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Gordon Decomposition and Chiral Properties of Yang Mills Magnetic Monopole Baryons 

Jay R. Yablon, Schenectady, New York 

Abstract:  In a separate paper [1], the author advanced the thesis that baryons are Yang-Mills magnetic monopoles.  

Here, we apply the Gordon decomposition to the final results from [1] to understand what is “inside” a Yang-Mills 

magnetic monopole baryon.  We develop a local chiral duality formalism inherent in the Dirac algebra which appears 

to have lain undiscovered for decades.  We also discover a “vector/axial inversion” that is inherent in hadron physics 

rooted in Dirac’s γ5=i γ0 γ1 γ2 γ3 which may explain the observed chiral asymmetries in hadrons including the many 

vector and axial mesons clearly observed in phenomenological data.  Finally, to define what is “inside” a baryon in 

experimental terms, in (5.1) we specify the form from which predicted cross sections of magnetic monopole baryons 

can be computed and then used to experimentally confirm the thesis that baryons are Yang-Mills magnetic monopoles. 

 

1.  Introduction 

In a recent paper [1], the author advanced the thesis that magnetic monopole densities which come into 

existence in non-Abelian Yang-Mills gauge theory are synonymous with baryon densities.  It particular, it was shown 

that Yang-Mills magnetic monopoles naturally confine their gauge fields, naturally contain exactly three fermions 

which we identify with colored quarks in a color-neutral singlet, and that the only particles crossing their surface or 

observed as decay products are mesons in color-neutral singlets.  In particular, it was shown in [4.3] of [1] that the flow 

of mesons across any closed surface surrounding a magnetic monopole baryon is given by: 
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where, by virtue of the color singlet BBGGRR ++  above as well as the decomposition 
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developed in  [4.2] of [1], we interpret (1.1) as saying that spin 2 mesons are the only particles allowed by the 

spacetime geometry to flow across any closed surface of a baryon.  There is no coupling to the geometry in (1.1) that 

allows a spin 1 meson to pass, spin 1 gluons are not permitted to pass for the same geometric reasons that there are no 

magnetic monopoles in Abelian gauge theory, and the spin 0 mesons in (1.2) are filtered by 0=∧ vdxdxg µ
µν . 

 While (1.1) tells us what does and does not flow across the closed surface of a baryon, it says nothing about 

what is found “inside” the volume represented by ∫∫∫P .  We show here how the “Gordon decomposition” can be 

applied to (1.1) to decompose and look “inside” the baryon., and what it actually means, experimentally, to be able to 

“see” what is “inside” the baryon.  Because the Dirac relationship 32105 γγγγγ i=  will be integral to this baryon 
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decomposition, we shall along the way learn a great deal about the chiral properties of hadrons.   All this may assist us 

to experimentally test the thesis that baryons are Yang-Mills magnetic monopoles. 

 

2.  The Gordon Decomposition of a Yang-Mills Magnetic Monopole Baryon 

 We start with [3.8] of [1], which we rewrite using (1.2) as such: 
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If we put this into the form of (1.1), its meson character is manifest not only via the BBGGRR ++  color singlets, but 

also via the “particle plus conjugate particle” structure of each term.  Now, we start the Gordon decomposition of (2.1). 

 The first step employs Reinich-Wheeler duality [2], [3] based on the totally antisymmetric Levi-Cevita tensor 

µνασε .  As Misner, Wheeler and Thorne make clear in [4] at pages 87-89, not only is there a second (even) rank 

duality specified generally by ασ
µνασµν ε AA !2

1* ≡ , but also a first / third (odd) rank duality via σµν
σµναα ε BB !3

1* ≡  

and α
ασµνσµν ε BB ≡* .  It is this odd-rank duality that we now wish to apply, which enables us to compact (2.1) to: 
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To get from (2.1) to (2.2) we have lowered spacetime indexes, multiplied both sides by σµναε!3
1 , renamed all summed 

indexes which removes the cyclic index combination in (2.1), and used a sum Σ over N=R,G,B to save having to write 

everything in triplicate.  We use N rather than C for color, because to use C would cause notational confusion with the 

use of C for conjugates.   Because 0=µν
σµναε g , all scalar terms in (2.1) are filtered out, just as they were in (1.1) by 

0=∧ vdxdxg µ
µν .  Finally, we label each wavefunction with a V subscript, to indicate these are implicitly vector 

wavefunctions 
Vψ  defined such that the current density 

VVJ ψγψ µµ =  transforms as a Lorentz four-vector in 

spacetime.  Axial (A) wavefunctions are then VA ψγψ 5≡ , and the  adjoint 0†γψψ ≡  then implies 5γψψ VA −= . 

Now, in a fateful step that casts the dye for hadron interactions to be definitively not chiral symmetric, we 

write the Dirac relationship 32105 γγγγγ i=  in the covariant form 52 γσσε ασ
µν

σµνα i= ,  then rewrite (2.2) as: 
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The appearance of 
NANV ψψγ =5  above means that the tensor mesons in (2.2) have now turned into axial tensor 

mesons in (2.3).  There is also now an overall factor of i that comes from the i in 32105 γγγγγ i= . 

 The next step is to specify three quark spinors ( )pqN  generally according to α
α

ψ xip
NN

Neq −≡  and 

α
α

ψ xpi
NN

Neq ′≡  and then use those in (2.3).  We also set 
NVNA ψγψ 5= .  Thus we obtain: 
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We now apply ( ) ( ) ( ) α
α

α
α

σσ
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xppi NN eppie −′−′ −′=∂ , then reabsorb ( ) α
α xppi ne −′  into the wavefunctions to obtain: 
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 The emergence of the vertex term ( )σ
ασσ ppi −′  now allows us to apply the Gordon decomposition: (see, e.g., 

[5] at 343-345) which we express in terms of wavefunctions in the general form: 
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Above, g is the gyromagnetic “g-factor” for the fermion in question and m is its mass.  For a bare Dirac electron, 

12/ =g .  Note from the above reference to [5] that (2.6) implicitly incorporates Dirac’s equation ( ) 0=−∂ ψγ µ
µ mi  

and its adjoint 0=+∂ ψγψ µ
µ mi , and is also based on the identity µνµννµ σγγ ig −=  derived from combining the 

two fundamental Dirac relationships [ ]νµµν γγσ ,2
i=  and { }νµµν γγ ,2

1=g .  To use (2.6) in (2.5), we rewrite (2.6) 

with the ασσ  term on the left, and use A wavefunctions and V adjoints, thus: 
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So, placing (2.7) into (2.5) we obtain: 
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This is the first rank dual of the third rank magnetic monopole baryon  σµνP  in (2.1).  Now, we apply the inverse 

α
ασµνσµν ε PP *= , employ the fact that for odd-rank duality 1** =  (see [4], equation [3.53]), and then set this equal to 

the original σµνP  in (2.1) with V wavefunctions explicitly denoted, to obtain: 
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Finally, mirroring (1.1), we apply Gauss’ / Stokes’ law, and write (2.9) in integral form as: 
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The alternative formulations (2.8), (2,9) and (2.10) represent the Gordon decomposition of a magnetic monopole 

baryon, and they have four features of immediate interest.  First, (2.8) and the bottom line terms in (2.9) and (2.10) 

have become imaginary.  This is because of the i in 32105 γγγγγ i= .  We shall examine in the next two sections how 

to reformulate this so that all of these terms are real and represent real, observable mesons.  Second, the baryon color 

factor of 2/3 has naturally emerged from the Gordon decomposition.    Third, one may think of and apply (2.10) as the 

“Maxwell’s equation” for a baryon, wherein the field strength F uses the polarization and magnetization bivectors P 

and M in place of the electric and magnetic bivectors E and B. 

But finally, and most importantly, as we have previously seen, flowing through the closed baryon surface as 

∫∫∫∫ −= 2GiF  are tensor mesons ( )∑ =
+

BGRN NVCNVCNVNV,,
ψσψψσψ µνµν .  However, inside the volume of ∫∫∫P  are 

axial vector mesons ( )∑ =
+

BGRN NACNVCNANV,,
ψγψψγψ αα  and pseudoscalar mesons ( )∑ =

+
BGRN NACNVCNANV,,

ψψψψ .  

This too is because of the Dirac relation 32105 γγγγγ i= , which at (2.3) has flipped the vector (V) wavefunctions of 

(2.1) into axial (A) wavefunctions in (2.8).  We shall refer to this phenomenon as “vector/axial inversion” or “ AV ↔  

inversion.”  This inversion, which says that hadron physics in general is inherently not chiral symmetric, will be central 

to how we shall propose to confirm the thesis that baryons are Yang-Mills magnetic monopoles, and will clearly affect 

any cross section expressions we derive.  

 

3.  Second Rank Continuous, Local, Chiral Duality; and SU(2) Vector / Axial Doublets  

 We now return to the second rank duality relationship written as ασ
µνασµν σεσ !2

1* = .  We also recall that 

in (2.3) we used 32105 γγγγγ i=  in the form 52 γσσε µν
ασ

µνασ i−= .  Combining these together and using the even-
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rank duality relationship 1** −=  (see [4], equation [3.53]) immediately enables us to write 5* γσσ µνµν i= .   If we 

then sandwich this between a vector wavefunction and a vector adjoint, we find the alternative relations: 
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This says that tensor VV ψσψ µν  is the imaginary dual of axial tensor 
AV ψσψ µν .  Alternatively, axial tensor 

AV ψσψ µν  

is the imaginary dual of tensor 
VV ψσψ µν .  But (3.1) is also just another way of saying 32105 γγγγγ i= , using duality.  

So now, 32105 γγγγγ i=  sits at the heart not only of hadron chiral asymmetry as seen in (2.9) and (2.10), but at the 

center of chiral duality relationships endemic to Dirac algebra.  (3.1) above are another way of saying 32105 γγγγγ i= . 

Next, because the second rank duality operator 1** −= , it is possible to specify a duality angle θ  (referred to 

by Wheeler in [3] as the “complexion” angle) which generates a continuous duality rotation between duals 
VV ψσψ µν  

and VV ψσψ µν* .  Using 1** −=  in a series expansion, one may readily form θθθ sin*cos* +=e .  If we now apply 

this to each of VV ψσψ µν  and VV ψσψ µν*  and use 1** −= , we deduce the paired equations: 
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Then via AVVV i ψσψψσψ µνµν *=  from (3.1) , these can be refashioned into the matrix equations: 
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Alternatively, equivalently, (3.2) may be represented as (using ( ) ( )00 θθθ =≡  generally to denote evaluation at 0θ ): 
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The above, (3.3) and (3.4), are simply alternative representations of duality relationship (3.2) with 2θθ →  and 
1θθ →  

respectively to denote the axis of rotation via ( )2
2exp θiT  and ( )1

1exp θiT .  They both appear to occur in a chiral duality 

SO(3) space with SU(2) rotation generators iT , i=1,2,3.  In the former “ 2T  representation,” the SU(2) doublet contains 

real tensor ( )0VV ψσψ µν  and imaginary axial tensor ( )0AVi ψσψ µν , with a real rotation via ( )2
2exp θiT .  In the latter “ 1T  

representation,” both members of the doublet are real, but the rotation ( )1
1exp θiT  has imaginary elements.  For most of 

the subsequent development we will find it more convenient to use the 2T  representation.   

But before we do, the 1T  representation reveals one very important result:  If we write (3.4) in terms of 

wavefunctions, one may readily show with 0†γψψ =  and trigonometric double-angle identities, the double covering: 
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which will identically generate tensor rotation (3.4).  Thus, 13 +== TVψ  and 13 −== TAψ  are revealed to be the 

upper and lower eigenstates of an SU(2) doublet.  Once we establish this doublet, a 2T  rotation using this doublet is: 
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Consequently, rotation to 2/2 πθ −=  reveals a rotated left / right-handed SU(2) doublet: 
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So not only do we see SU(2) in Dirac algebra chiral duality, but we now see a path to obtain the left-handed or right-

handed chiral projections based on orientation of the vector / axial doublet in duality space. 

 This noted, we now return to the 2T  representation of (3.3) to deduce that: 
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These tell us that a real tensor disposed at 2/2 πθ =  is the same thing as an imaginary axial tensor disposed at 02 =θ , 

and that a real axial tensor disposed at 2/2 πθ =  is the same thing as an imaginary tensor disposed at 02 =θ .  And, it 

is very important to observe, this chiral duality is an inherent feature of Dirac’s algebra, independent of any discussion 

about hadron physics,  as is the appearance of an SU(2) group with vector and axial wavefunction eigenstates.  

Next, let us regard 2θ  not as global, but as a local duality angle ( )µθ x2  varying in spacetime.  This is 

important because (2.1) and (2.9) contain multiple terms ψσψ µνσ∂  and if 2θ  is local, then this locality will 

introduce new terms with 2θσ∂ .  Specifically, applying σ∂  to (3.3) with 2θ  regarded as a local angle, the derivative 
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2exp θµ iT∂  rotates the mesons in the associated term by 2/π .  So following reduction and consolidation, and also 
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This type of result should be familiar from local gauge theory.  So we now absorb 2θσ∂  into a new gauge boson σ
2B  

which SU(2)-transforms as 
ikjijkii BBB θθε σσσσ ∂+−→  with i=2, see, e.g., [6] eq. IV.5[4], as part of a triplet σ

iB  of 

gauge bosons.  So, not only does 32105 γγγγγ i=  introduce duality and chiral asymmetry, but when that duality is 

taken continuously and locally, it introduces SU(2) chiral duality gauge bosons.  For now, we do not address the 

physical meaning of these σ
iB , and we take ( )µθ x2  to simply be a mathematical parameter. 

Comparing (3.3) and (3.9) with (2.9), we see that as the tensor doublet ( )2θψσψ µν
VV

, ( )2θψσψ µν
AVi   is 

rotated using ( )2
2exp θiT  in the SU(2) duality space, so too are vectors and scalars according to: 

( )
( )

( )
( )


















−
=










0

0

cossin

sincos

22

22

2

2

AV

VV

AV

VV

ii ψγψ
ψγψ

θθ
θθ

θψγψ
θψγψ

α

α

α

α
, and (3.10) 

( )
( )

( )
( )


















−
=










0

0

cossin

sincos

22

22

2

2

AV

VV

AV

VV

ii ψψ
ψψ

θθ
θθ

θψψ
θψψ . (3.11) 

All except (3.10) and (3.11) above are inherent features of Dirac algebra, without any consideration of hadron physics. 
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4.  Gordon Decomposition Redux, With Local Chiral Duality 

 Now we return to hadrons.  What we learned about local chiral duality in section 3 lets us rewrite (2.1) as: 

( )
( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )


















−/

+++++++
∂

−/

+++
∂

−





















−/

+++++++
∂

−/

+++
∂

−



















−/

+++++++
∂

−/

+++
∂

−=









+

""

2/2/2/2/
""

""

2/2/2/2/
""

""

2/2/2/2/
""

2/

2222

2222

2222

2222

2222

2222

2

2

BB

BVCBVCBVBVBVCBVCBVBV

BB

BVCBVCBVBVBVCBVCBVBV

GG

GVCGVCGVGVGVCGVCGVGV

GG

GVCGVCGVGVGVCGVCGVGV

RR

RVCRVCRVRVRVCRVCRVRV

RR

RVCRVCRVRVRVCRCRVRV

mp

ig
mp

ig

mp

ig
mp

ig

mp

ig
mp

ig

P

P

πθψψπθψψπθψσψπθψσψ

θψψθψψθψσψθψσψ

πθψψπθψψπθψσψπθψσψ

θψψθψψθψσψθψσψ

πθψψπθψψπθψσψπθψσψ

θψψθψψθψσψθψσψ

πθ
θ

σµσµσµ
ν

σµσµσµ
ν

νσνσνσ
µ

νσνσνσ
µ

µνµνµν
σ

µνµνµν
σ

σµν

σµν

.(4.1) 

We then take the dual and compact this to rewrite via duality (2.2) as the doublet equation: 

( )
( )

( ) ( )

( ) ( )∑ =





















−/

+++
−/

+

∂−=









+ BGRN

NN

NVCNVCNVNV

NN

NVCNVCNVNV

mp

mp

P

P
,,

22

22

2

2

""

2/2/
""

!3

1

2/*

*

πθψσεψπθψσεψ

θψσεψθψσεψ

πθ
θ

µν
σµνα

µν
σµνα

µν
σµνα

µν
σµνα

σα

α
.(4.2) 

This expresses ( )2* θαP  as a function of 2θ  and incorporates the chiral SU(2) doublet uncovered in (3.3) and (3.9) in 

the 2T  representation.  Now, we factor out ( )2
2exp θiT  and repeat all the same steps that were used to go from (2.2) to 

(2.9).  Along the way, we write the Gordon decomposition (2.7) in terms of 
2θ .  But via local duality we add a new 

term that contains the SU(2) gauge boson τ
2B  via (3.9) and 

ikjijkii BBB θθε σσσσ ∂+−→ .  And from (3.8), (3.10) and 

(3.11), we derive and then employ in the various doublets, the relationships: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )πψψψγψπψψπψψψψ

πψγψψγψπψγψπψγψψγψ
πψσψψσψπψσψψσψπψσψ

α

ααααα

µνµνµνµνµν

VVVVAVVVAV

VVVVAVVVAV

VVAVAVVVAV

ii

ii

iii

=−==

=−==

−=−=−=

02/;2/0

02/;2/0

2/0;02/

. (4.3) 

all of this leads to: 

( )
( )

( )
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

∑ =



































































−/

+
−/

+
+′

−





















−/

+
−/

+

+





















−/

+
−

−/

+
−










−
−=










+
=










+

BGRN

NN

NVCNVCNVNV

NN

NACNVCNANV

N

N

NN

NVCNVCNVNV

NN

NVCNVCNVNV

N

N

NN

NVCNVCNVNV

NN

NVCNVCNVNV

mp

mp
g

pp

mp

mp

g

m

mp

mp
B

P

P

P

P

,,

2

22

22

2

2

2

2

""

""

2/2/

""

""

2/2/

2

""

2/2/
""

00

2

1

cossin

sincos

3

2

2/*

*

2/

πψψπψψ

πψψπψψ

πψγψπψγψ

πψγψπψγψ

πψσψπψσψ

ψσψψσψ

θθ
θθ

ε

πθ
θ

ε
πθ

θ

α

αα

αα

ατατ

ατατ

τ

ασµν

α

αασµν
σµν

σµν

. (4.4) 
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This is the SU(2) chiral space counterpart of the bottom line of (2.9), and it is equal to (4.1).  So, we set (4.1) with 

( )2
2exp θiT  factored out, equal to (4.4).  We then take the Gauss’ / Stoke’ integral as in (2.10), to obtain the final result: 

( )
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

∫∫∫∑

∫∫∑∫∫∫

=

=



































































−/

+
−/

+
+′

−





















−/

+
−/

+

+





















−/

+
−

−/

+
−

×








−
−=





















−/

+
−/

+










−
−=









+

νµσ

α

αα

αα

ατατ

ατατ

τ

ασµν

νµµνµν

µνµν

πψψπψψ

πψψπψψ

πψγψπψγψ

πψγψπψγψ

πψσψπψσψ

ψσψψσψ

θθ
θθ

ε

πψσψπψσψ

ψσψψσψ

θθ
θθ

πθ
θ

dxdxdx

mp

mp
g

pp

mp

mp
g

m

mp

mp
B

dxdx

mp

mp
P

P

BGRN

NN

NVCNVCNVNV

NN

NACNVCNANV

N

N

NN

NVCNVCNVNV

NN

NVCNVCNVNV

N

N

NN

NVCNVCNVNV

NN

NVCNVCNVNV

BGRN

NN

NVCNVCNVNV

NN

NVCNCNVNV

,,

2

22

22

,,
22

22

2

2

""

""

2/2/

""

""

2/2/

2

""

2/2/

""

00

2

1

cossin

sincos

3

2

""

2/2/
""

00

cossin

sincos

2/

. (4.5) 

Via (4.3), we have rewritten every imaginary axial meson as real vector meson which has undergone a 2/π  

rotation about the y axis in the SU(2) duality space.  Thus in contrast to (2.9), the overall factor of i is removed, all 

terms are real, and everything is written in terms of vector (V) wavefunctions with duality space rotations of the 

mesons.  If we consider this further in light of (3.7), we see how rotation in the SU(2) / SO(3) chiral duality space 

allows us to express what is a vector (V) object in one orientation, as an axial (A) object in a different orientation, and 

even as left or right chiral projections in yet other orientations.  

We now interpret (3.8) and the similar relationships derivable from (3.10) and (3.11) such as (4.3) as saying 

that experimentally-observed axial (A) mesons are real non-axial (V) mesons which have been rotated through the 

duality space from 02 =θ  to 2/2 πθ = .  So for example, when we observe pseudoscalar mesons such as the π mesons, 

we are actually observing imaginary objects ( )0AVi ψψ  which are identical to and simply another name for duality-

rotated real objects ( )2/πψψ VV
, i.e., we are observing real scalar mesons disposed at 2/2 πθ = .   

Equation (4.5) is the central mathematical result of this paper.  If ever there was statement that baryons and 

hadrons do not exhibit chiral symmetry, (4.5) with its mix of 0=θ  and 2/πθ =  and πθ =  dispositions is such a 

statement.  Now let us see what (4.5) teaches about hadrons, and how it can be experimentally tested. 

 

5.  Specifying Deep Inelastic Scattering Cross Sections for Yang-Mills Magnetic Monopole Baryons 

 First, we note that every tensor, vector and scalar object in (4.5) is a meson.  This is indicated by both the 

BBGGRR ++  color singlet that appears throughout (compacted via the sum Σ ) and the conjugate wavefunctions 
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which accompany all particle wavefunctions.  Second, we see that the only mesons which flow through the closed 

surface of integration are second rank tensor mesons of the basic spacetime form ψσψ µν .  These have spin 2, so as 

already reported in [1], spin 2 is the “passport” in and out of a baryon surface.  For a meson of any other spin, it must 

either excite or decay into a spin 2 meson to pass.  Third, inside the baryon (and we shall momentarily seek to give a 

more precise definition to the phrase “inside the baryon”), as a function of 2θ , are also second rank tensor and axial 

tensor mesons coupled with the SU(2) gauge boson τ
2B  which arose from local duality, in the form ψσψ ατ

τ
2B .  

These of course also have spin 2.  But there are also spin 1 vector and axial vector mesons of the form ψγψ α  and spin 

0 scalar and pseudoscalar mesons ψψ  coupled in spacetime through momentum in the form ( ) ψψαpp +′ . 

 Finally, and most importantly in terms of experimental confirmation, the “ AV ↔  inversion” found at the end 

of section 2 is further developed in (4.5).  No matter what the orientation of the duality angle 2θ , tensor mesons are 

always 2/π  out of synch with vector and scalar mesons.  Under like conditions (meaning for the same 2θ  which is 

local and so varies from one event in spacetime to another), wherever there is a preponderance of spin 2 tensor mesons 

there will be a proportionate preponderance of spin 1 axial tensor mesons and spin 0 pseudoscalar mesons, and vice 

versa.  Careful experimentation should be able to reveal a pattern in which spin 2 mesons are always AV ↔  inverted 

in relation to spin 1 and spin 0 mesons under otherwise identical conditions as specified by 2θ , and this inversion will 

be central to how we propose to confirm the thesis that baryons are Yang-Mills magnetic monopoles. 

 Now, as a prelude to discussing cross sections, we turn to the question, what does it really mean to talk about 

what is happening “inside the baryon”?  Equation (4.5) is a volume integral with spin 0 scalar and pseudoscalar 

mesons, spin 1 vector and axial vector mesons, and spin 2 tensor and axial tensor mesons “inside” the closed volume.  

This is mathematically identical in nature to the integration volume in the Maxwell’s charge equation 

∫∫∫∫∫ = νµ
µν

νµσ
σµν dxdxFdxdxdxJ ** .  But in Maxwell’s equation, we are generally considering macroscopic surfaces 

enclosing a large number of charges, so there is a very definite, colloquial understanding of “inside” the volume.  Not 

so for (4.5) however.  Here the volume is that of a baryon, and the only known way to discern the “inside” of a baryon 

is via scattering experiments such as epep→  and more generally, eXep→ .  So, how do we do “see” “inside”? 

 To facilitate discussion, we have reproduced below, Figures 8.2 and 8.5 from Halzen and Martin’s [7], and 

refer to the accompanying discussion in Section 8.2 and 8.3 of this same reference [7]: 
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When we consider baryons (which we shall take to be protons for this discussion), we “see” “inside” the proton by 

probing with photons (or other mediating field quanta) and then studying the scattering debris.  The differential cross 

sections µν
µνσ pe LLd ∝  are calculated from the tensor *νµµν

eee JJL ∝  based on the electron vertex 

( ) ( ) ( ) xkkie ekukuJ ⋅−′′= µµ γ   summed with an analogous tensor µνpL  based on the proton vertex.  For large wavelength 

(small ( )22 kkq −′= ) photons, we are able to approximate the proton as a structureless point particle, see [7] eqs. [8.11] 

to [8.13].  We do so using “the most general four-vector form [ µpJ ] that can be constructed from qpp ,, ′  and the 

Dirac γ-matrices sandwiched between u  and u .” ([7] page 176.)  This µpJ  is then used to form *νµµν ppp JJL ∝ .   

But for large ( )22 ppq −′=  “the debris becomes so messy that the initial state proton loses its identity 

completely and a new formalism must be devised to extract information from these measurements.” ([7] page 179.)  

The customary approach is to form a hadron tensor µνµν pLW ∝  out of qppg ,,, ′µν , directly on general 

considerations, see [8.24] of [7].  In large part, this is because there is no four-vector heir-apparent that allows us to 

replace the vertex [8.13] of [7] when the proton debris gets really messy and the proton loses its identity.  So we use 

µνW  to “parameterize our total ignorance of the form of the current at the other end of the propagator” ([7] page 180) 

in Figure 8.5 of Figure 1 above.  But this is where (4.5) now comes into play, because (4.5) reduces this ignorance. 

En route to (4.5), embedded directly in (4.4), we obtained the magnetic monopole baryon dual ( )2* θαP  which 

is itself a four-vector containing all spin 0, 1 and 2 objects, both vector (V) and axial (A) that can be constructed using 

elements of Dirac algebra (see also (2.8) deduced before we developed local chiral duality), with V and A terms mixed 

via parameter 2θ .  This is exactly what we need to specify µνpL  to calculate deep scattering cross sections.  

Specifically, we now form *** νµµν ppp PPL ∝  from the ( )2* θαP  contained in (4.4) (the first two * in the foregoing 

represent duality; the final * represents conjugation), so the deep scattering cross section is now specified using: 
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( )( )**** µµ
νµ

µν
µνσ ppeepe PPJJLLd ∝∝∝M . (5.1) 

Consider the following reasons in support of calculating cross sections using the dual vector ( )2* θνP  in this 

way.  First, we need a four-vector vector to represent the baryon for large 2q .  The problem with the vector [8.12], 

[8.13] in [7] is that this represents a structureless point particle, and for large 2q  we must account for a structure that is 

lacking in [8.12], [8.13] of [7].  Second, while Figure 8.5 of Figure 1 shows the proton breaking up into “messy” debris, 

we do know some things about the nature of this mess.  We know that this mess consists of mesons, never of free 

quarks or gluons.  We know that this mess always contain spin 0 scalar and pseudoscalar mesons, spin 1 vector and 

axial vector mesons, spin 2 tensor and axial tensor mesons (and via duality and 32105 γγγγγ i= , spin 3 tensor mesons 

transforming as spin 1 axial vectors and spin 4 tensor mesons transforming as spin 0 pseudoscalars, and A/V vice 

versa).  This “mess” is well catalogued, for example, in the PDG meson data [8].  Third, in contrast to the vector [8.12], 

[8.13] in [7], the dual vector ( ) ( )2!3
1

2* θεθ σµν
σµναα PP =  is not only an alternative vector, but it contains all the 

essential structural information about the magnetic monopole baryon ( )2θσµνP  and the “mess” catalogued in [8] that 

this baryons would produce in deep inelastic scattering experiments.   ( )2* θαP  naturally contains all the different spin 

0, 1 and 2 vector and axial mesons that can naturally be formed in spacetime from elements of the Dirac algebra, and 

by duality one can readily inject spins 3 and 4.  We do not need to “construct” anything.  Everything is already there. 

Fourth, and most importantly, by using the first rank baryon dual ( )2* θαP  to specify cross sections as in 

(5.1), we provide the most direct means possible to experimentally confirm the thesis that Yang-Mills magnetic 

monopole really are baryons: we specify how to calculate cross sections based on this thesis.   

Finally, (5.1) answers the question “what does it really mean to talk about what is happening ‘inside the 

baryon’?” in the most direct, experimentally-couched way possible: We look “inside” the baryon with deep inelastic 

scattering experiments, by taking what is shown to be “inside” the baryon in the Maxwell sense of (4.5), and using 

those same “innards” via ( )2* θαP  of (4.4) to specify scattering cross sections via (5.1).  This is how we may discuss 

what is “inside” the baryon in a way that can be experimentally tested. 

 

6. Conclusion 

The complete calculation of differential cross sections based on what is specified in (5.1) is a substantial 

exercise which is left for a future paper.  But it is through (5.1) that we can most directly confirm, invalidate, or perhaps 

fine tune with experimental data, the thesis that baryons are Yang-Mills magnetic monopoles.  
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