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Abstract 

 
   The main idea of our quantum gravity model is following: in usual 

quantum mechanics we can represent any state of the many-particle system 

as sum over products of one-particle functions, generally, a path 

integral 
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    In quantum gravity we also represent each state as such superposition. In 

the last part we try to make numerical calculations using our quantum 

gravity theory. 

   

     In the case of interaction with arbitrary electromagnetic and gravitational 

field the wave function is similar: 
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1.1 Quantization of Einstein equation: case of free gravitational field. 

 

Suppose that we have arbitrary frame with time and coordinate parameters. We postulate that the 

wave function of arbitrary gravitational field is function of the metric matrix functions 


g : 

 ))(,( xgt


          (1.1.0) 

The change of metric by time is in the time parameter which is in wave the function. How this wave 

function changes from one frame to another - see Part 5. We will receive in the end the invariant equation 




 


pwg
w

i ˆ          (1.1.0`) 

The final result will not contain the Fourier transformation of fields which will greatly help in making 

the theory of quantum fields simple, relativistic invariant, without divergences which usually appear. 

Now let’s try to calculate action, Lagrangian and Hamiltonian in the arbitrary metric in classic case: 

   LtdRgxdtd
G

c
Rd

G

c
S det

16

3

16

3 


,     (1.1.1) 

where R  is a scalar curvature, 

   xdRg
G

c
xdL


det

16

3


, Rg

G

c
det

16

3



     (1.1.2) 

The momentum density 










g

p           (1.1.3) 

The Hamiltonian density 





pg

H
         (1.1.4) 

The Hamiltonian in classical and quantum is calculated using easy rule  

  HxdH ˆˆ 
          (1.1.5) 

We want to make the quantum equation relativistic invariant: 





H

t
i ˆ ,          (1.1.6) 

We see here that time stands out in contradiction to the relativistic equality of time and space. Let’s 

fix it: let’s count the derivative not only by time but by the arbitrary 4-vector v : 














 







 pwLgpwHw
x

wi
w

i ˆ

3...1

ˆˆ0 ,    (1.1.7) 



where 


Lg  is a Lorenz metric. The generalization to the arbitrary metric of the equation for one particle 

movement will be 




 


pwg
w

i ˆ          (1.1.8) 

The question remains – how the wave function changes from one frame to another – see Part 5. 

 

1.2 Quantization of many particle system + fields. How to make many particle state out of one-

particle states. 

 

We postulate that the wave function in the case arbitrary metric is function of the particle coordinates, 

electromagnetic field and the metric functions 


g . 

Now let’s make many-particle state out of one-particle states: if we know how the one-particle states 

change from one frame to another, then we know how the entire state changes from one frame to another. 

In usual quantum mechanics in the path integral approach we make the sum over the sets of Feynman 

paths 
N

yy ,...,
1

. Let’s formulate usual quantum mechanics in a different way: let’s make the sum not 

over all Feynman paths, but over all possible basis states of the particles (at each moment of time those 

states are basis states): 

   NNNN IxtxtDD ...)(...)(... 1111
     (1.2.1) 

where     ,...... 11 NNI  can be calculated by continuous von Neumann projection of the state 

 on
N ...1

, physically it is the probability amplitude of the system characterized by the wave function 

  to be in state 
N ...1

 during the period of time starting from 
0t  to t  - it is similar to a usual scalar 

product in quantum mechanics. 

 

Proof of (1.1.1). Using the Dirac bra- and cket- notion, we can rewrite (1.1.1): 

  NNNDD ......... 111
     (1.2.2) 

If we postulate the normalization condition of our functional integral 

  NNNDD .........1 111
,      (1.2.3) 

then the equation to prove (1.1.1) and the equivalent equation (1.1.2) starts to be obvious: 

            (1.2.4) 

Equation (1.1.1) proven.  

 

 

 



1.3 Quantization of particle in the arbitrary metric. 

 

Let’s make quantization of the particle in arbitrary metric. Knowing the classical action, let’s 

calculate Lagrangian and then let’s calculate the Hamiltonian in classics and then let’s make standard 

quantization procedure.  

   dtvAcqdtvvgmcdxAcqdmcS





 //2 , 

where dtdxv /


            (1.3.1) 

So the action of a classic particle in the arbitrary metric and the arbitrary electromagnetic field 

 







 tdvAcqvvgmcS


/         (1.3.2) 

From this equation we introduce the Lagrangian: 


vAcqvvgmcL  /         (1.3.3) 

Now we calculate the momentum 









Acq
vvg

vg

mc
v

L
p 




 /         (1.3.4) 

Note that the real amount of independent momentum components is not 4, but 3. From (1.3.4) it 

easily follows that there is a relation between the momentum components: 

  22// cmAcqpAcqpg 






 



       (1.3.5) 

Now let’s calculate the Hamiltonian of the particle in the arbitrary metric and electromagnetic field 

from the Lagrangian using the well known equation:  

00000
/
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00
/

//

3...1
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






























(1.3.6) 

Then 
0

p  has to be calculated from the remaining momentum components using (1.3.5). Note that the 

reason of the Hamiltonian = energy of the particle having the minus sign is following: we have chosen 

not the right sign of the Lagrangian (1.3.3) and the action (1.3.1) – usually the minus sign is written is 

there – see, for example, Landau, Lifshitz, volume 2 - see [1]. Let’s rewrite (1.3.5): 

22cmРРg 



          (1.3.7) 

Or, the same, 



22
0

0
2

00
00 cmРРgРРgРРg 







,       (1.3.8) 

where the bars of the summation indexes means that that this summation index changes not from 0 to 3 

as usual, but from 1 to 3. This is a quadratic equation on 
0

p . If we make the condition of the energy 
0

p  

to be nonnegative, then 

00

2200
2

00

0
g

РРgcmgРgРg

Р








 



















,    (1.3.9) 

Or, equivalently, 

 
0

/
00

//2200
2

/
0

/
0

0
Acq

g

AcqpAcqpgcmgAcqpgAcqpg

p 

















 














 






 












            (1.3.10) 

The Hamiltonian can be easily found from this equation in analogy to (1.3.12), we also will omit the 

minus sign so that the energy would have it’s usual physical meaning: 

 
000

4200
2

00

qA
g

qAcpqAcpgcmgqAcpgqAcpg

H 

















 














 






 












 

            (1.3.11) 

      When we make the quantization, we suppose that all physical quantities participating here all 

operators. Also we substitute all the products of the operators as following: 

 ABBAAB ˆˆˆˆ2/1  ,         (1.3.12) 

 ABСBAСAСBСABBСAСBAABС ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ6/1  ,    (1.3.13) 

… 

 

 

 

 

 

 

 

 

 

 



1.4    The quantization of electromagnetic field in Lorenz metric. 

 

We will show how the electromagnetic field can be quantized, the final result will not contain the 

Fourier transformation of fields which will greatly help in making the theory of quantum fields simple, 

relativistic invariant, without divergences which usually appear. 

As well known, the action in Lorenz frame 




  Ltd
HE

xdtdFFd
c

S



 8

22

16

1



,     (1.4.1) 

where 








































0123

1032

2301

3210

HHE

HHE

HHE

EEE

x

A

x

A
F










,  


 xd
HE

xdL





8

22
, 

8

22 HE



   

One of the ways to produce right Hamiltonian = energy  


 Hxd
HE

xdH





8

22
, 

8

22 HE
H




 is to introduce the 3-vector field obeying the equation  

Eq





           (1.4.2) 

Then if magnetic field H


 does not depend on 


q


 (as we will see below), then 

8

22 HE

q

qH





 











        (1.4.3) 

Obviously, the Hamiltonian will not change if we multiply the coordinate by a constant: 

cgrad
t

A
Eсq 










         (1.4.4) 

Now let’s take an integral by time: 

  cgraddtAq


         (1.4.5) 

Taking into account that 0gradrot , we can find the magnetic field 

ArotqrotH


           (1.4.6) 

We have calculated the magnetic and electric field using our new coordinate q


- see (1.4.2) and 

(1.4.6). Now we can calculate the action, Lagrangian and Hamiltonian: 

 



 



Ltd
qrotcq

xdtdFFd
c

S



 8

2
 2)/(

16

1



,    (1.4.7) 



where 
   

   

    
















































01 2 /3

1 03 /2

2 3 0/1

/3/2/10

qrotqrotcq

qrotqrotcq

qrotqrotcq

cqcqcq

x

A

x

A
F















, 

 
 






xd
qrotcq

xdL





8

2
 2)/(

, 
 

8

2
 

2
)/( qrotcq








  

Hamiltonian = energy 
 

 






Hxd
qrotcq

xdH





8

2
 2)/(

,  

 

8

2
 2)/( qrotcq

H








         (1.4.8) 

The momentum density 

c

E

c

q

q

p
 424
















         (1.4.9) 

It means that Hamiltonian 

 









8

2
 

2
)4( qrotpс

xdH




,        (1.4.10) 

Now we make the quantization: the state if the free field depends on time and the “3-coordinate” 

)(xq


 the same way as the state of the free particle depends on time and the 3-coordinate x


: 

 ))(,( xqt


           (1.4.11) 

The probability for the field to have the value )(xq


 and change in the “small interval” with volume 

 )(xqD


 at moment of time t  is equal to 

    2)(,)( xqtxqDdP


         (1.4.12) 

It means that there is a probability normalization condition: 

         )(,)(,*)(1 xqtxqtxqD


       (1.4.13) 

The mean value of field )(xq


 at the moment of time 0t  and coordinate 0x


 is equal to 

         )(,0)0()(,0
*)()0,0( xqtxqxqtxqDxtq


    (1.4.14) 

The question is to calculate the electric field 


cxtqxtE /)0,0()0,0(


 - see (1.4.4). Using the 

appropriate theorem from quantum mechanics showing how to calculate the derivative, we can write: 

 


)0,0(ˆ,ˆ)0,0( xtqH
c

i
xtq






. But the problem is that we don’t know the Hamiltonian Ĥ . Let’s 

calculate it.  



The action, Lagrangian and Hamiltonian are also operators in quantum mechanics: 

 



 



Ltd
qrotcq

xdtdFFd
c

S ˆ
8

2
 ˆ2)/ˆ(

ˆˆ
16

1ˆ








,    (1.4.15) 

where 
   

   
    














































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ˆ
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ˆ
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ˆ
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ˆ/2

ˆ/1
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ˆˆ
ˆ
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qrotqrotcq

cqcqcq

x

A

x

A
F
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










 , 

 
 






ˆ
8

2
 ˆ2)/ˆ(

ˆ xd
qrotcq

xdL






, 

 
8

2
 ˆ2)/ˆ(

ˆ
qrotcq







  

Hamiltonian = energy  

 
 






Hxd
qrotcq

xdH ˆ
8

2
 ˆ2

)/ˆ(
ˆ 





, 

 
8

2
 ˆ2

)/ˆ(
ˆ

qrotcq

H








   (1.4.16) 

The momentum 

c

E

c

q
p

 4

ˆ

24

ˆ
ˆ








         (1.4.17) 

It means that Hamiltonian 

 









8

2
 ˆ2

)ˆ4( qrotpс
xdH




,        (1.4.18) 

We still did not postulate the momentum operator. Let’s state the following: 

    
  

)
0

(

)(
)()

0
(ˆ

xq

xq
ixqxp 









        (1.4.19) 

where 
)

0
(xq

i 



  is a derivative by coordinate with number 

0
x


where 
0

x


 is the element of our usual  

3-dimensional vector space over real numbers, in analogy with usual momentum operator 
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 ˆ  with derivative by coordinate number   where   takes values 3,2,1 . In usual quantum 
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Indeed,  
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We use the fact  
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which is similar to usual relations 

 





x

x
. 

From (1.4.21) the equation which we were proving immediately follows: 
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Now we can write the Hamiltonian of free electromagnetic field in the Lorenz frame   
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1.5 The quantization of electromagnetic field in arbitrary metric. 

 

Let’s postulate that the wave function in the case arbitrary metric is function of the particle 

coordinates, function of electromagnetic field coordinates and the metric components 


g . 

The final result also as in previous part will not contain the Fourier transformation of fields which 

will greatly help in making the theory of quantum fields simple, relativistic invariant, without 

divergences which usually appear. 

 

Now let’s try to calculate action, Lagrangian and Hamiltonian in the arbitrary metric in classic case: 
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Note that according to (1.5.25)  
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Again using (1.5.25) we have: 
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  (1.5.4) 

We have found the momentum density of electromagnetic field in the arbitrary metric  
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Let’s note that if  FF  , then 

 FF            (1.5.6) 

It means that we can introduce notations. 
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Note that E  and H  are not tensors. It follows from (1.5.5) and (1.5.7) 
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This equation is similar to (1.5.17).  
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Or, the same 
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The Hamiltonian of the electromagnetic field in the arbitrary metric 
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where we take the integral over arbitrary hypersurface. 

In quantum case everything is very similar: 
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Also 
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where


ĝ  are the operators which multiply the wave function by the metric matrix functions similar to 

Schrödinger case, where the coordinate operator is the operator, which multiplies the wave function by a 

coordinate. The equation (1.5.13) is very similar to (1.5.17).  

Hamiltonian density 
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The Hamiltonian of the electromagnetic field in the arbitrary metric 
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where we take the integral over arbitrary hypersurface. 

 

 

 

 

 

 

 

 

 

 

 

 



1.6 About the relativistic invariance. 

 

Suppose that we have one particle, it’s quantum equation, and we want to make it relativistic 

invariant: 
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H

t
i ˆ ,          (1.6.1) 

We see here that time stands out in contradiction to the relativistic equality of time and space. Let’s 

fix it: let’s count the derivative not only by time but by the arbitrary 4-vector v : 
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where 


Lg  is a Lorenz metric. 

The generalization to the arbitrary metric of the equation for one particle movement will be 
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The question remains – how the wave function changes from one frame to another.  

 

Let’s note that the wave function is not invariant. One of the reasons is that the probability density 

   2,, 
xtxt
   is not the invariant. In classical mechanics it transits from one frame to another 

like the 0-component of the 4-density vector. But the classical proof of vector transformation law of this 

value does not hold in quantum mechanics. So we don’t know if 4-density transforms like a 4-vector or 

not in quantum mechanics.  

Let’s start with a simple case and consider one free particle. Let’s suppose that the wave evolution 

law is following: 
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As well known solution of this equation is a harmonic wave: 
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If we set the initial condition as the delta-function, 
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then the evolution law of this wave function is called propagator which shows how the singular delta-

function change as time changes: 
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If we try to write it in Lorenz invariant form, then 
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where the Lorenz metric is 
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We see that the propagator ),,,( 00 xtxtK


 is seen not to be invariant. It can be understood, the 

reason is that the wave function is not invariant – see beginning of this Part 1.3. 

 

Let’s try to find how one-particle wave function transits from one frame to another. Let’s 

postulate the following axiom concerning the coordinate: 

 

Axiom M1. If in one frame the coordinates are 100% known (the wave function is a delta-function), 

then in the other frame the coordinates are 100% known (in the new frame the wave function is a delta-

function multiplied by a coefficient). 

 

  )~()~(      toequal is       )~(  xxxaxxF      (1.6.9) 

 

Let’s also postulate the following statement consulting general momentum:  

 

Axiom M2. If in one frame the general momentum was with 100% known (the wave function was a 

harmonic function in case of linear transformations), then in the other frame the general momentum is 

also with 100% known (the wave function is a harmonic function multiplied by a coefficient in the new 

frame). 
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Let’s postulate the superposition principle:  

 

Axiom M3. If in one frame wave function was a sum (superposition) of two wave functions, then in 

the new frame the wave function will be superposition of the same states but taken in the new frame.  

 

If in one frame wave function was a product of a wave function and a constant, then in the new frame 

the wave function will be also the product of the same state but taken in the new frame and the same 

constant. 

 

If in one frame wave function was an integral over a wave function and a coefficient, then in the new 

frame the wave function will be also the integral of the same state but taken in the new frame and the 

same coefficient. 
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Axiom M4. The probability element remains the same if we transit from one frame to another 

 

22  VddV          (1.6.14) 

 

dV  and Vd   are the volume elements in the coordinate space (excluding time). The relation between 

them can be calculated as the relation between the volumes formed by the infinitesimal coordinate basis 

vectors: 

 

)3,2,1(

)3,2,1(
 

eeedV

eeeVd

dV

Vd 



         (1.6.15) 

 

The wave function transition law from one frame to another may be calculated from those 

axioms. From Axiom M1 and M4 we conclude: 
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We see that the wave function transition law from one frame to another is always a multiplication by 

a function: 
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Now let’s consider the case of linear transformations between the Lorenz frame and the new frame. 

According to the Axiom M2 if in the Lorenz frame the general momentum was with 100% known (the 

wave function was a harmonic), then in the new frame the momentum will also be 100% known (the 

wave function will be a harmonic up to multiplication by coefficient): 
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It can be only in one case: when )()( 
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
 so that constW  . We see that transition law of 

the wave function from one frame to another is case of linear transition from Lorenz frame to another 

frame is just simple multiplication by a constant: 

  )()(  xWxF           (1.6.19) 

where the modulus of W  can be calculated using Axiom 4, the phase can be arbitrary. Let’s state that the 

phase is zero, then 
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Now let’s consider not the wave function of one particle, but the wave function of gravitational field  
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and let’s try to calculate how it changes from one frame to another. The question may rise: the metric 

functions are the functions of space coordinates, but not the functions of time? The answer is following: 

the time evolution of metric is in the wave function which is a function of time. 

 

Axiom G1. If in one frame the metric is 100% known (the wave function is a delta-function), then in 

the other frame the metric is 100% known (in the new frame the wave function is a delta-function 

multiplied by a coefficient). 
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       (1.6.21) 

 

Let’s also postulate the following statement consulting general momentum:  



 

Axiom G2. If in one frame the general momentum was with 100% known (the wave function was a 

harmonic functional in case of linear transformations), then in the other frame the general momentum is 

also with 100% known (the wave function is a harmonic function multiplied by a coefficient in the new 

frame). 
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        (1.6.22) 

 

Let’s postulate the superposition principle: 

 

Axiom G3. If in one frame wave function was a sum (superposition) of two wave functions, then in 

the new frame the wave function will be superposition of the same states but taken in the new frame.  

 

If in one frame wave function was a product of a wave function and a constant, then in the new frame 

the wave function will be also the product of the same state but taken in the new frame and the same 

constant. 

 

If in one frame wave function was an integral over a wave function and a coefficient, then in the new 

frame the wave function will be also the integral of the same state but taken in the new frame and the 

same coefficient. 

 

      2 1 21  FFF         (1.6.23) 

    FF             (1.6.24) 

               )()()()()()( 















 xgFxgfxgDxgxgfxgDF  (1.6.25) 

 

Axiom G4. The probability element remains the same if we transit from one frame to another 

 

        2)(
0

)(2)(0)( xgxgDxgxgD        (1.6.26) 

 



where     2)()( xgxgD    in analogy with usual 2dV  is approximately the probability for the 

metric components to change between )(xg 
 and )()( xgxg   with small )(xg  , 0  and 

0
  

are written in Axiom G1. 

 

The wave function transition law from one frame to another may be calculated from those 

axioms. Let’s us think of the state as the vector which has it’s value at each moment of parameter time. It 

means that the metric, functional of which the state is, also is function of time: 

From Axiom 1 and 4 we see: 
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      (1.6.27) 

 

We see that the wave function transition law from one frame to another is always a multiplication by 

a function: 

   WF          (1.6.28) 

Now let’s consider the case of linear transformations between the Lorenz frame and the new frame. 

According to the Axiom 2 if in the Lorenz frame the general momentum was with 100% known (the 

wave function was a harmonic), then in the new frame the momentum will also be 100% known (the 

wave function will be a harmonic up to multiplication by coefficient): 
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  (1.6.29) 

It can be only in one case: when constbW   so that constW  . We see that transition law of the 

wave function from one frame to another is case of linear transition from Lorenz frame to another frame 

is just simple multiplication by a constant: 

   WF           (1.6.30) 



where the modulus of W  can be calculated using Axiom G4, the phase can be arbitrary. Let’s state that 

the phase is zero. 

 

Now let’s consider not the wave function of one particle, but the wave function of free 

electromagnetic field  

 ))(,( xAt
          (1.6.31) 

and let’s try to calculate how it changes from one frame to another. The question may rise: the 

electromagnetic field vector functions are the functions of space coordinates, but not the functions of 

time? The answer is following: the time evolution of electromagnetic field is in the wave function which 

is a function of time. 

 

Axiom E1. If in one frame the metric is 100% known (the wave function is a delta-function), then in 

the other frame the metric is 100% known (in the new frame the wave function is a delta-function 

multiplied by a coefficient). 
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      (1.6.32) 

 

Let’s also postulate the following statement consulting general momentum:  

 

Axiom E2. If in one frame the general momentum was with 100% known (the wave function was a 

harmonic function in case of linear transformations), then in the other frame the general momentum is 

also with 100% known (the wave function is a harmonic function multiplied by a coefficient in the new 

frame). 
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      (1.6.33) 

 

Let’s postulate the superposition principle:  

 

Axiom E3. If in one frame wave function was a sum (superposition) of two wave functions, then in 

the new frame the wave function will be superposition of the same states but taken in the new frame.  

 



If in one frame wave function was a product of a wave function and a constant, then in the new frame 

the wave function will be also the product of the same state but taken in the new frame and the same 

constant. 

 

If in one frame wave function was an integral over a wave function and a coefficient, then in the new 

frame the wave function will be also the integral of the same state but taken in the new frame and the 

same coefficient. 

 

      2 1 21  FFF         (1.6.34) 

    FF             (1.6.35) 

     )()()()(  AFAfDAAAfDAF      (1.6.36) 

 

Axiom E4. The probability element remains the same if we transit from one frame to another 
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)(2)(0)( xAxADxAxAD        (1.6.37) 

 

where     2)(0)( xAxAD    in analogy with usual 2dV  is approximately the probability for the field 

components to change between )(xA
  and )()( xAxA   with small )(xg  , 0  and 

0
  are 

written in Axiom E1. 

 

The wave function transition law from one frame to another may be calculated from those 

axioms. From Axiom E1 and E4 we see: 
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      (1.6.38) 

 



We see that the wave function transition law from one frame to another is always a multiplication by 

a function: 

   WF          (1.6.39) 

Now let’s consider the case of linear transformations between the Lorenz frame and the new frame. 

According to the Axiom 2 if in the Lorenz frame the general momentum was with 100% known (the 

wave function was a harmonic), then in the new frame the momentum will also be 100% known (the 

wave function will be a harmonic up to multiplication by coefficient): 
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It can be only in one case: when constbW   so that constW  . We see that transition law of the 

wave function from one frame to another is case of linear transition from Lorenz frame to another frame 

is just simple multiplication by a constant: 

   WF           (1.6.41) 

where the modulus of W  can be calculated using Axiom G4, the phase can be arbitrary. Let’s state that 

the phase is zero. 

 

For many particle movement we have according to the Abstract: 
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If we know the transition law from one frame to another of each component, then we know the  

transition law of the whole state. 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.7 Semiclassical case of low fields and velocities: how to calculate a low field metric? 

 

In order to find the low gravity metric, we compare the classical and gravitational actions. Also we 

suppose in the sake of simplicity that classical gravitation is classical electrodynamics where the charge 

is equal to the mass: mq  . 

 

Then we compare the action of a particle in the classical electromagnetic field 

      






 dvAcmcdvAcmdmcdxAcqdmcSe

3222 /11// , where  ddxv /  

and the action of a classic particle in the arbitrary metric 

   



 dvvgmcdxdxgmcdmcS gg

2 , where  ddxv /  supposing that the 

charge is equal to the mass  

 

     



 dvvgcdvAc /1/11 3       (1.7.1) 

 

Suppose that the parts under integrals are also equal: 

 





 vvgcvAc  /1/11 3        (1.7.2) 

 

Then take a square from both parts: 

 

  



 vvgcvAcvAc  2323 /1/2/11      (1.7.3) 

 

Suppose that the classic field is small and the square of it  AA   can be neglected. Also make the 

notation:   






 vvgcvvggcvvgc L 

222 /11/1/1 , where 
Lg is a Lorenz metric: 
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

 vvgcvAc  23 /11/21        (1.7.4) 

 

Or, 

 





 vvgvAc /2          (1.7.5) 

 

Note that the following metric is the solution of the last equation (note that is depends on velocity, 

below we show how to overcome this problem):  
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vAvAcg 3/1        (1.7.6) 

 

I suppose that if we suppose the symmetry of metric, then the solution (1.7.6) of (1.7.5) is unique, but 

I haven’t proven it yet. The dependence of metric on velocity leads to supposition that (1.7.5) is an 

“equation valid at low velocities”, it is valid up to the second order by velocity   

 

Obviously, 
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If we introduce usual Newtonian velocity dtdxV /  , and use the formula 
22 /1/ cVVv


 

, 

then we can rewrite (1.7.5):  
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

 VVgcVVAc  22 /1/2


       (1.7.8) 

 

Let’s consider 3 cases: 

 

0. Zero approximation by V


: 
2

000 /2 cAg   

1. First approximation by V


: 
2

00 / cAgg        (1.7.9) 

2. Second approximation by V


: 2/
0

1 cAg    if 1 , otherwise 0 g . 

 

No we have a metric in the approximation of low gravitational field and low velocities: 
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where 



ALgA  , □  GA 4 . 
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1.8 The numerical predictions. 

 

We will show how the numerical predictions can be done in our quantum gravity theory. In the 

arbitrary case the wave function is function of metric matrix elements. Suppose that we have the 

semiclassical approximation (with simple generalization in the case of arbitrary fields and metric 

fields also where the wave function is a function of metric matrix components): 
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where we introduce g̂  in the following way. If the wave function was a function of metric matrix 

elements, than now the wave function is a function of 4-vector of gravitational potential obeying the 

wave equation. If )
ˆ

,ˆ(ˆ
gAggA


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g
̂  is the operator of mass 4-density. 

We see from (1.8.1) that contrary to the case electromagnetic fields the physical result may depend 

on the zero component of the semiclassical gravitational field 4-vector g̂ . So in analogy with (1.6.5) 

we introduce the 4-coordinate 
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   gcgraddtgAgg
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      (1.8.3) 

Note that the operator value of the Hamiltonian will not change, the reason is that adding 0-

component to the coordinate gives the 0-component of momentum equal to 0:  
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          (1.8.4) 

So quantization gives: 

0
0

ˆ 
gp            (1.8.5) 

Now let’s calculate 
F̂ : 
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In particular,  

   goEcgFE ˆˆ2/ˆ210ˆˆ          (1.8.7) 



 goHH ˆˆˆ  
          (1.8.8) 

Also, 

 gocgg ˆ2/ˆ1ˆdet           (1.8.9) 

It means that the Hamiltonian of electromagnetic field is following - see (1.6.15) 
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 (1.8.10) 

Let’s suppose that the Hamiltonian of the 2 quantum particles interacting with gravitational and 

electromagnetic field in the approximation of weak fields is following 

g
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where 
1

Ĥ  and 
2

Ĥ  are the Hamiltonians of the first and second particles which can be found from  

(1.3.17) - (1.3.19), they can be very simplified using the weak field approximation, 
em

Ĥ  can be found 

from (1.6.10), also our gravity hear in approximation of weak fields (in case of arbitrary fields the 

wave function is a function of metric matrix components and the particle coordinates) in our 

semiclassical case is: 
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The acceleration of the first particle, for example, be found from simple well known rules  
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One of the terms of this equation which can give quantum gravity effects is  
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2.1 Conclusion 

 

Following simple quantization procedures we have done the quantization of gravitational field, 

electromagnetic field and particle quantization, using the canonical variables coordinate and momentum. 

We have constructed the many-particle wave function in usual way.  

 

The quantization of fields was little bit different from the one which is done by followers of Fourier 

method, may be this was the reason why we have no divergences, ultraviolet divergences, etc. which 

usually happen, and did not appear within our method. Our quantum gravity model is the model with the 

ability to give numerical predictions – see (1.8.14). 
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