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Abstract

The main idea of our quantum gravity model is following: in usual
quantum mechanics we can represent any state of the many-particle system
as sum over products of one-particle functions, generally, a path
integral
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In quantum gravity we also represent each state as such superposition. In
the last part we try to make numerical calculations using our quantum
gravity theory.

In the case of interaction with arbitrary electromagnetic and gravitational
field the wave function is similar:
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1.1 Quantization of Einstein equation: case of free gravitational field.

Suppose that we have arbitrary frame with time and coordinate parameters. We postulate that the

wave function of arbitrary gravitational field is function of the metric matrix functions g 5
(27

¥ ="(t.{g, (%)) (1.1.0)

The change of metric by time is in the time parameter which is in wave the function. How this wave
function changes from one frame to another - see Part 5. We will receive in the end the invariant equation
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The final result will not contain the Fourier transformation of fields which will greatly help in making
the theory of quantum fields simple, relativistic invariant, without divergences which usually appear.
Now let’s try to calculate action, Lagrangian and Hamiltonian in the arbitrary metric in classic case:

S——j QR——jdtdxw/—det R=—[dtL, (1.1.1)
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where R is a scalar curvature,

3
G,/—oletg R=[dXA, A= - [~detgR (1.1.2)
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The momentum density
oA

p,UV = a.— (1.1.3)
g v

The Hamiltonian density

= guvpﬂv_A (1.1.4)
The Hamiltonian in classical and quantum is calculated using easy rule
H = [dX Ay (1.1.5)
We want to make the quantum equation relativistic invariant:
int _ HY, (1.1.6)

ot

We see here that time stands out in contradiction to the relativistic equality of time and space. Let’s

fix it: let’s count the derivative not only by time but by the arbitrary 4-vector v& :
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where g}'/—f7 is a Lorenz metric. The generalization to the arbitrary metric of the equation for one particle
movement will be
. oY A
ih— = w7 piTy 1.1.8
=0 (1.18)

The question remains — how the wave function changes from one frame to another — see Part 5.

1.2 Quantization of many particle system + fields. How to make many particle state out of one-
particle states.

We postulate that the wave function in the case arbitrary metric is function of the particle coordinates,

electromagnetic field and the metric functions g

aff’
Now let’s make many-particle state out of one-particle states: if we know how the one-particle states
change from one frame to another, then we know how the entire state changes from one frame to another.
In usual quantum mechanics in the path integral approach we make the sum over the sets of Feynman

paths UERINE Let’s formulate usual quantum mechanics in a different way: let’s make the sum not

over all Feynman paths, but over all possible basis states of the particles (at each moment of time those
states are basis states):

W = [DF,..DFy - (00) - Wy () - [, ] (1.2.1)
where I[%¥,... ¥, | = (¥,...\V,,, ¥) can be calculated by continuous von Neumann projection of the state
Y on,...\P, , physically it is the probability amplitude of the system characterized by the wave function

¥ to be in state \¥,...\P), during the period of time starting from t; to t - it is similar to a usual scalar

product in quantum mechanics.

Proof of (1.1.1). Using the Dirac bra- and cket- notion, we can rewrite (1.1.1):

W) = [ DD |- [ Wy ) - (P | W) (12.2)

If we postulate the normalization condition of our functional integral

1= [DW,..DW, [ W) - | ¥y ) - (B Wy (1.2.3)
then the equation to prove (1.1.1) and the equivalent equation (1.1.2) starts to be obvious:

¥) =[¥) (1.2.4)

Equation (1.1.1) proven.




1.3 Quantization of particle in the arbitrary metric.

Let’s make quantization of the particle in arbitrary metric. Knowing the classical action, let’s

calculate Lagrangian and then let’s calculate the Hamiltonian in classics and then let’s make standard

quantization procedure.

S:mczjdr+q/c-jAadxa =mc| /gaﬂvavﬂ dt+q/c~jAavadt,

where v =dx_/dt (1.3.1)
(04 (94

So the action of a classic particle in the arbitrary metric and the arbitrary electromagnetic field

S :j(mc /gaﬂvavﬂ +q/c- Aavajdt (1.3.2)

From this equation we introduce the Lagrangian:

L=mc lgaﬂvavﬂ +q/c- Aava (1.3.3)

Now we calculate the momentum

g v
p N +q/c-A (1.3.4)

Y ov
/4 \V gaﬂvavﬂ
Note that the real amount of independent momentum components is not 4, but 3. From (1.3.4) it

easily follows that there is a relation between the momentum components:
yv _ _ ( _ ) )= 2.2
g (py q/c A}/) P, g/c AV m<c (1.3.5)

Now let’s calculate the Hamiltonian of the particle in the arbitrary metric and electromagnetic field

from the Lagrangian using the well known equation:

g- VvV Vv_
TH ] Y
H= Y p.v_-L=mc—2--L_+q/c-Av_-mc|/g Vv V,—-q/c-A v =
_ Yy [ v v 7Y af a f a o

-V V_ — vV V - VvV V
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Then Po has to be calculated from the remaining momentum components using (1.3.5). Note that the

—q/c-onO ==V Py =Py

reason of the Hamiltonian = energy of the particle having the minus sign is following: we have chosen
not the right sign of the Lagrangian (1.3.3) and the action (1.3.1) — usually the minus sign is written is

there — see, for example, Landau, Lifshitz, volume 2 - see [1]. Let’s rewrite (1.3.5):

gWPyPV —m?c? (1.3.7)

Or, the same,



00 70 yv 2.2
g POP0+2g P7P0+g P7P17_m ce, (1.3.8)

where the bars of the summation indexes means that that this summation index changes not from 0 to 3

as usual, but from 1 to 3. This is a quadratic equation on Py If we make the condition of the energy Py

to be nonnegative, then

_ _ 2 __
a/%p_ +\/(970P_) + goo(mzcz —gyVP_ij
P Y 4 rvJ (1.3.9)
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Or, equivalently,

_ _ 2 __
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0 O

(1.3.10)
The Hamiltonian can be easily found from this equation in analogy to (1.3.12), we also will omit the

minus sign so that the energy would have it’s usual physical meaning:

_ _ 2 —
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H =

+ qA0

(1.3.11)
When we make the quantization, we suppose that all physical quantities participating here all
operators. Also we substitute all the products of the operators as following:

AB —>1/2-(AB + BA), (1.3.12)

ABC —>1/6-(ABC + ACB + BAC + BCA + CAB + CBA), (1.3.13)



1.4 The quantization of electromagnetic field in Lorenz metric.

We will show how the electromagnetic field can be quantized, the final result will not contain the
Fourier transformation of fields which will greatly help in making the theory of quantum fields simple,
relativistic invariant, without divergences which usually appear.

As well known, the action in Lorenz frame

=2 52
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S=— [dQF _F“" =-— [dtdX =— [dtL, 14.1
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One of the ways to produce right Hamiltonian = energy H = [dX g = [dX Ay,
T
Ay = 5 is to introduce the 3-vector field obeying the equation
Vi
G=E (1.4.2)

Then if magnetic field H does not depend on q (as we will see below), then

: =2, 152
Ap=GoA A E°¥H (1.4.3)
aq’ 87[

Obviously, the Hamiltonian will not change if we multiply the coordinate by a constant:

C:j:—cE =%+ cgrad ¢ (1.4.4)

Now let’s take an integral by time:

G=A+ j dt-cgradp (1.4.5)
Taking into account that rot grad ¢ =0, we can find the magnetic field

H =rot g = rot A (1.4.6)
We have calculated the magnetic and electric field using our new coordinate ¢ - see (1.4.2) and

(1.4.6). Now we can calculate the action, Lagrangian and Hamiltonian:

. 2 ~\2

. o (G102t}
S=— [dQF _F“"=—[dtdX =— [dtL, 1.4.7
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0 _dllc —dz/c —dg/C
oA oA : = =
where Faﬂ :—g__zz (ill/c 0 —(I’th)3 (I’th)z ’
OX™ X dy/c  (rotd)s 0 —(rotg)y
dg/c  —(rotg), (rotg)y 0
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2 2 \2
/c)<+(rot
Hamiltonian = energy H = [dX @ )8 ( q): [dX Ay
T
(d/ c)2+(rotq)2
AH = (1.4.8)
87
The momentum density
oA g E
p= L - (1.4.9)
oG 4nc 4rC
It means that Hamiltonian
2 \2
H = dx (47<P) +(rotg)” (1.4.10)

87
Now we make the quantization: the state if the free field depends on time and the “3-coordinate”

G(X) the same way as the state of the free particle depends on time and the 3-coordinate X:
¥ =(t, {d(x)) (1.4.11)

The probability for the field to have the value G(X) and change in the “small interval” with volume

D{g(X)} at moment of time t is equal to

dP = D) (. {G(0))* (14.12)
It means that there is a probability normalization condition:

1= [ DEE)I ™ ¢t [0 (. {d()}) (1.4.13)
The mean value of field ¢(X) at the moment of time ty and coordinate X is equal to
<{(tgXg)>= [ DA™ty GO NARg) Wltg, {6(X)}) (1.4.14)

The question is to calculate the electric field < E(to,io) >=< - é(to,io) /c> -see (1.4.4). Using the

appropriate theorem from quantum mechanics showing how to calculate the derivative, we can write:
< fi(to,)?o) > = <—hL [I:|, a(to,)?o)]> . But the problem is that we don’t know the Hamiltonian H . Let’s
c

calculate it.



The action, Lagrangian and Hamiltonian are also operators in quantum mechanics

22 2
] : caf (G/c) —(rotq_ .
S=— [dQF _F“"=-[dtdX =— [dtL, 1.4.15
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Hamiltonian = energy
S 12 ~\2 22 ~\2
. (G/c)” +\rot A /c)“ +|rot
H= [dx ( OI)= [dX Ay, A = (are) ( q) (1.4.16)
87 87
The momentum
-4 - E (L4.17)
47r02 4rc
It means that Hamiltonian
A2 ~
H= dx (47<P) +(r°tq)2, (1.4.18)
87
We still did not postulate the momentum operator. Let’s state the following:
(1.4.19)

s el - i, Q¥ EE)
(g eliacon=-in e =

where —ip 0 is a derivative by coordinate with number Xg where Xg is the element of our usual
aq(Xy)
3-dimensional vector space over real numbers, in analogy with usual momentum operator

A G
P,=-1h _—_

with derivative by coordinate number « where « takes values 1, 2,3. In usual quantum

. . . ira o
mechanics we have commutation relations g[pa ’Xﬁ’]: Sa3-

Let’s prove that here we have similar commutation relations
(1.4.20)

%[I@a(io) ) 1= apd(xy= %)

Indeed,
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We use the fact
093(%) o

o L 0%Xg
which is similar to usual relations e =0a.

(7, HUER))

0da(Xy) (1.4.21)

(1.4.22)

From (1.4.21) the equation which we were proving immediately follows:

[Pa(xg) o3 1= 8ap 805 =%

(1.4.23)

Now we can write the Hamiltonian of free electromagnetic field in the Lorenz frame

2 .
H = jdx - (_h2—47zc8 +(r°tq(7<))2j,
8 oG(x)2

(1.4.24)



1.5 The quantization of electromagnetic field in arbitrary metric.

Let’s postulate that the wave function in the case arbitrary metric is function of the particle

coordinates, function of electromagnetic field coordinates and the metric components gaﬂ :

The final result also as in previous part will not contain the Fourier transformation of fields which
will greatly help in making the theory of quantum fields simple, relativistic invariant, without

divergences which usually appear.

Now let’s try to calculate action, Lagrangian and Hamiltonian in the arbitrary metric in classic case:

1
s=_1 jdoF F#¥-_1 j4oF F ggBv-
167rcI off 167 J o 1V

= YA — aal’l V__
m—”jdtdxw/ detgF oF,, 9BV =—[diL

(1.5.1)
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The momentum density

_ ol SV oLl BV
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v _ 16z a 167
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Note that according to (1.5.25) _‘i{ﬂ may have no-zero value only if « #0 £ # 0. It means that



—detg aFO[)’

[— oF
Oﬂgﬂv_ detg “"0 Fﬂvga,ugov_

=— _ " F
Py 167 o4 uv9 167 5
6F7’ aF}/ (1.5.3)
_,/—detg F oV 40 ﬂv_,/—detg F 40 oty B0
—9779 —979
167 P o 160 of o
/4 /4
Again using (1.5.25) we have:
J—detg \J—detg
_ /c- Ouqypv _ /c- ot Oy _
= Taer OBl C Fuy OHOPY = T Gay 10 Ry 9
J—detg J—detg
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We have found the momentum density of electromagnetic field in the arbitrary metric

/- det
0 = €ty (F07_F70J (1.5.5)
4 8rc
Let’s note that if Faﬂ:_Fﬁa’ then
FaB__Fpa (L5.6)

It means that we can introduce notations.

o -l -g2 g3
1 2
gaf_ | E 0 -H3 H (1.5.7)
E2 H3 o -Hl
E3 -H2 Hl o

Note that E7 and H”" are not tensors. It follows from (1.5.5) and (1.5.7)

J-detg
= - 4 158
p}/ 4re E ( )
This equation is similar to (1.5.17).
Hamiltonian density obeys equationH = [dX Ay,
. J—detg E.EV -H,H7

AH=p,G, ~ A=—E7- - /—detg =¥ V4 159

H=Pydy P E7-cEy g an ( )
Or, the same

y
Ap = detg EyE7+ HyH? (15.10)
87



The Hamiltonian of the electromagnetic field in the arbitrary metric

y
H = [dx/—detg ExEZ+HyH” (1.5.11)
8

where we take the integral over arbitrary hypersurface.

In quantum case everything is very similar:
0 -El _g2 _g3
. 21 _H 72
gaf_ |EY 0 -H3 H (15.12)

3 2 Kl o

Also
J—detg
=— /4 15.1
¥y~ aze £ (1.5.13)

where § 5 are the operators which multiply the wave function by the metric matrix functions similar to
Q

Schrédinger case, where the coordinate operator is the operator, which multiplies the wave function by a
coordinate. The equation (1.5.13) is very similar to (1.5.17).

Hamiltonian density

. = =/ AT e
Ay =y—detg EyE F HyH (1.5.14)
87
The Hamiltonian of the electromagnetic field in the arbitrary metric
. 2 BV 4 KU
H = [dxy—detg ExEZ+ HyH” (15.15)
87

where we take the integral over arbitrary hypersurface.



1.6 About the relativistic invariance.

Suppose that we have one particle, it’s quantum equation, and we want to make it relativistic

invariant:
int _ HY, (1.6.1)
ot

We see here that time stands out in contradiction to the relativistic equality of time and space. Let’s

fix it: let’s count the derivative not only by time but by the arbitrary 4-vector v& :

m%_h 78——W0H‘P Zw7 Yy = gL w7pny (1.6.2)

.3

where gL isa Lorenz metric.
i
The generalization to the arbitrary metric of the equation for one particle movement will be
oY
ih— = w7p77\P 1.6.3
T (1.6.3)

The question remains — how the wave function changes from one frame to another.

Let’s note that the wave function is not invariant. One of the reasons is that the probability density

p(t a’ a) “P a’ a% is not the invariant. In classical mechanics it transits from one frame to another

like the 0-component of the 4-density vector. But the classical proof of vector transformation law of this
value does not hold in quantum mechanics. So we don’t know if 4-density transforms like a 4-vector or
not in quantum mechanics.

Let’s start with a simple case and consider one free particle. Let’s suppose that the wave evolution
law is following:

int _ HY, (1.6.4)
ot

where H =/ p%c? + m?c* , p=—ihd/ex.
As well known solution of this equation is a harmonic wave:

g /7 (P(R=%)—E(t-1,)) (165)

where E =,/p°c® +m°c*.

If we set the initial condition as the delta-function,

‘P(to)=5(>‘<—>‘<o)=(zéghjdﬁe”h'r’(x_x‘)), (1.6.6)




then the evolution law of this wave function is called propagator which shows how the singular delta-
function change as time changes:

K%t %) = 1 J-d_ei/h{r)(i—io)—E(t—to))

on)h (1.6.7)
If we try to write it in Lorenz invariant form, then
. L .a,.pB
K(t,%.to %,) = [dptdp2dp® e 7 0apP , (16.8)
950" p” =m?c?
pO =E/c>0
1 0 0 O

L |0 -1 0 o0
af o0 0 -1 o0}
0 0 0 -1

where the Lorenz metric is g

We see that the propagator K(t, X,t,,X,) is seen not to be invariant. It can be understood, the

reason is that the wave function is not invariant — see beginning of this Part 1.3.

Let’s try to find how one-particle wave function transits from one frame to another. Let’s

postulate the following axiom concerning the coordinate:

Axiom ML1. If in one frame the coordinates are 100% known (the wave function is a delta-function),
then in the other frame the coordinates are 100% known (in the new frame the wave function is a delta-
function multiplied by a coefficient).

F¥= 67 -¥)] isequalto ¥ =a(X?)5(X” —x7) (1.6.9)
Let’s also postulate the following statement consulting general momentum:

Axiom M2. If in one frame the general momentum was with 100% known (the wave function was a
harmonic function in case of linear transformations), then in the other frame the general momentum is

also with 100% known (the wave function is a harmonic function multiplied by a coefficient in the new
frame).

F[‘P:eir’yiylh] incaseof linear trasformisequalto ¥’ = b(p}/)eiﬁj',i'Vlh (1.6.10)



Let’s postulate the superposition principle:

Axiom Ma3. If in one frame wave function was a sum (superposition) of two wave functions, then in

the new frame the wave function will be superposition of the same states but taken in the new frame.

If in one frame wave function was a product of a wave function and a constant, then in the new frame
the wave function will be also the product of the same state but taken in the new frame and the same

constant.

If in one frame wave function was an integral over a wave function and a coefficient, then in the new
frame the wave function will be also the integral of the same state but taken in the new frame and the

same coefficient.

Fl¥+¥ol=F[¥]+ F[¥,] (1.6.11)
Flw]=F[¥] (1.6.12)
F|[ axt ¢y e () |= [t () FRw(e)] (16.13)

Axiom M4. The probability element remains the same if we transit from one frame to another

av [¥|2=dv |92 (1.6.14)
dV and dV' are the volume elements in the coordinate space (excluding time). The relation between
them can be calculated as the relation between the volumes formed by the infinitesimal coordinate basis

vectors:

dv’'_dVv'(e1,e9,€e3)
dv. dV(eq.ep.e3)

(1.6.15)

The wave function transition law from one frame to another may be calculated from those

axioms. From Axiom M1 and M4 we conclude:



Fl¥ ()] =F|[ 76 X )9(R)|= [ 9 (37 )F[6(R ~x)]=

:j dx” ¥ (x)aX7)s (X" - x7) :jdi’VJ EEa(X7)SEXT —x7) = (1.6.16)

= J(xWP(xa(x?) =W (x7)¥ (x7)

We see that the wave function transition law from one frame to another is always a multiplication by
a function:

FIP()|=W(x7 )P (x7) (1.6.17)

Now let’s consider the case of linear transformations between the Lorenz frame and the new frame.
According to the Axiom M2 if in the Lorenz frame the general momentum was with 100% known (the
wave function was a harmonic), then in the new frame the momentum will also be 100% known (the

wave function will be a harmonic up to multiplication by coefficient):
FleP X" 1) =w (x7)elPy X711 b ) 1P, X 717 (1618)
It can be only in one case: when W (x7) = b(ﬁ)',) so that W =const. We see that transition law of

the wave function from one frame to another is case of linear transition from Lorenz frame to another
frame is just simple multiplication by a constant:
FIP() =W - ¥ (x7) (1.6.19)

where the modulus of W can be calculated using Axiom 4, the phase can be arbitrary. Let’s state that the

dv |02 . 05
phase is zero, then W :(W) . For example, in the case Lorenz transformation W =[—j :

Vv1-v?/c?

Now let’s consider not the wave function of one particle, but the wave function of gravitational field
¥ =(t,{g, (%)) (1.6.20)

and let’s try to calculate how it changes from one frame to another. The question may rise: the metric
functions are the functions of space coordinates, but not the functions of time? The answer is following:

the time evolution of metric is in the wave function which is a function of time.
Axiom G1. If in one frame the metric is 100% known (the wave function is a delta-function), then in

the other frame the metric is 100% known (in the new frame the wave function is a delta-function
multiplied by a coefficient).

Fl¥y= 0,51 -{9%5 (M) isequalto ¥y =alfg'Q, 5 (x7)Po({g’,5(x 7))~ 1g'Q 5 (7))
(1.6.21)

Let’s also postulate the following statement consulting general momentum:



Axiom G2. If in one frame the general momentum was with 100% known (the wave function was a
harmonic functional in case of linear transformations), then in the other frame the general momentum is
also with 100% known (the wave function is a harmonic function multiplied by a coefficient in the new

frame).

F (%) e [ FRPHR (X _ 0y (%) > b{p7H(e) Jo~ 1 IXPTHER)G (XD

p'?’ﬂ(t')_(")
(1.6.22)

\PpW (ti): Y u

Let’s postulate the superposition principle:

Axiom G3. If in one frame wave function was a sum (superposition) of two wave functions, then in

the new frame the wave function will be superposition of the same states but taken in the new frame.

If in one frame wave function was a product of a wave function and a constant, then in the new frame
the wave function will be also the product of the same state but taken in the new frame and the same

constant.

If in one frame wave function was an integral over a wave function and a coefficient, then in the new
frame the wave function will be also the integral of the same state but taken in the new frame and the

same coefficient.

Fl¥+¥ol=F[¥]+ F[¥,] (1.6.23)
F[y¥]=F[¥] (1.6.24)
F|[plg, 0)flg, 00Mlg, )] [Plo, 0]t lg, KO, 6] (1625

Axiom G4. The probability element remains the same if we transit from one frame to another

Dlg, (9)]¥olg, (0] 2-D[g )] 2 (1.6.26)

A




where D[gm(x)]|\P[gyﬂ(x)]| 2 in analogy with usual dV [¥|2 is approximately the probability for the
metric components to change between gm(x) and gm(x)+AgW(x)W|th small AgW(x), ¥ and Yo

are written in Axiom G1.

The wave function transition law from one frame to another may be calculated from those

axioms. Let’s us think of the state as the vector which has it’s value at each moment of parameter time. It
means that the metric, functional of which the state is, also is function of time:

From Axiom 1 and 4 we see:

= [DF,5t 0¥ (t4G,5t NNFE(F,5C X)) - 19,5 ELR)]=

B % % %
=[DgI(DT/ DT (1 10,5 €. 0N a (G5t x)}) S({F s (%)}~ 'gp X))

~ _ m ox'H _
= D3 (D§/ D ')‘P(t(t', x){aaxx—aaaxx—/; G, x)}] allg, 5. 1)} g (1 X))~/ g (1 X)) =
!]7 !
=J(Dg/Dg ')‘P(t(t’, i'),{?:(—a?;—;g’w ) 2)}) a ({g’aﬁ(t’, X)) =W-¥
(1.6.27)

We see that the wave function transition law from one frame to another is always a multiplication by
a function:

¥ =F[¥]=W.-¥ (1.6.28)

Now let’s consider the case of linear transformations between the Lorenz frame and the new frame.
According to the Axiom 2 if in the Lorenz frame the general momentum was with 100% known (the
wave function was a harmonic), then in the new frame the momentum will also be 100% known (the

wave function will be a harmonic up to multiplication by coefficient):

= e—ijd)? PYH(t%) 9y (X1 7 =b{pr)/,u(t¢5(»r)}e—ijd)?’p'yﬂ(t'i')gyﬂ(i’)/h _
(1.6.29)

=W .¥=J(Dg/Dg’)a ({g'(w( ' y(')})e—iIdi'p'W(t'i')gm(i')/h

It can be only in one case: when W = b= const so that W = const. We see that transition law of the
wave function from one frame to another is case of linear transition from Lorenz frame to another frame
is just simple multiplication by a constant:

Fle]=w.¥ (1.6.30)



where the modulus of W can be calculated using Axiom G4, the phase can be arbitrary. Let’s state that

the phase is zero.

Now let’s consider not the wave function of one particle, but the wave function of free
electromagnetic field

¥ =¥(t, {A%(X))) (1.6.31)
and let’s try to calculate how it changes from one frame to another. The question may rise: the
electromagnetic field vector functions are the functions of space coordinates, but not the functions of
time? The answer is following: the time evolution of electromagnetic field is in the wave function which

is a function of time.

Axiom E1. If in one frame the metric is 100% known (the wave function is a delta-function), then in
the other frame the metric is 100% known (in the new frame the wave function is a delta-function
multiplied by a coefficient).

Fl¥= s({A% (")} —{AZ () })] isequatto ¥ =a({A'd (x7))o({A%(x7)}-{ A& (x7)})

(1.6.32)
Let’s also postulate the following statement consulting general momentum:

Axiom E2. If in one frame the general momentum was with 100% known (the wave function was a
harmonic function in case of linear transformations), then in the other frame the general momentum is
also with 100% known (the wave function is a harmonic function multiplied by a coefficient in the new

frame).

F X):A?/()*()—m—ijd)”( p},(tX)AV(Y()/h . :A'V(X’)%b({pj'/(t'y')})e—ijd)”(’ p}’/(t’i(') AY(X)Ih

p}'/(t')?’)
(1.6.33)

¥
P,

Let’s postulate the superposition principle:

Axiom E3. If in one frame wave function was a sum (superposition) of two wave functions, then in

the new frame the wave function will be superposition of the same states but taken in the new frame.



If in one frame wave function was a product of a wave function and a constant, then in the new frame
the wave function will be also the product of the same state but taken in the new frame and the same

constant.

If in one frame wave function was an integral over a wave function and a coefficient, then in the new
frame the wave function will be also the integral of the same state but taken in the new frame and the

same coefficient.

FIW,+ W l=F[¥]+ F[¥;] (1.6.34)
Flv]=F[¥] (1.6.35)
F|[ DA% (A%)W(A%) |= [ DA% (A%)Fw(AY)] (1.6.36)

Axiom E4. The probability element remains the same if we transit from one frame to another

DA ()] ¥o[ A7 (x)] 2=D[A7 ()] [A7 (x)] 2 (16.37)

where D[A” ()] Wo[A ()] 2 in analogy with usual dv [W|2 is approximately the probability for the field
components to change between AY(X) and A (X) + AAY(x) with small Ag)/ﬂ(x), ‘¥ and \P’O are

written in Axiom E1.

The wave function transition law from one frame to another may be calculated from those

axioms. From Axiom E1 and E4 we see:

¥'= et (A7t 0))]=F|[ DAY (10 5 (A7 %) {47 (6 e e, (A7 .30 =

- [DA7 (0t I ¢ 0)DF (A7 0] - (A e ok

= [ DA3(DA7 1IDATY®(t A7 (. 0)) a (& 7, %)) oA 7 (1 3| { A x0)})=
A

% *')}Ja({ R, ) oA so)- (A7, )=

= J(DA/ DA')‘P(t(t', z'),{?;; AT, X)}J a (A7, x)}) =W

- [ DA73 (DA’ DA )‘P[t(t %) {

(1.6.38)



We see that the wave function transition law from one frame to another is always a multiplication by
a function:

¥ =F[¥]=W.-¥ (1.6.39)

Now let’s consider the case of linear transformations between the Lorenz frame and the new frame.
According to the Axiom 2 if in the Lorenz frame the general momentum was with 100% known (the
wave function was a harmonic), then in the new frame the momentum will also be 100% known (the
wave function will be a harmonic up to multiplication by coefficient):

F[ i 0%D, (t3) Ay(?)/hzl (o, e[RRI ATX )
(1.6.40)
_W ¥ = J(DA/DA)a ({A7(t, x)}e fdi'p'y X) A

It can be only in one case: when W = b= consi so that W = const. We see that transition law of the
wave function from one frame to another is case of linear transition from Lorenz frame to another frame
is just simple multiplication by a constant:

Fle]=w.¥ (1.6.41)
where the modulus of W can be calculated using Axiom G4, the phase can be arbitrary. Let’s state that

the phase is zero.

For many particle movement we have according to the Abstract:

W=D BO(tx) . PO (04) PEME A DYS . G080 My v, a,b (1.6.42)
u..v,ab
If we know the transition law from one frame to another of each component, then we know the

transition law of the whole state.



1.7 Semiclassical case of low fields and velocities: how to calculate a low field metric?

In order to find the low gravity metric, we compare the classical and gravitational actions. Also we
suppose in the sake of simplicity that classical gravitation is classical electrodynamics where the charge

is equal to the mass: g =m.

Then we compare the action of a particle in the classical electromagnetic field
S, =mc’ [dr+q/c- [ A,dx" =chJ'dr+m/c-J‘Aav"dr=mczj(1+1/c3 - AV )dr, where v* = dx“ /dz

and the action of a classic particle in the arbitrary metric

S, = mczj'drg = mc-'[,/gaﬁdx“dxﬁ = mc-J',/gaﬂv“vﬁdr , Where v* = dx* /dz supposing that the

charge is equal to the mass

j(1+1/c3 -AV” )dz‘ = 1/c~I,/gaﬂv“vﬁdr (1.7.1)

Suppose that the parts under integrals are also equal:

1+1/c?- Ave =1/c-g,,vv’ (1.7.2)
Then take a square from both parts:

1+ (1/03~ Aav“)2 +2/c®-Ayv, =1/c?g Vv’ (1.7.3)

Suppose that the classic field is small and the square of it A, - A, can be neglected. Also make the
notation: 1/¢?.g,,v v’ = 1/02.(g;ﬁ+Agaﬁ)\/“vﬂ =1+1/c*Ag,v°v”, where g;, isa Lorenz metric:

1+2/c-Av® =1+1/c*Ag, vV’ (1.7.4)
Or,
2/c- AV = Ag,NV° (1.7.5)

Note that the following metric is the solution of the last equation (note that is depends on velocity,
below we show how to overcome this problem):

2G4 1/03-(Aavﬂ+Aﬁva) (1.7.6)

| suppose that if we suppose the symmetry of metric, then the solution (1.7.6) of (1.7.5) is unique, but
[ haven’t proven it yet. The dependence of metric on velocity leads to supposition that (1.7.5) is an

“equation valid at low velocities”, it is valid up to the second order by velocity

Obviously,



Ag¥P—_1/c3 (Aavﬂ + Aﬂv“j (L.7.7)

If we introduce usual Newtonian velocity V “ = dx“ /dt , and use the formula v* =V /{1-V?/c?
then we can rewrite (1.7.5):

2/c- AV V1-V?/c® = Ag,VV* (1.7.8)
Let’s consider 3 cases:

0. Zero approximation by V : Agy, = 2A,/c’
1. First approximationby V: Ag,,= Ag,,= A, /c? (1.7.9)

2. Second approximation by V : Ag,, :—1—A0/c2 if & >1, otherwise Ag,,=0.

No we have a metric in the approximation of low gravitational field and low velocities:

2 2 2 2
1+2A0/c Allc A2/c A3/c
A1/c2 —1—A0/c2 0 0
9,5~ ) , , (1.7.10)
A2/c 0 —1—AO/c 0
2 2
A3/c 0 0 —1—A0/c
L
where A = gaﬂA'B, 0 A¥=47Gp% .
It means that
1+2A0/¢2  _aljc2 a2 —a3)c?
| =AY Z1-n04c2 0 0
_ e 0 2 (1.7.12)
aff | _a2jc 0 ~1-A%¢ 0

_A3/c? 0 0 _1-A0/¢2



1.8 The numerical predictions.

We will show how the numerical predictions can be done in our quantum gravity theory. In the
arbitrary case the wave function is function of metric matrix elements. Suppose that we have the
semiclassical approximation (with simple generalization in the case of arbitrary fields and metric

fields also where the wave function is a function of metric matrix components):

1+2¢g/c2 0 0 O

0 -1 0 0

0,3 = (1.8.1)
af 0 0 -1 0
0 0 0 -1

where we introduce ¢ g in the following way. If the wave function was a function of metric matrix

elements, than now the wave function is a function of 4-vector of gravitational potential obeying the
wave equation. If A4 =(@g, Ag), then

[1 02 92

U
. 8XZJAg 47erg (1.8.2)

,bé‘ is the operator of mass 4-density.

We see from (1.8.1) that contrary to the case electromagnetic fields the physical result may depend

on the zero component of the semiclassical gravitational field 4-vector ¢ g . So in analogy with (1.6.5)

we introduce the 4-coordinate
%1 - (q(? éb):(@g, Ag +Idt ~cgradgbg) (1.8.3)

Note that the operator value of the Hamiltonian will not change, the reason is that adding O-
component to the coordinate gives the 0-component of momentum equal to O:
oA

Py = (1.8.4)
0 a;
%
So quantization gives:
ps =0 (1.8.5)

Now let’s calculate £ :

EP =g a#aP=(g°F, °)% =(0.+ng)" £, O +ng)")¥ =
uv (1.8.6)

~(97F,0.7) +(ag"e, 0.7+ (g £, 407)% +o(ag)
In particular,

E2 = g0 (1-2¢g/c2)E ,+0(AG) (1.8.7)



H%=H_, +0(Af) (1.8.8)

Also,
J-det§ =1+pg/c2+0(Af) (1.8.9)

It means that the Hamiltonian of electromagnetic field is following - see (1.6.15)

= [dX./-detg E,EV+ H7H7/:Idy((lﬂ(/}g/cz)é7|§7+(1+¢g/02)|2|7/|:|y N
" o ., O (1.8.10)
(1+ @g/cz)(4ﬂcl5(>7))2+(1+ gbg/cz)(rot q(x))Z +o(ad)
8

Let’s suppose that the Hamiltonian of the 2 quantum particles interacting with gravitational and

5

+0(Ag)= [dX

electromagnetic field in the approximation of weak fields is following

H=Hy+Hy+Hy o+ H (1.8.11)

where H, and H., are the Hamiltonians of the first and second particles which can be found from

1 2

(1.3.17) - (1.3.19), they can be very simplified using the weak field approximation, F'em can be found

from (1.6.10), also our gravity hear in approximation of weak fields (in case of arbitrary fields the
wave function is a function of metric matrix components and the particle coordinates) in our

semiclassical case is:

. EJEL +HEH 5 5))2 & 5))2
Hg = [0 ¢ 98 a +o(Ag):jdz(4”Cp9(X))8+(r°tqg(x)) +o(ad)  (1.8.12)
T T

The acceleration of the first particle, for example, be found from simple well known rules

<@>=<%[ﬁ%[ﬂ,ilﬂ> (1813)

dt 2
One of the terms of this equation which can give quantum gravity effects is

25 E, .
<d >;1>Q61:<%(0g> (1.8.14)
dt 1



2.1 Conclusion

Following simple quantization procedures we have done the quantization of gravitational field,
electromagnetic field and particle quantization, using the canonical variables coordinate and momentum.

We have constructed the many-particle wave function in usual way.

The quantization of fields was little bit different from the one which is done by followers of Fourier
method, may be this was the reason why we have no divergences, ultraviolet divergences, etc. which
usually happen, and did not appear within our method. Our quantum gravity model is the model with the

ability to give numerical predictions — see (1.8.14).
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