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Abstract

One of causes why Goldbach’s binary problem was unsolved
over a long period is that binary representations of even integer
2n (BR2n) in the view of a sum of two odd primes(VSTOP) are
considered separately from other BR2n. By purpose of this work
is research of connections between different types of BR2n. For re-
alization of this purpose by author was developed the ”Arithmetic
of binary representations of even positive integer 2n” (ABR2n). In
ABR2n are defined four types BR2n. As shown in ABR2n all types
BR2n are connected with each other by relations which represent
distribution of prime and composite positive integers less than 2n
between them. On the basis of this relations (axioms ABR2n) are
deduced formulas for computation of the number of BR2n (NBR2n)
for each types. In ABR2n also is defined and computed Average
value of the number of binary sums are formed from odd prime and
composite positive integers < 2n (AVNBS). Separately AVNBS for
prime and AVNBS for composite positive integers. We also de-
duced formulas for computation of deviation NBR2n from AVNBS.
It was shown that if n go to infinity then NBR2n go to AVNBS that
permit to apply formulas for AVNBS to computation of NBR2n.
At the end is produced the proof of the Goldbach’s binary problem
with help of ABR2n. For it apply method of a proof by contra-
diction in which we make an assumption that for any 2n not exist
BR2n in the VSTOP then make computations at this conditions
then we come to contradiction. Hence our assumption is false and
forall 2n > 2 exist BR2n in the VSTOP.
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1 Introduction

. On 7 June, 1742,the Prussian mathematician Christian Goldbach wrote
a letter to Leonhard Euler in which he proposed the following conjecture:
Every integer greater than 2 can be written as the sum of three primes.
He considered 1 to be a prime number. In mathematics, a prime number
is a natural number that has exactly two natural number divisors, which
are 1 and the prime... , a convention subsequently abandoned. A modern
version of Goldbach’s original conjecture is: Every integer greater than
5 can be written as the sum of three primes. Euler, becoming interested
in the problem, replied by noting that this conjecture is equivalent with
another version: Every even integer greater than 2 can be written as the
sum of two primes. Euler’s version is the form in which the conjecture
is usually expressed today. It is also known as the strong,even, or binary
Goldbach’s conjecture. For small values of n,the strong Goldbach conjec-
ture (and hence the weak Goldbach conjecture) can be verified directly.
For instance, Nils Pipping in 1938 laboriously verified the conjecture up
to n ≤ 105 [1] With the advent of computers, many more values of n have
been checked; T. Oliveira e Silva is running a distributed computer search
that h verified the conjecture for n ≤ 4 · 1018 (and double-checked up to
3· 1017). [2] Statistical considerations which focus on the probabilistic
distribution of prime numbers present informal evidence in favour of the
conjecture (in both the weak and strong forms) for sufficiently large inte-
gers: the greater the integer, the more ways there are available for that
number to be represented as the sum of two or three other numbers, and
the more ”likely” it becomes that at least one of these representations
consists entirely of primes. Number of ways to write an even number n as
the sum of two primes (4 - 1,000,000) A very crude version of the heuristic
probabilistic argument (for the strong form of the Goldbach conjecture)
is as follows. The prime number theorem asserts that an integer m se-
lected at random has roughly a 1/lnm chance of being prime. Thus if
n is a large even integer and m is a number between 3 and n/2, then
one might expect the probability of m and n - m simultaneously being
prime to be 1

/[
lnm ln(n−m)

]
. If one pursues this heuristic, one might

expect the total number of ways to write a large even integer n as the
sum of two odd primes to be roughly

∑n/2
m=3

1
lnm

1
ln(n−m)

≈ n
2 ln2 n

. Since
this quantity goes to infinity as n increases, we expect that every large
even integer has not just one representation as the sum of two primes,
but in fact has very many such representations. This heuristic argument
is actually somewhat inaccurate, because it assumes that the events of
m and n m being prime are statistically independent of each other. For
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instance, if m is odd then n m is also odd, and if m is even, then n m
is even, a non-trivial relation because (besides 2) only odd numbers can
be prime. Similarly, if n is divisible by 3, and m was already a prime
distinct from 3, then n m would also be coprime to 3 and thus be slightly
more likely to be prime than a general number. Pursuing this type of
analysis more carefully, Hardy and Littlewood in 1923 conjectured (as
part of their famous Hardyand Littlewood prime tuple conjecture) that
for any fixed c2, the number of representations of a large integer n as the
sum of c primes n = p1 + · · · + pcwithp1 ≤ · · · ≤ pc should be asymp-

totically equal to
(∏

p
pγc,p(n)

(p−1)c

) ∫
2≤x1≤···≤xc:x1+···+xc=n

dx1···dxc−1

lnx1··· lnxc
where the

product is over all primes p, and γc,p(n) is the number of solutions to
the equation n = q1 + · · · + qc mod p in modular arithmetic, subject to
the constraints q1, . . . , qc ̸= 0 mod p . This formula has been rigorously
proven to be asymptotically valid for c > 3 from the work of Vinogradov,
but is still only a conjecture when c = 2. In the latter case, the above for-

mula simplifies to 0 when n is odd, and to 2 Π2

(∏
p|n;p≥3

p−1
p−2

) ∫ n

2
dx

ln2 x
≈

2Π2

(∏
p|n;p≥3

p−1
p−2

)
n

ln2 n
when n is even, where Π2 is the twin prime con-

stant Π2 :=
∏

p≥3

(
1− 1

(p−1)2

)
= 0.6601618158 . . . . This is sometimes

known as the extended Goldbach conjecture. The strong Goldbach con-
jecture is in fact very similar to the twin prime conjecture, and the two
conjectures are believed to be of roughly comparable difficulty. In 2013,
Provatidis et al. reported on a ”Rule of Thumb” lower bound for the
number of representations. [3] The strong Goldbach conjecture is much
more difficult. Using Vinogradov’s method, Chudakov, [4] van der Cor-
put, [5] and Estermann [6] showed that almost all even numbers can
be written as the sum of two primes (in the sense that the fraction of
even numbers which can be so written tends towards 1). In 1930, Lev
Schnirelmann proved that every even number n > 4 can be written as
the sum of at most 20 primes. This result was subsequently enhanced by
many authors; currently, the best known result is due to Olivier Ramar,
who in 1995 showed that every even number n > 4 is in fact the sum
of at most six primes. In fact, resolving the weak Goldbach conjecture
will also directly imply that every even number n > 4 is the sum of at
most four primes. [7] Chen Jingrun showed in 1973 using the methods of
sieve theory that every sufficiently large even number can be written as
the sum of either two primes, or a prime and a semiprime (the product
of two primes) [8] e.g., 100 = 23 + 7 · 11. See Chen’s theorem. In 1975,
Hugh Montgomery and Robert Charles Vaughan showed that ”most” even
numbers were expressible as the sum of two primes. More precisely, they
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showed that there existed positive constants c and C such that for all
sufficiently large numbers N, every even number less than N is the sum of
two primes, with at most CN1−c exceptions. In particular, the set of even
integers which are not the sum of two primes has density zero. Linnik
proved in 1951 the existence of a constant K such that every sufficiently
large even number is the sum of two primes and at most K powers of
2. Roger Heath-Brown and Jan-Christoph Schlage-Puchta in 2002 found
that K = 13 works. [9] This was improved to K=8 by Pintz and Ruzsa
in 2003. [10] One can pose similar questions when primes are replaced by
other special sets of numbers, such as the squares. It was proven by La-
grange that every positive integer is the sum of four squares. See Waring’s
problem and the related Waring Goldbach problem on sums of powers of
primes. Hardy and Littlewood listed as their Conjecture I: ”Every large
odd number (n > 5) is the sum of a prime and the double of a prime.”
Mathematics Magazine, 66.1 (1993): 45-47. This conjecture is known as
Lemoine’s conjecture (also called Levy’s conjecture). The Goldbach con-
jecture for practical numbers, a prime-like sequence of integers, was stated
by Margenstern in 1984, [11] and proved by Melfi in 1996: every even
number is a sum of two practical numbers.
But in spite of these large energies Goldbach conjecture was unsolved up
to date.

2 Method

Considering great number proposed solutions of this problem it can make
conclusion that analytical methods exhausted their resources since none
of them don’t bring to purpose. And for solution of Goldbach’ binary
problem it needs to develop the new method . Considered all representa-
tions of even integer 2n , and not only binary representations in the view
of a sum of two odd primes (BRVSTOP). It can make conclusion that to
BRVSOTP no approach but it is for other binary representations of 2n
for example in the view of a sum of two odd composite integers (BRVS-
TOCI ) or in the view of a sum of two odd integers one is composite
other is prime (BRVSTOICP ). So came idea to develop the arithmetic of
binary representations of even positive integer 2n (ABR2n). In which it
was found the connection between types of binary representation of even
integer 2n (BR2n). Which underlie of axioms of ABR2n. In ABR2n the
binary representations of even positive integer 2n are defined as bijective
mappings : f : X → Y y = 2n - x; or x+y = 2n; it coincidences with the
binary representations of even positive integer 2n : x+y = 2n . It permits
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to compute all the base quantities of ABR2n with help of the set theory.
Thus the New method as follows : To ABR2n is used standard procedure :
the proof of contradiction i.e. don’t break generality we make assumption
that for any valoe of 2n it is not the BVRSTOP . Next we compute all
corollaries from it into ABR2n . Specifically from it appears two identities
which not were the early. From these identities it follows that to the each
number of noncomposite (”1” + primes) < 2n (p) correspond to infinite
set of 2n that contradict by proposition proved in ABR2n which assert
that each p correspond to finite set of 2n included between neighboring
values of p . Next it follows standard conclusion that our assumption
that the BVRSTOP are not for some value is false and it is true that
the BVRSTOP are forall 2n > 2. Hence ∀ 2n > 2 exists at least one
representation of even positive integer 2n in the view of a sum of two odd
prime positive integers or ”1” and odd prime positive integer.

3 The arithmetic of binary representations

of even positive integer 2n

3.1 General conception

Definition 3.1 The binary representations of even positive integer 2n
in ABR2n are defined as bijective mappings :

f : X → Y (1)

y = 2n− x (2)

Where:
X = {x|x ∈ N, 1 ≤ x < n} (3)

Y = {y|y ∈ N, n < y < 2n} (4)

n- positive integer .
|X| = |Y | (5)

Definition 3.2 The set of binary representations of even positive integer
2n (SBR2n) are defined as follows :
SBR2n = {1 + (2n− 1) = 2n ;
2 + (2n− 2) = 2n ;
...
n− 1 + (2n− (n− 1)) = 2n}
The last is got by represent (2)
in the view of x+ y = 2n.
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Definition 3.3 The set XUY consist of: even positive integers ,
odd positive integers inclusive odd composite positive integers
and noncomposite positive integers (primes and ”1”).

Remark 3.1 Since n is not mapped into Y and it is mapped into itself
(automorphism) therefore mapping n → n and corresponding binary rep-
resentation n+n = 2n do not enter into SBR2n which is formed only from
bijective mappings. By this reason n do not enter into XUY. But it is not
denoted that as a result of the exception of binary representations: 2+2=4
and 3+3=6 from SBR2n, 4 and 6 have not binary representations in
the view of a sum of two noncomposite positive integers. But it is not the
case.In SBR2n is in existence the binary representations 1+3=4 and 1+5
= 6. It is significant ”1” with primes are related in ABR2n to noncom-
posite positive integers. At that special status of ”1” in N is ignored in
ABR2n.

Definition 3.4 se - the number of even composite positive integers into
SBR2n < 2n .
se - positive integer > 0 ∀ 2n > 6
se = 0 ∀ 2 < 2n < 8.

Definition 3.5 so - the number of odd composite positive integers into
SBR2n < 2n .
so - positive integer > 0 ∀ 2n > 8
so = 0 ∀ 2 < 2n < 10.

Definition 3.6 p- the number of odd noncomposite
integers (primes and ”1”) into SBR2n < 2n .
p− positive integer > 0 ∀ 2n > 2.

Corollary 3.1 By reason of exclusion n from the set XUY if n is even
then n or se are decremented by two (since it is excluded n + n = 2n):
n∗ = n− 2; se∗ = se − 2.

Corollary 3.2 By reason of exclusion n from the set X U Y If n is odd
then n or so are decremented by two:
n∗ = n− 2; so∗ = so − 2.

Corollary 3.3 By reason of exclusion n from the set X U Y If n is odd
prime then n or p are decremented by two:
n∗ = n− 2; p∗ = p− 2.
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Remark 3.2 It needs to say that corollaries 3.1 , 3.2 , 3.3 are took into
account automatically at forming SBR2n since it makes until appearance
of representation in the view of n + n = 2n which throw-off . Thus if n
is odd or odd prime then n, so automatically are decremented by two at
the direct computation them into SBR2n. If n is even then n, so, p are
not decremented since so, p by definitions related to odd composite and
noncomposite integers.

Remark 3.3 In the equations which include n is even n, so, p are not
decremented (see rem 3.2 ).
At the computations which related to se n is decremented by two.

Remark 3.4 In the equations which include n is odd or odd prime then
it is decremented by one since n enters in the equation with value which
is required the correction.

Proposition 3.1 ∀ n > 1 always is fulfilled the condition |X| = |Y |.

Proof 3.1 Taking into account that 2n do not enter into the set XUY
and n is excluded from the set XUY (see remark 3.1)
then we have :

|XUY | = 2n− 2 = 2(n− 1) (6)

Hence |XUY | is even for any n and thus ∀ n > 1 always is fulfilled
the condition |X| = |Y | . �

3.2 The types of binary representations even posi-
tive integer 2n

In depend of that are x,y in the view of x+ y = 2n prime or composite
it can be four types binary representations of even positive integer 2n:

Definition 3.7 There is Type ”H” if x-odd prime positive integer or”1”
and y- odd prime positive integer.
|H|- the number of binary representations of Type ”H”.
|H|- positive integer > 0 ∀ 2n > 2 (see theorem (10.1.)).

Definition 3.8 There is Type ”Q” if x-odd composite positive integer;
and y-odd composite positive integer .
|Q|- the number of binary representations of Type ”Q”.
|Q|- positive integer > 0 ∀ 2n > 22
exepting 2n = 26; 28; 32; 38; in which |Q| = 0
(see numerical solution |Q| = 0 subsection (12.2) .
|Q| = 0 ∀ 2 < 2n < 24.
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Definition 3.9 There is Type ”L” if x- odd prime positive integer or”1”
and y-odd composite positive integer or x-odd composite positive integer
and y- odd prime positive integer.
|L| - the number of binary representations of Type ”L”.
|L|- positive integer > 0 ∀ 2n > 8.
|L| = 0 ∀ 2 < 2n < 10.

Definition 3.10 There is Type ”E” if x-even positive integer
and y-even positive integer .
|E|- the number of binary representations of Type”E”.
|E|- positive integer > 0 ∀ 2n > 4.

3.3 The axioms of ABR2n

Axiom 3.1 The number of the binary representations type H (NBRH) is
connected with The number of the binary representations type L (NBRL)
as follows:

2|H|+ |L| = p (7)

∀ 2n > 2.
The equation (7) asserts that odd noncomposite positive integers
less than 2n are allotted to types ”H”,” L” in compliance with balance (7).

Remark 3.5 From equations (7 and 8) it follows :
|H| = (p− |L|)/2; |Q| = (s0 − |L|)/2 .
In these equations is division by ’2’. From this it can conclude that equa-
tions are correct only for n is even. But it is not the case. Below we show
that in ABR2n all equations where is division by ’2’ It always is possibility
for any n’s and p’s parity.

Proposition 3.2 The equation (7) is true for any n’s and p’s parity.

Proof 3.2 For n is even p is even
By equation (7) we get: |H| = (p− |L|)/2 .
By equation (26) |L| = n− p− 2|Q| and |L| is even
for n is even p is even then (p− |L|) is even .
Hence the division by”2” is possibility then |H|
is integer .
Thus equation (7) is true for n is even p is even.

Next for n is even ; p is odd
By equation (7) we get: |H| = (p− |L|)/2 .
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By equation (26) |L| = n− p− 2|Q| and |L| is odd
for n is even and p is odd then (p− |L|) is even .
Hence the division by”2” is possibility then |H|
is integer .
Thus equation (7) is true for n is even p is odd.

Next for n is odd or odd prime p is even
By equation (7) we get: |H| = (p− |L|)/2 .
By equation (27) |L| = n− p− 1− 2|Q| and |L| is even
for n is odd or odd prime and p is even then (p− |L|)is even .
Hence the division by”2” is possibility then |H|
is integer .
Thus equation (7) is true for n is odd or odd prime p is even.

Next for n is odd or odd prime p is odd
By equation (7) we get: |H| = (p− |L|)/2 .
By equation (27) |L| = n− p− 1− 2|Q| and |L| is odd
for n is odd or odd prime and p is odd then (p− |L|)is even .
Hence the division by”2” is possibility then |H|
is integer .
Thus equation (7) is true for n is odd or odd prime p is odd.

Finally equation (7) is true for any n’s and p’s parity. �

Axiom 3.2 The number of the binary representations Type Q (NBRQ) is
connected with the number of the binary representations Type ”L” (NBRL)
as follows:

2|Q|+ |L| = s0 (8)

∀ 2n > 2 .
The expression(8) asserts that odd composite positive integers less than 2n
are allotted to types ”Q”, ”L” in compliance with balance (8).

Proposition 3.3 The equation (8) is true for any n’s and p’s parity.

Proof 3.3 For n is even p is even
By equation (8) we get: |Q| = (s0 − |L|)/2 .
By equation (7) |L| = p− 2|H| and |L| is even
for n is even and p is even .
By equation (17) so = n− p is even then (s0 − |L|) is even .
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Hence the division by”2” is possibility then |Q|
is integer .
Thus equation (8) is true for n is even ; p is even.

Next for n is even p is odd
By equation (8) we get: |Q| = (s0 − |L|)/2 .
By equation (7) |L| = p− 2|H| and|L| is odd
for n is even p is odd .
By equation (17) s0 = n− p is odd then (s0 − |L|) is even .
Hence the division by”2” is possibility then |Q|
is integer
Thus equation (8) is true for n is even p is odd

Next for n is odd or odd prime p is even
By equation (8) we get: |Q| = (s0 − |L|)/2 .
By equation (7) |L| = p− 2|H| and |L| is even
for p is even .
By equation (18) s0 = n− p− 1 is even then (s0 − |L|) is even .
Hence the division by”2” is possibility then |Q|
is integer .
Thus equation (8) is true for n is odd or odd prime p is even.

Next for n is odd or odd prime p is odd
By equation (8) we get: |Q| = (s0 − |L|)/2 .
By equation (7) |L| = p− 2|H| and |L| is odd
for p is odd .
By equation (18) s0 = n− p− 1 is odd then (s0 − |L|) is even .
Hence the division by”2” is possibility then |Q|
is integer .
Thus equation (8) is true for n is odd or odd prime p is odd.
Finally equation (8) is true for any n’s and p’s parity. �

Definition 3.11 G - the general number of binary representations in
ABR2n.
G - positive integer ∀ 2n > 2 .

Axiom 3.3
|Q|+ |L|+ |H|+ |E| = G (9)

Definition 3.12 F -the general number of binary representations
with odd positive integers .
F − positive integer ∀ 2n > 2 .
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Axiom 3.4
|Q|+ |L|+ |H| = F (10)

3.4 The computation of G,F, So, p, |Q|, |L|, |H|, |E|
3.4.1 The computation of G

Proposition 3.4
G = n− 1 (11)

∀ n > 1

Proof 3.4 The general number of elements in the set XUY by equation
(6) equals 2(n − 1). Taking into account that in forming of each binary
representation participate with two elements from the set XUY then we
have: G = 1/2(2(n− 1) = n− 1 ∀ n > 1 . �

3.4.2 The computation of |E|

Proposition 3.5
|E| = [(n− 1)/2] (12)

∀ n > 1

Proof 3.5 By definition (3.3) by elements of the set XUY
are even integer which consist of half of all integers
Then the number of even integers in the set XUY equals:
1/2|XUY | = 1/2(2(n− 1)) = n− 1 .
Taking into account that in forming of each binary representation
participate by two elements from the set XUY we have: |E| = (n− 1)/2 .
Taking into account that for n - even |E| is not integer
that breaks the status of |E| (see definition (3.10)
then |E| = [(n− 1)/2] is aliquot of (n− 1)/2
then we get : |E| = [(n− 1)/2] ∀ n > 1 �

Proposition 3.6
|E| = n/2− 1 (13)

for n is even n > 1

Proof 3.6 For n = 2i where i ∈ N by equation (12) we get: |E| =
[(2i− 1)/2] = [i− 1/2] = [(i− 1) + 1/2] = i− 1
returning to n finally we get: |E| = n/2− 1 n > 1 . �
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Proposition 3.7
|E| = (n− 1)/2 (14)

for n is odd or odd prime n > 2

Proof 3.7 For n = 2i + 1 where i ∈ N by equation (12) we get: |E| =
[(2i+ 1− 1)/2] = [i] = i
returning to n finally we get: |E| = (n− 1)/2 n > 2. �

3.4.3 The computation of F

Proposition 3.8
F = n/2 (15)

for n is even n > 1

Proof 3.8 Subtracting equation (10) from equation (9) we get: |E| =
G−F whence F = G−|E| . Taking into account equations (11), (12) we
get:
F = (n− 1)− [(n− 1)/2] for n = 2i we get:
F = 2i− 1− [(2i− 1)/2] = 2i− 1− [i− 1/2] =
= 2i− 1− [i− 1 + 1/2] = 2i− 1− (i− 1) = i
returning to n finally we get: F = n/2 n > 1

Remark 3.6 Since n is even then the division by”2”
is possibility. Thus F is integer and equation (15) is true for n is even.
�

Proposition 3.9
F = (n− 1)/2 (16)

for n is odd or odd prime n > 2

Proof 3.9 Subtracting equation (10) from equation (9) we get: |E| =
G−F whence F = G−|E| . Taking into account equations (11), (12) we
get:
F = (n− 1)− [(n− 1)/2] for n = 2i + 1 we get:
F = 2i - i = i returning to n finally we get: F = (n - 1)/2 n > 2. �

Remark 3.7 Since n is odd or odd prime then (n - 1) is even . Hence
the division by”2”
is possibility.Thus F is integer and equation (16) is true for n is odd or
odd prime.



13

3.4.4 The computation of so

Proposition 3.10
so = n− p (17)

.

for n is even, n > 1

Proof 3.10 By definition (3.3) for computation so it needs to subtract
from |XUY | the number of even composite positive integers (n− 2)
here(−2) takes into account corollary 3.1 n∗ = n− 2
and also subtract the number of odd noncomposite positive integers p then
we get:
so = 2(n− 1)− (n− 2)− p = n− p for n is even n > 1 . �

Proposition 3.11
so = n− p− 1 (18)

.

for n is odd or odd prime n > 1

Proof 3.11 Making the change equation (17) by rem 3.4 we get: so =
n− p− 1 for n is odd n > 1 . �

3.4.5 The computation of p

Definition 3.13 p1 − the first approximation of p.
p2 − the second approximation of p.
p3 − the third approximation of p.

Proposition 3.12
p1 = round(2n/ln2n) (19)

Proposition 3.13

p2 = round(2n/ln2n+ 2n/ln22n) (20)

Proposition 3.14

p3 = round(2n/ln2n+ 2n/ln22n+ 4n/ln32n) (21)
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Proof 3.12 As everybody knows [12] that the number of the primes less
than 2n is expressed as follows:
π(2n) = (2n/ln2n)

∫ 1

0
(1− (lny/ln2n) + (ln2y/ln22n) + . . .)dy

We are limited to three of the first terms of the series.
Integrating in parts then we get:
π(2n) = (2n/ln2n)(1 + 1/ln2n+ 2/ln22n)
Whence taking into account definition (3.6) that p is (primes + 1) then
we get :
p = round(2n/ln2n+ 2n/ln22n+ 4n/ln32n+ 1)
But taking into account that ”2” is not odd prime and
that by definition (3.6) p is the number of odd prime < 2n then
p = round(2n/ln2n+ 2n/ln22n+ 4n/ln32n+ 1− 1)
Finally we get:
p = round(2n/ln2n+ 2n/ln22n+ 4n/ln32n)
Whence we get:
p1 = round(2n/ln2n)
p2 = round(2n/ln2n+ 2n/ln22n)
p3 = round(2n/ln2 + 2n/ln22n+ 4n/ln32n) �

3.4.6 The computation of |Q|

Proposition 3.15
|Q| = (n− p− |L|)/2 (22)

for n is even n > 1

Proof 3.13 By equation (8) we get: |Q| = (so − |L|)/2. Taking into
account equation (17) we get for n is even
|Q| = (n − p − |L|)/2 . Now we show that for n is even (n − p − |L|) =
(n− (p+ |L|)) is even:
By equation (28) |L| = p−2|H| whence |L| has parity of p hance (p+|L|)
is even
for any p’s and |L|′s parity and for n is even then (n − p − |L|) is even
then the division by”2” is possibility
thus |Q| is integer and equation (22) is true for n is even n > 1 . �

Proposition 3.16

|Q| = (n− p− 1− |L|)/2 (23)

.

for n is odd or odd prime n > 1
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Proof 3.14 Changing equation (22) by rem (3.4) we get: |Q| = (n− p−
1− |L|)/2 = (n− 1− (p+ |L|) n > 1.
Now we show that (n− p− 1− |L|) is even:
By equation (28) |L| = p−2|H| whence |L| has parity of p hance (p+ |L|)
is even for any p’s and |L|′s parity
then (n − 1 − (p + |L|) is even then the division by”2” is possibility thus
|Q| is integer and equation (23) is true for n is odd or odd prime n > 1 .
�

Proposition 3.17

|Q| = (n− 2p+ 2|H|)/2 (24)

.

for n is even n > 1

Proof 3.15 subtracting equation (7) from equation (8) we get: 2|Q| −
2|H| = s0 − p Whence we get: |Q| = (2|H| + s0 − p)/2 . Taking into
account equation (17)
|Q| = (2|H| + n − p − p)/2 = (n − 2p + 2|H|)/2. and for n is even
(n− 2p+ 2|H|) is even then the division by”2”
is possibility thus |Q| is integer and equation (24) is true for n is even
n > 1. �

Proposition 3.18

|Q| = (n− 2p+ 2|H| − 1)/2 (25)

for n is odd or odd prime n > 1

Proof 3.16 Changing equation (24) by rem (3.4) we get: |Q| = (n−2p+
2|H| − 1)/2 n > 1 .
For n is odd or odd prime (n− 2p+ 2|H| − 1) is even then the division
by”2” is possibility thus |Q| is integer and equation (25) is true for n is
odd or odd prime n > 1. �

3.4.7 The computation of |L|

Proposition 3.19
|L| = n− p− 2|Q| (26)

for n is even n > 1
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Proof 3.17 By equation (8) we get: |L| = (so−2|Q|) Taking into account
(17) we get for n is even
|L| = (n− p− 2|Q|) For n is even n > 1 . �

Proposition 3.20
|L| = n− p− 1− 2|Q| (27)

for n is odd or odd prime n > 1

Proof 3.18 Changing equation (26) by rem (3.4) we get: |L| = (n− p−
1− 2|Q|)/2 for n is odd or odd prime n > 1 . �

Proposition 3.21
|L| = p− 2|H| (28)

∀ n > 1

Proof 3.19 By equation (7) and rem (3.3) we get: |L| = p− 2|H|
for n is even n > 1
For n is odd or odd prime by rem (3.4) we also get:|L| = p− 2|H| n > 1
Thus |L| = p− 2|H| ∀ n > 1 . �

3.4.8 The computation of |H|

Proposition 3.22
|H| = (p− |L|)/2 (29)

∀ n > 1

Proof 3.20 By equation(7) and rem (3.3) we get: |H| = (p− |L|)/2 for
n is even n > 1.
For n is odd or odd prime by rem (3.4) we also get: |H| = (p−|L|)/2 n >
1 .
Now we show that ∀ n (p− |L|) is even
By equation (26) |L| = n− p− 2|Q| whence |L|+ p is even for n is even .
By equation (27) |L| = n− p − 1− 2|Q| whence |L| + p is even for n is
odd or odd prime.
It is possibility if |L| and p have equal parity then (p − |L|) is even for
any p’s and |L|′s parity.
Thus (p− |L|) is even ∀ n.
Hence the division by”2” is possibility then |H| is integer and equation
(29) is true ∀ n > 1 . �
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Proposition 3.23

|H| = (2p+ 2|Q| − n)/2 (30)

for n is even n > 1

Proof 3.21 Subtracting equation (7) from equation (8) we get:
2|Q| − 2|H| = s0 − p Whence we get: |H| = (2|Q| − s0 + p)/2 . Taking
into account equation (17) we have for n is even:
|H| = (2|Q| − (n− p) + p)/2 = (2p + 2|Q| − n)/2 . Now we can see that
for n is even (2p+ 2|Q| − n) is even
then the division by”2” is possibility thus |H| is integer and equation (30)
is true for n is even n > 1 �
Proposition 3.24

|H| = (2p+ 2|Q| − n+ 1)/2 (31)

for n is odd or odd prime n > 1

Proof 3.22 Subtracting equation (7) from equation (8) we get:
2|Q| − 2|H| = so − p Whence we get: |H| = (2|Q| − s0 + p)/2 . Taking
into account (18) we have for:
|H| = (2|Q| − (n− p− 1)+ p)/2 = (2p+2|Q| −n+1)/2. Now we can see
that for n is odd or odd prime
(2p+ 2|Q| − n+ 1) is even then the division by”2” is possibility thus |H|
is integer and equation (31) is true
for n is odd or odd prime n > 1. �
Definition 3.14 |Q| − |H| - lower limit of possible range of |Q| − |H|.
|Q| − |H|- positive integer > 0 ∀ 2n > 120 .
|Q| − |H| - negative integer < 0 ∀ 2 < 2n < 120 .
excepting 2n = 94; 96; 100; 106; 118; for which |Q|−|H| = 0( see subsection 12.1)
.

Proposition 3.25
|Q| − |H| = (n− 2p)/2 (32)

for n is even n > 1

Proof 3.23 Subtracting equation (7) from equation (8) we get: 2|Q| −
2|H| = s0 − p Whence we get: |Q| − |H| = (s0 − p)/2 = . Taking into
account equation (17) we :
|Q| − |H| = (n− p− p)/2 = (n− 2p)/2 . Since for n is even (n− 2p) is
even then the division by”2”
is possibility thus |Q| − |H| is integer and equation (32) is true for n is
even n > 1 �



18

Proposition 3.26

|Q| − |H| = (n− 2p− 1)/2 (33)

for n is odd or odd prime n > 1

Proof 3.24 Subtracting equation (7) from equation (8) we get:
2|Q| − 2|H| = s0 − p Whence we get: |Q| − |H| = (s0 − p)/2 = . Taking
into account equation (18)
we have :
|Q|− |H| = (n−1−p−p)/2 = (n−2p−1)/2 . For n is odd or odd prime
(n− 2p− 1) is even then
the division by”2” is possibility thus |Q| − |H| is integer
and equation (33) is true for n is odd or odd prime n > 1 . �

Remark 3.8 It was controlled ABR2n for some values of2n. For each
value of 2n it was computed by direct computation the following: p, so, |Q|, |L|, |H|, F
for values < 2n . Next we compare data direct computations with the same
parameters which are computed by equations of ABR2n and we get full
coincidence. The full text of the control ABR2n see subsection (12.3) of
appendices.

4 The limited values of possible range of

|Q|, |L|, |H|
Definition 4.1 |H|b -lower limit of possible range of |H|.

Axiom 4.1
|H|b = 0 (34)

Definition 4.2 p(n) is the number of odd noncomposite integers
(primes and ”1”) < n
p(n) is positive integer > 0 ∀ n > 1

Definition 4.3 p− p(n) - the number of odd noncomposite integers in Y
.

Definition 4.4 |H|c-upper limit of possible range of |H|.

Proposition 4.1
|H|c = p− p(n) (35)
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Proof 4.1 By Low of distribution of primes the number of odd noncom-
posite integers in X is greater than the number of odd noncomposite inte-
gers in Y : p(n) > p− p(n) .
Since the number of primes decreases with increase of n. Hence maximal
number of pair of odd noncomposite integers in the set XUY equals the
number of odd noncomposite integers in Y : p - p(n)
then |H|c = p− p(n) . �

Corollary 4.1 The number of unpaired odd noncomposite positive inte-
gers in X equals 2p(n) − p and are allotted to type ”L”. Then |L| >
0 ∀2n > 8

Proof 4.2 The number of unpaired odd noncomposite positive integers in
X by definitions 4.2, 4.3 equals :
(p(n) - (p - p(n)) = 2p(n) - p
and are allotted to type ”L”. �

Definition 4.5 |L|b - lower limit of possible range of |L|.

Proposition 4.2
|L|b = 2p(n)− p (36)

Proof 4.3 Substituting upper limit of |H| by (35) to (7) then we get:
lower limit for |L| : |L|b = 2p(n)− p �

Definition 4.6 |L|c -upper limit of possible range of |L|.

Proposition 4.3
|L|c = p (37)

Proof 4.4 Substituting lower limit of |H| by (34) to (7) then we get upper
limit for |L| : |L|c = p �

Definition 4.7 |Q|b - lower limit of possible range of |Q|.
|Q|b- positive integer > 0 ∀ 2n > 120 see proposition (9.2).
|Q|b - negative integer < 0 ∀ 2 < 2n < 120 see proposition (9.1).
excepting 2n = 94; 96; 100; 106; 118 for which |Q|b = 0 see subsection
(12.1).

At that 2n = 120; (|Q|b = 0) is border point.

Proposition 4.4
|Q|b = (n− 2p)/2 (38)
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n is even n > 1

Proof 4.5 Substituting upper limit of |L| by equation (37) to equation (8)
then we get
lower limit for |Q|: |Q|b = (So − p)/2.
Substituting S0 by equation (17), then we get:
|Q|b = (n− 2p)/2 n > 1 . �

Proposition 4.5
|Q|b = (n− 2p− 1)/2 (39)

n is odd or odd prime n > 1

Proof 4.6 Substituting upper limit of |L| by equation (37) to equation (8)
then we get
lower limit for |Q|: |Q|b = (S0 − p)/2 .
Substituting S0 by equation (18) finally we get: |Q|b = (n− 2p− 1)/2
for n is odd or odd primen > 1 . �

Definition 4.8 |Q|c - upper limit of possible range of |Q|.

Proposition 4.6
|Q|c = (n− 2p(n))/2 (40)

for is even

Proof 4.7 Substituting lower limit of |L| by equation (36) to equation (8)
then we get
upper limit for |Q|: |Q|c = (S0 − (2p(n)− p))/2 .
Substituting S0 by equation (17) finally we get: |Q|c = (n− 2p(n))/2;
for n is even �

Proposition 4.7
|Q|c = (n− 2p(n)− 1)/2 (41)

for n is odd or odd prime

Proof 4.8 Substituting lower limit of |L| by equation (36) to equation (8)
then we get
upper limit for |Q|: |Q|c = (S0 − (2p(n)− p))/2
Substituting S0 by equation (18) finally we get: |Q|c = (n− 2p(n)− 1)/2;
for n is odd or odd prime . �
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Proposition 4.8
|Q| − |H| = |Q|b (42)

∀ n > 1

Proof 4.9 By equation (32) we have: |Q| − |H| = (n − 2p)/2 for n is
even By equation (33) we have: |Q| − |H| = (n− 2p− 1)/2 for n is odd
or odd prime.
By equation (38) we have: |Q|b = (n − 2p)/2 for n is even. By equation
(39) we have: |Q|b = (n− 2p− 1)/2 for n is odd or odd prime.
Whence we get: |Q| − |H| = |Q|b ∀ n > 1. �

5 Average value of the number of binary

sums

are formed

from odd composite positive integers <

2n

.

Definition 5.1 S−ordered set of odd composite positive integers < 2n
s− element of S
|S| = so − power of S
si − vary over all s
sj − vary over all s

Definition 5.2 V = {vk|vk ∈ N, vk = si + sj}
is a set by elements of which are every possible binary sums of odd com-
posite
integers < 2n. (each with all the rest )
Since si < 2n; sj < 2n then max vk < 4n.
|V | - the power of set V.

Definition 5.3 W = {w|w ∈ N,w = 2k, 1 ≤ k ≤ 2n}
is a set of even composite positive integers < 4n+ 2
(inf W = 2; sup W = 4n).
|W | − the power of set W |W | = 2n.
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Definition 5.4 |Q|m - mean quantity of binary sums vk = si + sj
which can be formed of odd composite positive integers < 2n
and which are mapped into W by surjective mapping :
f : V ⇒ W

|Q|m = |V |/|W | (43)

i.e. uniform mapping regardless of real.
|Q|m − positive rational number > 0

∀ 2n > 4.

Proposition 5.1
|V | = s20 (44)

Proof 5.1 The number of every possible binary sums in the view of
vk = si + sj are formed of odd composite positive integers < 2n
is equal the power of Cartesian product: S X S [13] [14]. Then:
|V | = s0 · s0 = s20 �

Proposition 5.2
|Q|m = s20/2n (45)

Proof 5.2 By equations (43 and 44) we have : |Q|m = |V |/|W | = s20/2n
�

Proposition 5.3
|Q|m = (n− p)2/2n (46)

For n is even n > 1

Proof 5.3 Substituting s0 by equation (17) to equation (45) then we get
: |Q|m = (n− p)2/2n;
For n is even n > 1 �

Proposition 5.4
|Q|m = (n− p− 1)2/2n (47)

For n is odd or odd prime n > 1

Proof 5.4 Substituting s0 by equation (18) to equation (45) then we get
:
|Q|m = (n− p− 1)2/2n;
For n is odd or odd prime n > 1 �
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6 Average value of the number of binary

sums

are formed from odd noncomposite

positive integers < 2n

Definition 6.1 P - ordered set of odd noncomposite positive integers <
2n
p - elements of P
|P | = p - power of P
pi- vary over all p
pj - vary over all p

Definition 6.2 T = {tk|tk ∈ N, tk = pi + pj}
is a set by elements of which are every possible binary sums
of odd noncomposite integers < 2n. (each with all the rest )
Since pi < 2n; pj < 2n then max tk < 4n.
|T | - the power of set T.

Definition 6.3 |H|m is mean quantity of binary sums pi+pj = 2k which
can be formed of odd
noncomposite positive integers < 2n and which are mapped into W by sur-
jective mapping :
f : T ⇒ W

|H|m = |T |/|W | (48)

i.e. uniform mapping regardless of real.
|H|m-positive rational number > 0 ∀2n > 4.

Proposition 6.1
|T | = p2 (49)

Proof 6.1 The number of every possible binary sums
are formed of odd noncomposite positive integers < 2n
in the view of pi + pj = 2k is equal the power of Cartesian product P X P
[13] [14] .
Then |T | = p · p = p2 �

Proposition 6.2
|H|m = p2/2n (50)
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∀ n > 1

Proof 6.2 By equations (48 and 49) we have : |H|m = p2/2n ∀ n > 1 �

7 The deviation of |Q|, |H| from |Q|m, |H|m
Definition 7.1 The deviation of |Q| from |Q|m is:
∆|Q| = |Q|m − |Q|
∆|Q| > 0 if |Q|m > |Q|
∆|Q| < 0 if |Q|m < |Q|

Definition 7.2 The deviation of |H| from |H|m is:
∆|H| = |H|m − |H|
∆|H| > 0 if |H|m > |H|
∆|H| < 0 if |H|m < |H|

7.1 Relationship between deviations of ∆|Q| and ∆|H|
Proposition 7.1

∆|Q| = ∆|H|+ |Q|m − |H|m − |Q|b (51)

∀ n > 1

Proof 7.1 By equation (42) |Q| − |H| = |Q|b
By definition (7.1) ∆|Q| = |Q|m − |Q|
By definition (7.2) ∆|H| = |H|m − |H|
Whence : |Q| = |Q|m −∆|Q|
|H| = |H|m −∆|H|
Then by equation (42)
(|Q|m −∆|Q|)− (|H|m −∆|H|) = |Q|b
|Q|m −∆|Q| − |H|m +∆|H| = |Q|b
Whence:
∆|Q| = ∆|H|+ |Q|m − |H|m − |Q|b . �
Remark 7.1 It was controlled the equation for at the some values of 2n.
For each value of 2n it was took data direct computations of p, so, |Q|, |l|, |H|
from section (12.3) . Next we compute by equation (51) using data direct
computations. The compare of ∆|Q| computed by data of direct computa-
tions with computed value
by equation (51) shows full coincidence of results. The full text of the
control you can see section (13).
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8 The relationship between n and p

8.1 The relationship between n and p for n < 60

Proposition 8.1
2p > n (52)

for n is even n < 60

Proof 8.1 From the numerical solution (see.sabsection 12.1)
it follows that:
2p > n for n is even n < 60 �

Proposition 8.2
2p+ 1 > n (53)

for n is odd or odd prime n < 59

Proof 8.2 From the numerical solution (see.sabsection 12.1)
it follows that:
2p + 1 > n for n is odd or odd prime
n < 59 . �

8.2 The relationship between n and p for n > 60

Proposition 8.3
n > 2p (54)

for n is even n > 60

Proposition 8.4
n > 2p+ 1 (55)

for n is odd or odd prime n > 59 .

Proof 8.3 We need to prove that: n > 2p for n is even, n > 60 .
n > 2p + 1 for n is odd or odd prime, n > 59 .
For it we must find a dependence of differences :
f1 = n− 2p; and f2 = n− (2p+ 1); from n
Substituting for p its the second order approximation by equation (20) we
get:
f1 = n− 2(2n/ln2n+2n/ln22n); f2 = n− (2(2n/ln2n+2n/ln22n) + 1) .
f1 = n− 4n/ln2n− 4n/ln22n; f2 = n− 4n/ln2n− 4n/ln22n− 1 .
Next we computation the derivatives :
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(f1)
′ = (ln42n− 4ln32n+ 8ln2n)/ln42n .

(f2)
′ = (ln42n− 4ln32n+ 8ln2n)/ln42n .

Whence (f1)
′ > 0 ; (f2)

′ > 0 ; ∀ 2n > 2 .
Then f1, f2 increase ∀ 2n > 2 .
Next we compute the points of intersection of f1, f2 with abscissa axis.
For it we need to test of fulfillment of conditions:
(f1(2n) = 0 f1(2n+ 2) > 0) and (f2(2n) = 0f2(2n+ 4) > 0).
As follows from numerical solution (see subsubsection 12.1).
The points of intersection are:
2n = 120 for n is even; and 2n = 118 for n is odd or odd prime
Since conditions are fulfilled only for them.
Hence f1 > 0 forn is even, n > 60 .
And f2 > 0 for n is odd or odd prime n > 59
Thus n > 2p; for n is even , n > 60.
And n > 2p + 1 for n is odd or odd prime n > 59 . �

8.2.1 The control of relationship n > 2p ; n > 2p+ 1

Remark 8.1 p∗ is decremental value of p by corollary 3.3

From data direct computations exmp 12.5; examp 12.6 ; examp 12.7 we
have :
n = 66 , p = 32 ; n = 67, p* = 30 n = 69, p = 33
By proposition (8.3) 66 > 64 .
By proposition (8.4) 67 > 60 + 1 69 > 66 + 1 . Hence propositions
(8.3 and 8.4) are correct for n stated above.

8.3 The correspondence between n and p ∀ n

Definition 8.1 The correspondence of p to finite set of 2n it is when for
several 2n it takes at the same p at computations by equations ABR2n.

Proposition 8.5 To each p is correspond finite set of 2n included
between
neighboring values of p .

Proof 8.4 Let for any 2n1 exists p < 2n1 and for 2nk exists p+ 1 < 2nk

then to each p is correspond to set of 2n = 2n1...2nk This set is restrictedly.
Hence to each p is correspond finite set
of 2n included between neighboring values of p. �
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Remark 8.2 It was conrolled the correspondence of finite set of 2n in-
cluded between neighboring values of p to it. It was shown that each p
correspond to finite set of 2n included between neighboring values of p.
The full text of the control we can see the subsection (13.1).

9 The properties of |Q|b
Proposition 9.1 |Q|b is negative integer in the range of 2 < 2n <
120 .
Excepting 2n = 94, 96, 100, 118 .

Proof 9.1 By proof (4.5) |Q|b is integer for n is even .
By proof (4.6) |Q|b is integer for n is odd or odd prime .
Then |Q|b is integer ∀ n > 1 .
Since by propositions (8.1 and 8.2 ) 2p > n and 2p + 1 > n
then by equation (38) |Q|b < 0 for n is even < 60 .
And by equation (39) |Q|b < 0 for n is odd or odd prime < 60.
By direct computation with help of numerical solution of |Q|b (see subsec-
tion 12.1)
we find 2n for which |Q|b = 0.
Thus In the range of 2 < 2n < 120 |Q|b is negative integer
excepting 2n = 94, 96, 100, 118. (see subsetion 12.1) �

Proposition 9.2 |Q|b is positive integer ∀2n > 120

Proof 9.2 By proposition (4.4) |Q|b is integer for n is even .
By proposition (4.5) |Q|b is integer for n is odd or odd prime .
Then |Q|b is integer ∀ n > 1 .
Since by propositions (8.3 and 8.4) 2p < n and 2p + 1 < n
then by equation (38) |Q|b > 0 for n is even > 60 .
And by equation (39) |Q|b > 0 for n is odd or odd prime > 60.
Thus |Q|b is positive integer ∀2n > 120 �

Corollary 9.1 There is no less than |Q|b of representations of the
type ”Q” ∀ 2n > 120 .

Remark 9.1 The following proposition explains the cause by which
|Q| = 0 in the range of 2 < 2n < 120 .

Proposition 9.3 In the range of 2 < 2n < 120 if fulfilled the condition
|H| = ||Q|b| then |Q| = 0 .
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Proof 9.3 By equation (42) and proposition (9.1) we have for 2 < 2n <
120
|H| = |Q|+ ||Q|b|.
Let |Q| = 0; then |H| = ||Q|b| .
Thus if it is fulfilled the condition |H| = ||Q|b| then |Q| = 0
In the range of 2 < 2n < 120 . �

10 The solution of the Goldbach’s binary

problem

Lemma 10.1 ∀ 2 < 2n < 120 exists at least one representation of type
”H”.

Proof 10.1 Taking into account equation (42) we get: |H| = |Q| −
|Q|b. Since in the range of 2 < 2n < 120 by proposition(9.1) |Q|b <
0 then |H| = |Q|+ ||Q|b|
Whence |H| > 0 excepting 2n = 94; 96; 100; 106; 118; in which |Q|b = 0
(see subsection 12.1).
For this 2n the truth of lemma follows from that for 2n in which |Q|b = 0
then |Q| > 0 in this points since the points of exclusion for |Q| 2n = 26,
28,32,38 (see subsection 12.2) don’t coincidence with points of exclusion
|Q|b 2n = 94,96, 100,106,118 (see subsection 12.1) .
Thus |H| > 0 ∀ 2 < 2n < 120 �

Theorem 10.1 ∀ 2n > 2 exists at least one representation of even posi-
tive integer 2n in the view of a sum of two odd prime positive integers or
”1” and odd prime positive integer.

Proof 10.2 Earlier by Lemma we proved that |H| > 0 ∀ 2 < 2n < 120.
For the full proof of the theorem we need to prove that
|H| > 0 ∀ 2n > 120
Let |H| = 0 for some value n > 60 then by definition (7.2) we get:

∆|H| = |H|m (56)

Also from definition (7.1) we get:

|Q| = |Q|m−∆|Q| (57)

Taking into account that at |H| = 0 from equation (42) it follows that:

|Q| = |Q|b (58)



29

we get:

|Q|b = |Q|m−∆|Q| (59)

Taking into account proposition (7.1 ) and equation (56) we get:

|Q|b = |Q|m− (|Q|m − |H|m − |Q|b + |H|m) (60)

Whence :
|Q|b = |Q|b (61)

Taking into account equation (38) we get identity for n is even, n > 1 :

(n− 2p)/2 = (n− 2p)/2 (62)

Taking into account equation (39) we get identity for n is odd or odd
prime, n > 1 :

(n− 2p− 1)/2 = (n− 2p− 1)/2 (63)

Thus in the result of assumption that |H| = 0 for some value n > 60
we come to identities: (62 and 63) next we transform these identities into
as follows :
2n(n − 2p) = 2n(n − 2p); 2n2 − 4pn = 2n2 − 4pn; whence : 4pn =
4pn; or 2np = 2np .
2n(n−2p−1) = 2n(n−2p−1); 2n2−4pn−2n = 2n2−4pn−2n; whence :
4pn = 4pn; or :

2np = 2np (64)

We fix value of p and will be substitute values of infinite series 2n to(64)
and identity (64) is correct for all values of 2n
then it is determine following relationship between n and p : each p cor-
respond to infinite set of 2n .
That contradict by proposition (8.5) which assert that each p correspond
to finite set of 2n included between neighboring values of p.
Hence our assumption that |H| = 0 for some value n > 60 is false and it
is true that |H| > 0 ∀ 2n > 120. Thus we proved that |H| > 0 ∀ 2n > 2 .
Hence ∀ 2n > 2 exists at least one representation of even positive integer
2n in the view of a sum of two odd prime positive integers or ”1” and odd
prime positive integer. �

Corollary 10.1
|Q| > |Q|b (65)
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∀ n > 1

Proof 10.3 From equation (42) we get:

|Q| = |Q|b + |H|

Then for |H| > 0 we get:
|Q| > |Q|b ∀ n > 1 . �

Corollary 10.2
|L| < p (66)

∀ n > 1

Proof 10.4 From equation (2.7) we get:

|L| = p− 2|H|

Then for |H| > 0 we get:
|L| < p; ∀n > 1. �

11 The computation of the real values of

|Q|, |H|

11.1 The relative accuracy of computation
of |Q|, |H|

Definition 11.1 The relative accuracy of computation of |Q| as follows
below :

δQ = ((∆|Q|/|Q|m)100)% (67)

Definition 11.2 The relative accuracy of computation of |H| as follows
below:

δH = ((∆|H|/|H|m)100)% (68)

11.2 The estimation of δQ

Proposition 11.1

(100p2/(n− p)2) > δQ (69)
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for n is even n > 2;

Proof 11.1 By definition (7.1) we have |Q| = |Q|m −∆|Q|.
By definition. (11.1) we have:
∆|Q| = (δQ|Q|m)/100
then we get : |Q| = |Q|m − (δQ|Q|m)/100 .
By corollary (10.1) (|Q|m − (δQ|Q|m)/100) > |Q|b .
Whence it follows that (100(|Q|m − |Q|b)/|Q|m)) > δQ.
Taking into account equations (46 and 38 ).
Then we get:
( 100((n− p)2)/2n− (n− 2p)/2)/((n− p)2)/2n) > δQ.
Hence ( 100p2/(n− p)2 ) > δQ for n is even n > 2 . �

Proposition 11.2

((100(p2 + 2p− n+ 1)/(n− p− 1)2) ) > δQ (70)

for n is odd or oddprime n > 4

Proof 11.2 By definition (7.1) we have |Q| = |Q|m −∆|Q|.
By definition. (11.1) we have:
∆|Q| = (δQ|Q|m)/100
then we get : |Q| = |Q|m − (δQ|Q|m)/100 .
By corollary (10.1) |Q|m − (δQ|Q|m)/100 > |Q|b .
Whence it follows that 100((|Q|m − |Q|b)/|Q|m) > δQ.
Taking into account equations ( 47 and 39 ) then we get:
Then we get:
( 100((n− p− 1)2)/2n− (n− 2p− 1)/2)/((n− p− 1)2)/2n) > δQ .
Hence (100(p2 + 2p− n+ 1)/(n− p− 1)2 ) > δQ .
for n is odd or odd prime n > 4 . �

11.3 The dependence of δQ(2n)

Theorem 11.1 For n is even > 2 If n → ∞ then δQ → 0.

Proof 11.3 We equate δQ with its estimation by equation(68)
then for n is even we have:δQ = 100p2/(n− p)2 .
We replace p with its first order approximation by equation (19) we get:
δQ = (1004n2/ln22n)/(n2ln22n − 4n2ln2n + 4n2)/ln22n = 400/(ln22n −
4ln22n+ 4)
Whence follows that if n → ∞ then δQ → 0
for n is even n > 2 . �
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Theorem 11.2 For n is odd or odd prime > 4 If n → ∞ then δQ →
0.

Proof 11.4 We equate δQ with its estimation by equation (69)
then for n is odd or odd prime we have:δQ = 100(p2+2p−n+1)/(n−p−1)2

.
We replace p with its first order approximation by equation (19) we get:
δQ = 100(4n2 + 4nln2n − nln22n + ln22n)/(n2ln22n − 4n2ln2n + 4n2 −
2nln22n+ 4nln2n+ ln22n) ;
δQ = 100(4n2ln22n(1/ln22n+ 1/nln2n− 1/4n+ 1/4n2))/4n2ln22n(1/4−
1/ln2n+ 1/ln22n− 1/2n+ 1/nln2n+ 1/4n2)
δQ = 100(1/ln22n+1/nln2n− 1/4n+1/4n2)/(1/4− 1/ln2n+1/ln22n−
1/2n+ 1/nln2n+ 1/4n2)
Whence follows that if n → ∞ then δQ → 0(limn→ ∞ δQ = 0/0, 25 = 0).
for n is odd or odd prime n > 4 .
Thus we proved that if n → ∞ then δQ → 0 ∀ n > 4 �

11.4 The character of dependence of |Q|(2n)
Theorem 11.3 If n → ∞ then |Q| → |Q|m .

Proof 11.5 By Theorems (11.1 and 11.2) δQ → 0 if n → ∞
then by Defenition 11.1 ∆|Q| → 0 since δQ → 0 .
Whence by Definition 7.1 we have:
If n → ∞then |Q| → |Q|m. �

11.5 The formulas for computation of the real values
of |Q|, |H|

Remark 11.1 By theorem (11.3) we can replace the computation of |Q|
with |Q|m . The mistake of it is decreased with increase of n.

|Q| = round((n− p)2/2n) (71)

for n is even n > 16

|Q| = round((n− p− 1)2/2n) (72)

for n is odd or odd prime n > 17
Where: p = round(2n/ln2n+ 2n ln2 2n). By (20)
The computed value of |Q| it can be used for
computation of |H| by equations(30 and 31 ):
|H| = (2|Q|+ 2p− n)/2 for n is even n > 16
|H| = (2|Q|+ 2p− n+ 1)/2 for n is odd or odd prime n > 17
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12 The appendices

12.1 The numerical solution of |Q|b = 0
in the range 2 < 2n < 138

Remark 12.1 If n is prime then value of p is decremented by one .
p∗ = p− 1 by corollary 3.3 .

2n = 4;n = 2; p = 2; |Q|b = −1 by (38).
2n = 6;n = 3; p∗ = 2; |Q|b = −1 by (39).
2n = 8;n = 4; p = 4; |Q|b = −2 by (38).
2n = 10;n = 5; p∗ = 3; |Q|b = −1 by (39).
2n = 12;n = 6; p = 5; |Q|b = −2 by (38).
2n = 14;n = 7; p∗ = 5; |Q|b = −2 by (39).
2n = 16;n = 8; p = 6; |Q|b = −2 by (38).
2n = 18;n = 9; p = 7; |Q|b = −3 by (39).
2n = 20;n = 10; p = 8; |Q|b = −3 by (38).
2n = 22;n = 11; p∗ = 7; |Q|b = −2 by (39).
2n = 24;n = 12; p = 9; |Q|b = −3 by (38).
2n = 26;n = 13; p∗ = 8; |Q|b = −2 by (39).
2n = 28;n = 14; p = 9; |Q|b = −2 by (38).
2n = 30;n = 15; p = 10|Q|b = −3 by (39).
2n = 32;n = 16; p = 11; |Q|b = −3 by (38).
2n = 34;n = 17; p∗ = 10; |Q|b = −2 by (39)
2n = 36;n = 18; p = 11; |Q|b = −2 by (38).
2n = 38;n = 19; p∗ = 11; |Q|b = −2 by (39).
2n = 40;n = 20; p = 12; |Q|b = −2 by (38).
2n = 42;n = 21; p = 13; |Q|b = −3 by (39).
2n = 44;n = 22; p = 14; |Q|b = −3 by (38).
2n = 46;n = 23; p∗ = 13; |Q|b = −2 by (39).
2n = 48;n = 24; p = 15; |Q|b = −3 by (38).
2n = 50;n = 25; p = 15; |Q|b = −3 by (39).
2n = 52;n = 26; p = 15; |Q|b = −2 by (38)
. 2n = 54;n = 27; p = 16; |Q|b = −3 by (39).
2n = 56;n = 28; p = 16; |Q|b = −2 by (38).
2n = 58;n = 29; p∗ = 15; |Q|b = −1 by (39).
2n = 60;n = 30; p = 17; |Q|b = −2 by (38).
2n = 62;n = 31; p∗ = 17; |Q|b = −2 by (39).
2n = 64;n = 32; p = 18; |Q|b = −2 by (38).
2n = 66;n = 33; p = 18; |Q|b = −2 by (39).
2n = 68;n = 34; p = 19; |Q|b = −2 by (38).
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2n = 70;n = 35; p = 19; |Q|b = −2 by (39).
2n = 72;n = 36; p = 20; |Q|b = −2 by (38).
2n = 74;n = 37; p∗ = 20; |Q|b = −2 by (39).
2n = 76;n = 38; p = 21; |Q|b = −2 by (38).
2n = 78;n = 39; p = 21; |Q|b = −2 by (39).
2n = 80;n = 40; p = 22; |Q|b = −2 by (38).
2n = 82;n = 41; p∗ = 21; |Q|b = −1 by (39).
2n = 84;n = 42; p = 23; |Q|b = −2 by (38).
2n = 86;n = 43; p∗ = 22; |Q|b = −1 by (39).
2n = 88;n = 44; p = 23; |Q|b = −1 by (38).
2n = 90;n = 45; p = 24; |Q|b = −2 by (39).
2n = 92;n = 46; p = 24; |Q|b = −1 by (38).
2n = 94;n = 47; p∗ = 23; |Q|b = 0 by (39).
2n = 96;n = 48; p = 24; |Q|b = 0 by (38).
2n = 98;n = 49; p = 25; |Q|b = −1 by (39).
2n = 100;n = 50; p = 25; |Q|b = 0 by (38).
2n = 102;n = 51; p = 26; |Q|b = −1 by (39).
2n = 104;n = 52; p = 27; |Q|b = −1 by (38).
2n = 106;n = 53; p∗ = 26; |Q|b = 0 by (39).
2n = 108;n = 54; p = 28; |Q|b = −1 by (38).
2n = 110;n = 55; p = 29; |Q|b = −2 by (39).
2n = 112;n = 56; p = 29; |Q|b = −1 by (38).
2n = 114;n = 57; p = 30; |Q|b = −2 by (39).
2n = 116;n = 58; p = 30; |Q|b = −1 by (38).
2n = 118;n = 59; p = 29; |Q|b = 0 by (39).
2n = 120;n = 60; p = 30; |Q|b = 0 by (38).
2n = 122;n = 61; p = 29; |Q|b = 1 by (39).
2n = 124;n = 62; p = 30; |Q|b = 1 by (38).
2n = 126;n = 63; p = 30; |Q|b = 1 by (39).
2n = 128;n = 64; p = 31; |Q|b = 1 by (38).
2n = 130;n = 65; p = 31; |Q|b = 1 by (39).
2n = 132;n = 66; p = 32; |Q|b = 1 by (38).
2n = 134;n = 67; p = 31; |Q|b = 2 by (39).
2n = 136;n = 68; p = 32; |Q|b = 2 by (38).
2n = 138;n = 69; p = 33; |Q|b = 1 by (39).
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12.2 The numerical solution of |Q| = 0
in the range 8 < 2n < 134

2n = 10; |Q| = 0; (10− 9 = 1) .
2n = 12; |Q| = 0; (12− 9 = 3) .
2n = 14; |Q| = 0; (14− 9 = 5) .
2n = 16; |Q| = 0; (16− 9 = 7) .
2n = 18; |Q| = 0; (18− 9 = 9) .
2n = 20; |Q| = 0; (20− 9 = 11) .
2n = 22; |Q| = 0; (22− 9 = 13) .
2n = 24; |Q| > 0; (24− 9 = 15) .
2n = 26; |Q| = 0; (26− 9 = 17) .
2n = 28; |Q| = 0; (28− 9 = 19) .
2n = 30; |Q| > 0; (30− 9 = 21) .
2n = 32; |Q| = 0; (32− 9 = 23) .
2n = 34; |Q| > 0; (34− 9 = 25) .
2n = 36; |Q| > 0; (30− 9 = 21) .
2n = 38; |Q| = 0; (38− 9 = 29) .
2n = 40; |Q| > 0; (40− 15 = 25) .
2n = 42; |Q| > 0; (42− 9 = 33) .
2n = 44; |Q| > 0; (44− 9 = 35) .
2n = 46; |Q| > 0; (46− 21 = 25) .
2n = 48; |Q| > 0; (48− 9 = 39) .
2n = 50; |Q| > 0; (50− 15 = 35) .
2n = 52; |Q| > 0; (52− 25 = 27) .
2n = 54; |Q| > 0; (54− 9 = 45) .
2n = 56; |Q| > 0; (56− 21 = 35) .
2n = 58; |Q| > 0; (58− 9 = 49) .
2n = 60; |Q| > 0; (60− 9 = 51) .
2n = 62; |Q| > 0; (62− 9 = 21) .
2n = 64; |Q| > 0; (64− 9 = 55) .
2n = 66; |Q| > 0; (66− 9 = 57) .
2n = 68; |Q| > 0; (68− 33 = 35) .
2n = 70; |Q| > 0; (70− 15 = 55) .
2n = 72; |Q| > 0; (72− 9 = 63) .
2n = 74; |Q| > 0; (74− 9 = 21) .
2n = 76; |Q| > 0; (76− 21 = 55) .
2n = 78; |Q| > 0; (78− 9 = 69) .
2n = 80; |Q| > 0; (80− 15 = 65) .
2n = 82; |Q| > 0; (82− 25 = 57) .
2n = 84; |Q| > 0; (84− 9 = 75) .
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2n = 86; |Q| > 0; (86− 9 = 77) .
2n = 88; |Q| > 0; (88− 25 = 63) .
2n = 90; |Q| > 0; (90− 9 = 81) .
2n = 92; |Q| > 0; (92− 15 = 77) .
2n = 94; |Q| > 0; (94− 9 = 85) .
2n = 96; |Q| > 0; (96− 9 = 87) .
2n = 98; |Q| > 0; (98− 21 = 77) .
2n = 100; |Q| > 0; (100− 15 = 85) .
2n = 102; |Q| > 0; (102− 9 = 93) .
2n = 104; |Q| > 0; (104− 9 = 95) .
2n = 106; |Q| > 0; (106− 15 = 91) .
2n = 108; |Q| > 0; (108− 9 = 99) .
2n = 110; |Q| > 0; (110− 15 = 95) .
2n = 112; |Q| > 0; (112− 21 = 91) .
2n = 114; |Q| > 0; (114− 9 = 105) .
2n = 116; |Q| > 0; (116− 21 = 95) .
2n = 118; |Q| > 0; (118− 25 = 93) .
2n = 120; |Q| > 0; (120− 9 = 111) .
2n = 122; |Q| > 0; (122− 35 = 87) .
2n = 124; |Q| > 0; (124− 9 = 115) .
2n = 126; |Q| > 0; (126− 9 = 117) .
2n = 128; |Q| > 0; (128− 9 = 119) .
2n = 130; |Q| > 0; (130− 9 = 121) .
2n = 132; |Q| > 0; (132− 9 = 123) .

12.3 The control of ABR2n

Remark 12.2 We take into account that : p, so, |Q|, |L|, |H|, |Q|b, |Q| −
|H|, are defined for values < 2n .
I.e. the direct computations of them are made ∀ values < 2n , but the
computations by equations are made for n = 2n/2.

Exemple 12.1 The computation of |Q|, |L|, |H|, so, G , F for 2n =
4
Construction SBR2n:
2n = 4 ; n = 2
⊘ - odd noncomposite; ⊕ - odd composite , ⊗ - even composite .
⊘1 + 3⊘ = 4(H)
Data of direct computations for even n = 2 at that it is took into account
remark (3.2)
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p = 2, so = 0, |Q| = 0, |L| = 0, |H| = 1, G = 1, F = 1 .
The computations of parameters of binary representations of the positive
integer 2n = 4 with help of arithmetic stated above
at that p, so, |Q|, |L|, |H|, are took from the data of direct computations.
n = 4/2 = 2 ;
G = n− 1 = 2− 1 = 1; by equation (11)
|E| = n/2− 1 = 1− 1 = 0; by equation (13)
F = n/2 = 2/2 = 1; by equation (15)
so = n− p = 2− 2 = 0; by equation (17)
|L| = n− p− 2|Q| = 2− 2− 0 = 0; by equation (26)
|L| = p− 2|H| = 2− 2 = 0; by equation (28)
|H| = (2|Q|+ 2p− n)/2 = (0 + 4− 2)/2 = 1; by equation (30)
|H| = (p− |L|)/2 = (2− 0)/2 = 1; by equation (29)
|Q| = (n− p− |L|)/2 = (2− 2− 0)/2 = 01; by equation (22)
|Q| = (n− 2p+ 2|H|)/2 = (2− 4 + 2)/2 = 0; by equation (24)
|Q| − |H| = 0− 1 = −1;
|Q| − |H| = (n− 2p)/2 = (2− 4)/2 = −1; by equation (32)
p = 2|H|+ |L| = 2 + 0 = 2; by equation (7)
so = 2|Q|+ |L| = 0 + 0 = 0; by equation (8)
F = |Q|+ |L|+ |H| = 0 + 0 + 1 = 1; by equation (10)
The compare of data of direct computations with computed values shows
full coincidence of results.

Exemple 12.2 The computation of |Q|, |L|, |H|, so, G, F for 2n = 6
.
⊘ - odd noncomposite; ⊕ - odd composite ; ⊗ - even composite .

Construction SBR2n:
2n = 6 ; n = 3
⊘1 + 5⊘ = 6(H)
⊗2 + 4⊗ = 6(E)
Data of direct computations for odd n = 3 at that it is took into account
remark (3.2)
p∗ = 2; so = 0; |Q| = 0; |L| = 0; |H| = 1;G = 2;F = 1
The computations of parameters of binary representations of the positive
integer 2n = 6 with help of arithmetic stated above
at that p, so, |Q|, |L|, |H|, are took from the data of direct computations.
n = 6/2 = 3;
G = n− 1 = 3− 1 = 2; by equation (11)
|E| = (n− 1)/2 = 1; by equation (12)
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F = (n− 1)/2 = (3− 1)/2 = 1; by equation (16)
so = n− p− 1 = 3− 2− 1 = 0; by equation (18)
|L| = n− p− 2|Q| − 1 = 3− 2− 0− 1 = 0; by equation (27)
|L| = p− 2|H| = 2− 2 = 0; by equation (28)
|H| = (2|Q|+ 2p− n+ 1)/2 = (0 + 4− 3 + 1)/2 = 1; by equation (31)
|H| = (p− |L|)/2 = (2− 0)/2 = 1; by equation (29)
|Q| = (n− p− |L| − 1)/2 = (3− 2− 0− 1)/2 = 0; by equation (23)
|Q| = (n− 2p+ 2|H| − 1)/2 = (3− 4 + 2− 1)/2 = 0; by equation (25)
|Q| − |H| = 0− 1 = −1; |Q| − |H| = (n− 2p− 1)/2 = (3− 4− 1)/2 = −1;
by equation (33)
p = 2|H|+ |L| = 2 + 0 = 2; by equation (7)
so = 2|Q|+ |L| = 0 + 0 = 0; by equation (8)
F = |Q|+ |L|+ |H| = 0 + 0 + 1 = 1; by equation (10)
The compare of data of direct computations with computed values shows
full coincidence of results.

Exemple 12.3 The computation of |Q|, |L|, |H|, so, G , F for 2n =
12
Construction SBR2n:
2n = 12 ; n = 6
⊘ - odd noncomposite; ⊕ - odd composite ; ⊗ - even composite .
⊘1 + 11⊘ = 12(H)
⊗2 + 10⊗ = 12(E)
⊘3 + 9⊕ = 12(L)
⊗4 + 8⊗ = 12(E)
⊘5 + 7⊘ = 12(H)
Data of direct computations for even n = 2 , at that it is took into account
remark (3.2)
p = 5; so = 1; |Q| = 0; |L| = 1; |H| = 2; G = 5; F = 3
The computations of parameters of binary representations of the positive
integer 2n = 12 with help of arithmetic stated above
n = 12/2 = 6 ;
G = n− 1 = 6− 1 = 5; by equation (11)
|E| = n/2− 1 = 3− 1 = 2; by equation (13)
F = n/2 = 6/2 = 3; by equation (15)
so = n− p = 6− 5 = 1; by equation (17)
|L| = n− p− 2|Q| = 6− 5− 0 = 1; by equation (26)
|L| = p− 2|H| = 5− 4 = 1; by equation (28)
|H| = (2|Q|+ 2p− n)/2 = (0 + 10− 6)/2 = 2; by equation (30)
|H| = (p− |L|)/2 = (5− 1)/2 = 2; by equation (29)
|Q| = (n− p− |L|)/2 = (6− 5− 1)/2 = 01; by equation (22)
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|Q| = (n− 2p+ 2|H|)/2 = (6− 10 + 4)/2 = 0; by equation (24)
|Q| − |H| = 0− 2 = −2;
|Q| − |H| = (n− 2p)/2 = (6− 10)/2 = −2; by equation (32)
p = 2|H|+ |L| = 4 + 1 = 5; by equation (7)
so = 2|Q|+ |L| = 0 + 1 = 1; by equation (8)
F = |Q|+ |L|+ |H| = 0 + 1 + 2 = 3; by equation (10)
The compare of data of direct computations with computed values shows
full coincidence of results.

Exemple 12.4 The computation of |Q|, |L|, |H|, so, G, F for 2n =
14 .
⊘ - odd noncomposite; ⊕ - odd composite ; ⊗ - even composite .

Construction SBR2n:
2n = 14 ; n = 7
⊘1 + 13⊘ = 14(H)
⊗2 + 12⊗ = 14(E)
⊘3 + 11⊘ = 14(H)
⊗4 + 10⊗ = 14(E)
⊘5 + 9⊕ = 14(L)
⊗6 + 8⊗ = 14(E)
Data of direct computations for odd n = 7 , at that it is took into account
remark (3.2).
p∗ = 5; so = 1; |Q| = 0; |L| = 1; |H| = 2;G = 6;F = 3
The computations of parameters of binary representations of the positive
integer 2n = 14 with help of arithmetic stated above
n = 14/2 = 7;
G = n− 1 = 7− 1 = 6; by equation (11)
|E| = (n− 1)/2 = 3; by equation (12)
F = (n− 1)/2 = (7− 1)/2 = 3; by equation (16)
so = n− p− 1 = 7− 5− 1 = 1; by equation (18)
|L| = n− p− 2|Q| − 1 = 7− 5− 0− 1 = 1; by equation (27)
|L| = p− 2|H| = 5− 4 = 1; by equation (28)
|H| = (2|Q|+ 2p− n+ 1)/2 = (0 + 10− 7 + 1)/2 = 2; by equation (31)
|H| = (p− |L|)/2 = (5− 1)/2 = 2; by equation (29)
|Q| = (n− p− |L| − 1)/2 = (7− 5− 1− 1)/2 = 0; by equation (23)
|Q| = (n− 2p+ 2|H| − 1)/2 = (7− 10 + 4− 1)/2 = 0; by equation (25)
|Q|− |H| = 0−2 = −2; |Q|− |H| = (n−2p−1)/2 = (7−10−1)/2 = −2;
by equation (33)
p = 2|H|+ |L| = 4 + 1 = 5; by equation (7)
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so = 2|Q|+ |L| = 0 + 1 = 1; by equation (8)
F = |Q|+ |L|+ |H| = 0 + 1 + 2 = 3; by equation (10)
The compare of data of direct computations with computed values shows
full coincidence of results.

Exemple 12.5 The computation of |Q|, |L|, |H|, so, G , F for 2n =
132

Remark 12.3 The representations with x is even; y is even are excluded
since
|Q|. |L|, |H|, so, p, by definitions related to odd composite and noncom-
posite integers.
⊘ - odd noncomposite; ⊕ - odd composite ;

Construction SBR2n:
2n = 132 ; n = 66
⊘1 + 131⊘ = 132(H)
⊘3 + 129⊕ = 132(L)
⊘5 + 127⊘ = 132(H)
⊘7 + 125⊕ = 132(L)
⊕9 + 123⊕ = 132 (Q)
⊘11 + 121⊕ = 132 (L)
⊘13 + 119⊕ = 132 (L)
⊕15 + 117⊕ = 132 (Q)
⊘17 + 115⊕ = 132 (L)
⊘19 + 113⊘ = 132 (H)
⊕21 + 111⊕ = 132 (Q)
⊘23 + 109⊘ = 132 (H)
⊕25 + 107⊘ = 132 (L)
⊕27 + 105⊕ = 132 (Q)
⊘29 + 103⊘ = 132 (H)
⊘31 + 101⊘ = 132 (H)
⊕33 + 99⊕ = 132 (Q)
⊕35 + 97⊘ = 132 (L)
⊘37 + 95⊕ = 132 (L)
⊕39 + 93⊕ = 132 (Q)
⊘41 + 91⊕ = 132 (L)
⊘43 + 89⊘ = 132 (H)
⊕45 + 87⊕ = 132 (Q)
⊘47 + 85⊕ = 132 (L)
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⊕49 + 83⊘ = 132 (L)
⊕51 + 81⊕ = 132 (Q)
⊘3 + 79⊘ = 132 (H)
⊕55 + 77⊕ = 132 (Q)
⊕57 + 75⊕ = 132 (Q)
⊘59 + 73⊘ = 132 (H)
⊘61 + 71⊘ = 132 (H)
⊕63 + 69⊕ = 132 (Q)
⊕65 + 67⊘ = 132 (L)
Data of direct computations for even n = 66 ,at the compare it is took into
account remark (3.2).
p = 32; so = 34; |Q| = 11; |L| = 12; |H| = 10;F = 33
The computations of parameters of binary representations of the positive
integer 2n = 132 with help of arithmetic stated above
at that p, so, |Q|, |L|, |H|, are took from the data of direct computations.
n = 132/2 = 66 ;
G = n− 1 = 66− 1 = 65; by equation (11)
|E| = n/2− 1 = 66/2− 1 = 32; by equation (13)
F = n/2 = 66/2 = 33; by equation (15)
so = n− p = 66− 32 = 34; by equation (17)
|L| = n− p− 2|Q| = 66− 32− 22 = 12; by equation (26)
|L| = p− 2|H| = 32− 20 = 12; by equation (28)
|H| = (2|Q|+ 2p− n)/2 = (22 + 64− 66)/2 = 10; by equation (30)
|H| = (p− |L|)/2 = (32− 12)/2 = 10; by equation (29)
|Q| = (n− p− |L|)/2 = (66− 32− 12)/2 = 11; by equation (22)
|Q| = (n− 2p+ 2|H|)/2 = (66− 64 + 20)/2 = 11; by equation (24)
|Q| − |H| = 11− 10 = 1; by equation ()
|Q| − |H| = (n− 2p)/2 = (66− 64)/2 = 1; by equation (32)
p = 2|H|+ |L| = 20 + 12 = 32; by equation (7)
so = 2|Q|+ |L| = 22 + 12 = 34; by equation (8)
F = |Q|+ |L|+ |H| = 11 + 12 + 10 = 33; by equation (10)
The compare of data of direct computations with computed values shows
full coincidence of results.

Exemple 12.6 The computation of |Q|, |L|, |H|, so, G, F for 2n =
138 .

Remark 12.4 The representations with x is even; y is even are excluded
since
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|Q|.|L|, |H|, so, p, by definitions related to odd composite and prime inte-
gers.
⊘ - odd noncomposite; ⊕ - odd composite ;

Construction SBR2n:
2n = 138 ; n = 69
⊘1 + 137⊘ = 138(H)
⊘3 + 135⊕ = 138(L)
⊘5 + 133⊕ = 138(L)
⊘7 + 131⊘ = 138(H)
⊕9 + 129⊕ = 138(Q)
⊘11 + 127⊘ = 138(H)
⊘13 + 125⊕ = 138(L)
⊕15 + 123⊕ = 138(Q)
⊘17 + 121⊕ = 138(L)
⊘19 + 119⊕ = 138(L)
⊕21 + 117⊕ = 138(Q)
⊘23 + 115⊕ = 138(L)
⊕25 + 113⊘ = 138(L)
⊕27 + 111⊕ = 138(Q)
⊘29 + 109⊘ = 138(H)
⊘31 + 107⊘ = 138(H)
⊕33 + 105⊕ = 138(Q)
⊕35 + 103⊘ = 138(L)
⊘37 + 101⊘ = 138(H)
⊕39 + 99⊕ = 138(Q)
⊘41 + 97⊘ = 138(H)
⊘43 + 95⊕ = 138(L)
⊕45 + 93⊕ = 138(Q)
⊘47 + 91⊕ = 138(L)
⊕49 + 89⊘ = 138(L)
⊕51 + 87⊕ = 138(Q)
⊘53 + 85⊕ = 138(L)
⊕55 + 83⊘ = 138(L)
⊕57 + 81⊕ = 138(Q)
⊘59 + 79⊘ = 138(H)
⊘61 + 77⊕ = 138(L)
⊕63 + 75⊕ = 138(Q)
⊕65 + 73⊘ = 138(L)
⊘67 + 71⊘ = 138(H)
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Data of direct computations for odd n = 69 , at that it is took into account
remark (3.2) .
p = 33; s∗o = 35; |Q| = 10; |L| = 15; |H| = 9;F = 34
The computations of parameters of binary representations of the positive
integer 2n = 132 with help of arithmetic stated above
at that p, so, |Q|, |L|, |H|, are took from the data of direct computations.
n = 138/2 = 69;
G = n− 1 = 69− 1 = 68; by equation (11)
|E| = (n− 1)/2 = 34; by equation (12)
F = (n− 1)/2 = (69− 1)/2 = 34; by equation (16)
so = n− p− 1 = 69− 33− 1 = 35; by equation (18)
|L| = n− p− 2|Q| − 1 = 69− 33− 20− 1 = 15; by equation (27)
|L| = p− 2|H| = 33− 18 = 15; by equation (28)
|H| = (2|Q|+ 2p− n+ 1)/2 = (20 + 66− 69 + 1)/2 = 9; by equation (31)
|H| = (p− |L|)/2 = (33− 15)/2 = 9; by equation (29)
|Q| = (n− p− |L| − 1)/2 = (69− 33− 15− 1)/2 = 10; by equation (23)
|Q| = (n− 2p+2|H| − 1)/2 = (69− 66+18− 1)/2 = 10; by equation (25)
|Q| − |H| = 10− 9 = 1; |Q| − |H| = (n− 2p− 1)/2 = (69− 66− 1)/2 = 1;
by equation (33)
p = 2|H|+ |L| = 18 + 15 = 33; by equation (7)
so = 2|Q|+ |L| = 20 + 15 = 35; by equation (8)
F = |Q|+ |L|+ |H| = 10 + 15 + 9 = 34; by equation (10)
The compare of data of direct computations with computed values shows
full coincidence of results.

Exemple 12.7 The computation of |Q|, |L|, |H|, so, G, F for 2n = 134

Remark 12.5 The representations with x is even; y is even are excluded
since
|Q|.|L|, |H|, so, p, by definitions related to odd composite and prime inte-
gers.
⊘ - odd noncomposite; ⊕ - odd composite ;

Construction SBR2n::
2n = 134 n = 67
⊘1 + 133⊕ = 134(L)
⊘3 + 131⊘ = 134(H)
⊘5 + 129⊕ = 134(L)
⊘7 + 127⊘ = 134(H)
⊕9 + 125⊕ = 134(Q)
⊘11 + 123⊕ = 134(L)
⊘13 + 121⊕ = 134(L)
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⊕15 + 119⊕ = 134(Q)
⊘17 + 117⊕ = 134(L)
⊘19 + 115⊕ = 134(L)
⊕21 + 113⊘ = 134(L)
⊘23 + 111⊕ = 134(L)
⊕25 + 109⊘ = 134(L)
⊕27 + 107⊘ = 134(L)
⊘29 + 105⊕ = 134(L)
⊘31 + 103⊘ = 134(H)
⊕33 + 101⊘ = 134(L)
⊕35 + 99⊕ = 134(Q)
⊘37 + 97⊘ = 134(H)
⊕39 + 95⊕ = 134(Q)
⊘41 + 93⊕ = 134(L)
⊘43 + 91⊕ = 134(L)
⊕45 + 89⊕ = 134(Q)
⊘47 + 87⊕ = 134(L)
⊕49 + 85⊕ = 134(Q)
⊕51 + 83⊘ = 134(L)
⊘53 + 81⊕ = 134(L)
⊕55 + 79⊘ = 134(L)
⊕57 + 77⊕ = 134(Q)
⊘59 + 75⊕ = 134(L)
⊘61 + 73⊕ = 134(H)
⊕63 + 71⊘ = 134(L)
⊕65 + 69⊘ = 134(Q)
Data of direct computations for odd prime n = 67 , at that it is took into
account remark (3.2)
p∗ = 30; so = 36; |Q| = 8; |L| = 20; |H| = 5;F = 33
The computations of parameters of binary representations of the positive
integer 2n = 134
with help of arithmetic stated above
at that p, so, |Q|, |L|, |H|, are took from the data of direct computations.
n = 134/2 = 67;
G = n− 1 = 67− 1 = 66; by equation (11)
|E| = (n− 1)/2 = 33; by equation (12)
F = (n− 1)/2 = (67− 1)/2 = 33; by equation (16)
so = n− p− 1 = 67− 30− 1 = 36; by equation (18)
|L| = n− p− 2|Q| − 1 = 67− 30− 16− 1 = 20; by equation (27)
|L| = p− 2|H| = 30− 10 = 20; by equation (28)
|H| = (2|Q|+ 2p− n+ 1)/2 = (16 + 60− 67 + 1)/2 = 5; by equation (31)
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|H| = (p−|L|)/2 = (30−20)/2 = 5; by equation (29) |Q| = (n−p−|L|−
1)/2 = (67− 30− 20− 1)/2 = 8; by equation (23)
|Q| = (n− 2p+ 2|H| − 1)/2 = (67− 60 + 10− 1)/2 = 8; by equation (25)
|Q| − |H| = 8− 5 = 3;
|Q| − |H| = (n− 2p− 1)/2 = (67− 60− 1)/2 = 3; by equation (33)
p = 2|H|+ |L| = 10 + 20 = 30; by equation (7)
so = 2|Q|+ |L| = 16 + 20 = 36; by equation (8)
F = |Q|+ |L|+ |H| = 8 + 20 + 5 = 33; by equation (10)
The compare of data of direct computations with computed values shows
full coincidence of results.

13 The control of equation for ∆|Q|
Exemple 13.1 The computation ∆|Q| for n is even: n = 2, 2n = 4 .
Data of direct computations we take from exmp 12.1
p = 2; so = 0; |Q| = 0; |L| = 0; |H| = 1; G = 1; F = 1
|Q|m = ((n− p)2/2n) = ((2− 2)2/4) = 0. by equation (46)
|H|m = (p2)/2n = (22)/4 = 1; by equation (50)
∆|Q| = |Q|m − |Q| = 0− 0 = 0; by definition (7.1)
∆|H| = |H|m − |H| = 1− 1 = 0; by definition (7.2)
|Q|b = (n− 2p)/2 = (2− 4)/2 = −1 ; by equation (38)
The computation of Delta|Q| by equation (51) .
∆|Q| = |Q|m − |H|m − |Q|b +∆|H| = 0− 1 + 1− 0 = 0 .
The compare of ∆|Q| computed by data of direct computations with com-
puted value
by equation (51) shows full coincidence of results.

The computation ∆|Q| for n is odd prime: n = 3; 2n = 6 .
Data of direct computations for odd prime n = 3 we take from exmp 12.2
p∗ = 2; so = 0; |Q| = 0; |L| = 0; |H| = 1;G = 2;F = 1
|Q|b = |Q| − |H| = 0− 1 = −1 . by equation (42)
|Q|m = ((n− p− 1)2)/2n = ((3− 2− 1)2/134) = 0. by equation (47)
|H|m = (p2)/2n = (22)/6 = 2/3; by equation (50)
∆|Q| = |Q|m − |Q| = 0− 8 = 0; by definition (7.1)
∆|H| = |H|m − |H| = 2/3− 1 = −1/3; by definition (7.2)
|Q|b = (n− 2p− 1)/2 = (3− 4− 1)/2 = −1 ; by equation (39)
The computation of ∆|Q| by equation (51) .
∆|Q| = |Q|m − |H|m − |Q|)b+∆|H| = 0− 2/3 + 1− 1/3 = 0 .
The compare of ∆|Q| computed by data of direct computations with com-
puted value
by equation (51) shows full coincidence of results.
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Exemple 13.2 The computation ∆|Q| for n is even: n = 6, 2n = 12 .
Data of direct computations we take from exmp 3.3
p = 5; so = 1; |Q| = 0; |L| = 1; |H| = 2; G = 5; F = 3
|Q|m = ((n− p)2/2n) = ((6− 5)2/12) = 1/12. by equation (46)
|H|m = (p2)/2n = (52)/12 = 25/12; by equation (50)
∆|Q| = |Q|m − |Q| = 1/12− 0 = 1/12; by definition (7.1)
∆|H| = |H|m − |H| = 25/12− 2 = 1/12; by definition (7.2)
|Q|b = (n− 2p)/2 = (6− 10)/2 = −2 ; by equation (38)
The computation of Delta|Q| by equation (51) .
∆|Q| = |Q|m − |H|m − |Q|b +∆|H| = 1/12− 25/12 + 2 + 1/12 = 1/12 .
The compare of ∆|Q| computed by data of direct computations with com-
puted value
by equation (51) shows full coincidence of results.

Exemple 13.3 The computation ∆|Q| for n is odd prime: n = 7; 2n = 14
.
Data of direct computations for odd prime n = 67 we take from exmp 12.4
p∗ = 5; so = 1; |Q| = 0; |L| = 1; |H| = 2;G = 6;F = 3
|Q|b = |Q| − |H| = 0− 2 = −2 . by equation (42)
|Q|m = ((n− p− 1)2)/2n = ((7− 5− 1)2/14) = 1/14. by equation (47)
|H|m = (p2)/2n = (52)/14 = 25/14; by equation (50)
∆|Q| = |Q|m − |Q| = 1/14− 0 = 1/14; by definition(7.1)
∆|H| = |H|m − |H| = 25/14− 2 = −3/14; by definition (7.2)
|Q|b = (n− 2p− 1)/2 = (7− 10− 1)/2 = −2 ; by equation (39)
The computation of ∆|Q| by equation (51) .
∆|Q| = |Q|m − |H|m − |Q|)b+∆|H| = 1/14− 25/14 + 2− 3/14 = 1/14 .
The compare of ∆|Q| computed by data of direct computations with com-
puted value
by equation (51) shows full coincidence of results.

Exemple 13.4 The computation ∆|Q| for n is even: n = 66, 2n = 132 .
Data of direct computations we take from exmp 12.5
p = 32; so = 34; |Q| = 11; |L| = 12; |H| = 10;F = 33
|Q|m = ((n− p)2/2n) = ((66− 32)2/132) = 8, 7575757. by equation (46)
|H|m = (p2)/2n = (322)/132 = 7, 7575757; by equation (50)
∆|Q| = |Q|m − |Q| = 8, 7575757− 11 = −2, 2424243; by definition (7.1)
∆|H| = |H|m − |H| = 7, 7575757− 10 = −2, 2424243; by definition (7.2)
|Q|b = (n− 2p)/2 = (66− 64)/2 = 1 ; by equation (38)
The computation of Delta|Q| by equation (51) .
∆|Q| = |Q|m − |H|m − |Q|b + ∆|H| = 8, 7575757 − 7, 7575757 − 1 −
2, 2424243 = −2, 2424243 .
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The compare of ∆|Q| computed by data of direct computations with com-
puted value
by equation (51) shows full coincidence of results.

Exemple 13.5 The computation ∆|Q| for n is odd : n = 69; 2n = 138 .
Data of direct computations we take from exmp 12.6
p = 33; so = 35; |Q| = 10; |L| = 15; |H| = 9;
|Q|m = ((n−p−1)2/2n) = ((69−33−1)2/138) = 8, 8768115. by equation
(47)
|H|m = (p2)/2n = (332)/138 = 7, 8913043; by equation (50)
∆|Q| = |Q|m − |Q| = 8, 8768115− 10 = −1, 123189; by definition (7.1)
∆|H| = |H|m − |H| = 7, 8913043− 9 = −1, 1086957; by definition (7.2)
|Q|b = (n− 2p− 1)/2 = (69− 66− 1)/2 = 1 ; by equation (39)
The computation of ∆|Q| by equation (51) .
∆|Q| = |Q|m − |H|m − |Q|)b + ∆|H| = 8, 8768115 − 7, 8913043 − 1 −
1, 1086957 = −1, 123189 .
The compare of ∆|Q| computed by data of direct computations with com-
puted value
by equation (51) shows full coincidence of results.

Exemple 13.6 The computation ∆|Q| for n is odd prime: n = 67; 2n =
134 .
Data of direct computations for odd prime n = 67 we take from exmp 12.7
p = 30; so = 36; |Q| = 8; |L| = 20; |H| = 5;
|Q|b = |Q| − |H| = 8− 5 = 3 . by equation (42)
|Q|m = ((n−p−1)2)/2n = ((67−30−1)2/134) = 9, 6716417. by equation
(47)
|H|m = (p2)/2n = (302)/134 = 6, 7164179; by equation (50)
∆|Q| = |Q|m − |Q| = 9, 6716417− 8 = 1, 6716417; by definition (7.1)
∆|H| = |H|m − |H| = 6, 7164179− 5 = 1.7164179; by definition (7.2)
|Q|b = (n− 2p− 1)/2 = (67− 60− 1)/2 = 3 ; by equation (39)
The computation of ∆|Q| by equation (51) .
∆|Q| = |Q|m − |H|m − |Q|)b + ∆|H| = 2, 9552238 − 3 + 1, 7164179 =
1, 6716417 .
The compare of ∆|Q| computed by data of direct computations with com-
puted value
by equation (51) shows full coincidence of results.

Hence equation (51) is true ∀n > 1 .
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13.1 The examples of the correspondence of 2n in-
cluded between neighboring values of p to it

For example we consider the set of XUY for 2n = 32. We can see that the
set of XUY consist of several sets. To each set of subsets is corresponded
at the same value of p. Next for example of computation so we show
that use at the same value of p for corresponding set gives corrected
result which is controlled by direct computation so for each subsets of
corresponding set.

Exemple 13.7 Let we have the sat of numbers
X U Y {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, } U
{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}
at that n = 16 is excluded by remark (3.1).
Corollaries (3.1 and 3.2 and 3.3) are changed following way:
se∗ = se − 1; so∗ = so − 1 : p∗ = p− 1
since in this case is excluded one n.
We can see that :
p = 2 correspond to subset for 2n = 4
p = 3 correspond to subset for 2n = 6
p = 4 correspond to subsets for 2n = 8,10
p = 5 correspond to subset for 2n = 12
p = 6 correspond to subsets for 2n = 14,16
p = 7 correspond to subset for 2n = 18
p = 8 correspond to subsets for 2n = 20,22
p = 9 correspond to subsets for 2n = 24,26,28
p = 10 correspond to subset for 2n = 30
We control the following correspondences: p = 4 correspond 2n = 8,10
subsets: X U Y {1, 2, 3}U{5, 6, 7}
n =4 is excluded by rem.(3.1).
X U Y {1, 2, 3, 4}U{6, 7, 8, 9} n =5 is excluded (rem3.1).
p = 6 correspond 2n = 14,16 subsets:X U Y {1, 2, 3, 4, 5, 6}U
{8, 9, 10, 11, 12, 13} n =7 is excluded (rem3.1).
X U Y {1, 2, 3, 4, 5, 6, 7}U{9, 10, 11, 12, 13, 14, 15} n =8 is excluded (rem3.1).
p = 8 correspond 2n = 20,22 subsets:X U Y {1, 2, 3, 4, 5, 6, 7, 8, 9}U
{11, 12, 13, 14, 15, 16, 17, 18, 19} n =10 is excluded (rem3.1). ;
X U Y {1, 2, 3, 4, 5, 6, 7, 9, 10}U
{12, 13, 14, 15, 16, 17, 18, 19, 20, 21} n =11 is excluded (rem3.1).
p = 9 correspond 2n = 24,26,28 subsets:X U Y {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}U
{13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23} n =12 is excluded (rem3.1).
X U Y {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12}U
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{14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25} n =13 is excluded (rem3.1).
X U Y {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13}U
{15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27} n =14 is excluded (rem3.1).
By equation (17) we get :
for 2n - 8; n = 4 ; p = 4 .
so = n− p = 4− 4 = 0 .
By direct computation for 2n = 8, so = 0.
for 2n - 10; n = 5 ; p* = 3 (corrolary (3.3) with real changes).
By equation (18) we get :
so = n− p− 1 = 5− 3− 1 = 1
By direct computation for 2n = 10, so = 1.
for 2n - 14; n = 7 ; p* = 5 (corrolary (3.3) with real changes) .
By equation (18) we get :
so = n− p− 1 = 7− 5− 1 = 1
By direct computation for 2n = 14, so = 1.
for 2n - 16; n = 8 ; p = 6 .
By equation (17) we get :
so = n− p = 8− 6 = 2
By direct computation for 2n = 16, so = 2.
for 2n - 20; n = 10 ; p = 8 .
By equation (17) we get :
so = n− p = 10− 8 = 2
By direct computation for 2n = 20, so = 2.
for 2n - 22; n = 11; p* = 7 (corrolary (3.3) with real changes) .
By equation (18) we get :
so = n− p− 1 = 11− 7− 1 = 3
By direct computation for 2n = 22, so = 3.
for 2n - 24; n = 12 ; p = 9 .
By equation (17) we get :
so = n− p = 12− 9 = 3
By direct computation for 2n = 24, so = 3.
for 2n - 26; n = 13; p* = 8 (corrolary (3.3) with real changes) .
By equation (18) we get :
so = n− p− 1 = 13− 8− 1 = 4
By direct computation for 2n = 26, so = 4.
for 2n - 28; n = 14 ; p = 9 .
By equation (17) we get :
so = n− p = 14− 9 = 5
By direct computation for 2n = 28, so = 5.
Thus for several 2n it takes at the same p at computations by equations
ABR2n and these computations are correct.
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Hence for each p correspond to finite set of 2n included between neighbor-
ing values of p
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