Several Metrical Relations Regarding the Anti-Bisectrix, the Anti-Symmedian, the Anti-Height and their Isogonal

Professor Ion Pătrașcu – Frații Buzești National College, Craiova Professor Florentin Smarandache – University of New Mexico, U.S.A.

We suppose known the definitions of the isogonal cevian and isometric cevian; we remind that the anti-bisectrix, the anti-symmedian, and the anti-height are the isometrics of the bisectrix, of the symmedian and of the height in a triangle.

It is also known the following Steiner (1828) relation for the isogonal cevians AA_1 and AA_1 :

$$\frac{BA_{1}}{CA_{1}} \cdot \frac{BA_{1}'}{CA_{1}'} = \left(\frac{AB}{AC}\right)^{2}$$

We'll prove now that there is a similar relation for the isometric cevians

Proposition

In the triangle ABC let consider AA_1 and AA_1 two isometric cevians, then there exists the following relation:

$$\frac{\sin\left(\widehat{BAA_1}\right)}{\sin\left(\widehat{CAA_1}\right)} \cdot \frac{\sin\left(\widehat{BAA_1}\right)}{\sin\left(\widehat{CAA_1}\right)} = \left(\frac{\sin B}{\sin C}\right)^2 \tag{*}$$

Proof

The sinus theorem applied in the triangles ABA_1 , ACA_1 implies (see above figure)

$$\frac{\sin\left(\widehat{BAA_1}\right)}{BA_1} = \frac{\sin B}{AA_1} \tag{1}$$

$$\frac{\sin(\widehat{CAA_1})}{CA_1} = \frac{\sin C}{AA_1} \tag{2}$$

From the relations (1) and (2) we retain

$$\frac{\sin\left(\widehat{BAA_1}\right)}{\sin\left(\widehat{CAA_1}\right)} = \frac{\sin B}{\sin C} \cdot \frac{BA_1}{CA_1} \tag{3}$$

The sinus theorem applied in the triangles ACA_1 , ABA_1 leads to

$$\frac{\sin\left(\widehat{CAA_1'}\right)}{A_1'C} = \frac{\sin C}{AA_1'} \tag{4}$$

$$\frac{\sin\left(\widehat{BAA_{1}'}\right)}{BA_{1}'} = \frac{\sin B}{AA_{1}'} \tag{5}$$

From the relations (4) and (5) we obtain:

$$\frac{\sin\left(\widehat{BAA'_1}\right)}{\sin\left(\widehat{CAA'_1}\right)} = \frac{\sin B}{\sin C} \cdot \frac{BA'_1}{CA'_1} \tag{6}$$

Because $BA_1 = CA_1'$ and $A_1C = BA_1'$) the cevians being isometric), from the relations (3) and (6) we obtain relation (*) from the proposition's enouncement.

Applications

1. If AA_1 is the bisectrix in the triangle ABC and AA_1 is its isometric, that is an anti-bisectrix, then from (*) we obtain

$$\frac{\sin\left(\widehat{BAA_1'}\right)}{\sin\left(\widehat{CAA_1'}\right)} = \left(\frac{\sin B}{\sin C}\right)^2 \tag{7}$$

Taking into account of the sinus theorem in the triangle ABC we obtain

$$\frac{\sin\left(\widehat{BAA_1'}\right)}{\sin\left(\widehat{CAA_1'}\right)} = \left(\frac{AC}{AB}\right)^2 \tag{8}$$

2. If AA_1 is symmedian and AA_1 is an anti-symmedian, from (*) we obtain

$$\frac{\sin\left(\widehat{BAA_1'}\right)}{\sin\left(\widehat{CAA_1'}\right)} = \left(\frac{AC}{AB}\right)^3$$

Indeed, AA_1 being symmedian it is the isogonal of the median AM and

$$\frac{\sin(\widehat{MAB})}{\sin(\widehat{MAC})} = \frac{\sin B}{\sin C} \text{ and}$$

$$\frac{\sin(\widehat{BAA}_1)}{\sin(\widehat{CAA}_1)} = \frac{\sin(\widehat{MAC})}{\sin(\widehat{MAB})} = \frac{\sin C}{\sin B} = \frac{AB}{AC}$$

3. If AA_1 is a height in the triangle ABC, $A_1 \in (BC)$ and AA_1 is its isometric (antiheight), the relation (*) becomes.

$$\frac{\sin(\widehat{BAA_1}')}{\sin(\widehat{CAA_1}')} = \left(\frac{AC}{AB}\right)^2 \cdot \frac{\cos C}{\cos B}$$

Indeed

$$sin(\widehat{BAA_1}) = \frac{BA_1}{AB}$$
; $sin(\widehat{CAA_1}) = \frac{CA_1}{AC}$

therefore

$$\frac{\sin\left(\widehat{BAA_1'}\right)}{\sin\left(\widehat{CAA_1'}\right)} = \frac{AC}{AB} \cdot \frac{BA_1}{CA_1}$$

From (*) it results

$$\frac{\sin\left(\widehat{BAA_1'}\right)}{\sin\left(\widehat{CAA_1'}\right)} = \frac{AC}{AB} \cdot \frac{CA_1}{BA_1}$$

or

$$CA_1 = AC \cdot cos C$$
 and $BA_1 = AB \cdot cos B$

therefore

$$\frac{\sin\left(\widehat{BAA_{1}'}\right)}{\sin\left(\widehat{CAA_{1}'}\right)} = \left(\frac{AC}{AB}\right)^{2} \cdot \frac{\cos C}{\cos B}$$

4. If $AA_i^{''}$ is the isogonal of the anti-bisectrix $AA_i^{'}$ then

$$\frac{BA_1''}{A_1'C} = \left(\frac{AB}{AC}\right)^3$$
 (Maurice D'Ocagne, 1883)

Proof

The Steiner's relation for $AA_1^{''}$ and $AA_1^{'}$ is

$$\frac{BA_1^{"}}{A_1^{"}C} \cdot \frac{BA_1^{'}}{A_1^{'}C} = \left(\frac{AB}{AC}\right)^2$$

But AA_1 is the bisectrix and according to the bisectrix theorem $\frac{BA_1}{CA_1} = \frac{AB}{AC}$ but $BA_1 = CA_1$ and

 $A_1'C = BA_1$ therefore

$$\frac{CA_{1}^{'}}{BA_{1}^{'}} = \frac{AB}{AC}$$

and we obtain the D'Ocagne relation

5. If in the triangle ABC the cevian $AA_1^{"}$ is isogonal to the symmedian $AA_1^{"}$ then

$$\frac{BA_1''}{A_1''C} = \left(\frac{AB}{AC}\right)^4$$

Proof

Because AA_1 is a symmedian, from the Steiner's relation we deduct that

$$\frac{BA_1}{CA_1} = \left(\frac{AB}{AC}\right)^2$$

The Steiner's relation for $AA_1^{''}$, $AA_1^{'}$ gives us

$$\frac{BA_{1}^{"}}{A_{1}^{"}C} \cdot \frac{BA_{1}^{'}}{CA_{1}^{'}} = \left(\frac{AB}{AC}\right)^{2}$$

Taking into account the precedent relation, we obtain

$$\frac{BA_1''}{A_1''C} = \left(\frac{AB}{AC}\right)^4$$

6.

If $AA_1^{''}$ is the isogonal of the anti-height $AA_1^{'}$ in the triangle ABC in which the height AA_1 has $A_1 \in (BC)$ then

$$\frac{BA_1^{"}}{A_1^{"}C} = \left(\frac{AB}{AC}\right)^3 \cdot \frac{\cos B}{\cos C}$$

Proof

If AA_1 is height in triangle ABC $A_1 \in (BC)$ then

$$\frac{BA_1}{A_1C} = \frac{AB}{AC} \cdot \frac{\cos B}{\cos C}$$

Because $AA_1^{'}$ is anti-median, we have $BA_1 = CA_1^{'}$ and $A_1C = BA_1^{'}$ then

$$\frac{BA_1''}{A_1''C} = \frac{AC}{AB} \cdot \frac{\cos C}{\cos B}$$

Observation

The precedent results can be generalized for the anti-cevians of rang k and for their isogonal.