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We suppose known the definitions of the isogonal cevian and isometric cevian; we
remind that the anti-bisectrix, the anti-symmedian, and the anti-height are the isometrics of the
bisectrix, of the symmedian and of the height in a triangle.

It is also known the following Steiner (1828) relation for the isogonal cevians AA and

A

BA BA _(AB)2
CA CA \AC

We’ll prove now that there is a similar relation for the isometric cevians

Proposition
In the triangle ABC let consider AA and AA two isometric cevians, then there exists
the following relation:
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The sinus theorem applied in the triangles ABA ,ACA implies (see above figure)
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From the relations (1) and (2) we retain
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The sinus theorem applied in the triangles ACA ,ABA leads to
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From the relations (4) and (5) we obtain:
sin(BAA')_sinB.BA' )
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Because BA =CA and AC = BA ) the cevians being isometric), from the relations (3)

and (6) we obtain relation (*) from the proposition’s enouncement.

Applications
1. If AA is the bisectrix in the triangle ABC and AA is its isometric, that is an
anti-bisectrix, then from (*) we obtain

Sj”(BAA‘)_(SmBT )
Taking into account of the sinus theorem in the triangle ABC we obtain
sin (EA\A ) AB
2. If AA is symmedian and AA is an anti-symmedian, from (*) we obtain
sin(BAA') ) ( ch3
sin (CTA; ) AB

Indeed, AA being symmedian it is the isogonal of the median AM and

(8)
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3. If AA is aheight in the triangle ABC, A € (BC) and AA is its isometric (anti-
height), the relation (*) becomes.
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or
CA = AC-cosC and BA = AB-cosB
therefore
sin(BAA) _(AC)Z _cosC
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4. Tf AA is the isogonal of the anti-bisectrix AA then
" 3
% = (E) (Maurice D’Ocagne, 1883)
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Proof
The Steiner’s relation for AA and AA is
BA BA _ ( AB jz
AC AC | AC
BA AB
But AA is the bisectrix and according to the bisectrix theorem a Y but BA =CA and
AC = BA therefore
CA_AB
BA AC

and we obtain the D’Ocagne relation

5. Ifin the triangle ABC the cevian AA is isogonal to the symmedian AA then
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Proof

Because AA is a symmedian, from the Steiner’s relation we deduct that
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The Steiner’s relation for AA , AA gives us
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Taking into account the precedent relation, we obtain
BA (ABY
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6.
If AA is the isogonal of the anti-height AA in the triangle ABC in which the height

AA has A e(BC) then
BA _(ABTcosB

AC (AC) cosC

Proof

If AA is height in triangle ABC A e(BC) then
BA AB cosB
AC AC cosC

Because AA is anti-median, we have BA = CA and AC = BA then
BA" AC cosC
A"C AB cosB

Observation
The precedent results can be generalized for the anti-cevians of rang k and for their
isogonal.



