+1}{2} \text{ for } x > 0.
$$

\n
$$
4) e^{x} + \sqrt{x^{\alpha} \cdot 1} e^{x} \le \frac{2e^{x}}{e^{x} + 1} \text{ for } x > 0 \Rightarrow \exp\left(\frac{x}{e^{x} + 1}\right) \le \frac{2e^{x}}{e^{x} + 1} \text{ for } x > 0.
$$

\n
$$
5) \lim_{x \to \sqrt{x} \cdot 1} \left(\frac{x}{x} + \frac{1}{x}\right) \le \frac{x^{\alpha} + 1}{2} \text{ for } x, a > 0 \Rightarrow x^{\alpha} \left(\frac{a}{x^{\alpha} + 1}\right) \le \frac{x^{\alpha} + 1}{2} \text{ for } x, a > 0
$$

Reference

.

[1] Eric Weisstein, "CRC Concise Encyclopedia of Mathematics", 2-edition, CRC Press LLC

About author: Farrukh Ataev R., Lecturer at Westminster International University in Tashkent, Uzbekistan, Tashkent, Istikbol Street 12. Email: farruhota@gmail.com.