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Abstract: In a separate paper [1], the author advanced the thésiskiaryons are Yang-Mills magnetic monopoles.
Here, we apply the Gordon decomposition to the final reswts fi] to understand what is “inside” a Yang-Mills
magnetic monopole baryon. We develop a local chiral dualitpdbism inherent in the Dirac algebra which appears
to have lain undiscovered for decades. We also discoveectdr/axial inversion” that is inherent in hadron physics
rooted in Dirac’sy®=ij° y* y? y* which may explain the observed chiral asymmetries in hadrohsling the many
vector and axial mesons clearly observed in phenomenoladgtal Finally, to define what is “inside” a baryon in
experimental terms, in (5.1) we specify the form from lwpiedicted cross sections of magnetic monopole baryons

can be computed and then used to experimentally confirm the tthetsiaryons are Yang-Mills magnetic monopoles.

1. Introduction

In a recent paper [1], the author advanced the thesismthghetic monopole densities which come into
existence in non-Abelian Yang-Mills gauge theory are symmus with baryon densities. It particular, it was shown
that Yang-Mills magnetic monopoles naturally confineithgauge fields, naturally contain exactly three fems
which we identify with colored quarks in a color-neusaiglet, and that the only particles crossing their serfaic
observed as decay products are mesons in color-neutral singl@tticular, it was shown in [4.3] of [1] that thewl

of mesons across any closed surface surrounding a magreetapole baryon is given by:
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where, by virtue of the color singleﬁR + GG + BB above as well as the decomposition
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developed in [4.2] of [1], we interpret (1.1) as sayihgttspin 2 mesons are the only particles allowed by the

1.2)

spacetime geometry to flow across any closed surfacebafyen. There is no coupling to the geometry in (1.1) that

allows a spin 1 meson to pass, spin 1 gluons are not permittedstéopahe same geometric reasons that there are no

magnetic monopoles in Abelian gauge theory, and the spirs6rmaén (1.2) are filtered by ""dxﬂ Odx, =0.

While (1.1) tells us what does and does not flow actiossclosed surface of a baryon, it says nothing about

what is found Inside” the volume represented q')ﬂp We show here how the “Gordon decomposition” can be

applied to (1.1) to decompose and look “inside” the baryamd, what it actually means, experimentally, to be able to

“see” what is “inside” the baryon. Because the Diracti@iahip )°> =iy %"y?)> will be integral to this baryon



decomposition, we shall along the way learn a great demitahe chiral properties of hadrons. All this maysiss

to experimentally test the thesis that baryons are Yarig-Magnetic monopoles.

2. The Gordon Decomposition of a Yang-Mills M agnetic M onopole Baryon

We start with [3.8] of [1], which we rewrite using (1 such:
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If we put this into the form of (1.1), its meson charaitananifest not only via theRR + GG + BB color singlets, but

p™ = —

also via the “particle plus conjugate particle” structoireach term. Now, we start the Gordon decompositi¢a. ).

The first step employs Reinich-Wheeler duality [2], Jased on the totally antisymmetric Levi-Cevita tensor
"% As Misner, Wheeler and Thorne make clear in [4pages 87-89, not only is there a second (even) rank
duality specified generally by A =1 ¢#° A, but also a first / third (odd) rank duality viaB” =2 £ B

and* B® =g B, . Itisthis odd-rank duality that we now wishapply, which enables us to compact (2.1) to:
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To get from (2.1) to (2.2) we have lowered spacetindexes, multiplied both sides gl_yé‘

9 renamed all summed

indexes which removes the cyclic index combinatio(2.1), and used a subhoverN=R,G,B to save having to write

everything in triplicate. We ud¢ rather tharC for color, because to us&would cause notational confusion with the

use ofC for conjugates. Becausg”’g , =0, all scalar terms in (2.1) are filtered out, jastthey were in (1.1) by
g dx, Odx, =0- Finally, we label each wavefunction withVasubscript, to indicate these are implicitly vector
wavefunctionsy,, defined such thatthe current densityJ =, y*y, transforms as a Lorentz four-vector in

spacetime. AxialK) wavefunctions are theg, = y°,,, and the adjoingy = 'y° then impliesy , = ., )/°.
Now, in a fateful step that casts the dye for hadrderactions to be definitivelgot chiral symmetricwe
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write the Dirac relationshig/® =i y°y'y?y? in the covariant forme** o, =2i g®y°, then rewrite (2.2) as:
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The appearance oyS./,z/VN =y ,, above means that the tensor mesons in (2.2) have now turoeakiat tensor
. . . . . —i.,0,,1,,2
mesons in (2.3). There is also now an overall factotluit comes from thiein Vr’ =yyy y3

The next step is to specify three quark spinﬁf,@(p) generally according tay, Equ_ip“ " and

/N EaNeip' "% and then use those in (2.3). We alsoget, = y°y, - Thus we obtain:
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We now applyd,,e(P P =i(p' - p), (PP then reabsori" "' into the wavefunctions to obtain:
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The emergence of the vertex tergye (p' - p)a now allows us to apply the Gordon decomposition: (seg, e.g.

[5] at 343-345) which we express in terms of wavefunctiorise general form:
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Above, g is the gyromagnetic “g-factor” for the fermion in questandm is its mass. For a bare Dirac electron,

g/2=1. Note from the above reference to [5] that (2.6) iaipy incorporates Dirac’s equatio(iy”a# - m)l/j =0
and its adjoint G#QZV“ +my =0, and is also based on the identjtyf)” = g* —ig* derived from combining the
two fundamental Dirac relationships*” :lzly“,y'”J and g =%{y",y"}. To use (2.6) in (2.5), we rewrite (2.6)

with the g%’ term on the left, and ugewavefunctions an¥ adjoints, thus:
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So, placing (2.7) into (2.5) we obtain:

* pa :_Eiz 2mN IZVNyal//AN +$CvNyawCAN —_ (p"" p)aN IZVNI/IAN +I'ZCVN1//CAN . (2.8)
3 VRSB gy Py My Oy Py My

This is thefirst rank dualof the third rank magnetic monopole baryoR*" in (2.1). Now, we apply the inverse

P* =g * p_, employ the fact that for odd-rank duality =1 (see [4], equation [3.53]), and then set this étpia

the original P%" in (2.1) withV wavefunctions explicitly denoted, to obtain:
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Finally, mirroring (1.1), we apply Gauss’ / Stokes’ lamd write (2.9) in integral form as:
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The alternative formulations (2.8), (2,9) and (2.10) remiesiee Gordon decomposition of a magnetic monopole

baryon, and they have four features of immediate interEsst, (2.8) and the bottom line terms in (2.9) and (2.10)
have becoménaginary. This is because of thén y° =iy°y'y?y®. We shall examine in the next two sections how

to reformulate this so that all of these terms aréaed represent real, observable mesons. Second, the lwaipon

factor of 2/3 has naturally emerged from the Gordon deocsition.  Third, one may think of and apply (2.10)res t
“Maxwell’'s equation” for a baryon, wherein the field sigth F uses the polarization and magnetization bivedrs
andM in place of the electric and magnetic bivecterandB.

But finally, and most importantly, as we have previousdgn, flowing through the closed baryon surface as

ﬁ': _ —iﬁGz aretensor meso”inG,B(‘z’vmaﬂv Yy Wy " ‘//ch)' However, inside the volume ﬂJ‘P are

axial vector mesoninGYB((//VNy’wAN +¢/WNV’¢/CAN) andpseudoscalar mesonzN:RGYB(wv Wan ey N¢CAN).

This too is because of the Dirac relatigfi =iy °y*y?), which at (2.3) has flipped the vectdf) wavefunctions of

(2.1) into axial A) wavefunctions in (2.8). We shall refer to this pheapnon as “vector/axial inversion” oM « A

inversion.” This inversion, which says that hadron physics in generahisrently_not chiral symmetric, will be central

to how we shall propose to confirm the thesis that baryon¥ ang-Mills magnetic monopoles, and will clearly affect

any cross section expressions we derive.

3. Second Rank Continuous, Local, Chiral Duality; and SU(2) Vector / Axial Doublets

We now return to the second rank duality relationship wrige* o** = L £*““ g, . We also recall that

in (2.3) we used/® =iy°y?y? in the form e’ g, =-2ig* y°. Combining these together and using the even-

ao



rank duality relationshig * = —1 (see [4], equation [3.53]) immediately enables us ievws*’ =i* g*')°. If we
then sandwich this between a vector wavefunction andtarvadjoint, we find the alternative relations:

IZV a—ﬂV(//V = I * (IZVUM/ Vsl//v = I * IZV a-’uvl/jA (3 1)
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This says that tens@vaﬂvwv is the imaginary dual of axial tensgt, oy ,. Alternatively, axial tensog, o',

is the imaginary dual of tens@va/”wv. But (3.1) is also just another way of sayipt = iy °'y?)?, using duality.

So now, y° =iy °'y?y? sits at the heart not only of hadron chiral asymmesrgeen in (2.9) and (2.10), but at the
center of chiral duality relationships endemic to Ditgebra. (3.1) above are another way of sayihg iy °/'y?)°.
Next, because the second rank duality operator -1, it is possible to specify a duality angfe(referred to

by Wheeler in [3] as the “complexion” angle) which generatesntinuousduality rotation between dua}}va*"’z//v
and *(,Zva”"z//v. Using** = —1 in a series expansion, one may readily fagih=cos@ + *sing. If we now apply

thisto each of(,?/va”“wv and* g, 0"y, and use** = -1, we deduce the paired equations:

ey, o™y, =cosy, o* i, +sin* y, oy,
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Thenviay, o”'y,, =i*y, 0"y, from (3.1) , these can be refashioned into the matrixtiemsa
JLVJW‘/JV (92) =[ cos@, sing, ] IZVJW‘/IV (92 = 0) — eXdiT 2g ‘Zv oy, (92 = 0) . (3.3)
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Alternatively, equivalently, (3.2) may be represente(laig (6?0) = (6? = 6?0) generally to denote evaluation &}):
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The above, (3.3) and (3.4), are simaliernative representationsf duality relationship (3.2) witl§ — 8, andg - ¢,
respectively to denote the axis of rotation u'@(iTzez) and exdiTlel). They both appear to occur in a chiral duality
SO(3) space with SU(2) rotation generatdtsi=1,2,3. In the formerT? representation,” the SU(2) doublet contains
real tensony, o, (0) and imaginary axial tensog, o*1,(0), with a real rotation viaxdT26,). In the latter T*
representation,” both members of the doublet are real, bubtdugon exp(iTlel) has imaginary elements. For most of

the subsequent development we will find it morevemrient to use th&? representation.

But before we do, tha* representation reveals one very important resifitwe write (3.4) in terms of

wavefunctions, one may readily show wifhzg[/*yo and trigonometric double-angle identities, theldewcovering:

o)) rentare) oo o0 o223 ) @9



which will identically generate tensor rotation (3.4)hus, o, = ‘T3 = +1> and W, = ‘T3 = —1> are revealed to be the

upper and lower eigenstates of an SU(2) doublet. Once weiglstdidd doublet, a2 rotation using this doublet is:

i) e oo ) -

Consequently, rotation tg, = —77/2 reveals a rotated left / right-handed SU(2) doublet:

b el e

So not only do we see SU(2) in Dirac algebra chiral duality, uhew see a path to obtain the left-handed or right-
handed chiral projections based on orientation of the velcaaial doublet in duality space.

This noted, we now return to thé representation of (3.3) to deduce that:

Wy, (1112) =i, 0w ,(0) (3.8)
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These tell us that mal tensordisposed a@, = 71/2 is the same thing as @maginaryaxial tensordisposed a¥, =0,

and that aeal axial tensordisposed a, = 71/2 is the same thing as &maginarytensordisposed a#J, =0. And, it

is very important to obseryéhis chiral duality is an inherent feature of Dirac’gabra, independent of any discussion

about hadron physics, as is the appearance of an SU(2pgrith vector and axial wavefunction eigenstates.

Next, let us regardd, not as global, but as lacal duality angle Hz(x”) varying in spacetime. This is
important because (2.1) and (2.9) contain multiple tedfiggo*’ ¢ and if 8, is local, then this locality will
introduce new terms Witkﬁ”@z. Specifically, applyingd? to (3.3) with 52 regarded as kocal angle, the derivative
o exp(iTZHZ) rotates the mesons in the associated termiild . So following reduction and consolidation, and also
using (3.8) plus-¢, i, (0) = w, "y, () derived from (3.3), we obtain:
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This type of result should be familiar from local gauge the®o we now absor?é, into a new gauge bosoB,”
which SU(2)-transforms ag’ —. B - &9, B’ +0°4 with i=2, see, e.g., [6] eq. IV.5[4], as part of a tripRf of
gauge bosons. So, not only dog3 =iy %"y?y? introduce duality and chiral asymmetry, but when that dudlit

taken continuously and locally, it introduces SU(2) chiablity gauge bosons. For now, we do not address the

physical meaning of thes8”, and we takeez(x“) to simply be a mathematical parameter.
Comparing (3.3) and (3.9) with (2.9), we see that as the rtetwdlet ¢, ™14, (8,). i, o"w,(6,) s

rotated usingexp(iT292) in the SU(2) duality space, so too are vectors and scadaording to:

@vyawv(gz) :( cos, Sinezj aVyde(o) , and (3.10)
i@v}/’lﬂA(Hz) —sing, cosy, ilZvV”l//A(o)

lzvl//v(gz) :( coss, Sin92] lszv(o) ) (3.11)
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All except (3.10) and (3.11) above are inherent featuresrat Rlgebra, without any consideration of hadron physics.



4. Gordon Decomposition Redux, With Local Chiral Duality
Now we return to hadrons. What we learned about locedlatuality in section 3 lets us rewrite (2.1) as:
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We then take the dual and compact this to rewrite vidtgyal2) as the doublet equation:
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This expresses P (92) as a function 0162 and incorporates the chiral SU(2) doublet uncovered in &h8)(3.9) in

(4.1)

the T2 representation. Now, we factor Ow(p(iT 26?2) and repeat all the same steps that were used to gq2r@jo

(2.9). Along the way, we write the Gordon decomposit@iT)(in terms ofg,. But vialocal duality we add a new
term that contains the SU(2) gauge boh via (3.9) andB’ - B’ -¢,6,B” +0°¢. And from (3.8), (3.10) and

(3.11), we derive and then employ in the various doublets, t@reships:

iézv(f”vl//A(”/Z) = _&VJW‘/IV (0); @VUWUIA(’T) = —@vU”W/A(O) = —@VU”VI/IV (”/2)
i,y . ) =gy, (712) i,y wami2)=-w,y"w, 0) =g,y 'y, (7) : (4.3)
i 0=, (m12) i (m12)=-w,yyp, )=y, (7)

all of this leads to:
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This is the SU(2) chiral space counterpart of the botioeof (2.9),and it is equal to (4.1) So, we set (4.1) with
exp(iT 2.92) factored out, equal to (4.4). We then take the Galtgike' integral as in (2.10), to obtain ttal result
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Via (4.3), we have rewritten eveiyaginary axialmeson aseal vectormeson which has undergonea/ 2
rotation about the y axis in the SU(2) duality spaceusTin contrast to (2.9), the overall factoriaé removed, all
terms are real, and everything is written in termsv@dtor §) wavefunctions with duality space rotations of the
mesons. If we consider this further in light of (3.7), we fiow rotation in the SU(2) / SO(3) chiral duality space
allows us to express what is a vectdy ¢bject in one orientation, as an axid) pbject in a different orientation, and
even as left or right chiral projections in yet othéewations.

We now interpret (3.8) and the similar relationshipsvddaiie from (3.10) and (3.11) such as (4.3) as saying
that experimentally-observed axig)(mesons areeal non-axial /) mesons which have been rotated through the

duality space fromg, =0 to g, =z/2. So for example, when we observe pseudoscalar mesons gherasesons,
we are actually observinighaginary objectsizﬁvz/lA(O) which are identical to and simply another name for duality-

rotatedreal ObjECtS[ZIV[’[/V (r[/ 2), i.e., we are observing real scalar mesons dispos@zd:aztr/z.

Equation (4.5) is the central mathematical result of gaiper. If ever there was statement that baryons and
hadrons do not exhibit chiral symmetry, (4.5) with its rafxd =0 and § =7n/2 and 8 =n dispositions is such a

statement. Now let us see what (4.5) teaches about hadrehksow it can be experimentally tested.

5. Specifying Deep I nelastic Scattering Cross Sectionsfor Yang-Mills Magnetic M onopole Baryons

First, we note that every tensor, vector and scalarcbbje(4.5) is a meson. This is indicated by both the

R+ GG+ BB color singlet that appears throughout (compacted visstine 2 ) and the conjugate wavefunctions



which accompany all particle wavefunctions. Secame,see that the only mesons which flow through the closed

surface of integration are second rank tensor mesons batie spacetime for@a‘“’t/l . These have spin 2, so as

already reported in [1], spin 2 is the “passport” in andadd baryon surface. For a meson of any other spin, it mus

either excite or decay into a spin 2 meson to pas#.d,Tihside the baryon (and we shall momentarily seekive g

more precise definition to the phrase “inside the baryas)a function off,, are also second rank tensor and axial

tensor mesons coupled with the SU(2) gauge basgnwhich arose fronlocal duality, in the form Bzrzﬁamz,//.
These of course also have spin 2. But there are alsd sgictor and axial vector mesons of the fd?!yal// and spin

0 scalar and pseudoscalar mesgmﬁ coupled in spacetime through momentum in the f()p‘nr p)a@/j.
Finally, and most importantly in terms of experimentaifamation, the % ~ A inversion” found at the end

of section 2 is further developed in (4.9)lo matter what the orientation of the duality angﬁ;, tensor mesons are

always 71/2 out of synch with vector and scalar mesotinder like conditions (meaning for the salﬁg which is

local and so varies from one event in spacetime to anpthieeyever there is a preponderance of spin 2 tensor mesons
there will be a proportionate preponderance of spaxial tensor mesons and spinp8eudoscalamesons, and vice

versa. Careful experimentation should be able to reveal ermpattwhich spin 2 mesons are alwslys. A inverted

in relation to spin 1 and spin 0 mesons under otherwise é@¢tnditions as specified b@z, and this inversion will

be central to how we propose to confirm the thesis that baryensag-Mills magnetic monopoles.

Now, as a prelude to discussing cross sections, we turn tuéstion, what does it really mean to talk about
what is happening “inside the baryon”? Equation (4.5) ilame integral with spin 0 scalar and pseudoscalar
mesons, spin 1 vector and axial vector mesons, and spis@ t@md axial tensor mesons “inside” the closed volume.
This is mathematically identical in nature to the iné¢ign volume in the Maxwell’'s charge equation

m'* I dx, dx, dx, = ﬁ* Fdx,dx, - Butin Maxwell's equation, we are generally consideringrosmopic surfaces

enclosing a large number of charges, so there is adediyite, colloquial understanding of “inside” the volunidot
so for (4.5) however. Here the volume is that of a bargod,the only known way to discern the “inside” of a baryon

is via scattering experiments sucheys — ef and more generallygp —» eX. So, how do we do “see” “inside”?
To facilitate discussion, we have reproduced below, Egy@:2 and 8.5 from Halzen and Martin’s [7], and

refer to the accompanying discussion in Section 8.2 anaof 88s same reference [7]:
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Fig. 8.2 Lowest-order electron—proton elastic scattering.
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Fig. 85 Lowest-order diagram for ep — eX.

Figure 1: Comparison of elastic verus inclastic proton scattering diagrams from [7]
When we consider baryons (which we shall take to be prdtwnthis discussion), we “see” “inside” the proton by
probing with photons (or other mediating field quanta) and theryismidhe scattering debris. The differential cross

sections do L%, LP# are calculated from the tensob®y [01J°,J%* based on the electron vertex
Je, :ﬂ(k')ny(|<)e‘(""k)Dk summed with an analogous tenddt*” based on the proton vertex. For large wavelength
(small g* = (k' - k)z) photons, we are able to approximate the proton as a s#lestsipoint particle, see [7] egs. [8.11]

to [8.13]. We do so using “the most general four-vectamfpJ P #] that can be constructed fromp, p',q and the

Dirac y-matrices sandwiched betweehandu .” ([7] page 176.) ThisJP # is then used to fornk.” “'(0 JP #JP¥*

But for large g? :(p’— p)2 “the debris becomes so messy that the initial stateoprhses its identity
completely and a new formalism must be devised to exindmtmation from these measurements.” ([7] page 179.)
The customary approach is to form a hadron ten@dt” OO L° " out of g p p,q. directly on general

considerations, see [8.24] of [7]. In large part, thibécause there is no four-vector heir-apparent travslus to

replace the vertex [8.13] of [7] when the proton debris gEdally messy and the proton loses its identity. Saisee

W# to “parameterize our total ignorance of the form of therent at the other end of the propagator” ([7] page 180)
in Figure 8.5 of Figure 1 above. But this is where (4.5) nomes into play, because (4.5) reduces this ignorance.

En route to (4.5), embedded directly in (4.4), we obtained tlynetie monopole baryon dualP, (02) which

is itself a four-vector containing all spin 0, 1 and 2 otgeboth vector (V) and axial (A) that can be constructiugu

elements of Dirac algebra (see also (2.8) deduced befodewetoped local chiral duality), with andA terms mixed

via parameter@z. This is exactly what we need to specify # to calculate deep scattering cross sections.

Specifically, we now formL? #/J*PP #* PP"* from the* P,(6,) contained in (4.4) (the first two * in the foregoing

represent duality; the final * represents conjugation)healeep scattering cross section is now specified using:
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do Do 0 Lo LP 0 (39,35* Jfe PP #x PP ) (5.1)
Consider the following reasons in support of calculatingsceestions using the dual vectoP” (6’2) in this
way. First, we need a four-vector vector to represiemtbaryon for largeg®. The problem with the vector [8.12],

[8.13] in [7] is that this represents a structureless poiricps and for largeg® we must account for a structure that is
lacking in [8.12], [8.13] of [7]. Second, while Figur&&f Figure 1 shows the proton breaking up into “messy” debris,
we do know some things about the nature of this mess. We #raivthis mess consists of mesons, never of free
qguarks or gluons. We know that this mess always cosf@m0 scalar and pseudoscalar mesons, spin 1 vector and
axial vector mesons, spin 2 tensor and axial tensor mesonsigataality andy” =iy °y"'y®y?, spin 3 tensor mesons

transforming as spin 1 axial vectors and spin 4 tensor masmmsforming as spin 0 pseudoscalars, and A/V vice

versa). This “mess” is well catalogued, for exampléhenPDG meson data [8]. Third, in contrast to theorg&12],

[8.13] in [7], the dual vector P (92):$£°7‘”"’ P (92) is not only an alternative vector, but it contains all the

essential structural information about the magnetic monopm;mrba:'ow (52) and the “mess” catalogued in [8] that

this baryons would produce in deep inelastic scatjegkperiments. * P"(HZ) naturally contains all the different spin
0, 1 and 2 vector and axial mesons that can naturally be fanmghcetime from elements of the Dirac algebra, and
by duality one can readily inject spins 3 and 4. We dmeed to “construct” anything. Everything is already there

Fourth, and most importantly, by using the first rank bargoal * P¢ (02) to specify cross sections as in
(5.1), we provide the most direct means possible to experimgrtalfirm the thesis that Yang-Mills magnetic
monopole really are baryons: we specify how to calculatescsestions based on this thesis

Finally, (5.1) answers the question “what does it reallgan to talk about what is happening ‘inside the
baryon’?” in the most direct, experimentally-couched wagsible: We look “inside” the baryon with deep inelastic
scattering experiments, by taking what is shown to be “ihdlte baryon in the Maxwell sense of (4.5), and using

those same “innards” via P? (32) of (4.4) to specify scattering cross sections via (5Th)is is how we may discuss

what is “inside” the baryon in a way that can be expentalfy tested.

6. Conclusion
The complete calculation of differential cross sedidased on what is specified in (5.1) is a substantial
exercise which is left for a future paper. But ithsough (5.1) that we can most directly confirm, invalidatggeshaps

fine tune with experimental data, the thesis that baryons arg-Mélls magnetic monopoles.
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