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                                                ABSTRACT  
 
 
 Various parameters tied to the electrical conductivity of typical metals 
are estimated and are expressed in terms of universal constants. It happens 
that they are close to those found in metallic copper at room temperature. 
The fact that the realization of the model occurs at room temperature is 
explained by using the Landauer’s erasure principle. The averaged collision 
time of the electron of conduction is also thought as a particle lifetime. 
Finally an analogy is established between the motion of the electron of 
conduction and the cosmological constant problem, where a spherical 
surface of radius equal to the electron mean free path has been thought as a 
surface horizon for the charge carriers.
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1 - INTRODUCTION
 
Highly purified water is a bad electrical conductor. However, the addition 
of small amounts of sodium chloride (NaCl) to this liquid, can increase its 
electrical conductivity in a substantial way. At the ambient temperature 
(295K), the water's dielectric constant of 80, permits the Na+ and Cl- 
ions to move freely through the liquid and this feature can account for the 
change in its conductive behavior. It seems that the concentration of free 
charge carriers has the most relevant role in determining the electrical 
conductivity of the substances.
 But what to say about electrical conductivity in metals? 
Isolated metallic atoms have their inner electrons belonging to closed shells
and hence tightly bounded to their corresponding atomic nucleus. However 
the electrons of the outer most shell are weakly bonded to its respective 
nucleus. When arranged in a crystal lattice structure, the bond weakness of 
these outer electrons is enhanced due to the interactions among neighbor 
atoms of the lattice, so that the electrons of conduction are free to travel 
through the whole crystal. Resistance to their motion is due to the thermal 
vibrations (phonons) and defects provoked by the presence of impurities 
and lattice dislocations. In a perfect crystal at zero absolute temperature, 
these free electrons can be described by using the quantum mechanical 
formalism of the Bloch waves [1,2]. The concentration of free electrons 
plays an important role in the description of the electrical conductivity in 
metals.
 
 
2 – EVALUATION OF TYPICAL PARAMETERS TIED TO THE 
ELECTRIC CONDUCTIVITY OF METALS
 
 
   A possible way to estimate the concentration of conduction electrons in 
a typical good metal will be next presented. An alternative way to estimate 
the Casimir force between two parallel uncharged metallic plates separated 
by a close distance d was developed in reference [3]. There, we considered 
the cutting of a cubic cavity of edge d in a metallic block. We imagined 
that the free electrons in metal as a gas of non-relativistic particles confined 
by the vacuum pressure in the interior of a cubic box of edge equal to d. 
On the other hand as was pointed out by Jaffe [12], the Casimir force can 
be calculated without reference to the vacuum fluctuations, and like other 
observable effects in QED, it vanishes as the fine structure constant α goes 
to zero.  
 
 

 
 

3



 
   In reference [3], we treated a non-relativistic Fermi gas confined by the 
vacuum pressure B and found the relation
 
                                       B d3 = (2 ∕ 5) Eav,                                                  (1)
 
where Eav stands for the averaged energy of the gas. Meanwhile it is 
convenient to consider that an equivalent way to treat the problem is by 
taking in account the electromagnetic interaction through the dependence 
of the energy levels of the system on the fine structure constant α. We 
reproduce here some steps of the reasons outlined in reference [3].
   One of the simplest models which exhibits energy levels dependence on 
the fine structure α is the Bohr atom, namely
                              
En = - ½ (α2 m c2) ∕ n2  = - E1 ∕ n2.                                   (2)
 
By taking the maximum occupied energy level equal to N ∕ 2, we get the 
Fermi energy (EF) of the system 
                                             
EF  =  - 4 E1 ∕ N2.                                              (3)
 
The averaged energy could be estimated as
 
              Eav  = (2 ∕ N) ∫o

N∕2 (-E1 n2 dn) =  (2 ∕ N) E1 [(2-N) ∕ N].                  (4)
 
In the limit, as N>>1, we have
                                                
Eav = - 2 E1 ∕ N.                                             (5)
 
    Now let us estimate the vacuum pressure. We have
 
                              B d3  = - (2∕5) (α2 m c2) ∕ N =  (2∕5) Eav.                        (6)
 
By taking po = ½ α m c and λo = h ∕ po  = 2h ∕ (α m c), it is possible to make 
the choice
 
                                         N = d ∕ λo =  (α m c d) ∕ 2h.                                 (7)
 
Inserting (7) into (6), we obtain
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                                 B = - [8 ∕ (5π)] (α π2 ħ c) (1∕ d4 ).                                (8)
 
Therefore we notice that by making the choice indicated by (7), the explicit 
dependence of B on the electron mass m and on the maximum quantum 
number N has disappeared. 
   The alternative way we have used in order to treat the Casimir force 
problem, permit us to calculate a typical density of charge carriers in good 
metals. Let us write
 
                                 n d3 = (4π ∕ 3) N3 (3!) = 8 π N3.                                  (9)
 
In (9), we have considered the volume of a sphere in the N-space, and 
the possible number of permutations among the Nx,Ny and Nz quantum 
numbers. Putting (7) into (9) we obtain
 
                                          n = π [(α m c) ∕  h]3.                                         (10)
 
Numerical evaluation of (10) gives n = 8.56 x 1028 m-3, which could be 
compared with 8.45 x 1028 m-3 the density of charge carriers in metallic 
copper [1,2].
   Meanwhile the Fermi energy of metals could be expressed as [1,4]
                               
EF = [h2 ∕ (8 m)] (3 ∕ π)2 ∕ 3 n2 ∕ 3.                                    (11)
 
Inserting (10) into (11), we get
                  
                                    EF = [(32 ∕ 3) ∕ 8] α2 m c2.                                        (12)
 
Numerical estimate of (12) gives EF = 7.07 eV, which naturally is very 
close to the value found in metallic copper.
   In order to proceed further, let us compute the electrical conductivity of a 
typical good metal. To do this we first suppose that we have n scatters per 
unit of volume and by considering a prism shaped tube having longitudinal 
size equal to the electron mean free path ℓ, width ℓF equal to half of the 
Fermi wavelength of the electron, and thickness ℓC equal to half of its 
Compton wavelength. If we consider that the electrical conductivity always 
happens in a regime of charge neutrality, the number of scatters per unit of 
volume will be equal to the number density of charge carriers, and we can 
write
 
 
                  n ℓF ℓC ℓ = n [h ∕ (2 m vF)] [h ∕ (2 m c)] vF τ = 1.                     (13)
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In (13), ℓC stands for the wavelength of a photon with a momentum 
related to the creation of a electron-positron pair and this corresponds to a 
minimum thickness of the prism, which also implies in a maximum τ, the 
averaged time between collisions. From (13) we obtain the relation
 
                                       n τ = m2 c ∕ (π2 ħ2).                                             (14)
 
Now, Drude formula for the electrical conductivity σ is given by (please 
see Kittel [1])
 
                                            σ = e2 n τ ∕ m.                                                (15)
 
Inserting nτ of (14) into (15), we obtain
 
                                       σ = (e2 m c) ∕ (π2 ħ2).                                          (16)
 
Numerical estimate of the electrical resistivity ρ, gives
ρ = 1 ∕ σ = 1.57 x 10-8 Ω.m and can be compared with the resistivity of the 
metallic copper measured at the temperature of 295K, namely
ρ(copper) = 1.70 x 10-8 Ω.m. 
   From (10) and (14) we also obtain the averaged time between collisions
                                    
τ = (1 ∕ α3) [4 h ∕ (π m c2)].                                      (17)
 
Numerical estimate of (17) gives τ = 2.65 x 10-14 s. This number must be 
compared with the value estimated of τ(copper) = 2.5 x 10-14 s, for copper 
at the room temperature as quoted by Allen [2].
   It is also interesting to write formulas for the Fermi velocity vF and the 
electron mean free path ℓ. We have
                               
vF = (2 EF ∕ m)1∕ 2 = (31∕ 3 ∕ 2) α c,                                  (18)
 
and
 
                               ℓ = vF τ  =  (31∕ 3 2 h) ∕ (α2 π m c).                               (19)
 
These relations for the quantities associated to the electrical conduction in 
typical metals are exhibited in table 1, as well their respective numerical 
estimates and are also compared with the corresponding ones quoted for 
copper at the room temperature.  
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Table 1 – Formulas related to the electrical conductivity of typical metals, 
in terms of universal constants (This work). Numerical estimates of then 
are compared with those quoted for Copper at room temperature.
 
 Formula

 
Numerical
Estimates

Copper at Room      
Temperature

Density of 
Charge Carriers
         (n)         

 
n =π[(αmc) ∕ h]3

 
n =8.56x1028m-3

 
n=8.45x1028 m-3

         [1,2]

 
Fermi Energy
        (EF)

 
EF =   
 = (32 ∕ 3∕ 8)
α2mc2

 
EF = 7.07 eV 

 
EF = 7.0 eV
          [1]

Electrical 
Resistivity
  ρ = 1 ∕ σ

 
ρ =            
=(π2ħ2) ∕ (e2mc)

 
1.57 x 10-8 Ω.m 

 
1.70 x 10-8 Ω.m
         [1,2] 

Time Average
Between 
Collisions (τ)

 
τ =                  
=[4h ∕(α3πm c2)] 

 
 2.65 x 10-14 s 

 
  2.5 x 10-14 s 
        [ 2, 5]

Fermi
Velocity (vF)

 
vF = (31∕ 3 ∕ 2) αc

 
 1.6 x 106 m ∕ s

 
1.6 x 106 m ∕ s
           [1] 

Electron Mean
Free Path (ℓ)

 
ℓ =  [(24)1∕ 3h] ∕        
(α2πmc) 

 
      419 Å
 
 

 
       400 Å
           [5]

      
 
 
 
 
3 - REALIZATION AT THE ROOM TEMPERATURE: A POSSIBLE 
EXPLANATION
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   It is an intriguing question why a model describing the electrical 
conductivity of a typical good metal just realizes itself in copper crystals at 
room temperature. The answer to this question could be elaborated through 
these reasons.

i) As was pointed out by Jacobs [9], Landauer’s erasure principle 
[8] states that: whenever a single bit of information is erased, 
the entropy in the environment to which the information storing 
system is connected must increase at least kBln2, where kB is the 
Boltzmann’s constant.

ii) A free electron in a metal travels in average a distance equal to its 
mean free path, with a constant velocity vF, until to collide with 
the  ionic vibrations (phonons). In the collision process, the free 
electron looses its memory.

   We think that we may associate to the Fermi energy EF, a string of 
length equal to its Fermi wavelength, composed by unit cells having 
a length equal to the Compton wavelength of the electron. Let us to 
introduce a quasi-particle with a mass-energy μc2 defined as
 
                                           μ c2 =  EF vF ∕ c.                                           (20)
 
As we can see from (20), this quasi-particle has a mass-energy equal to 
the Fermi energy divided by the number of cells in the string. Defining
 
                           ∆F = ∆U - T∆S = ½ μ c2 -  kBln2,                               (21)
 
And after making the requirement that
                                             
∆F|T=T* = 0,                                                 (22)
 
we obtain the relation
 
                              EF

3 = (kB T*)2 2 (ln2)2 m c2.                                    (23)
 
Putting   EF = 7.1 eV (please see table 1) and  m c2 = 0.511 MeV in (23) 
and solving for kB T*, we find
 
                                           kB T* = 26 meV.                                         (24)
 
The above number for the characteristic temperature T* must be 
compared with kBTRoom = 25 meV.
Therefore the obtained result for the characteristic temperature given by 
(24) seems to make sense to the fact that the realization of the model for 
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the electrical conductivity of good metals to happen for copper crystals at 
the room temperature. 
 
4 - THREE CHARACTERISTICS LENGTH AND THE GROW OF A 
POLYMER CHAIN
 
   In a paper dealing with the cosmological constant problem [6], the time 
evolution of the universe world line was compared with the growing of 
a polymer chain by making use of a Flory-like free energy. It is possible 
to think the electron mean free path as the length of a polymer chain, 
composed by monomers of size equal to the Compton wavelength of 
electron. Within this analogy, the radius of gyration of the chain is 
identified with the Fermi wavelength of electron.
   We consider as in the de Gennes derivation [7] two contributions for 
the Flory’s free energy. The first term which goes proportional to N2 ∕ Rd, 
corresponds to a repulsive-like monomer-monomer interaction.
A second term which comes from an entropic contribution, namely 
a logarithm of a Gaussian distribution (a signature of a random walk 
process) goes as R2 ∕ (N λC

2). We write
                              
F = (N2 λC

d) ∕  Rd  +  R2 ∕ (N λC
2),                              (25)

 
where F is a Flory-like free energy, λC is the Compton length, N is the 
number of monomers in the chain, and d is the space-time dimension.
Setting ℓ = N λC and minimizing (25) relative to R, we obtain for the 
radius of gyration Rg the relation
                                       
Rg = ℓ3 ∕ (2+d) λC

(d -1) ∕ (2+d).                                   (26)
 
We identify Rg(d=4) with the Fermi length of he electron, λF. We have
 
                                              λF = (ℓ λC)1 ∕ 2.                                           (27)
 
We observe that equation (27) , relating the three characteristics 
lengths of the problem, agrees with the upper bound to the electron 
mean free path found in reference [13]. Please see equation (21) of the 
cited reference. It is worth to notice that the agreement between both 
calculations occurs just when the radius of gyration is evaluated in the 
space-time dimension d=4. 
        
 
5 - HIGH TEMPERATURE BEHAVIOR OF THE COLLISION TIME
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   It would be interesting to evaluate a relation expressing the high 
temperature behavior of the collision time appearing in the Drude 
formula for the electrical conductivity. 
   By considering a viscous force which depends linearly on the velocity, 
the power dissipated by this force can be written as 
 
                             dE ∕ dt = - Fviscous v = - (1 ∕ τ) p v.                              (28)
 
The power dissipated by this viscous force acting on the charge carrier 
will appear as an increasing in the internal energy of the lattice and we 
write
 
                             dU ∕ dt  = - dE ∕ dt  =  (1 ∕ τ) p v.                               (29)
 
By taking
 
                      p = ħ ∕  (2 R),          and         v dt = dR,                           (30)
 
where the first relation in (30) comes from the uncertainty principle, we 
get
 
                                      dU = [ħ ∕ (2 τ)] dR ∕  R.                                    (31)
 
Performing the integration of (31) between the limits R0 = ħ ∕ (m c) and 
R1 = ħ ∕ (m vF), we obtain
 
                                     ∆U =  [ħ ∕ (2 τ)] ln(c ∕ vF).                                 (32)
 
Now, let us consider an entropy variation given by
                                     
∆S = kB ln2D = D kB ln2.                                    (33)
 
In (33), we have  written an entropy variation similar to that considered 
in applying the Landauer’s erasure principle  [8], but here putting D = 4, 
by taking in account the four dimensions of the space-time.
Taking the extremum of the free energy, namely writing
 
                                 ∆F = ∆U – T ∆S = 0,                                            (34)
 
and solving for τ, we have
 
                                τ = [ħ ∕ (8 kB T)] ln(c ∕ vF).                                      (35)
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In the case of copper (vF = 1.57 x 106 m ∕ s) at the room temperature       
(T = 300K), we find
                              
Τcopper(300 K) = 2.4 x 10-14 s.                                    (36)
 
As we can see in table 1, the result of (36) is very close to the room 
temperature mean collision time of the electrons of conduction in copper, 
as quoted in the literature.
 
 
6 - AVERAGED COLLISION TIME AS A PARTICLE LIFETIME
 
   There are two characteristics linear momenta that we can associate 
to the free electrons responsible for the electrical conductivity in 
good metals. They are: the Fermi momentum mvF and the Compton 
momentum mc. By taking into account that the free electron has a 
fermionic character, we will write a non-linear Dirac-like equation 
describing the “motion” of this particle. We have
 
         ∂Ψ ∕ ∂x - (1∕c) ∂Ψ ∕ ∂t = [(m vF) ∕ ħ] Ψ – [(mc) ∕ ħ] | Ψ*Ψ|Ψ.       (37)
 
We see that equation (37) contains only first order derivatives of the field 
Ψ. Besides this, the field Ψ has not a spinorial character. 
   Making the two sides of eq. (37) equal to zero and solving for | Ψ*Ψ|, 
we get
                                     
|Ψ*Ψ| =  vF ∕ c = (31∕ 3 ∕ 2) α.                                (38)
 
In obtaining (38), we also used the result for vF shown in table 1.
   On the other hand in the collision process, the free electron loss its 
memory. We may think that this feature looks similar to the annihilation 
of a particle- antiparticle pair, each of mass-energy equal to EF. Putting 
this thing in a form of the uncertainty principle yields
 
                 2 EF ∆t = h ∕ 2           or              h υ ∕ 2 = 2 EF.                      (39)
 
Solving equation (39) for υ, we get
 
                   υ = 1 ∕ ∆E = 4 EF ∕ h = [32∕ 3 ∕ (2 h)] α2 m c2.                        (40)
 
By combining the results of (38) and (40) we obtain the line width (Г) 
tied to the “particle” decay
                           Г = υ | Ψ*Ψ| = [3 ∕(4h)] α3 m c2.                                 (41)
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Finally the “particle” lifetime (τ) is given by
 
                             τ = 1 ∕ Г = (4 h ∕ 3) ∕ (α3 m c2).                                   (42)
 
Comparing τ giving by (42) with the time between collisions shown in 
table 1, we verify that the present result displays the number 3 in the 
denominator, instead of the number π which appears in table 1.
 
 
7 - ANALOGY WITH THE COSMOLOGICAL CONSTANT 
PROBLEM ( ħ = c = kB = 1)
 
One worth point we can consider now is the analogy that can be made 
with the cosmological constant problem. Hsu and Zee [10] have proposed 
an effective action Aeff as a means to deal with the cosmological constant 
problem. They wrote
 
               Aeff = - (Λ L4 + MP

4 ∕ Λ) + independent of Λ terms,              (43)
 
where MP is the Planck mass, L is the radius of the event horizon of the 
universe and Λ is the cosmological constant.
Taking the extremum of this action they got
 
                                          Λ = (MP ∕ L)2.                                               (44)
 
   We could think Aeff above as a four-dimensional representation of a 
kind of free energy, where the first term plays the role of the internal 
energy and the second one is related to the entropy S. The absolute 
temperature is taken to be equal to one. We propose that
 

                                      Ω ~ exp(MP
4 ∕Λ),                                              (45)

with

 

                                             S = ln Ω.                                                    (46)

 

    On the other hand, there is a proposal [11] that the universe can be 
considered as a black hole with its entropy being evaluated by counting 
the number of cells contained in the area of its event horizon (the 
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holographic principle), namely

 
                              
Suniverse ~ (L ∕ LP)2 = L2 MP

2.                                     (47)

 

By considering the two equivalent ways of the entropy evaluation, from 
(46) and (47) relations, we can write

 

                                      L2 MP
2 =  MP

4 ∕Λ,                                             (48)

 

which reproduces the results of Hsu and Zee [10],please see equation 
(44).

   Turning to the problem of the electrical conductivity in good metals, let 
us consider for instance in a copper crystal an electron of the conduction 
band which just suffered a collision. In the absence of an external electric 
field, all the directions in the space have equal probability to be chosen 
in a starting new free flight. Therefore if we take a sphere centered at the 
point where the electron has been scattered, with a radius equal to the 
electron mean free path, the surface of this sphere may be considered 
as an event horizon for the phenomena. Any electron starting from this 
center will be on average scattered when striking the event horizon, 
loosing the memory of its previous free flight. Besides this, all the 
lattice sites of the metallic crystal are treated on equal footing, due to the 
translational symmetry of the system. Based on the previous discussion 
and inspired on the black hole physics, let us to define the entropy related 
on the event horizon for the electron of conduction in metals. We write

 

                                        SMetal = 4 π (ℓ ∕ w)2,                                        (49)

 

where ℓ is the electron mean free path and w is the equivalent to the 
Planck length of the problem.

   It is possible to write an action analogous to that of Hsu and Zee [10], 
in order to describe the electrical conductivity in metals. We have
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AMetal ~ [ΛM ℓ4 + (ΛM w4)-1].                                      (50)

 

Making the equality between the two ways of writing the entropy, 
namely equaling the entropy of a surface horizon of radius ℓ and ultra-
violet cutoff w with the last term of (50), we get 

 

                                 4 π (ℓ ∕ w)2 =  (ΛM w4)-1,                                       (51)

 

which leads to 

 
                                 
ΛM

-1∕ 4 = (4 π )1∕ 4 (ℓ w)1∕ 2.                                      (52)

 

Upon to identify ΛM
-1∕ 4 with the Fermi wavelength of the electron λF and 

w with its Compton wavelength λC, we obtain

 

                                      λF =   (4 π )1∕ 4 (ℓ λC)1∕ 2.                                    (53)

 

Relation (53) must be compared with (27). 
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