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Article 26:

Hierarchy of Theories of Unified Gravity and Dynamics at the
Neighborhood of Several Gravitational Field Sources. Part.

Akindele O. Adekugbe Joseph

Corresponding to the special theory of relatifiityrinsic special theory of relativity
(SR/¢SR) and the theory of gravitational relativitytrinsic intrinsic theory of gravita-
tional relativity (TGR¢TGR), on flat four-dimensional spacetiffiat two-dimensional
intrinsic spacetime, and the metric theory of absolute intrinsic motdhAM) and
metric theory of absolute intrinsic gravityl MAG), on curved ‘two-dimensional’ ab-
solute intrinsic spacetime, at the second stage of evolutions of spagetimsic space-
time and parametefiatrinsic parameters in every gravitational field, there are unified
SR¢SR and TGRSTGR on flat four-dimensional spacetiffiat two-dimensional in-
trinsic spacetime, denoted by 88RUTGR/¢TGR, and unifiedpMAM and ¢MAG
on curved ‘two-dimensional’ absolute intrinsic spacetime, denotedAM U gMAG.
These unified theories are accomplished in this article for two casesate§) particle
is in motion at a large velocity relative to an observer at the neighborhbodey two
and several gravitational field sources, and (ii) a gravitational fieldcegisuch as a
massive star or a neutron star, is in motion at a large velocity relative td@sarer
in a region of space that is devoid of the gravitational field of any otheicseohese
entail essentially the incorporation of the velocitpf relative motion into the results
of TGR and of absolute intrinsic dynamical spe} of absolute intrinsic motion into
the absolute intrinsic metric tensors @AG, developed in the previous articles for
the two situations. It is shown that the existing special theory of relativifgrmed to
as Lorentz-Einstein-Minkowski special relativity (LEM), is valid strictly the relative
motion of the electron or its anti-particle.

Introduction

The incompatibility of Newton’s laws of gravity and the si@¢heory of relativity
is well discussed in the literature [1]. Newton’s laws ofigtais given in diferential
equation form as follows

d?x'/dt?
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As usually remarked, these equations cannot be incormgbmate special relativ-
ity because Eq. (1) is in three-dimensional rather than-flinensional form. It
must be modified into a four-dimensional form for it to be catilple with special
relativity. It is also usually remarked that the appearaoicthe three-dimensional
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Laplacian operator instead of the D’Alembertian operatdgdg. (2), means that the
potential® responds instantaneously to changeg &t arbitrarily large distance.
This means that the Newtonian gravitational field propagaii¢h infinite velocity,
which is outside the scope of special relativity.

All initial attempts to resolve the problem outside the feamork of the general
theory of relativity (GR) by considering as a scalar, then as a vector and finally
as a symmetric tensor field in flat space, (pages 1070-1071&hd86 of [1], all
failed on the ground of consistency, completeness or agrremith experiment
(pages 1066-1068 of [1]. Various later attempts to overctimenconsistency in
the symmetric tensor field theory based on the modificatigdheflat space tensor
theory in the context of relativistic field theory, led unéy to the 1915 general
relativity on curved four-dimensional spacetime (page a8a].

The incompatibility of the special theory of relativity (PBnd gravity is usu-
ally considered to have been resolved on curved spacetimhe igeneral theory of
relativity (GR), as demonstrated on pages 121 — 132 of [2¢ ddnclusion of that
demonstration is that the metric tenggy of GR unifies the speed of the test particle
and gravitational potentiab of the field source on curved spacetime. However this
conclusion is faulty for at least one reason when considfeosd the perspective of
the present theory. This is the fact that the paramele2GM/R in g,,, which
we would call the square of gravitational speed and denoté,{%)? in the present
theory, is an absolute parameter in the context of the spt@ary of relativity
(SR). That is, @ = Vg(R)2 is invariant with the observer or frame of reference.
Consequently it cannot appear at equal footing (or cannotiked) with the square
of relative dynamical spead of SR in a unification theory of GR and SR. The only
square of dynamical speed that can appear at equal footithg2®iis the square
of absolute dynamical speeftg, which is invariant with the observer likeI2(or
Vg(R)Z). It can thus be said that, from the perspective of the ptakeory, there is
no valid unified theory of gravity and relative motion in thentext of the general
theory of relativity.

On the other hand, there is a hierarchy of unified theoriesrafity and dy-
namics in the context of the present theory, which is comgppagehe unified the-
ory of gravitational relativity an the special theory ofaity (TGRU SR) on
the flat four-dimensional relativistic spaceting, t); unified intrinsic theory of
gravitational relativity and intrinsic special theory @lativity (#TGRU ¢SR) on
the flat two-dimensional relativistic intrinsic spaceti@g, #cot) and unified met-
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ric theory of absolute intrinsic gravity and metric theorfyatrsolute intrinsic mo-
tion (dMAG U ¢MAM) on curved ‘two-dimensional’ absolute intrinsic spéioge
(¢p, pCot), in every gravitational field. Since (TGRSR) on the flat spacetime
(%, ct) is mere outward manifestation afTGRU ¢SR) on flat $p, ¢cet), the two
theories are counted as one and denoted by (TGR)(¢TGRU ¢SR) and added
to (#MAG U ¢MAM) to have a two-theory approach to the unification of gtavi
and dynamics in the present theory.

The two-theory approach to the unification of gravity and aiyics namely,
(TGRUSR)(¢TGRU ¢SR) and §MAG U pMAM) have been well accomplished at
the exterior of one gravitational field source in [3-5]. Thsiall be extended to the
exterior neighborhood of several isolated gravitatioreltfsources in this second
part of this paper, upon the corresponding two-theory agpgrdo the theories of
gravity at the neighborhood of several isolated gravitetldield sources developed
in the first part [6].

The unification of the special theory of relativitytrinsic special theory of rela-
tivity (SR/¢SR) and the theory of gravitational relativitytrinsic theory of gravita-
tional relativity (TGR¢TGR) at the neighborhood of several isolated gravitational
field sources shall be derived in section 2, while the unificabf the metric the-
ory of absolute intrinsic gravity and absolute intrinsiction (MAG U pMAM) at
the neighborhood of several isolated gravitational fieldrses shall be derived in
section 3.

The dfect of the gravitational field of the test particle (assunodatan extended
object), shall be incorporated into the results of sectaad 3 in section 4, and in
section 5, the combined special theory of relativity andttremry of gravitational
relativity (TGRU SR) and combined metric theory of absolute intrinsic mo#aod
metric theory of absolute intrinsic gravityMAG U ¢MAM) for a gravitational field
source in motion relative to the observer, in the absencetefral gravitational
field of any other source, shall be inferred from the resultsection 4.

2 Unification of the special theory of relativity/intrinsic special theory of rela-
tivity and theory of gravitational relativity /intrinsic theory of gravitational
relativity at the neighborhood of several isolated gravitdional filed sources

The flat four-dimensional relativistic spacetim®g, ¢) (with constant Lorentzian
metric tensor), established in the context of the theoryravigational relativity

(TGR), in all finite neighborhood of any number N of graviteial field sources
scattered arbitrarily in the Euclidean 3-spagelerived in the first part of this arti-
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cle [6], constitute a platform for the special theory of tieigy (SR) at the neigh-
borhood of the N isolated gravitational field sources. Thertial massesn of test
particles that evolve on the fla(ct) in the context of TGR, are involved in relative
motions on E, ct) in the context of SR, at the neighborhood of the N gravitelo
field sources.

Likewise the flat two-dimensional relativistic intrinsipacetime ¢p, #cgt) that
underlies the flat relativistic spacetini €t), established in the context of the intrin-
sic theory of gravitational relativity(TGR) in all finite neighborhood of N isolated
gravitational field sources, derived in [6], constituteslatfprm for the intrinsic
special theory of relativity(SR) at the neighborhood of the N isolated gravitational
field sources.

2.1 \Validating local Lorentz invariance at the neighborhdof N isolated grav-
itational field sources

Although spacetime is flat, gravitational potential vangth position in space at
the neighborhood of N isolated gravitational field souréekcal Lorentz frame is
a neighborhood about every given point in spacetime withirctvgravitational po-
tential is constant or within which gravitational potehtian be taken to be constant.
Lorentz transformatigimtrinsic Lorentz transformation must be restricted taaloc
Lorentz frames, thereby being local Lorentz transfornmgitidrinsic local Lorentz
transformation (LLTgLLT), at the neighborhood of N isolated gravitational field
sources, as done at the neighborhood of one gravitatiotdbferce in [3] and [4].

Intrinsic local Lorentz transformation and its inversedain their usual forms
in terms of intrinsic &ne coordinates within local Lorentz frames on the flat rel-
ativistic intrinsic metric spacetimepp, ¢cgt) of pTGR, at the neighborhood of N
isolated gravitational field sources as derived formallfBiras follows

N (>
0
(w.r.t. 1 - observeiPeter inct) ; 3)

g% = dy(pv)(gX— gogt) ;
(w.r.t. 3— observer Peter iR)
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and B
o = oot 250%);
y (w.rt. 3 - obsgrver Peter if) ; 4)
X = ¢y(pv)(%+ pugt) ;
(w.r.t. 1 — observerPeter inct)
where

dy(gv) = (1 - pv®/¢cs) /2 (5)

TheLLT (3) or its inverse (4) yields the following invariance,
CPT2 - X2 = 9Cgf? - o2 (6)

This intrinsic Lorentz invariance obtains within every dtorentz frame and it is
hence intrinsic local Lorentz invariancelL({l), at the neighborhood of N isolated
gravitational field sources. We have thus validatetll at the neighborhood of any
number N of isolated gravitational field sources.

Now the intrinsic local Lorentz transformation (3) and itverse (4), in the
context of SR on flat two-dimensional intrinsic spacetimgp (#cgt), are made
manifest in local Lorentz transformation and its inversedtanflat four-dimensional
relativistic spacetimey, ct) respectively as follows

~ = U~
f = - 3%
Y ~
(wrt. 1 —~observerPeter inct) ; (7)
X = yo)(X-ot);j=y;2=2,
(w.r.t. 3— observer Peter il)

and B .
t o= O+ %)
Y
. (w.rt. 3 observer Peter iB) ; (8)
X = y)(&+ub); y=7; barz=2;
(w.r.t. 1 — observePeter inct)
where

() = (L-v?/c)~Y? )
The LLT (7) or its inverse (8) yields the following invariagc

2232 = 22 - %2 (10)
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This Lorentz invariance obtains within every local Loreftame and it is hence
local Lorentz invariance (LLI), at the neighborhood of Nlaed gravitational field
sources. The LLI has thus been validated at the neighborbbady number N of
isolated gravitational field sources.

2.2 Intrinsic time dilation and intrinsic length contracton formulae and some
intrinsic parameter relations in the context of combingsiTGR and¢SR at
the neighborhood of N isolated gravitational field sources

The special-relativistic intrinsic time dilation and sf@aelativistic intrinsic length
contraction formulae implied by systems (3) and (4), detrifig@gmally in [7] and [3]
are the following

SN
=
Il

2
syt = (1 S5Y 20 (11)
Y

<
X
I

2
() 9% = (1 Zoy2g% (12)
#C;
Intrinsic gravitational time dilation and intrinsic gréational length contraction
must then be incorporated into Egs. (11) and (12) respégtivehis is possible
because the intrinsicfine space and intrinsicffine time coordinategX and ¢t
have siffered intrinsic gravitational contraction and intrinsi@agtational dilation
from the primed intrinsic éine coordinategX’ and¢t’ respectively, in the context
of ¢ TGR, at the neighborhood of N isolated gravitational fieldrses, as has been
developed in the first part of this paper [6] and expressedgas(E8) and (20) of
that paper. Let us replackt anddgt’ by ¢t andgt’ respectively in Eq. (18) of [6]
anddgp anddgp’ by pX and¢X’ respectively in Eq. (20) of that paper to have

ot = ¢7;¢f’
9% = («m}) 24
ﬁ(l— SR (14

Equations (13) and (14) in the context®fGR must then be substituted into
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Egs. (11) and (12) in the context ¢ER to have

i = 7eret’

: Iﬁ[(l—zjf(';ﬂc(;a')l’z( ¢C2) 2t (15)
#X = @y Tey) X

= lﬁ[(l—zjf'r;a')”z( ¢02)1/2 (16)

Equations (15) and (16) are the gravitational-relatigistim special-relativistic
intrinsic time dilation and gravitational-relativisticim special-relativistic intrinsic
length contraction formulae at the neighborhood of N igulagravitational field
sources.

If the test particle is in motion at constant acceleratiomithin a local Lorentz
frame relative to the observer, then the constant intriepiedgv relative to the
observer must be replaced witkapX’ in Egs. (15) and (16), as follows from the
intrinsic theory of relativity of uniformly acceleratedstgms in [8], to have

o= ¢ ey(X)et
N 2G¢Moai 2¢pagx’
1— \-1/201 1/2 i 17
l_[( ripc2 gz ) G- ule oz )Y an
$X = (B7D) Ty (X)X
N 2G¢pMoai 1201 2¢apX’ 1/2 40
1_[(1_ i P08 1201 e i i S5 4 (18)

The uniformly accelerated intrinsic motion of the test udgtwithin a local Lorentz
frame relative to the observer is assumed to start from mriosic speeddvy = 0)
from an origingX’ = 0 of the intrinsic coordinateX’ within the local Lorentz
frame, so thapv® = 2papX’.

The special-relativistic intrinsic mass and specialirlstic intrinsic kinetic en-
ergy relations are given respectively as

M = Py(v)pm = pm(1pv’pc) /2 (19)
oT = ¢m¢c§(¢y(¢v)— 1)
Ppmepc2[(1 - ¢C2) vz _1] (20)
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wherem is the special-relativistic inertial mass that evolveginfrom ¢min the
context ofpSR andgm is the intrinsic inertial mass that evolves ¢p from the
intrinsic rest masgn in the context offTGR.

Now the intrinsic inertial masgmis related to the intrinsic rest magsy, in the
context ofpTGR at the neighborhood of N isolated gravitational fieldrses by
Eq. (24) of the first part of this paper [6], which shall be kghrced here as follows

2G¢Moai
or ¢>C§

By substituting Eqg. (21) i TGR into Egs. (19) and (20) inSR we have re-
spectively as follows

¢ = gImo(¢7,)” 2—¢mol_[( - ) (21)

oM = Ppmo(dy,)) py(¢v)

2G¢M 5
= ¢rrbl_[( —ﬁ (1- ¢CZ) 1/2 (22)
¢T = ¢m¢cz(¢y) 2(¢y(gv) — 1)
2G¢pMog;

= ¢m¢czl_[(1— M- 22y
IR o

ori9c;
(23)

Equations (22) and (23) express intrinsic mass relationianidsic kinetic en-
ergy relation in the context of combing®R andpTGR at the neighborhood of N
gravitational field sources that are scattered arbitramilgpace about the moving
test particle. Again Egs. (22) and (23) must be modified devial if the test parti-
cle is in uniformly accelerated motion within the local Lote frame relative to the
observer

gm = ¢mo(¢7;)*2¢y(¢”’)

~ _ 2G¢Moa. _2¢a¢%’ 4
= mﬂ( aro VL o) (24)
¢T = ¢m¢c§(¢7g‘) 2(py(¢x) - 1)
N 2G¢Moai 2papx’
_ 2 _ oali _ -1/2 _
= o [ SN T -]
(25)
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Extension to other intrinsic parameter relations in thetexinof combinedpTGR
and ¢SR at the neighborhood of N isolated gravitational field sesris straight
forward.

2.3 Time dilation and length contraction formulae and somammmeter rela-
tions in the context of combined TGR and SR at the neighborldoof N
isolated gravitational field sources

We must simply obtain the outward manifestations on the 8#tivistic four-
dimensional spacetim&(ct) of the results of the preceding sub-section on the flat
two-dimensional relativistic intrinsic spacetimgo(#cgt). That is, we must ob-
tain the outward manifestations ii,(ct) of Egs. (9) and (10), Egs. (11) and (12),
Egs. (14) and (17) and Egs. (18) and (19).

For the outward manifestation of the intrinsic time dilatiformulae (9) and
(11), we must simply drop the symbpin those equations to have the corresponding
time dilation formulae in the context of combined TGR and $ka neighborhood
of N isolated gravitational field sources as follows

t= 7Ot
N
2GMoai | LT
= [la-="25 - G e (26)
i=1 ivg Y

in the case of uniform velocity motion of the test particleda

to= &)
N o
2GMoai , _ 28X’ 1,9,
= | Ja- =g - = (27)
i=1 [ Y

in the case of uniformly accelerated motion of the test plarti

In the case of the length contraction formula in the contédombined TGR
and SR at the neighborhood of N isolated gravitational fieldrees, on the other
hand, no unique outward manifestationsindt) of the intrinsic length contraction
formulae (10) and (12) can be written, unlike the time didatformulae (26) and
(27) are the unique outward manifestations of Egs. (15) aAl {This is so because
the outward manifestations of Eq. (16) and (18) depend omttengement of the
N isolated gravitational field sources and the direction ofion of the test particle
in the Euclidean 3-spaca
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Each arrangement of the N isolated gravitational field sesiemd direction of
motion of the test particle i&, has its associated length contraction formula, as the
outward manifestation il of Eq. (16) or (18) inpp. For instance, let us consider the
rarely possible arrangement in which the centers of all Nigaional field sources
lie along the same direction I, along which the test particle is moving. That is,
along thex*axis, say, of the Cartesian coordinate syst&j,@) of the Euclidean 3-
space attached to the test particle, along which it is moviing length contraction
formula in this rare situation is,

NI

X o= @) R y=i2=7;
N
2GM ai ~r . = ~r .2 5/
= [Ja- rcz? — AL~ 2)”2x Y=y 2=7; (28)
i=1

in the case of uniform velocity motion of the test particleda

X = (y) YN Y= 2=7;
2GMoai 2ax’ o) 2 a2y,
= ]_[(1— rcg — ) = =R =i 2=27; (29)
i=1 Y

in the case of uniformly accelerated motion of the test plarti

The mass and kinetic energy relations in the context of coethifGR and SR
at the neighborhood of N isolated gravitational field sosyaeust be obtained as
the outward manifestations on flat spacetimgcf) of Egs. (22) and (23) in the case
of uniform velocity motion of the test particle and Eqgs. (24 (25) in the case of
uniformly accelerated motion of the test particle, to beagi®d by simply dropping
the symbolp in those equations. They are given as follows

m o= (7))o

N
= %]—[(1_2(?“2561.)1/2( 2)‘1’2 (30)
i=1
T = e~
UZ
- rch]_[( e (31)
Y

and

m = (y) ¥(X)mo

10A. Joseph. Unified gravity and dynamics at neighborhood of akgeav. field sources Il.



THE FUNDAMENTAL THEORY ... (M) Vol. 1(5) : Article 26

N S
= m Ja- ZRya - ) @)
i=1 i7g Y
T = md@ix) -1
N S
= md [ - Ry - 22y (33
i=1 ivg Y

Extension to other parameter relations in the context oflined TGR and SR at
the neighborhood of N isolated gravitational field soursestiaight forward.

We have not only achieved the unification of gravity and dyicanas unifi-
cation of the theory of gravitational relativity and the sia¢ theory of relativity
(TGRU SR) on flat spacetime at the exterior neighborhood of onédtgtanal field
source in [3,4], but have extended it to the neighborhoodhgfraumber N of gravi-
tational field sources that are scattered arbitrarily inEbelidean 3-spack in this
section, along with the results of the first part of this pgpégrlt is safe to say that
this is the resolution of another outstanding problem ingaeeral theory of rela-
tivity namely unification of gravity and dynamics, as follsvirom the discussion
under the introduction to this article.

3 Unification of the metric theory of absolute intrinsic gravity and metric
theory of absolute intrinsic motion at the neighborhood of Nisolated grav-
itational field sources

Justas N isolated gravitational field sources prescrib&iletdimensional relativis-
tic spacetimeX, ct) in the context of TGR and its underlying flat two-dimensibna
relativistic intrinsic spacetimepp, ¢cet) in the context ofpTGR, in all their finite
neighborhood, as platforms for SR an8R respectively, they prescribe a resul-
tant curved ‘two-dimensional’ absolute intrinsic spacetigp, Cst) with resultant
absolute intrinsic metric tensor, in the contexp™MAG, in all their finite neighbor-
hood, as platform for the metric theory of absolute intgnsiotion gMAM).

Let the absolute intrinsic rest massif, $&/¢¢?) in the ‘two-dimensional’ ab-
solute intrinsic spacetimep, ¢t¢t) of a test particle be in absolute intrinsic motion
at absolute intrinsic dynamical spe@dy within a local Lorentz frame, at the neigh-
borhood of the two isolated gravitational field sources m&bor 1b of the first part
of this paper [6]. Thewiy andgs /¢ will be in absolute intrinsic translation along
the absolute intrinsicfine spacetime coordinateg andgbt‘:ﬂﬁ~ respectively, which
are inclined to the upper curved absolute intrinsic spaeetdimensions'gp and
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#ept respectively in Fig.7 of [6]. Fig.7 of [6] is the resultantagetimgintrinsic
spacetime geometry in all finite neighborhood of the twoassd gravitational field
sources in Fig. 1a or 1b of that article.

The resultant spacetirfistrinsic spacetime geometry of the absolute intrinsic
motion of the absolute intrinsic rest mass of the test dartat the neighborhood
of the two isolated gravitational field sources describeavabis depicted in Fig. 1.
The special-relativistic intrinsic inertial masgy((¢v)¢pm, ¢y (¢u)¢s/¢c§) in intrin-
sic motion on flat relativistic intrinsic spacetimg( ¢cgt) and its special-relativistic
inertial massf(v)m,y(v)s/cﬁ) in motion on flat relativistic spacetim&,(ct) rela-
tive to an observer are also shown in Fig. 1.

gepta ct

ok 8’

gE, /8¢’
|
or| v N A
o1 o frefe? \JQE’/Q)éZ
: . - A
or: | o 2% oV,
. N A
N oelpe: A
) 20Vq
bl p
/ ) A . M,
AA NS A ,&);\Z ‘/QM()Z N Q? ot
Vg @)™/t ’7\\ AN Tep!
H o ot oty PP i ]
Q)\ng(grz)A/ > P 02 : :
N N Tym_ LV M, LM 2
= - e e [
b i OM: on, %

A
OV @T) o,

-
or

Fig. 1: The spacetinjmtrinsic spacetime geometry of the absolute intrinsic motion of the
absolute intrinsic rest mass of a test particle at the neighborhood of tlateid@ravitational
field sources.

The resultant inclination of the path AB along the absolaterisic &fine coor-
dinategX of the absolute intrinsic translation gfi to ¢p along the horizontal and
the equal inclination of of the path%8° along the absolute intrinsidfine coordi-
nateq&éy(ﬁf~ of the absolute intrinsic translation ¢&/¢&? to ¢cet along the vertical
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in Fig. 1, ispyreswhere

dUres = Ug(dF1) + dirga(d2) + i (34a)
= PUyres+ diq (34b)

and
PWgres= oY (pf1) + o o(of2) (34c)

is the resultant inclination of the upper curved absolutdgrisic metric spacetime
(#p, pEopt) to the flat relativistic intrinsic spacetimeyd, ¢cgt) at point P inX of
radial distances; andr, from the center of the inertial massbl and M, of the
gravitational field sources iR, which correspond to ‘distancegf; from the base
of $Moz along the curvedp’ andgf, from the base ofMg, along the curvedyp in
Fig. 1.

Now the absolute intrinsic line element of combined metnieary of absolute
intrinsic gravity and absolute intrinsic motiopNIAG U pMAM) is valid within the
elementary interval of absolute intrinsic metric spacetigp, #d#t) occupied by
the absolute intrinsic rest massgif, $£/¢¢?) of the test particle. Itis given in terms
of the resultant absolute intrinsic anghres of Eq. (34b) as follows, as derived
originally in [9,10] and applied in [5, 11],

dg§ cos gyregpt®det? — seé pureglpp? (35a)
(1 - sir? ¢pyre9p®dgt? — (1 - sir pyreg ‘dpp? (35b)

Now
it pires = SIP[gd1(df1) + ddga(dF2) + ¢l (36a)
= sirf[¢d,res+ ¢l (36b)
= sir® ¢y, res+ Sirf ¢irg (36c)
= SiM[¢y1(df1) + Piy2(¢F2)] + Sir? g (36d)

= Sir? ¢yry1(#f1) + SIn? ¢uryo(f2)) + SINF dirg (36e)

where the rule for the composition of two absolute intriresiglessy; andgy, for
the purpose of writing the absolute intrinsic line elemearnely,

Sif[¢ds + ¢io] = SIN? gy + SIMF ¢,
derived originally in [9,12] and re-derived as Eq. (117) aftmne of this article [6],

has been used in arriving at Eq. (36€).
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By using Eq. (36€) in Eq. (35b we have
dps? = (1 sin? iy (ef) — SirP ¢ilya(2)) - SIr? gia) e dgf?
— (1= SIrP ¢,a(971) - SIMP al@F2)) - Sir? o) dp?  (37)

Then by using the following definitions,

o < 2G¢M
SIP Tty = okan)® = =St
o < 2GM
S ofalor) = ohatora? = Z I
oo, #VE
Sif gg = ¢k = ok

which have been derived in the previous papers and made usdEgs. (121) and
(122) of the first part of this paper [6], the absolute inticrge element (37) can
be re-written in the following alternative forms,

g8 = (1-gku(gf1)® - gha(gfo)? — ¢k3) pE2dgt?

~ (1~ Bkoa(671)? — phoa(6F2)? ~ 9d3) " dgp? (38)
or
o [, 2G¢Moa 2GoMoze  #V2) . o
W = (1 v U
ZG¢|\7|0a1 2G¢|\7|oa2 ¢\7§ ! )
“1- - RACH B 39
( o102 $a0E ¢6§] % 9

The absolute intrinsic line element (37), (38) and (39) dadrhgeneralizations
to the case of a test particle in motion at the neighborhoodngf number N of
gravitational field sources that are scattered arbitrarigpace about the test particle
respectively as follows

N
dps? = (1—Zsinzqs&gi(gbﬂ)—sirﬁ¢&d]¢ézd¢fz
-1

N
- (1 - Z SIN? ¢ i(gfi) — sir? ¢@Zd) dep?, (40)
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N
dps® = [1 = > kilgt)? - ¢R§] ge2dgf?

N -1
- (1 = D Hhi(ofi)’ - M,) dgpp? (41)

or
N 2GeMoar  #V2
dps? = (1— P %)¢62d¢f2
— PrigC; ey
Y 2GpMoai  $V3 - 2
_(1_Zﬁ__“2] dep (42)
PrigCy ¢Cy
Equation (40), (41) or (42) gives the absolute intrinsicelaement of com-
binedpMAG and pMAM for a test particle whose absolute intrinsic rest masg
is in absolute intrinsic motion at constant absolute isigrdynamical speedVy
within a local Lorentz frame at the neighborhood of N isddatgavitational field
sources. ligiy is in a uniformly accelerated absolute intrinsic motion éalute
intrinsic acceleratiolVy within the local Lorentz frame, then the tef‘fﬁj/éz must

be replaced with 24%/€2 in Eq. (42) to have

A N 2G¢Moai 2¢\7d¢§~<
8" = (1_2 o2 o2

N - a1
- [1 -y Vea _ 20%0 X] dgp? (43)
Pripc; #C5

It shall be reiterated for emphasis that the absolute isitritine element (40),
(41) or (42) in the case of uniform velocity absolute intitnsiotion and Eq. (43)
in the case of uniformly accelerated absolute intrinsiciomtare valid within the
elementary interval of absolute intrinsic spacetirdep( ¢¢dst) occupied by the
absolute intrinsic rest masgrto, ¢&/¢¢?) of the test particle. For positions outside
the test particle at any instant during its motion, the altsdhtrinsic spee@V or
2¢
hatV4¢X must be set to zero, since there is nothing in absolute gitriynamics to
transmit the absolute intrinsic speed of a particle to negiof space exterior to the
particle. The absolute intrinsic line elements (40) — (4%) & 3) reduce to that of
¢#MAG purely for positions outside the test particle at anytans during its motion.

J¢<‘:2d¢f 2
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We have again extended the unified metric theory of absohtitesic gravity
and metric theory of absolute intrinsic motiopMAG U ¢MAM) at the neighbor-
hood of one gravitational field source in [5, 11] to the neigfiood of N isolated
gravitational field sources in this section, along with theults of the first part of
this paper [4]. The two-theory approach to combined grauity dynamics achieved
at the neighborhood of one gravitational field source in [3as thus been extended
to the neighborhood of any number N of gravitational fieldrsea that are scattered
arbitrarily in the Euclidean 3-spacein the preceding section and this, along with
results of the first part of this paper [6].

4 Incorporating the effect of the gravitational field of the test particle into the
hierarchy of theories of unification of gravity and dynamics

The dfect of the gravitational field of the test particle has notbeansidered in the
unification of TGR¢TGR and SR)SR in section 2 and the unification pMAG
and¢MAM in section 3 of this paper. It has inherently been assuthatlithe test
particle is a non-extended point particle without gravitaal field or an extended
particle with negligible gravitational field in those sects. The test particle shall
now be considered to be a gravitational field source andflieeteof its field shall
be incorporated into the unified theories in this sectioneffact the moving test
particle shall become the @NL)th gravitational field source (or the ¢4)th body)
in this section.

4.1 Incorporating the gfect of the gravitational field of the test particle into
TGR/$TGR and SR$SR

In the general theory of relativity (GR), the test partideassumed to be a mass-
point (of zero gravitational field). Thus the problem of ingorating the &ect of the
gravitational potential of the test particle into GR doesarise. However in reality
the test particle is an extended object with non-zero magian-zero dimensions,
and hence with non-zero gravitational field. It is pertinfartus to consider all
ramifications in the present theory, since the ultimate goalcomplete theory of
the whole of physics. Consequently thEeet of the gravitational field (or potential)
of the test particle in the separate and combined theoriesotde neglected at the
onset.

So far we have not considered thiéeet of the gravitational field of the moving
test particle or body in the special theory of relativity {S&d in the combined
theory of gravitational relativity and special theory oftévity (TGRU SR) in [3,4]
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and in section 2 of this paper; nor in the combined metricties®f absolute intrin-
sic motion and absolute intrinsic gravityNIAG U pMAM) in [5,11] and in section

3 of this article. By incorporating theffect of the gravitational field of the macro-
scopic test particle into the combined theories of sectibasd 3 in this section, the
effect of the gravitational field of the test particle on TGR afl& separate the-
ories shall be deduced by allowing the velocity of the testigla to vanish and by
allowing external gravitational field to vanish separatelyhe resultant combined
theories, (containing theffect of the gravitational field of the test particle), to be
derived here.

Indeed a body in motion with the presence or absence of ettgravitational
field can be quite large both in size and mass, to makefthetef its gravitational
field important in the theories of motion namepyIAM and SR¢SR for the body.
For example, stars in distant galaxies are in motion at laedgcities relative to us
on earth. Also it can be imagined that a medium star or planeaptured in orbit
round a super-massive star (or a giant). There is therelffi@r@¢ed to incorporate
the gravitational velocity (or potential) due to the mass ¢ést particle in motion
in an external gravitational field into the combined themoédynamics and gravity
as done hereunder.

Let the moving test particle or body be spherical in shapeesf massn, and
classical radius;, (of mp). The gravitational speed at the surface of the test particl
or body isV;(ry) = —(2Gm)a/r;3)1/2. In incorporating the gravitational speed due
to the mass of the test particle or body into combined TGR d@dfSection 2, the
resultant facto17; in the case of N isolated sources of the external gravitatifield
at the location of the moving test particle at any instanttrbesmodified as follows

Yo = Yor(r)ya2(r)y5a(r3) - YN () ve(r) ¥ (44a)
or
secy ' = seay () Seas,alry) - - seaun(rh) seas,(ry) seoy  (44b)
or
_ 2GMoau 2GMoaz, - 2GMoan -
Vg = (U= =) MR- =Ry (1 SRy
1% r2C NG
26 ?
x(1— S08)-172() _ L yu2 (440)
I';)Cg CV

Equations (44a-c) simplify for the case of one source ofrexdegravitational field
as follows

Vs = Yo o)y (45a)
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or
seay ' = seay,(r') seay,(ry) seay (45b)
or ,
_ 2GM A _ ZGmoa _ v
R B e B (45¢)
g9 p~g

Even with the consideration of the gravitational speed duth¢ moving test
particle, gravitational local Lorentz invariance (GLLEBGR holds still. One must
write a tandem of gravitational local Lorentz transforraat as done in the pre-
ceding article. Gravitational local Lorentz transformatiand its inverse must be
written for the moving test particle, (as a moving graviatl field source), while
assuming that any stationary massive field source is abmeatgravitational local
Lorentz invariance validated. It must be remembered thaftlavitational speed
V,(r’) due to the test particle at radial distam¢drom the location of the moving
test particle at any given instant, which appears in theitgti@onal local Lorentz
transformation due to the test particle, is invariant wita motion of the test par-
ticle. Consequently the gravitational local Lorentz tfan®ation derived with re-
spect to the gravitational field of the test particle, is naat with the motion of the
test particle. Then by bringing a stationary massive field@®into the flat space-
time established by the moving gravitational field sourbe €est particle) in all its
finite neighborhood, gravitational local Lorentz transfation and its inverse must
again be written, and gravitational local Lorentz invacawalidated. This confirms
gravitational local Lorentz invariance in the gravitatrield of the moving test
particle and one stationary massive gravitational fieldsau

Thus the combination of the gravitational field of a movingt garticle or body
with the gravitational field of one external field source, sloet alter the Lorentzian
metric tensor of the flat four-dimensional spacetime in altéineighborhood of the
moving test particle (or body) and the stationary gravotaai field source. Then by
obtaining gravitational local Lorentz transformation atdinverse at the location
of the moving test particle or body at an instant, when a sgéeaternal field source
is brought in place, upon the flat spacetime prescribed byfitseexternal field
source, gravitational local Lorentz invariance holds agaithe gravitational field
of two external sources in combination with the gravitasibfield of the moving
test particle. By bringing a third external field source iaqd, then a fourth, and
so on, until all N external field sources have been broughtiaeey we find that
gravitational local Lorentz invariance holds in an extémgravitational field of N
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isolated sources plus the gravitational field of the moviegt particle, no matter
how the N field sources are scattered in 3-space about thengqnte$t particle or
body.

The validity of gravitational local Lorentz invariance im @&xternal gravita-
tional field implies that the four-dimensional spacetiriiecf) is flat with constant
Lorentzian metric tensor within the external gravitatibfield. It is upon the flat
spacetime established by gravity (in the context of TGR) the special theory of
relativity due to the motion of the test particle or body aes. This then implies
that local Lorentz transformation (LLT) and its inverse lire ttcontext of SR can be
derived, and local Lorentz invariance (LLI) validated (wiit local Lorentz frames)
in an external gravitational field of any number of isolatedrges, even with the
inclusion of the &ect of the gravitational field of the moving test patrticle od.

The LLT and its inverse take on their usual forms within theald_orentz frame
located at a point P in the external gravitational field of Nlased sources, even
with the inclusion of the #ect of the gravitational field of the moving test particle
or body as follows

%= y()&-o); § =7 2=% F=y0)E- /AR (46)

and

X= @)%+ o); 5= 2= 2 T=y(0)(E+ (/D) (47)

wherey(v) = (1-v?/c5)" Y2,

The extended féine coordinates in Eqgs. (46) and (47) are limited within local
Lorentz in which the test particle is moving. Consequerit/transformations (46)
and (47) are local Lorentz transformations (LLT). Eachdsdbcal Lorentz invari-
ance,

A G R Y G G L (48)

Although the &ect of gravity does not appear explicitly in LLT and its inser
of systems (46) and (47), the tinidnas siffered gravitational dilation and the spa-
tial coordinates,y andZ have stfered gravitational contractions in the context of
TGR from the original proper coordinat&sandx’, ', 7’ in the flat proper space-
time &, ct’). Hence the timé is gravitational-relativistic cum special-relativistic
time and the spatial coordinatisj andzare gravitational-relativistic cum special-
relativistic spatial coordinates. The resultant timetiblaformula at the surface of
the test particle, in the case of test particle moving in treitational field of N
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external sources is given as follows

o
=
I

Se0s,1(1}) Se0Uo(r) - Sealyn(rh) seas,(ry) seay di”
2GM 2GM 2GM
(1 G Oal) 1/2(1 G gaZ)—l/Z. . (1_ G 0aN )_1/2

rica roc2 e
2GMoa LT
x(1- e )21 - 2) Y24t (49)

7

The time dilation formula (49) is true irrespective of hovetN gravitational
field sources are scattered in 3-space about the movingaggtle or body. On the
other hand, no straight forward formula can be written fer hsultant length con-
traction of the coordinates’,7;’ andZ” attached to the rest masg of the moving
test particle originally in the flat proper spacetinX&,(ct’), since the orientations
of these coordinates with respect to the lines joining threers of the gravitational
field sources to the moving test particle at any given ins&stell as the direction
of motion of the test patrticle, count in determining thesukant contractions.

Let us consider an elementary 4-box of proper dimensidtisdx’, dy’ anddz
and rest massyy,, Which is tied to the surface of the spherical test partictebpdy)
of rest massny and classical I’adiUIS‘p that is in motion in an external gravitational
field. Let us assume the presence of only one gravitationdl $ieurce, and that
the spherical test particle with the elementary box at itfase is moving radially
towards the gravitational field source at a large velogitglative to the observer,
while it is momentarily passing through radial distandeom the center of the field
source. It shall also be assumed that the dimerdkaf the elementary box is along
the direction of motion of the spherical test particle tgorsing it, as illustrated in
Fig. 2.

dx’
m
O ( _‘7
7* Mo
dy’ Grav. field

source

! |
| r \

Fig. 2: A little box at rest with respect to a spherical test particle (or bauywing radially
towards a gravitational field source.
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The resultant time dilation formula at any point at the stefaf the moving
spherical test particle relative to the observer in thigéagiven as follows

d% _ (1_ ZGMoa 2Gm)a
rca

= Cz ) 1/2(1 )—l/2dt~/ (50)

7’

— ) VAL

The dimensiordx’ of the elementary box $igrs both gravitational and special-
relativistic contractions, but its dimensiodg’ and dz’ are not contracted. The
resultant length contraction formulae of the spatial disiems of the box are then
given as follows

2GMoa

ZGrTb ’ — ’ S ’
r'c2 ) R (S a)l/z(l 2)l/zdx cdy=dy’; dz=dz

7

X = (1-
(51)

The gravitational velocity due to the external field soustet the point where
the test particle is momentarily passing through, as wethasnergy stored in the
external gravitational field within the test particle, mbst incorporated into the
expressions for the relativistic mass, relativistic t@aérgy and relativistic kinetic
energy in the situation of combined special theory of reitati(SR) and theory of
gravitational relativity (TGR). If we let the rest mass oéthlementary box beyy,
as said earlier, then its relativistic masg, and its relativistic kinetic energyp in
the situation depicted in Fig. 2 are given relative to theepbsr as follows

—_— _ 2GMga, , 2Gmoa 1/2
M, = moy(l ez d-— o2 )a- c2) (52)
and
— 2GM 2Gmy, _
To = muc(L- =G0 - RN - 2) o1 (5)
g

Equations (52) and (53) can be generalized to a situatiorravNegravitational
field sources are present nearby by simply replacing2G Moa/r’c_j) by Hi'\il(l -
2GMoai/r{c3). _
More importantly, the relativistic maga and the relativistic kinetic energy
relative to the observer, in the context of combined TGR aRdoSthe spherical
test particle in motion in Fig. 2, with the elementary box omed, are given in
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terms of its rest magsy as follows

m = m(l-—)1-——5)1-=5)" (54)
r'ca rhca c
- 2GMoa 2Gmoa v
T = mel- =0 - N - ) -] (5)
9 P™g Y

Again Eg. (54) and (55) can be generalized to a situation evties spherical test
particle (or body) is in motion at the common neighborhoodll @fravitational field
sources that are scattered arbitrarily in the Euclideapa®e> about it, by simply
replacing the factor (£ 2GMoa/r 'c2) by [T\ (1 - 2GMoai/r{c?). The fact that the
mass and kinetic energy relations (54) and (55) are valigpitkethe fact that the
factor Bmoa/r;,cj is evaluated at the surface of the particle only shall befjedt
in the next section.

4.2 Incorporating the gravitational field of the test parfieinto combined metric
theories of absolute intrinsic gravity and absolute intisic motion

In incorporating the f#ect of the gravitational field of the moving test particle (or
body) into combined ‘two-dimensional’ metric theories bbalute intrinsic motion
and absolute intrinsic gravityMAM U ¢MAG) of section 3, the absolute intrinsic
line element still takes the general form of Eq. (40), (41)43). However in ex-
panding the resultant absolute intrinsic curvature patanm&res at the neighbor-
hood of N isolated gravitational field sources, we must adexdra terrrt;&Rg(qsfp)z
due to the gravitational field of the moving test particlelfody) at its surface to the
right-hand side of Eq. (41), which corresponds to addingxaraeerm sif ¢y, (47 )

to the right-hand side of Eq. (40). Thg&re< and siff ¢gresin Eq. (40) and (41)
must be expressed respectively as follows in putting ffeceof the gravitational
field of the moving test particle (or body) into consideratio

N
kies= D | ok,i(ghi)? + ok, (97p)? + 9K] (56)
i=1
~ N ~ ~ ~
SIP g res= ) SIN? glli(ghi) + SirP iy (Fp) + sir? ¢iq (57)
i=1

where

okyi(#71)? = SirP ¢, (oF1) = 2GpMoai /¢fipE2;
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$ky(9p)” = SIP iy (¢7p) = 2Giiva/¢f ¢ andgk] = sir? giq = pV3/¢E.
Thus the absolute intrinsic line element of combigddAG and pMAM at the
neighborhood of N isolated gravitational field sourceshuiite dfect of the grav-
itational field of the moving test particle (or body) put intonsideration is the
following

N 5 2G¢Moai  2Ggia  ¢V3 22 52
dp& = (1—; 97,082 - v _¢_@§)¢C dgt

2G¢Nioai  2Geiva VG

N
—(1- f: 602 7. be2 &2
=1 ¢ri ¢Cg ¢rp ¢Cg ¢Cy

“ldgp? (58)

The components of the absolute intrinsic metric tensorigxdhse are then given as
follows
2G¢Moai  2Ggva  #V4

N
Al (1 _ S s
#goo = —¢g11 = (1 ; of: 02 002 o )i ¢g12 = ¢go1 =0 (59)

It shall be noted in concluding this section, since the fato- 2Grrba/r;3c{2,),
which appears in combined TGR and SR, and the te2@¢rihoa/¢f, ¢C2, which ap-
pears in the components of the absolute intrinsic metriedeof unified metric the-
ories of absolute intrinsic motion and absolute intringiavity (¢MAM U ¢MAG),
have been evaluated at the surface of the test particle alidity of the results of
this section, (except the relation for relativistic masd eglativistic kinetic energy
of Eq. (54) and (55)), are restricted to the surface of thegeadicle. In modifying
the results for other positions at the interior of the testigle, which is necessary
only for massive and large moving test particles, such asuagplmoving round a
star or a moderate star in motion in the gravitational field gfant, one must first of
all derive the special theory of gravity and metric theorgb$olute intrinsic gravity
at the interior of the test particle, as shall be done in aolatiater in this volume.

5 The special theory of relativity and the metric theory of alsolute intrin-
sic motion of a moving gravitational field source in the absece of external
gravitational field due to any other source

The results of this section are already contained in thdtsesfithe preceding sec-
tion. It is only of interest to show explicitly how the exisg (Lorentz-Einstein-
Minkowski) special theory of relativity (LEM) becomes médd by the €ect of
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the gravitational field of the moving particle or body andpsequently, to identify
the particle for which LEM is valid in a strict sense.

Just as there is no combined ‘two-dimensional’ metric th@babsolute intrin-
sic gravity and absolute intrinsic motiopN\IAM U ¢MAG) in the extended space-
time outside a test particle or body in motion in an extermavgational field at any
instant during its motion, as discussed in the precedingpsethere is no combined
‘two-dimensional’ metric theory of absolute intrinsic rat and absolute intrinsic
gravity in the extended spacetime outside a gravitatioeéd 8ource in motion in
the absence of external gravitational field due to any otberce. This is so since,
as discussed earlier in this article, there is nothing inayics to transmit the ve-
locity of a particle or body to region of spacetime outside plrticle or body.

Graphically, the superposition of the inclineffiae intrinsic spacetime frame
(6%, ¢E:y¢f~) of the absolute intrinsic motion at absolute intrinsic dymcal speed
¢V of the absolute intrinsic rest masarit, ¢&/¢¢2) of the test particle (or body)
and the extended curved absolute intrinsic metric spaeefiii ¢t¢t) prescribed
by the moving test particle (or body) solely, in the contektttee metric theory
of absolute intrinsic gravity¢dMAG), at positions outside its body in Fig. 3, does
not alter the curved absolute intrinsic metric spacetitiie ¢€¢t) and the absolute
intrinsic metric tensor prescribed by gravity at such posg# at any instant during
the motion of the test particle.

It is only the little interval of absolute intrinsic metripacetime d¢p, pcdept)
containing the absolute intrinsic rest masgghg, ¢&/¢¢%) of the test particle (or
body), on top of the inclined absolute intrinsitine spacetimeg(, ¢éy¢f~), which
when superposed on the curved absolute intrinsic metriesipae ¢p, ¢cof), causes
a change in the absolute intrinsic metric tensor due to tyraalely. It is within
the little interval of absolute intrinsic metric spacetirtap, ¢&dgt) containing
(¢1o, 9&/¢C?) that there is unified metric theory of absolute intrinsictimo and
metric theory of absolute intrinsic gravity.

Now system (59) simplifies as follows in the absence of exlegnavitational
field,

I’ \"/2
Z(Efg%a - %g; Gh12= =01 <th  (60)
Equation (60) is correct strictly at the surface of the mgvgravitational field
source (or test particle), because the absolute intrinsidtgtional speedz}\7y(¢fp)
= (2G¢r“rba/¢fp¢f:§)l/ 2, has been evaluated there. However it shall be considered to

$Goo = —¢g1; =1 -
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be valid at the interior of the test particle for now, unti¢timterior absolute intrinsic
metric tensor shall be derived in an article later in thiswoé.

Thus the components of the absolute intrinsic metric tenaturally contains
both the absolute intrinsic gravitational speed term amdathsolute intrinsic dy-
namical speed of absolute intrinsic motion term within theving gravitational
field source. If an external gravitational field source ot raassMy is located at
radial distance’ from the moving gravitational field source of rest magsand
radiusr, (of mp) at a given instant, then Eq. (60) must be replaced by Eq.f(t9)
N =1 at that instant.

On the other hand, ndfect of motion of the moving gravitational field source
can be felt in the extended spacetime exterior to it at angrgimstant, since there
is nothing in dynamics, (no action-at-a-distance), whiobld make the motion of
a body through a given point in space, at a given instant i tito induce the
absolute intrinsic dynamical speg¥l; of the body in space outside it at that instant,
as mentioned above. The absolute intrinsic dynamical spegaf the absolute
intrinsic rest mass of a moving gravitational field sourcetést particle) cannot
appear directly in the components of the absolute intringtric tensor in regions
exterior to the moving body at any instant. On the other hgnalitational speed
V,(r') and absolute intrinsic gravitational spe@ﬁg(w) are established at every
point in space of radial distaneé up to infinity from the center of a gravitational
field source. Hence only the terrﬁaﬁba/¢fp¢é§ should appear iggoo and¢gi1
for regions outside the moving gravitational field sourcaratinstant. This reduces
Eq.(60) as follows

2G¢oa,
PlogC2
There is yet another argument in support of the union of teeribs of mo-
tion and gravity within a moving gravitational field sourdeparticle or body with
nonzero gravitational mass, which is stationary relatven observer in the ab-
sence of external gravitational field, gives rise to cumatf the ‘two-dimensional’
absolute intrinsic spacetimeg, #ppt) with respect to observers in in spacetime
(=, ct), (no matter how microscopic the curvature), both at itgrior and in all
finite exterior neighborhood of it. Therefore the boundaoydition geometry of
the metric theory of absolute intrinsic motioMAM) of a particle or body with
nonzero gravitational field, (while at rest relative to as@tver in a region of space
devoid of external gravitational field), is not a Euclideaometry purely. This non-

$Goo = —¢g1; = 1— Pg12 = pg21=0; 1" <rp (61)
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Euclidean absolute intrinsic spacetime geometry boundangition for the metric
theory of absolute intrinsic motion of a particle or bodyeda the gravitational field
of the particle or body, has been discussed in [13] and ittstl in Fig. 1(b) of that
article.

By incorporating the non-Euclidean absolute intrinsic cgtene geometry
boundary condition due to the gravitational field of a movgrgvitational field
source into the metric theory of absolute intrinsic motidrthee moving gravita-
tional field source, in the absence of gravitational field tifeo sources, one has
effectively derived a unified metric theory of absolute intitnsiotion and metric
theory of absolute intrinsic gravity with the absolute iimsic metric tensor of Eq.
(60) within the moving gravitational field source.

Having gone through the above preamble, the results of theeding section
shall now be reduced to the case of a gravitational field gomrenotion in a space
devoid of external gravitational field due to any other seuof this section, by
simply letting the terms due to external gravitational figbdirces to vanish in those
results.

Foremost, there is Lorentz invariance on the global flat-ftiarensional space-
time of the theory of gravitational relativity (TGR) withend outside the moving
gravitational field source. Consequently local Lorentmgfarmation and its inverse
take on their usual forms, which for a gravitational field meumoving along the
coordinatex attached to it, are given as follows

i=y(v)(i—vf>;§=g;%=z;%=y(v)(f—c—”2%) (62)
Y

and . 5 5 - .
>?=7(v)(7<+vf);ﬂ=1?;2=2;f=7(v)ﬁ+§7) (63)
Y

where,y (v) = (1 -v?/c2)"%/2, and the &iine coordinates are local coordinates, lim-
ited within the local Lorentz frame in which LLT and its inger are written at a
given instant.

If the coordinatesx,y and Z'are chosen so that the coordinatés "along the
direction of motion of the gravitational field source, whishalso along a radial
direction from the center of the moving field source, therfttlewing time dilation
and length contraction formulae obtain at the surface oftibging field source at
any instant

dt = y,(r")y(v)dt’ = seay,(r') seayqdt’
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2GMga

— 1/2 -1/2 447

= (1- 7 —) (1~ 7) dt (64)
dX = y,(r")ty@)tdx = co&//g(r’)co&//d dx’; dy = dy’; anddz = dzZ’

= (1- ZSSHW%l fﬁmmdy:dy;mMﬁzdz (65)

The relations (54) and (55) for relativistic mass and reistic kinetic energy
of the moving gravitational field source in the context of ddned TGR and SR,
reduce as follows in the present case of no other gravitaltfaeid source apart from
the moving gravitational field source (or test particle)

m = nb(l—zci’l‘;a)(l e (66)
T - méa- - 5oy 67)

Finally the absolute intrinsic line element implied by tremponents of the ab-
solute intrinsic metric tensor of combined metric theorgb$olute intrinsic gravity
and absolute intrinsic motion of system (60), in the caséefiresence of no other
gravitational field source apart from the one moving, is thilo#ing at the surface
of the moving field source

2G¢rrba ¢ d )¢62d¢f _ (1 2G¢rrba ¢ '

d¢§2:(1_¢r¢‘ 6e2 Fodl2  $C2

“tdgp®  (68)
wheremy is the rest mass and, is the classical radius (i.e. the radiusrof) of
the moving gravitational field source (or test particle) dagined earlier. The ab-
solute intrinsic line element (68) is valid strictly at therface of the moving field
source. It shall become modified as follows at radial distanc < rp, within
the moving field source upon deriving interior absoluteifsic metric tensor of
¢MAG U pMAM of a solid spherical body in an article later in this volem

dps* = (1 P32 ¢c2 P32 ¢c2

)d¢A2, r'<rp

(69)
At a point P in space, which is momentarily located at radistashcer’(t’) >
r, from the center of the moving gravitational field sourcerat given instant’,
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we must allowsVy to vanish and replaggf, by ¢f (¢f) in Eqg. (68) to have as follows

A 2G¢moa 2 182 2G¢ﬁba

W8 = (- Sranee T - O Grgtee

We have thus incorporated th&ext of the gravitational field of a moving par-
ticle or body into the Lorentz-Einstein-Minkowski spedialativity (LEM) and the
metric theory of absolute intrinsic motiopl1AM), (in the absence of gravitational
field of any other source). One finds, by Iettin@n’ﬂoa/r@cj = 0, that the results
from Eq. (64) through Eq. (67) become their usual forms in L,EMile the compo-

nents of the absolute intrinsic metric tensor in the linereet (68) and (69) become

the following in the context opMAM purely,

yldgp% )= (70)

. . Vi L
$goo = —¢g11 =1 - —3 ¢g12 = ¢g21 =0 (71)
#C;

Now 2Gmgg/r ;,cg is approximately equal to zero for particles and bodies with
relatively small masses, such as encountered in classieahamics and classical
gravitation. Hence LEM is approximately a valid specialdtyeof relativity for
such particles and bodies. Ideally, howevéBmZ)a/r;ch vanishes for a particle or
body with zero active gravitational rest masg4 = 0), which can hence not give
rise to Newtonian gravitational field, that is, for whielmgg/r’ = O for allr’. One
particle with zero gravitational rest magsg(, = 0), but with non-zero dynamical
rest massrtpem # 0), is the electron. This fact that has been mentionecdttsrdit
points in the previous articles shall be adequately justifigh further development
of the present theory. Thus LEM is correct in a strict senséhfe electron and its
anti-particle.
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