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Preface

These are Nienhuys’ lecture notes on a course given by de Bruijn starting in
the late 1970s and all through the 1980s. We thought it was time to translate
this classic text into English.

This text emphasizes the study of equivalences in enumeration methods.
Nowadays, much research in graph theory and graph algorithms focuses on
tree-decompositions of graphs. In order to obtain efficient algorithms using
these tree-structures, a good understanding of equivalent solutions and equiv-
alent tree-structures are of immense importance. More than other texts in ba-
sic combinatorics, this text emphasizes enumeration techniques and thereby
trains a student to recognize equivalent combinatorial objects. The center of
the book is Pólya’s enumeration theory. This theory is without doubt the best
developed general tool for the enumeration of, e.g., geometrical and chemi-
cal objects that are equivalent under certain group operations. The chapters
on generating functions and permutations slowly build up to the chapter on
Pólya’s theory. The chapter on graphs further emphasizes enumerations of
trees under certain equivalences. The chapter on bipartite graphs turns the
attention in the direction of algorithmics. It emphasizes covering and repre-
sentative problems.

Games are widely studied in mathematics, economics, and computer sci-
ence. The chapter on games is a playful introduction, by various nim games,
into Grundy function theory.

Translating this text brought one of us back into the classroom, listening to
de Bruijn explaining his combinatorics. These notes are true classroom notes;
the teachings of de Bruijn were written down verbatim by Nienhuys and the
blackboard material was copied in numerous figures. This gives the text a
unique, almost magical, speed and clarity which one cannot find in other text
books.

The original text lacked exercises. Besides ‘ordinary’ exercises, we have
tried to incorperate various classic papers here, of e.g., van der Waerden,
Berge, Tutte and, of course, de Bruijn. The student is guided through these
beautiful papers in a step-by-step manner.



VIII Preface

We taught this course in the spring-semester 2010 to undergraduate stu-
dents at the Department of Computer Science and Information Engineering
of National Chung Cheng University, Ming-Shiun, Chia-Yi, Taiwan. The enthu-
siasm with which our students welcomed this course surpassed our wildest
dreams. It proved to us that, without doubt, the preservation of this text will
bring pleasure to many generations of combinatorics students to come.

We are deeply indebted to professor Dan Buehrer for proofreading and
correcting our English translation.
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1

Introduction

N. G. de Bruijn gave a course in Combinatorics during the 1980s at Eindhoven
University of Technology. During the course J. W. Nienhuys took notes. This
is a translation of these notes.

What is combinatorics? You could say that combinatorics is that part of
mathematics that concerns itself with finite systems. But this is not entirely
true: the theory of finite groups, rings and fields does not belong to combina-
torics.

It is with combinatorics as it is with asymptotics. You would like to define
asymptotics as the theory of limits, but large parts of the differential– and
integration-calculus do not belong to asymptotics.

For a long time combinatorics consisted only of puzzles and games. Before
the 1960s there was probably no course in combinatorics.

Combinatorics is mainly about counting. The nice thing about counting
is that you learn something about the thing that you are counting. While
counting, you notice that your knowledge about the subject is not sufficiently
precise, and so counting becomes an educational activity. When two sets have
the same number of elements, you try to understand why that is the case by
establishing some natural bijection between the two.

N. G. de Bruijn recalls that sometime around 1975, he counted the number
of a certain type of logics with three variables. There were a lot of them; some
number with 14 digits. A little while later he saw an article that was about
something completely different, but it concluded that the number of those
objects was exactly that same number with 14 digits. He got curious and read
the article very carefully. Indeed, if you thought deeply about it you could see
that you could interpret those objects also as logics.

Where is combinatorics applied? There is a lot of counting going on in
statistics; and in computer science combinatorics plays a role in considerations
about complexity.

Let’s just start, and do some combinatorics.
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Generating Functions

One very old idea in combinatorics is the idea of the generating function. This
idea can be traced back to Laplace.

Given an infinite sequence

a0, a1, a2, . . .

of numbers, then the generating function of that sequence is the following
series:

A(x) = a0 + a1x + a2x
2 + . . .

The technique of the generating function is that you try to follow the next
flowchart:

knowledge about
the sequence

translation−−−−−−−→
forward

knowledge
about A(x)





y
operations

more knowl-
edge about
the sequence.

translation←−−−−−−−
backwards

more knowledge
about A(x)

This flowchart is a bit like that of the Laplace integral

F(x) =

∫∞

0

extf(t)dt.

The analogous flowchart is:
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Differential equa-
tion for f

Laplace−−−−−−−−−−→
transformation

Algebraic equation
for F





y

solve algebraic

equation

solution of differ-
ential equation
for f.

transformation←−−−−−−−−−−
backwards

Solution of al-
gebraic equa-
tion for F

Remark 2.1. Besides a0 + a1x + a2x
2 + . . . people also consider

a0

0!
+

a1

1!
x +

a2

2!
x2 + . . .

but we won’t do that.

Notation.

Due to the confusion caused by N. Bourbaki about the natural numbers, we
feel obliged to define:

N0 = {0, 1, 2, . . . } and

N1 = {1, 2, 3, . . . }.

Example 2.2. The Fibonacci sequence is defined as follows:

a0 = 1; a1 = 1; and

an+1 = an + an−1 for n ∈ N1.

The generating function for the Fibonacci sequence is:

A(x) = 1 + x + 2x2 + 3x3 + 5x4 + 8x5 + 13x6 + . . . .

After a bit of puzzling we find, based on the recurrence relation of the coeffi-
cients:

x(x + 1)A(x) = A(x) − 1

and so

A(x) =
−1

−1 + x + x2
.

Splitting this fraction gives:

A(x) = (
1

x − α1
−

1

x − α2
)

−1

α1 − α2

where α1 and α2 are the roots of x2 + x − 1.
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When we write these fractions again as a power series and collect terms,
we find:

an =
( 1+

√
5

2
)n+1 − ( 1−

√
5

2
)n+1

√
5

.

We can defend this hocus-pocus in three ways:

1. As a heuristic. We get a result – it does not matter how we got that – and
we check it afterward, in this case for example by mathematical induction.

2. Via the theory of convergent power series. We look at A as an analytic
function, defined in some small neighborhood of zero in C. This justifies
our calculations with A as if it is a function.
The disadvantage of this method is that we need to examine the conver-
gence. We have to show that A(x) has some positive radius of conver-
gence. In this case this is not a big problem:

∀n∈N0
|an| 6 2n

is easy to prove by induction, from which it then follows that the radius
of convergence is > 1

2
.

3. By developing the theory of formal power series. This can be done for-
mally and exactly, but it is rather boring to read.1 Of course, nothing new
or surprising turns up in a proof for something like that.

Overview of the theory of formal power series.

We will give the theory for power series with complex coefficients, but with
some minor adjustments it also works in rings.

You have to look at a power series as a polynomial with possible infinite
degree. If you really want to do it nicely, then the sequence that corresponds
with the power series is the power series itself; when you think about it in this
way, then the power series is just a mapping

N0 → C, n → an.

Addition is defined as usual. Let

A(x) = a0 + a1x + a2x
2 + . . .

B(x) = b0 + b1x + b2x
2 + . . .

Then
(A + B)(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x

2 + . . .

Multiplication is defined by the so-called Cauchy product

1 W. Tutte, On elementary calculus and the good formula, Journal of Combinatorial

Theory, Series (B) 18, (1975), pp. 97–137.
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(AB)(x) = (a0b0) + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x
2 + . . .

The coefficient of xn is
∑n

j=0 ajbn−j. If b0 6= 0, then
A(x)

B(x)
is also defined. If

b0 = 0 then A(B(x)) is also defined and we can even determine a C(x) such
that C(B(x)) = x.

We can differentiate power series in a formal way.
We can define, under certain conditions, infinite series and products of

power series.

Remark 2.3. The idea is to allow some (possibly infinite) operation if the com-
putation of every coefficient takes only finitely many non-trivial steps. A trivial
step is the addition of zero, multiplication by 0, or multiplication by 1.

Consider for example,

A(B(x)) = a0 + a1B(x) + a2(B(x))2 + a3(B(x))3 + . . .

When b0 6= 0, then every term an(B(x))n has a nonzero constant term, and
collecting those terms gives a constant term:

a0 + a1b0 + a2b
2
0 + . . .

This is the kind of infinite operation that we do not allow.
If, for example, for k ∈ N0, Ak(x) is a power series starting with akxk+. . .,

then we can define
∑

k>0 Ak(x): for the kth term we only have to sum up k+1
terms.

Let’s look at another example.

2.1 Small change

Suppose we have to pay Mrs. Geerts of the university’s cafeteria some enor-
mous sum of money, say 67 cts. (A cozy old-fashioned example with those
cents.) We can only pay with coins of 1, 5, 10, and 25 cents. Of each of these
coins we have plenty (say infinitely many).

We ask ourselves in how many ways we can pay. Rather quickly we figure
out that we need to define which ways to pay are really counted as ‘different.’
Does the order count? Do we put the coins in a circle – or in a square? Pretty
quickly we concede that examples of ways to pay are:

(1) (5) (10) (25)

2 2 3 1
7 2 0 2
7 0 1 2

in other words, a way to pay is completely characterized by its frequency
function:
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f : {1, 5, 10, 25} → N0.

The question is how many frequency functions there are with a total value of
67 cts. The total value of a frequency function f is

1 × f(1) + 5 × f(5) + 10 × f(10) + 25 × f(25).

Solution.

We are not doing this systematically, yet. The answer is the coefficient of x67

in
(1 + x + x2 + x3 + . . .)×
(1 + x5 + x10 + x15 + . . .)×
(1 + x10 + x20 + x30 + . . .)×
(1 + x25 + x50 + x75 + . . .)

which is 87.
If we write CE for “the coefficient of E,” then our answer could be written

as:

Cx67

1

(1 − x)(1 − x5)(1 − x10)(1 − x25)
.

In this way we can also find other coefficients, or determine, if we like, the
asymptotics of Cxn for n → ∞.

You can see that the solution is correct because we can find the coefficient
of x67 in the product by working out the multiplication and collecting the
terms. Before collecting the terms you have a lot of terms, all with coefficient
1. Every term corresponds to choosing a term from the first line, a term in
the second line, one from the third line, and one from the fourth line. For
example, one of the terms is x2x10x30x25. This corresponds to the first line
that we put in the little table above. Every term in the product corresponds to
a way to pay.

2.2 A summation formula

We guess that you are familiar with the following notation:

|S| is the number of elements of S.

If R and D are sets, and D 6= ∅, then we denote the collection of mappings
D → R by RD. The formula |RD| = |R||D| is a nice mnemonic to remember the
structure of the formula RD.
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Theorem 2.4. Let K be a commutative ring, and let D and R be sets, and let

φ : D × R → K be a mapping. Then

∑

f∈RD

∏

d∈D

φ(d, f(d)) =
∏

d∈D

∑

r∈R

φ(d, r).

Proof. It’s pretty obvious when you look at it for a second, but let’s just pretend
that we ‘prove’ it. We write n = |D|. Number the elements of D, say d1, . . . , dn.
The product

∏
d∈D φ(d, f(d)) is

φ(d1, f(d1))φ(d2, f(d2)) . . . φ(dn, f(dn)). (2.1)

For every n-tuple (r1, . . . , rn) ∈ Rn there is exactly one f ∈ RD with f(d1) =

r1, f(d2) = r2, . . . , f(dn) = rn. For this f, equation 2.1 becomes:

φ(d1, r1) . . . φ(dn, rn). (2.2)

Instead of summing over RD, we sum over Rn and we do this in a multiple
summation:

∑

f∈RD

∏

d∈D

φ(d, f(d)) =

=
∑

r1∈R

. . .
∑

rn∈R

n∏

i=1

φ(di, ri) =

=
∑

r1∈R

φ(d1, r1)
∑

r2∈R

. . .
∑

rn∈R

n∏

i=2

φ(di, ri) =

=
∑

r1∈R

φ(d1, r1)
∑

r2∈R

φ(d2, r2) . . .
∑

rn∈R

φ(dn, rn).

The r1, . . . , rn in the formulas above are bound variables (dummies), and we
can write as well:

=
∑

r∈R

φ(d1, r)
∑

r∈R

φ(d2, r) . . .
∑

r∈R

φ(dn, r) =

=

n∏

i=1

∑

r∈R

φ(di, r) =
∏

d∈D

∑

r∈R

φ(d, r).

⊓⊔

As an application we can let K be the ring of formal power series over Z,
D = {1, 5, 10, 25}, and R = N0, φ(d, r) = xdr. Then

∏

d∈D

φ(d, f(d)) = x(total value of f).
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Let us now consider a special case: assume that the cafeteria only accepts
payments with 5-coins in even numbers, for some reason. Or more generally,
with every type of coin there is a set Sd of “allowed” numbers. Define

φ(d, r) = xcdr × ν(r ∈ Sd)

where cd is the “weight” of d and

ν(statement) =

{
0 if the statement is false

1 if the statement is true.

Furthermore, if we now define

C = { f ∈ RD | ∀d∈D f(d) ∈ Sd }

then we have the following theorem.

Theorem 2.5. ∑

f∈C

x
∑

d∈D cdf(d) =
∏

d∈D

∑

r∈Sd

xcdr.

Proof. Just notice that

∑

f∈C

x
∑

d∈D cdf(d) =

=
∑

f∈C

∏

d∈D

xcdf(d) =

=
∑

f∈RD

∏

d∈D

xcdf(d)ν(f(d) ∈ Sd)

=
∑

f∈RD

∏

d∈D

φ(d, f(d)) =

=
∏

d∈D

∑

r∈R

φ(d, r) =

=
∏

d∈D

∑

r∈R

xcdrν(r ∈ Sd) =
∏

d∈D

∑

r∈Sd

xcdr.

⊓⊔

Thus the number of ways we can pay the cafeteria is

Cx67 (1 + x + x2 + . . .) ×
(1 + x10 + x20 + . . .) ×
(1 + x10 + x20 + . . .) ×
(1 + x25 + x50 + . . .) = 47.
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Example 2.6. Assume we have coins of 1, 2, 4, 8, and 16 cents. For pay-
ments we are allowed to use only one coin of each type. Thus we have
D = {1, 2, 4, 8, 16}, c1 = 1, c2 = 2, etc., and Sd = {0, 1} for all d. Then
the question is, what is

Cxk (1 + x) × (1 + x2) × . . . × (1 + x16).

If we work this out, we see that it is

Cxk (1 + x + x2 + . . . + x31).

In other words, there is exactly one way to pay every sum of value 31 cents or
less, and more cannot be paid at all. By the way, note that

(1 + x) × (1 + x2) × . . . × (1 + x16) =

=
1 − x2

1 − x
× 1 − x4

1 − x2
× . . . × 1 − x32

1 − x16
=

1 − x32

1 − x
.

If we have exactly one coin of every power of two, we get

(1 + x) × (1 + x2) × . . . =
1 − x2

1 − x
× 1 − x4

1 − x2
× 1 − x8

1 − x4
× . . . =

1

1 − x

in other words, every amount can be paid in exactly one way. The connection
with the binary number system is clear.

Analogously, we can work with coins of 1, 10, 100, 1000, etc. Let

Sd = {0, 1, . . . , 9}.

In that case we get

(1 + x+ . . . + x9)× (1 + x10 + . . . + x90)× (1 + x100 + . . . + x900)× . . . =
1

1 − x
.

So we see that every amount can be paid in exactly one way; there is exactly
one way to write any number in the decimal number system.

Example 2.7. We ask ourselves in how many ways we can write a number n

like
n = ǫ1 + ǫ2 + . . . + ǫk, (2.3)

where k is arbitrary and ǫi ∈ {1, 2} for all i. First we need to figure out, again,
exactly what we mean by a split of n like that. In this case, the order counts.

For example 3 =






1 + 1 + 1
1 + 2
2 + 1

4 =






1 + 1 + 1 + 1
2 + 1 + 1
1 + 2 + 1
1 + 1 + 2
2 + 2.
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We cannot do this at once, but we need to analyze first how many ways
there are to split n in exactly k summands. For k summands you find the
following generating function

(x + x2) × (x + x2) × . . . × (x + x2)

with k factors, and so we find the following generating function for the origi-
nal problem:

∞∑

k=0

(x + x2)k =
1

1 − x − x2
.

So the answer is

Cxn

1

1 − x − x2
.

But that’s a surprise! That is our old friend the nth Fibonacci number! We
should try to find a recursive relation for Mn, the number of ways to split n,
as in Equation 2.3.

Obviously, M1 = 1, since there is only one way to split 1. And M2 = 2,
since we can split 2 either as 1 + 1 or as 2. Now, a split of n either starts with
a 1 or with a 2. Thus for n there are Mn−1 splits that start with 1, and that is
followed by a split of n − 1, and there are Mn−2 splits that start with a 2 and
that is followed by a split of n − 2. So we get that Mn = Mn−1 + Mn−2 for
n > 3, and this is exactly the recursive definition of the Fibonacci sequence.

Remark 2.8. With some restrictions Theorem 2.5 also holds for infinite D.
Consider D = N0. The sum ∑

d∈D

cdf(d)

in the exponent of x on the lefthand side has to be essentially finite. So we
need to require that 0 ∈ Sd if d is large enough.

If we write ∑

r∈Sd

xcdr = 1 + xkd · gr,d(x)

for some function gr,d, then the infinite product on the righthand side is well-
defined as long as

lim
d→∞

kd = ∞.

If these two requirements are satisfied, Theorem 2.5 also holds for D = N0.

2.3 Multisets

Recapitulation.

We have seen the following interesting theorem. Let
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C = { f ∈ ND
0 | ∀d∈D f(d) ∈ Sd }

and let c : D → Z (or some other ring). Then

∑

f∈C

x
∑

d∈D cdf(d) =
∏

d∈D

∑

r∈Sd

xcdr.

We proved that by writing down the factors of the righthand side below each
other. Every way to get a term of the product corresponds with a summand of
the lefthand side. In this section we look at some more examples.

Example 2.9 (Multisets). Let D = {a, b, c, d, e}. (This is a bit confusing, be-
cause a, b, c, etc. are usually names of variables, and not the elements of sets
itself.)

A map D → N0 can be seen as a multiset: a multiset is, intuitively, a set
in which every element has a multiplicity. For δ ∈ D, and a multiset f : D →
N0, we call f(δ) the multiplicity, or the frequency of δ in f. The sum of all
frequencies is called the weight of f.2

For example, we can write (aaa, bb, d) for a multiset with frequencies 3,
2, 0, 1, and 0 respectively. The total weight is 6.

Question:

What is the number of multisets with weight n?

We use the formula. We have D = {a, b, c, d, e}, Sδ = N0, cδ = 1 for all
δ ∈ D. Then the weight of a multiset f is:

∑

δ∈D

cδf(δ).

We chose to write δ instead of d in order to avoid confusion with the set-
element. And the answer to our question is, according to the theorem:

Cxn (1 + x + x2 + . . .)|D|.

In case the original set D has k elements, the answer is

Cxn (1 + x + x2 + . . .)k =

Cxn (1 − x)−k =

(

−k

n

)

(−1)n =

(

n + k − 1

n

)

=

(

n + k − 1

k − 1

)

,

and this is a result that can be traced back to Euler.

Could we have detected that in an easier way? Well, we could encode the
multiset (aaa, bb, d) in the example above like

2 By the way, the word “multiset” was coined by N. G. de Bruijn back in the 1970s; at

least that’s what D. Knuth says about it.
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a | | | b | | c d | e

and since there is a fixed order of letters, we can just as well write this as

· | | | · | | · · | ·

Apart from the first dot, there are 10 positions (actually n + k − 1 positions),
and for a multiset with 6 elements (n elements) we can choose 6 bars out of
those 10 positions in an arbitrary way.

Let’s look at another example.

2.4 The weighing problem

Suppose we have scales with two pans.

6

Fig. 2.1. Scales with two pans

What is the best way to choose a box with weights? A classical way to do
that is to choose weights of 1, 2, 2, 5, 10, 20, 20, 50 etc. units. Swiss money is
still organized in that way! But according to Bachet the best way to do it is to
choose weights that are powers of 3.

Take for example a box with weights of 1, 3, 9, and 27 units. Put all the
weights on the right pan. A weight of G units can be taken off the scales or
moved from the right pan to the left pan. The difference in weight on the left
pan minus the weight on the right pan then increases by either G or 2G. The
total increase is the sum of all these individual increases.

6

¥ ¥
¥

ª
®

Fig. 2.2. Moving weights

We now have D = {0, 1, 2, 3}, Sd = {0, 3d, 2 · 3d}, for d ∈ D, and cd = 1
for all d ∈ D. For an admissible f the sum

∑
d∈D cdf(d) is exactly the total

increase. Our formula gives the number of ways to have an increase of n:
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Cxn (1 + x + x2) × (1 + x3 + x6) × (1 + x9 + x18) × (1 + x27 + x54) =

= Cxn

1 − x3

1 − x
× 1 − x9

1 − x3
× 1 − x27

1 − x9
× 1 − x81

1 − x27
=

= Cxn

1 − x81

1 − x
= Cxn (1 + x + x2 · · · + x80).

In other words, every increase from 0 to 80 can be realized in exactly one way.

Remark 2.10. We could have obtained the same answer by Sd = {0, 1, 2} and
cd = 3d for all d. In that case the cd’s are “real weights.”

Remark 2.11. One other way to get the answer is to put the weights in either
the left pan or in the right pan, starting with both pans empty. Then you get

(x−1 + 1 + x) × (x−3 + 1 + x3) × (x−9 + 1 + x9) × (x−27 + 1 + x27) =

x−40 + x−39 + . . . + 1 + x + . . . + x39 + x40.

The disadvantage is that we then have to deal with formal power series with
finitely many negative powers, i.e., with formal Laurent series, and we haven’t
defined those properly. But if you get the idea of the formal power series in
this kind of counting problems, then that is not such a big problem.

2.5 Partitions of numbers

Remark 2.12. Elsewhere we will consider “partitions of a set.” A partition of a
set S is an element a ∈ P(P(S)) such that

1) ∀x∈a x 6= ∅,
2) ∀x∈a∀y∈a x = y ∨ x ∩ y = ∅, and
3) S = ∪x∈ax.

Here we discuss a somewhat similar idea, namely the partition of a number.

A partition of a number n > 0 is a way to write n as the sum of numbers
that are 6= 0. For example, the partitions of 5 are:

5 =






5
1 + 4
2 + 3
1 + 1 + 3
1 + 2 + 2
1 + 1 + 1 + 2
1 + 1 + 1 + 1 + 1

ordered according to nondecreasing summands. The ordering does not mat-
ter.

It looks a bit like what we did with multisets but with a different “weight.”
In our formula we now have
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1. D = N1,
2. Sd = R = N0 for all d ∈ D, and
3. cd = d for all d ∈ D.

A partition of n is a function f : N1 → N0 such that

n =

∞∑

d=1

df(d).

We find now that p(n), the number of partitions of n, is

p(n) = Cxn (1 + x + x2 + . . .)(1 + x2 + x4 + . . .)(1 + x3 + x6 + . . .) . . .

= Cxn

1

(1 − x)(1 − x2)(1 − x3) . . .

For example, the partition 5 = 1 + 1 + 3 corresponds to a term x5 that you get
by multiplying x2 from the first factor, 1 from the second factor, x3 from the
third factor, and 1’s from all other factors.

Some variations on the same theme.

We are interested in partitions into odd parts. For example, 7 can be parti-
tioned into

7 =






7
1 + 1 + 5
1 + 1 + 1 + 1 + 3
1 + 3 + 3
1 + 1 + 1 + 1 + 1 + 1 + 1

if only odd summands can be used.
In that case we find:

∞∑

n=0

q(n)xn =
1

1 − x
· 1

1 − x3
· 1

1 − x5
· . . .

Or, we could be interested in r(n), the number of partitions of n in different

parts. Then we have that Sd = {0, 1} for all d ∈ D, and the rest the same as
before, and then we find

∞∑

n=0

r(n)xn = (1 + x)(1 + x2)(1 + x3) . . . =

1 − x2

1 − x
· 1 − x4

1 − x2
· 1 − x6

1 − x3
· . . .

All factors in the numerator and denominator of the type 1 − x2k cancel, and
surprisingly, we find that
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r(n) = q(n).

For example, 7 has also exactly 5 partitions without repetitions:

7; 6 + 1; 5 + 2; 3 + 4; and 1 + 2 + 4.

A combinatorial explanation of this phenomenon is the following. Each
summand 2mk with odd k in a partition without repetitions corresponds to
2m summands with odd k. In the case of 7 we get:

7; (3+3)+1; 5+(1+1); 3+(1+1+1+1); 1+(1+1)+(1+1+1+1).

This correspondence is evidently a bijection; we leave it as an exercise to
check the other direction.

For more examples we refer to Pólya and Szegö.3

Ordered partitions.

3 =






3
2 + 1
1 + 2
1 + 1 + 1

4 =






4
3 + 1
1 + 3
2 + 2
2 + 1 + 1
1 + 2 + 1
1 + 1 + 2
1 + 1 + 1 + 1.

To deal with these we first look at the generating function of the number
of ordered partitions with k summands. This is of course

(x + x2 + x3 + . . .)k =

(

x

1 − x

)k

.

Summation over k gives

x

1 − 2x
= x + 2x2 + 4x3 + 8x4 + . . . .

In other words, the number of ordered partitions of n is 2n−1. This follows
easily by induction, and a combinatorial argument goes as follows. Here are
the numbers 1 up to n:

1, 2, 3 | 4, 5, 6, 7 | . . . | n − 2, n − 1 | n

An ordered partition corresponds to a way to put bars between numbers. For
example, the way illustrated above corresponds to the partition

3 G. Pólya und G. Szëgo, [Erster Abschnitt, 1. Kapitel, §1, Aufgaben 1–31.] Aufgaben

und Lehrsätze aus der Analysis I, Springer-Verlag, Heidelberger Taschenbücher,

1925.



2.6 Notes 17

n = 3 + 4 + . . . + 2 + 1.

Every ordered partition corresponds to the sequence of the number of ele-
ments between consecutive bars. There are n − 1 possible positions for the
bars.

In this way we can interpret many combinatorial identities. There are lots
of them. See for example Riordan’s book [38].

One way to derive combinatorial identities is by means of substitution. Let
f be a generating function which is a polynomial. Obviously, we have

∞∑

k=0

Cxk f(x) = f(1).

For example, f(x) = (1 + x)n is the generating function for the number of
ways to choose k elements from a set of n elements. This gives:

∞∑

k=0

(

n

k

)

= 2n.

Another way is by means of combinatorial interpretation. The following
formula

(

n + m

k

)

=

k∑

j=0

(

m

j

)(

n

k − j

)

can be understood as follows. From a set of n red and m white marbles, we
choose k. The number of different possibilities is to choose j white marbles
and k − j red marbles, summed over j.

2.6 Notes

1. The article of de Bruijn that counts the number of different logics is:
N.G. de Bruijn, Exact finite models for minimal propositional calculus over
a finite alphabet. Technical report Eindhoven University T.H. 75, Wsk 02,
1975.
The number of equivalence classes of formulas with letters a, b, and c, ⇒
and ∧ is 623.662.965.552.330. The title of the other article is
Piotr S. Krystek, On the free relatively pseudo complemented semi-lattice
with three generators, Report on Mathematical Logic 9 (1977), pp. 31–38.

2. Pierre Simon Laplace (1749–1827), author of Traité de mécanique céleste
(1796), and Théorie analytique des probabilités (1812), and many other
publications. The generating functions are in the Théorie.
Well-known sayings of Laplace’s were: “Il est aisé à voir” when he left out
a lengthy proof; his last words “What we know is not so much; what we do
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not know is immense;” and his remark to Napoleon “Sire, I had no need
of that hypothesis,” in answer to Napoleon’s remark: “M. Laplace, they tell
me that you have written this large book on the system of the universe,
and have never even mentioned its Creator.”

3. Fibonacci (Leonardo of Pisa, ca 1180–1250), describes in his “Liber Abaci”
(1202) the problem of the total rabbit population. When you start with
one pair of rabbits, that every other month produces two young rabbits,
but that starts producing only after 4 months, then the number of pairs
after every other month forms exactly the Fibonacci sequence. By the way,
François Edouard Anatole Lucas (1842–1891) first called it the Fibonacci
sequence.

4. Claude Gaspard Bachet de Méziriac (1581–1638). Problèmes plaisans et
délectables qui se font par les nombres, 1612 (enlarged edition in 1624).
Bachet observed that apparently every positive number can be expressed
as a sum of at most four squares; he said that he checked it for more than
300 numbers but couldn’t prove it. Lagrange proved it much later.

2.7 Problems

2.1. We want to dissect a convex (n + 2)-sided polygon into triangles by
connecting points with non-intersecting diagonals. Let Dn be the number of
possible dissections. Let D0 = 1. The following table gives the first few values:

n 0 1 2 3 4 5 6 7 8 9 10
Dn 1 1 2 5 14 42 132 429 1430 4862 16796

(a) Prove that

Dn+1 = D0Dn + D1Dn−1 + . . . + DkDn−k + . . . + DnD0.

(b) Find a closed form for the generating function

D(x) = D0 + D1x + D2x
2 + D3x

3 + . . .

(c) Prove that

Dn =
1

n + 1

(

2n

n

)

.

2.2. Assume that
∞∑

n=0

anxn = exp

(

∞∑

k=1

bkxk

)

.

Then a0 = 1 and

an =
1

n

n∑

k=1

kbkan−k for n > 1.
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2.3. Consider the Fibonacci sequence

a0 = 1; a1 = 1; and an+1 = an + an−1 for n ∈ N1.

(a) Show that
(

1 1
1 0

)2

=

(

a2 a1

a1 a0

)

,

(b) and prove by induction that:

(

1 1
1 0

)n+1

=

(

an+1 an

an an−1

)

.

(c) Compare the determinants to show that

an+1an−1 − a2
n = (−1)n+1 for n ∈ N1.

2.4. Let un be the number of ways you can climb a staircase with n steps if
at each point you can either take one or two steps. Let u0 = 1. Show that
un is the nth Fibonacci number. Compare this with the surprise we got in
Example 2.7.

2.5 (Riordan4). Let a0 = 1, b0 = 0, and let

an =

n∑

k=0

(

n + k

2k

)

and bn =

n−1∑

k=0

(

n + k

2k + 1

)

, for n = 1, 2, . . ..

(a) Show that

an+1 = an + bn+1 and bn+1 = an + bn for n = 0, 1, . . ..

(b) The first few values are: n an bn

0 1 0
1 2 1
2 5 3
3 13 8
4 34 21
5 89 55

(c) Note that

an = F2n+1 and bn = F2n, for n = 0, 1, . . .

where Fn is the nth Fibonacci number with F0 = 0, F1 = 1, etc.

4 J. Riordan, Generating functions. In (E. F. Beckenbach ed.) Applied Combinatorial

Mathematics, John Wiley & Sons 1964.
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(d) Let

F(x) =

∞∑

n=0

Fnxn =
x

1 − x − x2

and let

a(x) =

∞∑

n=0

anxn and b(x) =

∞∑

n=0

bnxn.

Then

a(x2) =
1

2x
(F(x) − F(−x)) =

1 − x2

1 − 3x2 + x4

b(x2) =
1

2
(F(x) + F(−x)) =

x2

1 − 3x2 + x4
.

(e) Deduce also

Fn+1 =

⌊n/2⌋∑

k=0

(

n − k

k

)

for n > 0.

2.6. The Catalan numbers can be defined by the following recurrence:

c0 = 1 and cn+1 =

n∑

k=0

ckcn−k.

Consider the generating function C(x) =
∑∞

n=0 cnxn.

(a) Prove that

C(x) = 1 + xC2(x) ⇒ C(x) =
1 −

√
1 − 4x

2x
.

(b) Show that this implies

cn =
1

n + 1

(

2n

n

)

.

(c) Compare this with the result of Exercise 2.1.

2.7. Let p(n, k) be the number of partitions of n into exactly k parts. Since

5 =






5
1 + 4
2 + 3
1 + 1 + 3
1 + 2 + 2
1 + 1 + 1 + 2
1 + 1 + 1 + 1 + 1

we have that

p(5, 1) = 1; p(5, 2) = 2; p(5, 3) = 2; p(5, 4) = 1; and p(5, 5) = 1.
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(a) Show that

p(n, 1) = p(n, n) = 1 and

m∑

k=1

p(n, k) = p(n + m, m).

(b) Let (λ1, λ2, . . . , λp) be a partition with λ1 > . . . > λp. A Young diagram (or
Ferrers graph, or Ferrers diagram) of such a partition is an arrangement
of dots, in p left-justified rows with λi dots in the ith row. By considering
the conjugate of such a diagram, prove that p(n, m) is the number of
partitions of n into parts of which the largest is m.

2.8 (de Bruijn5). We want to distribute m counters over three persons P1,
P2, and P3, with the condition that P1 and P2 obtain the same number. So we
need functions f : {P1, P2, P3} → N0 such that f(P1) = f(P2) and such that
f(P1) + f(P2) + f(P3) = m.

Show that the number that we are seeking is

Cxm (1 + x2 + x4 + . . .) · (1 + x + x2 + . . .) =

Cxm

1

(1 − x2)(1 − x)
=

Cxm

1

4
· 1

1 + x
+

1

2
· 1

(1 − x)2
+

1

4
· 1

1 − x
=

=
1

2
(m + 1) +

1

4
(1 + (−1)m) .

5 N. G. de Bruijn, Pólya’s theory of counting. In (E. F. Beckenbach ed.) Applied Com-

binatorial Mathematics, Wiley 1964.
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Permutations

To count sheep, you count the legs and then you divide by 4.1

3.1 The shepherd’s principle

Theorem 3.1. Let W and V be two sets and let k ∈ N1. Let f be a surjection

W → V with the following property

∀v∈V |f←(v)| = k.

Then W = k|V |.

The interpretation is that W is the set of legs and V is the set of sheep.

Theorem 3.2. Let W and V be two sets and f : W → V, Then

|f(W)| =
∑

w∈W

1

|f←(f(w))|

Proof.

∑

w∈W

1

|f←(f(w))|
=

∑

v∈f(W)

∑

w∈f←(v)

1

|f←(f(w))|
=

∑

v∈f(W)

∑

w∈f←(v)

1

|f←(v)|
=

∑

v∈f(W)

1 = |f(W)|.

⊓⊔

Example 3.3. Consider a function f : W → V as in this figure. The upper three
points get a weight of 1

3
and the lower two points get a weight of 1

2
. The sum

of all weights in W is now 2, namely the number of elements of f(W).

1 We assume that there are no sheep with 5 legs, nor other irregularities.
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z
-
:

:
:

W V

Fig. 3.1. Example of a function f : W → V

Remark 3.4. The ordinary way to count the number of subsets of k elements
in a set of n elements is also based on the shepherd’s principle: first you count
ordered subsets and then divide by k!.

3.2 Permutations

Example 3.5. Let S = {1, 2, . . . , 7}. We call a bijective mapping π : S → S

a permutation of S. We denote a permutation by writing the image of each
argument under that argument. For example

π :

(

1 2 3 4 5 6 7
6 1 4 3 5 2 7

)

, thus π(1) = 6.

Remark 3.6. In the old days people used to call the image (6, 1, 4, 3, 5, 2, 7)

the permutation, but nowadays a permutation is a mapping.

We could depict the permutation above also as a diagram.

6

7

ª I-6

1

2 6

5

3

4
ª

µ

Fig. 3.2. Diagram of a permutation

A cycle-notation is the following:

(1, 6, 2)(3, 4)(5)(7).

The ordering of the cycles does not matter. Also the starting points of the
cycles does not matter: (1, 6, 2) = (6, 2, 1) = (2, 1, 6).

For any k ∈ N1 we denote the number of cycles of a permutation π by
bk(π). The type of π is the sequence (bk(π))k∈N1

. For example, the type of the
permutation π above is (2, 1, 1, 0, 0, . . .).
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The degree of π is the number of permuted objects, which is
∑

kbk(π).

We introduce an equivalence relation between permutations as follows:

σ1 ∼ σ2 ⇔ ∃π πσ1π
−1 = σ2.

Equivalent permutations have the same type (the same b-vector). The best
way to see this is by looking at an example. Let

σ = (1, 3)(2, 4, 5)(6)(7)

be a permutation and let ρ be an arbitrary permutation of {1, 2, . . . , 7}. Then
σ is equivalent to

τ = (ρ1, ρ3)(ρ2, ρ4, ρ5)ρ6)(ρ7)

Why? Well, just look; τ(ρ4) = ρ5 and

ρσρ−1(ρ4) = ρσ(4) = ρ(5)

etc. So indeed
ρσρ−1 = τ.

We can also see that σ is equivalent to the original π; just take

ρ :

(

1 2 3 4 5 6 7
4 1 3 6 2 5 7

)

In the same way you can show that with any pair of permutations with the
same cycle-pattern, you can find a ρ that makes them equivalent.

Theorem 3.7.

σ1 ∼ σ2 ⇔ the type of σ1 = the type of σ2.

Question.

What is the number of permutations of degree n and of a type (b1, b2, . . .)?

We make use of the shepherd’s principle to answer this question.
The idea is that you think of the type as a pattern of brackets and dots; that

is the cycle notation without the numbers. For the type π above the pattern
looks like

(·, ·, ·)(·, ·)(·)(·)
A permutation of type (b1, b2, . . .) is one sheep. The legs of the sheep are

the ways to write that permutation in the pattern of brackets and dots.
The set of all permutations consist of n! elements. That is the number of

ways to fill in the dots. That fixes the sheep.
Every sheep has
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b1!1b1 · b2!2b2 · b3!3b3 · . . .

legs. Namely, the bk k-cycles occur in an arbitrary order, and there are k

possibilities to start any of the bk k-cycles.
Conclusion: there are

n!
∏∞

k=1 bk!kbk
permutations of type (b1, b2, . . .). (3.1)

Let’s see if it checks.

∑

(b1,b2,...) is a type of degree n

1

b1!1b1b2!2b2 . . .
= 1 and xn = xb1+2b2+...

and so

∞∑

n=0

xn =
∑

(b1,b2,...)

1

b1!

(x

1

)b1

· 1

b2!

(

x2

2

)b2

· . . .

1

1 − x
=

∞∑

b1=0

1

b1!

(x

1

)b1
∞∑

b2=0

1

b2!

(

x2

2

)b2 ∞∑

b3=0

. . .

= ex · e 1
2
x2 · e 1

3
x3 · . . . = e− ln(1−x).

Of course we knew that already, but now we have proven it also for formal
power series. It may seem silly but in the end it is the easiest way to do it.

Remark 3.8. And, anyway, how do you show that you get the series 1 + x +

x2 + . . . by substituting y = x + x2

2
+ x3

3
+ . . . in 1 + y + y2

2!
+ y3

3!
+ . . .? That is

not so easy!

A permutation is even, or odd, whenever
∑∞

k=1 b2k is even or odd.
We count the number of even permutations minus the number of odd

permutations of degree n. Let d(n) be this number. Then we have

∞∑

n=0

d(n)

n!
xn =

∑

(b1,b2,...)

(−1)b2+b4+b6+... xb1+2b2+...

b1!1b1b2!2b2 . . .
=

= similar calculations =

= eln(1+x) = 1 + x.

In other words

d(0) = 1; d(1) = 1; and d(n) = 0 for all n > 1.

Remark 3.9. About d(0) etc. We have taken the type (0, 0, . . .) into consider-
ation and assumed implicitly that there is exactly one permutation of zero
objects. Whether this assumption is correct depends on the definition of a
mapping (is ∅ → ∅ also a mapping?) that we used. Let’s just be satisfied with
the fact that it agrees with the convention that 0! = 1.
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3.3 Stirling numbers

Let us continue with Qk(n), the number of permutations of {1, . . . , n} with k

cycles. The calculations are as follows.

∑

k,n∈N0

Qk(n)

n!
xnyk =

∑

(b1,b2,... ) is a type

xb1+2b2+3b3+...yb1+b2+...

b1!1b1 · b2!2b2 · b3!3b3 · . . .
=

=
∑

(b1,...) a type

∏

j

1

bj!

(

xjy

j

)bj

=

=

∞∑

b1=0

∞∑

b2=0

∞∑

b3=0

. . .
∏

j

1

bj!

(

xjy

j

)bj

=

=
∏

j>1

∞∑

bj=0

1

bj!

(

xjy

j

)bj

=
∏

j>1

exp(
xjy

j
) =

= exp(xy +
x2y

2
+ . . .) = e−y ln(1−x) =

= (1 − x)−y =

∞∑

n=0

(

−y

n

)

(−x)n =

=

∞∑

n=0

y(y + 1)(y + 2) . . . (y + n − 1)

n!
xn.

We now define
S(n, k) = (−1)n+kQk(n).

The numbers S(n, k) are the Stirling numbers of the first kind. Thus

S(n, k) = n! Cyk

(

y

n

)

.

See also the book of Comtet (Chapter 5 and 6) and the book of Riordan.

Now it is easy to find the average number of cycles, given n. We get that
by calculating

∑

k,n∈N0

kQk(n)

n!
xnyk

for y = 1.
This is the same as
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∑

k,n∈N0,k>1

1

n!
kQk(n)xnyk−1





y=1

=

[

d

dy
(1 − x)−y

]

y=1

=

[

− ln(1 − x) · (1 − x)−y
]

y=1
= −

ln(1 − x)

1 − x
=

(x +
1

2
x2 +

1

3
x3 + . . .)(1 + x + x2 + . . .).

The coefficient of xn in this series is 1 + 1
2

+ 1
3

+ . . . + 1
n

.

Intermezzo

You will later appreciate what we do next, although right now, maybe it
doesn’t seem to make much sense.

Consider a permutation of type (b1, b2, . . .). We define a weight, which is
the monomial

xb1

1 xb2

2 xb3

3 . . .

with variables x1, x2, x3, . . .. (NB x0
i = 1 for all i.)

We sum all weights of all permutations, first for fixed n:

∑

b1,b2,···>0
b1+2b2+...=n

n!

b1!1b1b2!2b2 . . .
xb1

1 xb2

2 xb3

3 . . .

and we can also write this as

Cxn n!

∞∑

b1=0

∞∑

b2=0

∞∑

b3=0

. . .
xb1

1 xb2

2 . . .

b1!1b1 · b2!2b2 · b3!3b3 . . .
xb1+2b2+...

which gets rid of the extra condition.
We can calculate this jumble, and we get:

Cxn n!

∞∏

j=1

∞∑

bj=0

x
bj

j xjbj

bj!jbj
= (3.2)

Cxn n!

∞∏

j=1

∞∑

bj=0

1

bj!

(

xjx
j

j

)bj

= (3.3)

Cxn n! exp(
x1x

1
+

x2x
2

2
+

x3x
3

3
+ . . .). (3.4)

We come back to this later.



3.4 Partitions of sets 29

3.4 Partitions of sets

We are going to discuss partitions of sets. Notice that these are not the parti-
tions of numbers that we discussed earlier. In a while we will also talk about
numbered partitions, and these are once more something completely differ-
ent. A set S is cut into pieces. If S is finite, then we consider the type of that

Fig. 3.3. Partition of a set

partition, which is (b1, b2, b3, . . .), where bi is the number of pieces of size i.
For example, the type of the partition illustrated in Figure 3.4 is

Fig. 3.4. Partition of a set into pieces

(2, 1, 0, 1, 0, 0, . . .).

We want to count partitions, and we want to count them per type. Assume
that we want to know how many partitions there are of type (2, 3, 1, 0, 0, 0, . . .)
of a set with 11 elements. Let’s use the idea of the pattern with brackets and
dots:

(·)(·)(··)(··)(··)(· · ·)

Distribute the 11 elements among the dots. You can do that in 11! ways. This
fixes the sheep. The number of ways you can represent the partition in this
pattern is
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2!︸︷︷︸ × 3! (2!)3

︸ ︷︷ ︸
× 1!(3!)1 (# of legs per sheep).

# of ways to

arrange boxes

with one dot.

# of ways to

arrange two

elements in

each of the 3

boxes with 2

dots.

Thus the total number of partitions of 11 elements with type (2, 3, 1, 0, 0, . . .)
is

11!

2!(1!)3 · 3!(2!)3 · 1!(3!)1
= 69300.

In general, with n elements and type (b1, b2, . . .) the number becomes

n!

b1!(1!)b1 · b2!(2!)b2 · b3!(3!)b3 . . .

Note the difference with the formula that we found for the number of permu-
tations of that type.

Let P(n) be the number of partitions of a set with n elements. When we

calculate
∑∞

n=0
P(n)

n!
xn as in Section 3.2 we find for the generating function:

∞∑

n=0

P(n)

n!
xn = exp(

x

1!
+

x2

2!
. . .) = exp(ex − 1).

Of course there is the usual dilemma with the case n = 0: how many partitions
does a set with 0 elements have? Let’s not worry about it.

We can obtain the same result also in another way, namely with recurrence
relations. Let n > 0. Choose a point a ∈ S. That is in some part with j other

a

S

Fig. 3.5. Set S with fixed element a

elements, for some j > 0. We can choose that piece in
(

n−1
j

)

ways, and then

it turns out that
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P(n) =

n−1∑

j=0

(

n − 1

j

)

P(n − 1 − j)

and in case j = n − 1 we should apparently choose P(0) = 1. So

P(n + 1)

n!
xn =

n∑

j=0

P(n − j)

(n − j)!
xn−j xj

j!

⇒
∑

n>0

P(n + 1)

n!
xn = ex

∑

n>0

P(n)
xn

n!
.

If we now let

F(x) =
∑

n>0

P(n)
xn

n!
,

then we obtain

F′(x) = exF(x) which implies F(x) = C exp(ex).

We can determine C by substituting x = 0. We find that P(0) = C exp(e0) =

Ce, and since we chose P(0) = 1 this implies that

F(x) = exp(ex − 1)

as before.

3.5 Arrangements of multisets

We already know what a multiset is: Let S be a set, then a mapping f : S → N0

is a multiset, and we also call f the frequency-function of that multiset. We
now want to formulate in some way or other that the order matters.

Example 3.10. Let S = {a, b, c}. (NB letters are a nuisance as elements of a set.
To get around that you can assume that a 6= b, b 6= c, and a 6= c, and then a,
b, and c can represent either variables or elements, as you like.)

A frequency function is, for example

a b c

↓ ↓ ↓
2 3 1

A word that contains the letters with that frequency is for example

a b a c b b

How many words are there that fit the frequency function f?
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You can use the shepherd’s theorem for counting that. There are 6 letters
(say a1, a2, b1, b2, b3, c1) and these can be ordered in 6! ways into a word. If
we rub away the indices then we get 2!3!1! times the same word. Thus there
are

6!

1! · 2! · 3!
= 60

words that fit the frequency-function f.

This easily generalizes. Let D be an alphabet and let n ∈ N1. A word over D is
a mapping φ : {1, . . . , n} → D. The type of a word, or the frequency-function,
is f : D → N0 defined by

∀d∈D f(d) = |φ←(d)|

{1, . . . , n}

φº 6O

d

3

f

M

Fig. 3.6. Mappings f and φ

We now have the following theorem which, by itself is not of major impor-
tance, but which is funny because it looks the same as Theorem 2.5. Let

C = { f ∈ ND
0 | ∀d∈D f(d) ∈ Sd}

and let A(n) be the number of n-letter words with f ∈ C. Then

∞∑

n=0

A(n)

n!
xn =

∏

d∈D

∑

r∈Sd

xr

r!
.

To see that this is correct, simply observe that when d1, d2, and d3 have
terms xr1

r1!
, xr2

r2!
, and xr3

r3!
in the sum, then the term xr1

r1!
· xr2

r2!
· xr3

r3!
in the product

corresponds with a word of r1 + r2 + r3 letters, namely r1 d1’s, r2 d2’s, and r3

d3’s.

Let’s do one more example.
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3.6 Numbered partitions

The example is a bit fabricated; we don’t look at ordinary partitions, but at
partitions in which the pieces are numbered.

1

2
3

4

Fig. 3.7. Set S with a numbered partition

We will look at partitions into k pieces, numbered 1 up to k. Furthermore,
we assume that the set has n elements.

We look at the n elements as the positions in a word, and we fill the word
with letters 1, . . . , k. For example

2 1 2 1 3 2 4 3 4 4
• • • • • • • • • •

The “letter” indicates the piece in which the element is contained. We let

D = {1, . . . , k} and Sd = N1

and we find (we leave it as an exercise to figure out R, f, and C in the formula
of Theorem 2.5):

∞∑

n=0

Ak(n)

n!
xn =

(

∑

r∈N1

xr

r!

)k

= (ex − 1)
k

.

Thus the total number of numbered partitions of {1, . . . , n} is just what we get
when we sum this on k, namely:

∞∑

n=0

A(n)

n!
xn =

∞∑

k=1

(ex − 1)
k

=
1

2 − ex
− 1

that is, if we take A(0) = 0; if A(0) = 1, then the term -1 vanishes.

We can also get this with a completely different approach.
Let the piece with the highest number have j elements, j > 1. There are

(

n
j

)

ways to choose this piece, and there are A(n − j) ways to partition the

rest of the set in numbered pieces. So (summing over j using the convention
that A(0) = 1):
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A(n) =

n∑

j=1

A(n − j)

(

n

j

)

⇒

2
A(n)

n!
=

n∑

j=0

A(n − j)

(n − j)!j!
, n > 1 ⇒

2

∞∑

n=0

A(n)

n!
xn − 1 =

∞∑

n=0

n∑

j=0

A(n − j)

(n − j)!
xn−j xj

j!






The term with

n = 0 is now also

OK: 2A(0)x0−1 =
A(0)

0!
x0 x0

0!
.

If we now let F(x) =
∑∞

n=0
A(n)

n!
xn, then we get

F(x)ex = 2F(x) − 1 and so F(x) =
1

2 − ex

which is the same formula as above.

We close this topic.

3.7 Problems

3.1. Consider an n×n-grid of points labeled (i, j) with 0 6 i, j 6 n. Pairs (i, j)
and (k, ℓ) with {i, j} 6= {k, ℓ} are connected by a line if and only if either

1. i = k and |j − ℓ| = 1, or
2. j = ℓ and |i − k| = 1.

Suppose you want to walk in this grid from point (0, 0) to point (n, n) along
the lines, where you only follow lines that either go upwards or to the right.
How many different routes are there?

3.2. A derangement is a permutation with b1 = 0; thus it has no 1-cycles. Let
d(n) be the number of derangements of {1, . . . , n}.

(a) Show that

n! =

n∑

k=0

(

n

k

)

d(n − k) =

n∑

k=0

(

n

k

)

d(k).

(b) Let

F(x) =
1

1 − x
=

∞∑

n=0

xn and G(x) =

∞∑

n=0

d(n)

n!
xn.

Prove that F(x) = exG(x), thus

G(x) =
e−x

1 − x
.
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(c) By the way, you can derive the same result also directly, from Formula 3.1.
It goes like this:

G(x) =
∑

b2,...

x2b2 + x3b3 + . . .

b2!2b2b3!3b3 . . .

=

∞∑

b2=0

∞∑

b3=0

. . .
∏

j>1

1

bj!

(

xj

j

)bj

=
∏

j>1

∞∑

bj=0

1

bj!

(

xj

j

)bj

=
∏

j>1

exp

(

xj

j

)

= exp

(

x2

2
+

x3

3
+ . . .

)

= e−x exp(− ln(1 − x))

=
e−x

1 − x
.

(d) Show that this implies

d(n)

n!
=

n∑

k=0

(−1)k

k!
.

3.3. The Stirling numbers of the second kind, S2(n, k) are the number of
partitions of an n-set with k nonempty subsets.

(a) Prove that

S2(n, 2) = 2n−1 − 1 and S2(n, n − 1) =

(

n

2

)

.

(b) Prove that

S2(n, k) = kS2(n − 1, k) + S2(n − 1, k − 1).

3.4. Show that

an =

n∑

k=0

(

n

k

)

bk ⇒ bn =

n∑

k=0

(

n

k

)

(−1)n−kak.

(a) The Stirling number of the second kind, S2(z, k) is the number of partition
of a z-set into k nonempty subsets. Show that

nz =

n∑

k=0

(

n

k

)

k!S2(z, k) ⇒ n!S2(z, n) =

n∑

k=0

(

n

k

)

(−1)n−kkz.
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(b) Deduce

∞∑

z=0

S2(z, n)
tz

z!
=

∞∑

z=0

tz

z!
· 1

n!

n∑

k=0

(

n

k

)

(−1)n−kkz =

=
1

n!

n∑

k=0

(

n

k

)

(−1)n−ketk =

=
1

n!

(

et − 1
)n

.

3.5. Let p be prime.

(a) Show that
(

p
k

)

is divisible by p for every 0 < k < p.
(b) Show that 2p − 2 is a multiple of p.

3.6. Let P(n) be the number of permutations π of {1, . . . , n} with the property
that π2 = id.

(a) Show that

P(0) = P(1) = 1 and P(n) = P(n − 1) + (n − 1)P(n − 2), for n > 2.

(b) Use Formula 3.1 on page 26 to show that

P(n) = n!
∑

k+2ℓ=n

1

k!ℓ!2ℓ
, for n > 0.

(c) Deduce that the exponential generating function satisfies

∞∑

n=0

P(n)

n!
xn = exp

(

x +
x2

2

)

.

3.7. Prove that

S(n, k) = S(n − 1, k − 1) − (n − 1)S(n − 1, k).

3.8. Suppose we want to paint n houses with k colors such that each house is
painted by a single color and such that each color is used. Find a formula that
expresses in how many ways you can do that.

3.9. Let fn be the number of functions F : {1, . . . , n} → {1, . . . , n} with the
property that if F takes on the value k then F takes on all values ℓ for which
1 6 ℓ 6 k. Let f0 = 1.

(a) If |F←(1)| = k then there are
(

n
k

)

ways to choose F←(1) and the rest of the
function can be defined in fn−k ways. This shows that

fn =

n∑

k=1

(

n

k

)

fn−k. (3.5)
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(b) Recall the number of numbered partitions A(n) of a set with n elements
of Section 3.6, and note that A(n) satisfies the same recurrence 3.5. Find
a combinatorial explanation.

(c) Work out that the exponential generation function

A(x) =

∞∑

n=0

fn

n!
xn

satisfies

A(x) =
1

2 − ex
=

1

2

1

1 − ex/2

=
1

2

∞∑

n=0

(

ex

2

)n

=

∞∑

n=0

1

2n+1

∞∑

k=0

nk

k!
xk.

(d) Thus

fk = k!CxkA(x) =

∞∑

n=0

nk

2n+1
.





4

Pólya theory

How I need a drink, alcoholic of course, after the heavy chapters in-
volving quantum mechanics. (This is George Pólya’s mnemonic for the
first fifteen digits of π; the lengths of the words are the digits.)

The Pólya enumeration theorem is about counting the ways in which a
combinatorial structure can be colored. Pólya’s original motivation was the
counting of molecules of chemical structures.

A simple example is the number of ways in which you can color a cube.
(Nowadays, when you ask a child what a cube is, it will tell you that a cube
consists of 27 little, colored blocks, but we keep things simple.)

4.1 Black and white cubes

Of course, when the cube is fixed in space, then there are 26 ways to color the
6 faces of the cube with two colors. But a cube can be rotated; if we drop it
then we don’t know anymore how it stood before. We want to call colorings
equivalent if they can be transformed into one another by rotations. What are
the equivalence classes for example, of a cube with two colors?

b

b
b

b

b

b

b

b

b

b

Fig. 4.1. Some black and white colored cubes
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1) completely white
2) one black face
3) two black faces, meeting in an edge
4) two black faces, opposite each other
5) three black faces, meeting in a vertex
6) three black faces, in U-shape
7) two white faces, opposite
8) two white faces, meeting
9) one white face

10) completely black.

There are 10 equivalence classes.

Before we go on, here’s some advice on notations of symmetries of geo-
metrical objects. In mechanics material points usually get names, and when
the object moves the names travel with them. In geometry this is not a clever
idea: it’s better to give the points names, and to describe a movement by
giving for each point the name of its image. So the names do not travel.

Let’s number the faces of the cube as in Figure 4.2.

y

5
top

1
front

4
right3

left

2
back

6
bottom

6

-

ª

Fig. 4.2. Cube with numbered faces

A rotation around the vertical axis is described, for example, as follows:

(

1 2 3 4 5 6
4 3 1 2 5 6

)

In the general theory we assume that we have a group G, for example
the group of the cube; i.e., all rotations of the cube that map the cube onto
itself. The group is not abstract, but works on a set D (for example the set of
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vertices, or the set of edges, or the set of faces of the cube), which means that
we have a homomorphism:

π : G → SD such that ∀g1,g2∈G π(g1g
−1
2 ) = πg1(πg2)

−1.

You could also say that π : G → DD such that

∀g1,g2∈G π(g1g2) = πg1πg2 and π(e) = IdD.

That amounts to the same thing. Usually we take π to be injective.

4.2 Cycle index

The cycle index of G and π is the polynomial

PG,π(x1, x2, . . .) =
1

|G|

∑

g∈G

x
b1(π(g))

1 x
b2(π(g))

2 . . .

where (b1(π(g)), b2(π(g)), . . .) is, as usual, the type of π(g).

We will show that the number of ways to color the faces of the cube
black and white is exactly PG,π(2, 2, . . .).

There are of course a few trivialities, such as

PG,π(x, x2, . . .) = x|D|

(which implies PG,π(1, 1, . . .) = 1).

Let’s do an example first. Let us calculate the cycle index of the cube-group
working on the collection of faces:

rotation type number

all rotations over 90◦ are alike (2, 0, 0, 1, 0, . . .) 6
rotations 180◦, axis through center of a face (2, 2, 0, . . .) 3
rotations 120◦, axis through main diagonal (0, 0, 2, . . .) 8
rotations 180◦, axis through middle of edges (0, 3, 0, . . .) 6
identity map (6, 0, 0, . . .) 1

—
These are all 24 elements of the cube-group. 24

Thus the cycle index polynomial is

1

24
(6x2

1x
1
4 + 3x2

1x
2
2 + 8x2

3 + 6x3
2 + x6

1).
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Example 4.1. Check that the cycle index of the group of rotations working on
the edges of the cube is

1

24
(x12

1 + 3x6
2 + 6x3

4 + 6x2
1x

5
2 + 8x4

3).

The number of equivalence classes under black-and-white coloring of the
edges of the cube is

1

24
(4096 + 192 + 48 + 768 + 128) = 218

which we obtain by substituting x1 = x2 = . . . = 2 into the cycle index.

Check that the cycle index of the group of rotations of the cube working
on the points is

1

24
(x8

1 + 9x4
2 + 6x2

4 + 8x2
1x

2
3).

Analogously, we can calculate the cycle index polynomial PS3,id:

PS3,id = 1
6
( x3

1 + 2x1
3 + 3x1x2).

1 identity 2 3-cycles 3 2-cycles

Thus there are 4 ways to color a set with three elements with two colors
when all elements are similar; either all elements are black, or all elements
are white, or one is black, or one is white.

4.3 Cauchy-Frobenius lemma

We first derive a lemma. This lemma used to be named after Burnside who
wrote it down in a book in 1910.1 Later, people2 discovered that the lemma
was already known to Cauchy3 and Frobenius.4

The lemma is about a group that works on something. We make a distinc-
tion between the group G and the effect that its elements have on a set D,
namely by defining:

1 W. Burnside, Theory of groups of finite order, Cambridge University Press, 1897 (first

edition; second edition 1911).
2 N. G. de Bruijn, A note on the Cauchy-Frobenius lemma, Indagationes Mathematicae

41 (1979), pp. 225–228.
3 A. L. Cauchy, Mémoire sur diverses propriétés remarquables des substitutiones

régulières ou irrégulières, et des systèmes des substitutiones conjugées, Comptes

Rendus Acad. Sci. Paris 21 (1845), pp. 972–987.
4 F. G. Frobenius, Über die Congruenz nach einem aus zwei endlichen Gruppen

gebildeten Doppelmodul, J. Reine Angew. Math. 101 (1887), pp. 273–299.
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π : G → SD, such that ∀g1,g2∈G π(g1g
−1
2 ) = (πg1)(πg2)

−1. (4.1)

The mapping π is the “action” of G, and π(g) is the “action” of g ∈ G on D.

We define an equivalence relation ∼ on D as follows:

d1 ∼ d2 ⇔ ∃g∈G π(g)d1 = d2.

We call the equivalence class of d ∈ D by Kd. These classes, or orbits,
make up a partition of D. The lemma of Cauchy–Frobenius tells us how many
equivalence classes there are.

Lemma 4.2 (Cauchy–Frobenius). The number of equivalence classes |D/G|,

under the equivalence relation ∼, is

|D/G| =
1

|G|

∑

g∈G

ψ(g), where

ψ(g) = |{ d ∈ D | π(g)d = d }| = the number of cycles of π(g) of length 1 =

= b1(π(g)) =
d

dx
[PG,π(x, 1, . . .)]x=1 .

Proof. For d ∈ D we define the stabilizer subgroup Hd of G as follows

{ g ∈ G | π(g)d = d }.

There is a 1-1 correspondence between the elements of Kd and the left
cosets gHd of Hd, namely:

Let d′ ∈ Kd (the equivalence class of d).

Then d′ = π(g0)d for some g0 ∈ G.

Let g1 be such that d′ = π(g1)d.

Then π(g0)d = π(g1)d

π(g−1
0 g1)d = d

∴ g−1
0 g1 ∈ Hd

∴ g1 ∈ g0Hd.

So { g ∈ G | d′ = π(g)d } ⊆ g0Hd.
Vice versa, when you go backwards you can easily check that for g1 ∈

g0Hd, π(g1)d = d′, and so

{ g ∈ G | d′ = π(g)d } = g0Hd or { g ∈ G | π(g)d = π(g0)d } = g0Hd.

In this way we associate with every element of the class Kd exactly one

coset of Hd.

It is easy to see that the number of elements in each left coset is equal to
|Hd| and the consequence of this is that



44 4 Pólya theory

|Kd| =
|G|

|Hd|
or |Kd| · |Hd| = |G|.

Let us now apply the shepherd’s counting principle to the mapping

f : D → D/G the set of equivalence classes,

defined by d → Kd

then we find (ignore for the time being the asterisk):

the number of classes = |D/G| =
∑

d∈D

1∗

|Kd|
=

1

|G|

∑

d∈D

|Hd| · 1∗

and when we write |Hd| =
∑

g∈G ν(π(g)d = d) we get:

|D/G| =
1

|G|

∑

d∈D

∑

g∈G

ν(π(g)d = d) · 1∗

A well-known principle in combinatorics says that you should always ex-
change the order of summation, unless of course when you have just done
that. We obey and we get:

|D/G| =
1

|G|

∑

g∈G

∑

d∈D

ν(π(g)d = d) · 1∗

=
1

|G|

∑

g∈G

ψ(g).

⊓⊔

Intermezzo on a weighted version of Cauchy-Frobenius

To deduce a Cauchy–Frobenius formula with weights, we use a commutative
algebra K over Q. That is a ring in which we can multiply by scalars from Q

such that

i. K with the ring-addition and scalar-multiplication over Q forms a linear
space over Q, and

ii. for q ∈ Q and k, m ∈ K, q(km) = (qk)m.

Examples of such algebras are rings of polynomials with rational coefficients,
or ideals of such rings.

A weight function is a mapping ω : D → K. We demand that the weight
function is constant on the equivalence classes Kd (d ∈ D), so we can also
interpret it as a mapping from the set of classes D/G into K. Then we have
the following variation of Cauchy–Frobenius:
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Lemma 4.3 (weighted version of Cauchy–Frobenius).

the sum of the weights of the classes of D/G =
1

|G|

∑

g∈G

Ψ(g),

where Ψ(g) =
∑

d∈D ω(d) · ν(π(g)d = d).

In other words, we count the weights of the d’s that remain fixed under π(g)

(instead of counting them all as 1).
The proof is similar; just replace the 1∗ in the proof above by ω(d).

4.4 Colorings and color patterns

We are going to use this lemma to count different colorings of objects that
have certain symmetries, for example the cube.

Consider a fixed cube, with a set of faces D, and a set of colors R. For
example

R = { r(ed), w(hite), b(lue) }.

The fixed cube has |R||D| colorings; namely every coloring corresponds with
an elements of RD.

If we detach the cube, and throw it on a table like a die, then the difference
between “the top-face red and all other faces blue” and “the bottom-face red
and all other faces blue” disappears. The cubes f1 and f2 in Figure 4.3 are

b

r
r

r

r

r

f1

r

r
r

r

r

b

f2

Fig. 4.3. The cubes f1 and f2 are equivalent

equivalent because there is a g ∈ G (the symmetry group of rotations that
leave the cube invariant) such that f1 ◦ π(g) = f2, for example a half-turn
around the depicted axis.

By considering a few examples you see how you can formalize geometric
intuition: A color pattern is an equivalence class under the aforementioned
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equivalence relation. Thus a coloring is for example “top-face red and the rest
blue” and a color pattern is for example “one face red and the rest blue.”

For g ∈ G consider a function in SRD that maps a fixed, colored cube
f ∈ RD to its rotated image f ◦ π(g). This map is almost, but not quite, a
representation. The thing is that the order works out the wrong way. To get a
map that acts on the colorings as in (4.1) on Page 43 we use a little trick (if
the map doesn’t work; then take the inverse):

σ : G → SRD defined by σ(g)f = f ◦ π(g−1).

Let’s check if (4.1) works now:

σ(g1g2)f = f ◦ π((g1g2)
−1) =

= f ◦ π(g−1
2 g−1

1 ) =

= f ◦ π(g−1
2 ) ◦ π(g−1

1 ) =

= σ(g1)
(

f ◦ π(g−1
2 )

)

=

= (σ(g1)σ(g2)) f.

Note well that π permutes D and σ permutes RD; just what we wanted;
σ works on the colorings of D and the equivalence classes, or orbits, are the
color patterns.

The partition into equivalence classes of D with G and π is rather dull
since there is only one orbit. But the partition that we get with RD and σ is a
bit more complicated. The number of color patterns is equal to the number of
equivalence classes, given by the Cauchy–Frobenius lemma.

We give away the answer right now: The number of color patterns is

PG,π(|R|, |R|, |R|, . . .).

How to prove that? We see that when we prove Pólya’s theorem in the next,
exciting section.

4.5 Pólya’s theorem

We give the colors weights, namely r, w, and b. The weight of a coloring is

Ω(f) =
∏

d∈D

ω(f(d)). (4.2)

For example, the coloring of the cube in Figure 4.4 with three red faces
and three blue faces has weight ω(f) = r3b3. Simply take the color of every
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b

r
r

b

b

r

f :

Fig. 4.4. A cube with three red faces and three blue faces

face and multiply them all together.

If you look at f ◦ π(g) instead of at f then only the factors are permuted,
and therefore the weight of every coloring in a color pattern F is the same. So
we can just as well write

Ω(F) = Ω(f) for every f ∈ F.

Bourbaki would call this “abus de langage.”

Theorem 4.4 (Pólya’s theorem). The sum of the weights of the color patterns

is

PG,π(
∑

r∈R

ω(r),
∑

r∈R

ω(r)2,
∑

r∈R

ω(r)3, . . .)

Proof.

∑

F∈{ color patterns }

Ω(F) =
1

|G|

∑

g∈G

Ψ(g)

where Ψ(g) =
∑

f∈RD

Ω(f) · ν(σ(g)f = f).

Let’s try to understand this formula, as a mathematical finger exercise. We
have that

∑

f∈RD

Ω(f) =

(

∑

r∈R

ω(r)

)|D|

because if f : D → R is for example a function like this f =





d1 d2 d3

↓ ↓ ↓
r2 r1 r3



, then

by ( 4.2), Ω(f) corresponds to the product of the underlined terms in

(ω(r1) + ω(r2) + . . .)

× (ω(r1) + ω(r2) + . . .)

× (ω(r1) + ω(r2) + ω(r3) + . . .)

. . .
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Now let’s look at the invariance-requirement σ(g)f = f. Let g ∈ G be a group
element. The action of π(g) on D partitions D into cycles D1, D2, D3, . . ..
Every Di is permuted cyclically. The demand that f ◦ π(g−1) = f means that
D1, D2, . . . get colored monochromatically. In other words, all elements of Di,
the whole cycle, must get the same color. Thus

¾

¾ ?

f

f

π(g)

R

²
color

color

Fig. 4.5. Before or after π(g) you get the same color

Ψ(g) =
∑

f∈RD

σ(g)f=f

Ω(f) =
∑

r∈R ω(r)|D1|

︸ ︷︷ ︸
·
∑

r∈R ω(r)|D2| ·
∑

. . .

all terms cor-

responding to

d ∈ D1 must

give the same

factor.

Gathering cycles that have the same length gives

Ψ(g) =

(

∑

r∈R

ω(r)

)# 1-cycles in π(g)

·
(

∑

r∈R

ω(r)2

)# 2-cycles in π(g)

· . . .

and this proves

∑

F∈{ color patterns }

Ω(F) = PG,π(
∑

r∈R

ω(r),
∑

r∈R

ω(r)2, . . .).

⊓⊔

Example 4.5. Let’s look at an example to clarify the difference between a col-

oring and a color pattern. Take

D = Z (the set of objects that we want to color is infinite)

G = (Z, +) (the additive group)

R = R (we take the reals as the set of colors)

π(g)(z) = z + g for z ∈ Z.
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A coloring is a function Z → R. A color pattern is a class of colorings.

Z . . . −5 −4 −3 −2 −1 0 1 2 3 4 5 6 . . .
coloring . . . 12 10 8 6 4 1 3 5 7 9 11 13 . . .
coloring . . . 20 18 16 14 12 10 8 6 4 1 3 5 . . .

These are different colorings that belong to the same color pattern.
In general only constant colorings are invariant under all π(g). Some col-

orings are invariant under certain permutations, for example

−5 −4 −3 −2 −1 0 1 2 3 4 5 6
. . . . . . 3 4 2 1 3 4 2 1 3 4 2 . . .

is invariant under π(4).
No coloring is invariant under color permutations, but with color patterns

that is different: the pattern above does not change if we permute the colors
according to

1 → 3 → 4 → 2 → 1

Example 4.6 (The points of the cube). We call the representation group of the
cube on the points π3. The cycle index polynomial is:

1

24
(x8

1 + 9x4
2 + 6x2

4 + 8x2
1x

2
3).

For colors we take “yes” and “no,” thus a coloring indicates a subset of the
corner points.

The color patterns are described by:

1

24
((y + n)8 + 9(y2 + n2)4 + 6(y4 + n4)2 + 8(y + n)2(y3 + n3)2).

The coefficient of y4n4 gives the number of subset-equivalence classes. We
find:

Cy4n4 =
1

24

((

8

4

)

+ 9

(

4

2

)

+ 6

(

2

1

)

+ 8

(

2

1

)(

2

1

))

=
1

24
(70 + 54 + 12 + 32) =

168

24
= 7.

And indeed, Figure 4.6 on the following page gives the 7 equivalence classes.

Example 4.7. Consider once more the faces of the cube. We are now inter-
ested in patterns of subsets of faces with 3 elements. Many ways to choose 3
elements out of 6 are equivalent.

D = the set of faces, and K = {“yes”, “no”} is the set of colors.
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Fig. 4.6. Subset-equivalences; the last two are really different because a louse takes

turns r and then ℓ in the first one of these two cubes, while he takes turns ℓ and then

r in the second one of these two cubes

The weight of “yes” is 1 · y ∈ Q[y, n] and the weight of “no” is 1 · n ∈ Q[y, n].

G is the cube group, and

π : G → SD is the representation as permutations of the faces.

The answer is

Cy3n3 PG,π(
∑

ω(r),
∑

ω2(r),
∑

ω3(r), . . .).

The cycle index polynomial is the one that we calculated on Page 41.
∑

ω(r) = sum of the weights of the colors

= y + n,
∑

ω2(r) = y2 + n2, etc.

So we get

Cy3n3

1
24

( (y + n)6

︸ ︷︷ ︸
+ 3(y + n)2(y2 + n2)2

︸ ︷︷ ︸
+

A B

+ 6(y + n)2(y4 + n4)
︸ ︷︷ ︸

+ 6(y2 + n2)3

︸ ︷︷ ︸
+ 8(y3 + n3)2

︸ ︷︷ ︸
).

C D E

The terms in C only give powers that are at least 4. The terms in D only
give even powers. So we can forget about those. From the second factor in B

only y2n2 contributes. So we are left with:
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1

24

((

6

3

)

+ 3 · 2 · 2 + 8 · 2

)

= 2.

Of course there is another way to see that: the 3 faces either come together in
one point, or they are in U-shape. See also the discussion on Page 40.

Let’s make things a bit more complicated. For starters we have again a
group G, a set D, a homomorphism π : G → SD, and an equivalence relation

d1 ∼ d2 ⇔ ∃g∈G π(g)d1 = d2.

We assume that we have a weight function ω : D → K, where K is a commu-
tative ring as on Page 44, and now we add one other map ρ : D → D of which
we assume that it is a permutation. (BTW, the fact that it is a permutation is
not essential.)

We meet the demand of the weighted version of Cauchy-Frobenius that

d1 ∼ d2 ⇒ ω(d1) = ω(d2).

Thus ω is constant on the orbits of G in D. Furthermore we assume that

d1 ∼ d2 ⇒ ρ(d1) ∼ ρ(d2),

thus we assume that ρ maps orbits into orbits.

Theorem 4.8. The sum of the weights of the classes (orbits) that are invariant

under ρ is
1

|G|

∑

g∈G

∑

d∈D

ω(d) · ν(ρ(π(g)d) = d).

Note that when ρ = IdD we get our old formula back.

Proof. There really is no very elegant way to prove this; it is just complicated.
We just have to go through it the hard way. Here goes!

D

e

Fig. 4.7. Partitioned set with fixed element e
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Step 1

We first calculate another sum, namely

sum =
∑

g∈G

∑

d∈D

ω(d) · ν(ρ(π(g)d) = d)ν(d ∼ e)

=
∑

d∈D
d∼e

∑

g∈G

ω(d) · ν(ρ(π(g)d) = d).

Step 2

(It looks a bit like playing with the Hungarian cube; you turn a face, then do
something else and then turn the face back; instead of turning the face we
exchange the summation.) In the inner sum, d is fixed, and because d ∼ e,
d = π(k)e for some suitable k:

sum =
∑

d∈D
d∼e

∑

g∈G

ω(d) · ν(ρ(π(g)π(k)e) = d)

=
∑

d∈D
d∼e

∑

gk∈kG

ω(d) · ν(ρ(π(gk)e) = d)

(now we may replace g by gk and call it h)

=
∑

d∈D
d∼e

∑

h∈G

ω(d) · ν(ρ(π(h)e) = d)

(because kG = G)

(observe that d ∼ e ⇒ ω(d) = ω(e))

=
∑

d∈D
d∼e

∑

h∈G

ω(e) · ν(ρ(π(h)e) = d)

(now change back)

=
∑

h∈G

∑

d∈D
d∼e

ω(e) · ν(ρ(π(h)e) = d).

In the inner sum, there is exactly one nonzero term or otherwise all terms are
zero. One term is nonzero when

ρ(π(h)e) ∼ e

and otherwise all terms are zero. So we find that the sum is equal to

sum =

{
ω(e) · |G| if ρ(π(h)e) ∼ e, and
0 otherwise.
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But the condition ρ(π(h)e) ∼ e means exactly that the equivalence class of
e is invariant under ρ: π(h)e runs through the complete class; if e is in some
ρ-invariant class, then ρ(π(h)e) ∼ e.

We now choose in every class K a representative eK and sum over the
classes. ⊓⊔

4.6 Invariant colorings

In this section we apply the previous theorem to colorings and color patterns.
We have

i. a set R of colors,
ii. a set D,

iii. colorings f : D → R,
iv. weights ω : R → K,
v. π : G → SD, and

vi. θ ∈ SR (this one is new).

We have the set of colorings RD instead of the set D in the previous theorem.

The weight of a coloring f : D → R is

Ω(f) =
∏

d∈D

ω(f(d)).

We define an equivalence relation on colorings:

f1 ∼ f2 ⇔ ∃g∈G f1 ◦ π(g) = f2.

Equivalent colorings have the same weight; the factors in Ω(f) and Ω(f◦π(g))

only differ by a permutation. We write

f ◦ π(g−1) = σ(g)f

like we did on page 46.

We introduce a mapping ρ : RD → RD defined by

ρ(f) = θ ◦ f

and we claim that
f1 ∼ f2 ⇒ ρf1 ∼ ρf2.

Indeed, let f1 and f2 be equivalent colorings. Then

f1 = f2 ◦ π(g) for some g. This implies that

θ ◦ f1 = θ ◦ f2 ◦ π(g) ⇒ ρ(f1) = ρ(f2) ◦ π(g),

∴ ρf1 ∼ ρf2.
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A proof like this is really nothing else than a messy exercise with brackets.
The reason for this is that our notation for functions is not brilliant. On the
other hand, it is also not too bad; it works with a bit of effort, and if you’d do
it some other way you get lots of complaints. It’s hopeless.

We are going to determine the sum of the weights of θ-invariant colorings.
But let’s look at an example first so that we get some idea of what we are
actually doing.

Example 4.9. Suppose we color the edges of a cube with two colors: white and
black (“no” and “yes”). We are interested in the number of patterns that are
invariant under a switch of the colors. Of course, this can only happen when
there are 6 edges colored white and 6 edges colored black.

(f) (g) (h) (i) (j)

(a) (b) (c) (d) (e)

Fig. 4.8. Invariant edge-colorings of the cube; (a) and (b) are mirror images; (d) is a

table with legs on the same side and (e) has the legs on opposite sides; (g) and (h)

look the same but the branch is in a different place; (j) is a reflection of (h)

Fig. 4.9. Perhaps you think that there is one missing in Figure 4.8: the mirror-image

of (g) (this one), but that is exactly (i).

Remark 4.10. The last 5 cases in Figure 4.8 are easiest characterized as the
following coloring of the edges in Figure 4.10, with one of the dotted edges
moved to one edge that is parallel to it.
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Fig. 4.10. U-shape edge coloring

To find the sum of the θ-invariant colorings we apply Theorem 4.8. The
sum is

1

|G|

∑

g∈G

∑

f∈RD

Ω(f) · ν(f = ρσ(g)f)

and we have to live with that.
Note that

ρσ(g)f = θ ◦ f ◦ π(g−1).

Now, this sum is pretty easy to understand. For fixed g we draw the cycles
of π(g) in Figure 4.11.

À

D1

U-µ
Á

º
I

9
®

²

D2

D3 cycle of π(g)

D

R
cycle of θ

K 9
®
°

ª

^*
Á
±

?

f

R

f

j

f

Fig. 4.11. f ◦ π(g) = θ ◦ f

Now
f = ρσ(g)f ⇒ f ◦ π(g) = θ ◦ f.
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In other words, if you “go down with” f and then “take one step with” θ then
you end up at the same place as when you had first “taken a step with” π(g)

and then “gone down with” f.

Choose d1 ∈ D1, d2,∈ D2, . . .. Then f is determined by fd1, fd2, . . .. But it
only works out when f lands you in a cycle that is compatible with the cycle
in which you started: when you have completed a cycle in D then you should
have completed the cycle in R exactly a whole number of times. That is,

θ|D1|f(d1) = f(d1).

Or, when we write f(d1) = r1:

θ|D1|r1 = r1.

The sum of the weights blah blah is

∑

r1,...,rh

θ|Di|ri=ri

ri=fdi

ω (fd1) ω (θfd1) . . . ω
(

θ|D1|−1fd1

)

× similar terms with D2 etc.

Let’s introduce a shorthand for

λ|Di| =
∑

r∈R
θ|Di|r=r

ω(r)ω(θr) . . . ω
(

θ|Di|−1r
)

.

Then the sum becomes

λ|D1| · λ|D2| · . . . · λ|Dh|.

So for one fixed g we get

λ
b1(π(g))

1 · λb2(π(g))

2 · . . .

and our answer becomes

PG,π(λ1, λ2, . . .), where λk =
∑

r∈R
θkr=r

ω(r)ω(θr) . . . ω
(

θk−1r
)

.

In the special case where all weights are 1 we have

λk = number of colors that are invariant under θk.



4.7 Super patterns 57

Consider a color x that appears in a cycle of length j. Then x is invariant
under θk only when j|k, in other words

λk =
∑

j|k

jcj,

where (c1, c2, . . .) is the type of θ.

If there are two colors that are switched by θ, then this becomes

λk =

{
2 if k even
0 if k odd,

and then the answer is
PG,π(0, 2, 0, 2, . . .),

which, for the case of the edges of a cube gives

1

24
(0 + 3 · 26 + 6 · 23 + 0 + 0) =

1

24
(192 + 48) = 10.

This is exactly the number that we illustrated in Figure 4.8 on page 54.

4.7 Super patterns

We are going to discuss super patterns. We need a few lemmas for that.

As before, we have a set D and a set R, and one permutation η of D, and
one permutation θ of R.

Question.

What is the number of mappings

f ∈ RD such that θf = fη?

The condition is that the image of a cycle Di is contained in a cycle whose
length divides |Di|. More precisely, if we choose one element in every Di, say
di, then fdi must land in a cycle whose length divides |Di|. This fixes the
image of Di. See Figure 4.12.

Let (b1, b2, . . .) be the type of η and let (c1, c2, . . .) be the type of θ. The
number of possibilities to map a fixed representative di of Di with length
k = |Di|, is
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-

®

x y

-

¸

? Wf f

cycle

of η

D

cycle of θ

R

fx fy

type of η:

b1, b2, . . .

type of θ:

c1, c2, . . .

Fig. 4.12. Cycles of η in D mapped to cycles of θ in R

∑

d|k

dcd (for every “good” θ-cycle there are d possibilities).

Thus we find that

∞∏

k=1





∑

d|k

dcd





bk

=

∞∏

k=1

(

∂

∂xk

)bk

=

∞∏

k=1

(

exk+x2k+x3k+...
)kck

︷ ︸︸ ︷
exp (c1(x1 + x2 + . . .) + 2c2(x2 + x4 + . . .) + 3c3(x3 + x6 + . . .))

evaluated at (x1, x2, . . . ) = (0, 0, 0, . . .).

If we want f to be injective, then we don’t allow any proper divisors. Then
the sum

∑
d|k dcd becomes kck (where k = |Di|). Furthermore, f must map

the Di’s to different cycles. This can be done in two steps. Inject the cycles of
length k in η into the cycles of length k in θ. You can do this in

ck!

(ck − bk)!

ways. For each injection like that, there are kbk ways to choose the image of
the representative.
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This sums up to
∞∏

k=1

kbk · ck!

(ck − bk)!

ways to do it, that is, when
∀k ck > bk.

We can write

kbk · ck!

(ck − bk)!
=

[

(

∂

∂xk

)bk

(1 + kxk)ck

]

xk=0

So we find that the number of injections f with θf = fη is equal to

[

∞∏

k=1

(

∂

∂xk

)bk

(1 + kxk)ck

]

(x1,x2,...)=(0,0,...)

where the type of θ is (c1, c2, . . . ) and the type of η is (b1, b2, . . .).

Recapitulation.

Let’s recall what a pattern is. We have a set of colors R, a set of “objects” D,
and a set of “colorings” f : D → R. Using a group G and a homomorphism
(representation) π : G → SD, we define an equivalence relation on the color-
ings:

f1 ∼ f2 ⇔ f1 ◦ π(g) = f2.

We call the equivalence classes color patterns.

We also introduced a permutation in the set of colors and, obviously, col-
orings are not invariant under that permutation (unless the permutation does
not change the colors that are used in the coloring), but color patterns some-
times are.

We now make things a bit more interesting. Instead of a single permuta-
tion of the colors, we consider a whole group H of permutations of colors. We
have to redefine our equivalence relation slightly:

f1 ∼ f2 ⇔ ∃h,g hf1 = f2 ◦ π(g).

In this way we get super patterns (patterns where different colors are not such
a big issue anymore; more like color designs).
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D

R

6

¾

¾ H, σ

G, π

f

Fig. 4.13. H Permutes the colors R and G permutes the objects D

Example 4.11. Take the cube with its 6 faces. Let the set of colors be

R = { purple, violet }.

Let H be the group of permutations of R. (The idea is that many people can
distinguish the colors purple and violet, but when asked which is which, they
find it hard to tell.)

We have the group of rotations of the cube G and this groups acts via π on
the faces.

What are the super patterns? We show them in Figure 4.14.

(d)

21

1

1

2

2

(e)

1

2 1

1

2

2

(f)

1

2 2

2

2

1

(a) (b)

1

2 2

2

2

2

(c)

1

2 1

2

2

2

Fig. 4.14. Super patterns; (a) is monochromatic; (b) has one face of a different color;

(c) has two faces next to each other of one color; (d) is a U-pattern; (e) has three faces

of one color coming together in a corner; (f) has two opposite faces of the same color

We are going to do this now très chique. Let G and H be groups with
representations π and σ:

σ : H → SR and π : G → SD.
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We define
τ : G × H → SRD

as follows:

(τ(g, h))f = σ(h) ◦ f ◦ π(g−1), for all f ∈ RD.

A super pattern is an equivalence class in RD with the equivalence relation
≈ defined by:

f1 ≈ f2 ⇔ ∃(g,h)∈G×H f1 = τ(g, h)f2.

To determine the super patterns we now have two options:

1. either use Cauchy–Frobenius on RD, G × H, and τ, or
2. express super patterns as equivalence classes of patterns.

Let’s explain that last item first.

RD is partitioned by ∼ into subsets. If f1 ∼ f2 then this is a refinement of
f1 ≈ f2 (to get ∼ as a special case of ≈ you can take h equal to the identity
element of H). A collection of ∼-classes makes up one ≈-class; the ≈-partition
is coarser. See Figure 4.15.

O ± ± º ± ±
º

∼ classes

?

R

R U

≈ classes

Fig. 4.15. Equivalence classes of equivalence classes

The collection of patterns

RD/(G, π) (which is RD, where (G, π)-equivalent things are identified)

is permuted by a permutation ρ(h), for each h ∈ H:

ρ(h) { f ◦ π(g−1) | g ∈ G }
︸ ︷︷ ︸

∈RD/(G,π)

= { σ(h) ◦ f ◦ π(g−1) | g ∈ G }.

Now we must show formally that
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i. the righthand side is again a class (independent of the choice of the rep-
resentative h), and

ii. that ρ is a representation (action; see 4.1 on page 43).

Thereafter we can apply Cauchy–Frobenius with RD/(G, π), H, and ρ.

We go for the first option. We use Theorem 4.8 on page 51 but this time
we do it without weights.

The number of super patterns =

1

|G × H|

∑

(g,h)∈G×H

the number of f ∈ RD with τ(g, h)f = f.

We write #f∈RD(. . .) instead of “the number of f ∈ RD with ...”
Note that

#f∈RD(τ(g, h)f = f) = #f∈RD(σ(h)f = fπ(g)).

Let’s write
θ = σ(h) and η = π(g),

and let

(c1, c2, . . . ) be the type of θ and

(b1, b2, . . .) be the type of η.

Then

#f∈RD (θf = fη) =

=
(

∂
∂x1

)b1
(

∂
∂x2

)b2

. . .
(

ex1+x2+...
)c1

(

e2(x2+x4+...)
)c2

(

e3(x3+x6+...)
)c3

. . .
︸ ︷︷ ︸

if we sum this kettle of fish on h ∈ H we get

PH,σ

(

ex1+x2+..., e2(x2+x4+...), e3(x3+x6+...), . . .
)

If we now take the average over g ∈ G we get

[

PG,π

(

∂

∂x1
,

∂

∂x2
, . . .

)

PH,σ

(

ex1+x2+..., e2(x2+x4+...), . . .
)

]

(x1,x2,x3,...)=(0,0,0,...)

Another way to get this result is as follows. The number of super patterns
is:
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1
|H|

∑

h∈H

1

|G|

∑

g∈G

#f∈RD (σ(h)f = f ◦ π(g)) =

= 1
|H|

∑

h∈H

1

|G|

∑

g∈G





∑

d|1

dcd





b1




∑

d|2

dcd





b2




∑

d|3

dcd





b3

. . .

where we write cd = cd(σ(h)) and bi = bi(π(g))

= 1
|H|

∑

h∈H

PG,π





∑

d|1

dbd(σ(h)),
∑

d|2

dbd(σ(h)), . . .



 =

= 1
|H|

∑

h∈H

PG,π

(

∂

∂x1
,

∂

∂x2
,

∂

∂x3
, . . .

)

exp(c1(σ(h))(x1 + x2 + . . .) +

+2c2(σ(h))(x2 + x4 + . . .) + 3c3(σ(h))(x3 + x6 + . . .) + . . .)

and this evaluated at (x1, x2, . . .) = (0, 0, . . .). This gives the same result as
before.

The nice thing is that we get the injective super patterns for free: “injec-
tive” means that things should be invariant under σ(h) and under π(g), thus
under τ(g, h). When you compare the two formulas on Page 58 and 59 for the
general and the injective case, then you see that we have to replace

ek(xk+x2k+x3k+...) by 1 + kxk

and then we get:

[

PG,π

(

∂

∂x1
,

∂

∂x2
, . . .

)

PH,σ(1 + x1, 1 + 2x2, 1 + 3x3, . . .)

]

x=0

As an application, let us take a group H with two elements, namely the
permutations of {white, black}. Then

PH,σ(v1, v2, v3, . . .) =
1

2
(v2

1 + v2),

and this gives

PH,σ

(

ex1+x2+..., e2(x2+x4+...) + . . .
)

=
1

2

(

e2x1+2x2+... + e2x2+2x4+...
)

.

If we now let loose

PG,π

(

∂

∂x1
,

∂

∂x2
, . . .

)∣

∣

∣

∣

x1=0,x2=0,...

on PH,σ then we obtain the following formula for the number of superpatterns
with two colors.
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1

2
(PG,π(2, 2, 2, . . .)
︸ ︷︷ ︸

A

+PG,π(0, 2, 0, 2, . . .)
︸ ︷︷ ︸

B

).

Can we also see this in another way?

i. B is the number of patterns that is invariant, and
ii. A is the total number of patterns.

Thus A − B is the number of patterns that are not invariant. When we con-
sider super patterns, the non-invariant patterns are pairwise identified, but
the invariant patterns form super patterns by themselves. Thus the number of
super patterns is indeed 1

2
(A − B) + B = 1

2
(A + B).

4.8 Wreath product

We could do a whole lot more, but let’s restrict ourselves to the wreath product
(Pólya calls this “Kranz.”)

To keep the discussion a bit simple, we consider D1 × D2, where D1 is a
collection of m objects and |D2| = n. We let G be a group of permutations of
D1 and we let H be a group of permutation of D2. For simplicity we write PG

instead of PG,π and PH instead of PH,σ.

︸ ︷︷ ︸






D2

D1

Fig. 4.16. D1 × D2

Using G and H we can permute D1 × D2:

within each column we permute the elements according to some h

(every column its own h), and next we permute the columns accord-
ing to G. We denote the group of permutations that we get like that
by G[H].

More precisely, let H, σ, and D2 and G, π, and D1 be given. Then we equip
G × HD1 with the following operation:

(g, f)(g′, f′) = (gg′, f ◦ π(g′) • f′)
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where • stands for coordinate-wise multiplication.

Next, τ acts on D1 × D2 as follows:

τ(g, f)(d1, d2) = (πg(d1), σ(f(d1))d2).

Notice that this defines an action:

τ(g, f) ◦ τ(g′, f′)(d1, d2) =

τ(g, f) (πg′(d1), σ(f′(d1))d2) =

((πg)(πg′)d1, σ(f(πg′d1))σ(f′(d1))d2) =

(π(gg′)d1, σ(f(πg′d1))σ(f′(d1))d2) =

(π(gg′)d1, σ((fπg′ • f′)d1)d2) =

τ(gg′, f ◦ π(g′) • f′)(d1, d2) =

τ((g, f)(g′, f′))(d1, d2).

If G and H are groups of permutations, then

(g, h1, h2, . . . , hm) : (s, t) → (gs, hst).

One of the theorems of Pólya now says that

PG[H](x1, x2, . . .) = PG (PH(x1, x2, . . .), PH(x2, x4, . . .), PH(x3, x6, . . .) . . .) .
(4.3)

The idea to prove this is by using colorings with weights. A super color is
the color pattern of a column (which is the color pattern of H acting on D2).
A color pattern of G[H] acting on D1 ×D2 is a super-color pattern of G acting
on D1.

The sum of the kth powers of the weights of the super colors is, if k = 1:

PH

(∑
ωr,

∑
ω2

r,
∑

ω3
r, . . .

)

and for general k:

PH

(∑
ωk

r ,
∑

ω2k
r ,

∑
ω3k

r , . . .
)

.

This gives

PG[H]

(∑
ωr,

∑
ω2

r, . . .
)

=

PG

(

PH

(∑
ωr,

∑
ω2

r, . . .
)

, PH

(∑
ω2

r,
∑

ω4
r, . . .

)

, . . .
)

.

Finally, if you notice that
∑

ωr,
∑

ω2
r, etc. are algebraically independent,

then you find Pólya’s theorem.
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Remark 4.12. The weight of a color pattern is, as usual, the product of the
weights of the colors that are used (see Page 46).

Pólya’s theory can be extended in numerous other ways, but we won’t
go into that. Actually, the proof above gets pretty complicated if you write it
down in full detail. For a sketch of the proof see [8].

4.9 Problems

4.1 (de Bruijn5). Use Formula 3.1 on page 26 to check that the cycle index
of the symmetric group Sn (the group of all permutations of {1, . . . , n}) is:

PSn,π(x1, x2, . . .) =
∑

λ1>0,...,λn>0
λ1+2λ2+...+nλn=n

xλ1

1 xλ2

2 . . . xλn
n

1λ1λ1!2λ2λ2! . . . nλnλn!
.

Show that this is equal to

Czn exp

(

zx1 +
z2x2

2
+

z3x3

3
+ . . .

)

.

Compare this with the jumble that we obtained in 3.4 on page 28.

4.2. Consider the rotations in R3 of the hexagon. Prove that the cycle index is

PD6,π(x1, . . . , x6) =
1

12
(x6

1 + 2x6 + 2x2
3 + x3

2 + 3x2
1x

2
2 + 3x3

2).

4.3. In this exercise we derive the cycle index of the cyclic group Cn. This
group acts on 1, . . . , n by cyclic permutations. Let π be a generator of this
group, i.e. the elements of Cn are π, π2, . . . , πn = Id. For example,

π =

(

1 2 3 . . . n

n 1 2 . . . n − 1

)

.

(a) We need Euler’s totient function φ(n), which is the number of positive
integers less than or equal to n that are relatively prime to n. Recall that

φ(n) = n

k∏

i=1

(

1 −
1

pi

)

, where p1, . . . , pk are the prime factors of n.

Thus, for example, φ(1) = 1, and φ(p) = p − 1 if p is prime, and

φ(36) = φ
(

32 · 22
)

= 36 ·
(

1 −
1

3

)

·
(

1 −
1

2

)

= 36 · 2

3
· 1

2
= 12.

5 N. G. de Bruijn, Pólya’s theory of counting. In (E. F. Beckenbach ed.) Applied Com-

binatorial Mathematics, John Wiley & Sons 1964.
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(b) Let 1 6 k 6 n. Let d = gcd(k, n). There exist k′ and n′ such that

k = k′d, n = n′d, and gcd(k′, n′) = 1.

(c) With Euclid’s algorithm we can find integers a and b such that

ak′ + bn′ = gcd(k′, n′) = 1.

(d) Then
πd = πd(ak′+bn′) = πak′d · πbn′d = πak · πbn = πak,

since πn = Id. Thus πd is an element of the subgroup generated by πk.
(e) Also πk is an element of the subgroup generated by πd since k = k′d.

We conclude that πd and πk generate the same cyclic subgroup and thus
they have the same type (see Page 24 if you need to recall the type of a
permutation).

(f) Actually, the permutation πd consists of d cycles of length n
d

.
(g) For every k such that gcd(n, k) = d, πk has the same type as above. The

number of these permutations is the number of k with 1 6 k 6 n and
gcd(k, n) = d.
This is the number of integers 6 n

d
and relatively prime to n

d
; thus φ

(

n
d

)

.
(h) The conclusion is that

PCn,π(x1, x2, . . .) =
1

n

∑

d|n

φ
(n

d

)

xd
n/d.

(i) The dihedral group Dn is like the cyclic group, but it includes reflections.
Thus this is the group of symmetries of a regular polygon.
Prove that

PDn,π(x1, . . . , xn) =
1

2
PCn,π′(x1, . . . , xn) +

+

{
1
2
x1x

(n−1)/2
2 if n is odd

1
4
(x2

1x
(n−2)/2
2 + x

n/2
2 ) if n is even.

(j) Check that the cycle index of the hexagon in R2 under rotations is

PC6,π(x1, . . . , x6) =
1

6
(x6

1 + x3
2 + 2x2

3 + 2x6).

(k) Check if the cycle index for the dihedral group D6 agrees with Exer-
cise 4.2.

(l) Consider beads of two colors; black and white. How many different ways
are there to make a circular necklace with those beads of length 6? Two
necklaces are the same if one is obtained from the other by a cyclic per-
mutation. How many are there with exactly 3 white beads and exactly 3
black beads? How many are there with 3 purple beads and 3 violet beads,
if you also allow a permutation of colors?
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4.4. Check that the cycle index of the rotations of the tetrahedron is

PG,π(x1, x2, x3) =
1

12
(x4

1 + 8x1x3 + 3x2
2).

Note that the group acting on the faces is the same as the group acting on the
corners.

4.5. Consider the diagonals of the cube. What is the cycle index? Does your
answer agree with the following formula

1

24
(x4

1 + 6x4 + 3x2
2 + 6x2

1x2 + 8x1x3)?

It is the same as the cycle index of the symmetric group S4.

4.6. Consider the triangular prism. Find the cycle index, where you consider
the permutations of the points under rotations only (thus “mirror” reflections
of the prism are not included). Does your answer agree with the following

1

6
(x6

1 + 2x2
3 + 3x3

2)?

Now also include reflections. Prove that the cycle index is

1

12
(x6

1 + 2x2
3 + 3x3

2 + x3
2 + 3x2

1x
2
2 + 2x6).

It is the same as the cycle index of the rotations of the hexagon.

4.7. What is the cycle index of the lines of the triangular prism?

Fig. 4.17. A triangular prism

4.8. Consider the points of the triangular prism.

(a) How many ways are there to color the points of the triangular prism with
3 points white and 3 points black (both with and without reflections)?

(b) How many ways are there altogether to color the points either black or
white?
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(c) What about coloring the edges of the triangular prism black and white?
(d) Consider coloring the edges of the triangular prism with colors black and

white, but allow also a permutation of colors. Thus two colorings are the
same if one can be obtained from the other by a rotation and/or a switch
in the colors. How many different colorings are there?

4.9 (de Bruijn6). Let G be a group of permutations of a set S and let H be
a group of permutations of a set T . Assume that S and T are disjoint and let
U be their union. For each choice g ∈ G and h ∈ H there corresponds a
permutation u of U defined by

u →
{

gu if u ∈ S and
hu if u ∈ T .

Denote this permutation of U by u = g × h.

(a) Show that these permutations form a group of order |G| · |H|.
N. G. de Bruijn calls this group the direct product of G and H and denotes
it by G × H. Other authors78 call this group the direct sum and denote it
by, e.g., (G, S) ⊕ (H, T).

(b) If g ∈ G is of type (b1, b2, . . .) and h ∈ H is of type (c1, c2, . . .) then g × h

is of type (b1 + c1, b2 + c2, . . .), since each cycle in U lies either entirely in
S or entirely in T .

(c) The term of the cycle index of G × H corresponding to the element g × h

is equal to the product of the term in PG corresponding to g and the term
in PH corresponding to the h. Thus

PG×H = PG · PH.

4.10 (de Bruijn9). In this exercise we generalize Theorem 4.8 on page 51.
Let G be a group and let π be a representation which assigns a permutation
of a finite set X to each element of G. Thus we assume that

∀g1,g2∈G π(g1)π(g2)
−1 = π(g1g

−1
2 ).

Define a relation ∼ on X by

x ∼ y if ∃g∈G x = π(g)y.

(a) Prove that ∼ is an equivalence relation, (the equivalence classes are called
(G, π)-patterns).

6 N. G. de Bruijn, Pólya’s theory of counting. In (E. F. Beckenbach ed.) Applied Com-

binatorial Mathematics, John Wiley & Sons 1964.
7 F. Harary, Exponentiation of permutation groups, American Mathematical Monthly

66 (1959), pp. 572–575.
8 V. Krishnamurthy, Combinatorics–theory and applications, Ellis Horwood, 1986.
9 N. G. de Bruijn, A note on the Cauchy-Frobenius lemma, Indagationes Mathematicae

41 (1979), pp. 225–228.
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(b) Let k ∈ G. Prove that the map θk : G → G defined by

θk(g) = gk

is a bijection.
(c) Let Y be a complete set of representatives, i.e. Y consists of exactly one

element of each equivalence class of X. We use the ν-indicator function
that we introduced on Page 9. Prove

∀x,y∈X x ∼ y ⇒
∑

g∈G

ν(π(g)x = x) =
∑

g∈G

ν(π(g)y = x).

(d) Now check the following derivation of the Cauchy-Frobenius lemma 4.2
on page 43.

∑

g∈G

∑

x∈X

ν(π(g)x = x) =
∑

g∈G

∑

y∈Y

∑

x∈X
x∼y

ν(π(g)x = x) =

=
∑

y∈Y

∑

x∼y

∑

g∈G

ν(π(g)x = x) =

(using (c))

=
∑

y∈Y

∑

x∼y

∑

g∈G

ν(π(g)y = x) =

=
∑

y∈Y

∑

g∈G

∑

x∼y

ν(π(g)y = x) =

(since there is exactly one x)

=
∑

y∈Y

∑

g∈G

1 = |Y| · |G|.

(e) Let I be a finite set, and for each i ∈ I let σi : X → X be a map. Let A

be some additive, Abelian group and let ω : X → A be a weight function.
Assume that

∀x,y∈X x ∼ y ⇒
∑

i∈I

ν(σix = x) =
∑

i∈I

ν(σiy = x). (4.4)

Then, for any x ∈ X (and Y a complete set of representatives),

∑

i∈I

ν(σix = x) =
∑

y∈Y
y∼x

∑

i∈I

ν(σix = x)

=
∑

y∈Y
y∼x

∑

i∈I

ν(σiy = x)

=
∑

y∈Y

∑

i∈I

ν(x = σiy ∼ y).
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Sum over all x ∈ X, and multiply by weights:

∑

i∈I

∑

x∈X

ν(σix = x)ω(x) =
∑

y∈Y

∑

i∈I

ν(σiy ∼ y)ω(σiy). (4.5)

(f) We specify as follows. Let ρ : X → X be any mapping (this is the general-
ization; in Theorem 4.8 we assumed that ρ is a permutation). Take I = G,
and let σk = ρπ(k), for k ∈ G.
Let’s first check that (4.4) is satisfied; if x ∼ y, then that means that there
is some h ∈ G such that y = π(h)x. Now clearly,

∑

k∈G

ν(ρπ(k)x = x) =
∑

k∈G

ν(ρ(π(kh)x = x),

since if k runs through G then kh runs through G as well.
(g) Assume that ω is constant on each equivalence class; that is, we assume

that
∀x,y∈X x ∼ y ⇒ ω(x) = ω(y).

Then (4.5) becomes:
∑

g∈G

∑

x∈X

ν(ρπ(g)x = x)ω(x) =
∑

y∈Y

∑

g∈G

ν(ρπ(g)y ∼ y)ω(y),

where Y is a complete set of representatives.
It follows that ∑

g∈G

ν(ρπ(g)y ∼ y)

does not change when y is replaced by another element in the same equiv-
alence class, but this can easily be checked in other ways as well.

(h) Finally, we assume that ρ maps equivalence classes into equivalence
classes:

∀x,y∈X x ∼ y ⇒ ρx ∼ ρy.

Then
ρy ∼ y ⇒

∑

g∈G

ν(ρπ(g)y ∼ y) = |G|,

and thus (with Y a complete set of representatives)

∑

g∈G

∑

x∈X

ν(ρπ(g)x = x)ω(x) = |G| ·
∑

y∈Y

ν(ρy ∼ y)ω(y).

The case where ρ = IdX and ω(x) = 1 for all x ∈ X reduces to the Cauchy-
Frobenius lemma that we proved in (d). The case where ρ is a permutation
was used by de Bruijn10 to obtain a Pólya-type theorem including a fixed

10 N. G. de Bruijn, Color patterns that are invariant under a given permutation of the

colors, Journal of Combinatorial Theory 2 (1967), pp. 418–421.
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permutation h of the set R of colors. With the result above it follows that h

needs not be a permutation; any mapping h : R → R gives exactly the same
result. This is not a big surprise; if R′ is a maximal subset of colors that is
permuted by h, then no color outside R′ is invariant under any positive power
of h. Thus we can simply apply the theorem to R′ instead.

4.11 (Balasubramanian11). Consider an array of objects

(x1, y1) (x1, y2) . . . (x1, yq)

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .
(xp, y1) (xp, y2) . . . (xp, yq)

Consider permuting these objects within each row according to some h ∈ H

and then permuting the rows according to some g ∈ G. This set of permu-
tations is denoted by G[H] (the wreath product). If we denote an element of
G[H] as (g; h1, . . . , hp) then its effect on (xi, yj) is

(g; h1, . . . , hp)(xi, yj) = (xg(i), yhi(j)) for i = 1, . . . , p and j = 1, . . . , q.

The group operation between elements of G[H] is given by

(g; h1, . . . , hp)(g′; h′
1, . . . , h′

p) = (gg′; hg′(1)h
′
1, . . . , hg′(p)h

′
p).

Consider polynomials A and B in indetertminates s1, s2, . . .. Then the plethysm

polynomial A[B] is obtained as follows. For each r replace sr in A by the poly-
nomial obtained from B by multiplying by r the subscript of each indetermi-
nate. For example, let

A =
1

2
(s2

1 + s2) and B =
1

6
(s3

1 + 2s3 + 3s1s2).

Then A[B] is obtained by replacing s1 in A by

1

6
(s3

1 + 2s3 + 3s1s2)

and s2 in A by
1

6
(s3

2 + 2s6 + 3s2s4).

Thus

A[B] =
1

72
(s6

1 +4s2
3 +9s2

1s
2
2 +4s3

1s3 +12s1s2s3 ++6s4
1s2 +6s3

2 +12s6 +18s2s4).

11 K. Balasubramanian, Applications of combinatorics and graph theory to spec-

troscopy and quantum chemistry, Chemical Reviews 85 (1985), pp. 599–618. See

the exposition in: V. Krishnamurthy, Combinatorics—theory and applications, Ellis

Horwood, 1986.
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Polya’s theorem, Equation 4.3 on page 65 states that the cycle index of G[H]

is obtained by the plethysm of the cycle indices PG and PH:

PG[H] = PG[PH].

(a) Show that the cycle index of S2[S3] is the polynomial A[B] described
above.

(b) Consider the cycle indices of the cyclic groups C2 and C3 and show that
the plethysm is

PC2[C3] =

(

1

2
(s2

1 + s2)

) [

1

3
(s3

1 + 2s3)

]

=
1

18
(s6

1 +4s2
3 +4s3

1s3 +3s3
2 +6s6).

(c) Consider the chemical molecule C2H2Br2Cl2 which consists of two carbon
atoms, and two hydrogen, two bromine, and two chlorine atoms. Three
of the hydrogen, bromine, and chlorine atoms are grouped around each
carbon atom (see Figure 4.18 on the next page). Consider the following
symmetries:

(i) a rotation of the entire molecule around the midpoint of the CC-
bond, and

(ii) a local symmetry at each carbon atom, given by an action of the
cyclic group C3.

Two equivalent molecules are called stereoisomers.
(d) Use weights B, C, and H, for the bromine, chlorine, and hydrogen atoms

and compute the coefficient of B2C2H2 in

PC2[C3](B + C + H, B2 + C2 + H2, . . .).

Show that this is
1

18

(

6!

2!2!2!
+ 3

3!

1!1!1!

)

= 6.

Picture the 6 stereoisomers and check them with Figure 4.18.
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Fig. 4.18. The 6 stereoisomers of C2H2Br2Cl2
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Graphs

We come to the second part of this course. Also this part is mainly about
counting. You see things much more clearly when you count them. What we
will do now is called graph theory.

5.1 Introduction

A graph is not somebody who can write, but the following examples do show
graphs. The first graph is not called incomplete because it misses an arm; in a

Fig. 5.1. Incomplete graph and complete 5-graph

complete graph all the possible connections are there.
Originally a graph was somebody who could write, some high official

(what they call Doctors nowadays) who lived in some castle. The word graph
in graph is etymologically the same as in photography, and there is no reason
why we shouldn’t use it also for some mathematical object. But joking apart;
let’s get serious.
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Let G be a set and let P2(G) be the collection of all subsets of G with two
elements. Then a graph on G is a pair

(G, Γ) with G 6= ∅ and Γ ⊆ P2(G).

The pairs of points that are connected in the picture above are given by Γ .
Examples of graphs and non-graphs according to this definition are:

(a) (b) (c) (d)

Fig. 5.2. Examples of graphs and non-graphs: (a)-(c) non-graphs; (d) a graph

The elements of G are called points, or nodes, or vertices, the elements
of Γ are called connections, or lines, or edges (in analogy with geometric
complexes). Before we go on, we mention one other important concept,
namely equivalence, or better, isomorphism:

(G1, Γ1) and (G2, Γ2) are isomorphic if there is a bijection

φ : G1 → G2 such that φΓ1 = Γ2,

that is
{g, h} ∈ Γ1 ⇔ {φg, φh} ∈ Γ2.

Of course this is “abus de langage” as Bourbaki puts it so eloquently in French.
We mean that

Γ2 = { {φp, φq} | {p, q} ∈ Γ1 and p, q ∈ G1},

or also
Γ2 = {A ∈ P2(G2) | ∃p∈G1

∃q∈G1
A = {φp, φq} }.

Some people call an equivalence class in this equivalence relation a graph.
You should always pay attention. Sometimes you don’t want to identify equiv-
alent graphs, and sometimes you do.

5.2 More introduction

Graph theory is a field with many names and agreements. Much of the ter-
minology you can find in the book by C. Berge. Usually, when we use some
terminology, we just say what we mean.

We mention the concept of an oriented graph (it is not a graph). An ori-
ented graph is a pair
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(G, ∆) where G is a set and ∆ ⊆ G × G.

Thus ∆ consists of pairs, with a first element and a second element. For exam-
ple the oriented graph

({1, 2, 3}, {(1, 2), (1, 3), (3, 1), (1, 1)})

is depicted in Figure 5.3. With oriented graphs we speak about the head and

? ¾
3

-1

2

3

Fig. 5.3. Oriented graph

tail of a connection.

Planar graphs are graphs. They are graphs that can be embedded in the
plane (with points and continuous curves). Below we show a picture of the
complete graph with 4 points. This one is planar, but not every finite graph is
planar. We will come back to this in a minute.

Fig. 5.4. Example of a planar graph

Every finite graph can be embedded in R3 with a little trick: Put |G| points
on a sphere, such that no 4 are in a plane. You can do that because in every
step of the construction there are only finitely many planes “forbidden,” and
there are infinitely many points on the sphere left. We call this collection of
points G. The complete graph on G has a realization: if two straight lines
between points would cross each other, then the endpoints lie in a plane.

There are two famous isomorphism-classes of nonplanar graphs. The first
is called K5 and has |G| = 5 and Γ = P2(G) and the second one is called K3,3

and has |G| = 6, and can be written as G = G1 ∪ G2, with |G1| = |G2| = 3 and
Γ = {{g1, g2} | g1 ∈ G1, g2 ∈ G2}. An important theorem of Kuratowski says
that these are more or less the only bad guys:

Every nonplanar graph has a subgraph that is a delayed K5 or a delayed K3,3.

We illustrate the notion of a delayed graph with an example.
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K5 K3,3

Fig. 5.5. K5 and K3,3

K4 delayed K4

Fig. 5.6. Example of a delayed K4

Some graphs can be embedded in the plane in two basically different ways.
The two graphs below are isomorphic, but their embeddings are topologically
not equivalent.

Fig. 5.7. Two topologically non-equivalent embeddings of isomorphic graphs

Degree.

Let (G, Γ) be a graph and let P ∈ G.

The degree of P = the number Q ∈ G with {Q, P} ∈ Γ .

Let us draw the graph of the last figure again, this time adding the degrees
of the points as shown in Figure 5.8.

A tip of G is a vertex of G with degree 1.

In an oriented graph we speak about indegree and outdegree. For exam-
ple, the indegree of P in Figure 5.9 is 4 and the outdegree of P is 3. Note that
a connection of P to P counts for indegree as well as for outdegree!
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1

3 4

4

3
3

2
4

0

Fig. 5.8. Graph with degrees

? ¾
3

k

±

M

P

Fig. 5.9. Indegree of P is 4 and outdegree of P is 3

We now come to a few concepts that cause confusion as often as not:

Chains and circuits.

Let n ∈ N0. A chain of length n is a sequence of points P0, P1, . . . , Pn with

1. ∀i∈{0,...,n} Pi ∈ G, and
2. ∀i∈{1,...,n} {Pi−1, Pi} ∈ Γ .

Sometimes we put extra conditions on a chain.

(a) Chain without repeated points: i 6= j ⇒ Pi 6= Pj.
1

(b) Chain without repeated lines:2

i > j > 0 ⇒ {Pi−1, Pi} 6= {Pj−1, Pj}.

Note that with repeated lines, the same line can be traversed in either the
same “direction” or in the opposite direction; see Figure 5.10.

A closed chain is a chain P0, . . . , Pn with P0 = Pn.

A circuit is a closed chain without repeated lines. The length of a circuit is
the number of lines in it.3

1 Chains without repeated points are called paths.
2 A chain without repeated lines is called a trail.
3 A circuit without repeated points other than the start and endpoint is called a cycle.

The length of a cycle is the number of lines in it.
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P
Q

R
T

S

PQRSQRT

PQSRQRT

Fig. 5.10. With repeated lines: PQRSQRT and PQSRQRT

For circuits there are some identification possibilities. You can start at an-
other point:

P0, P1, . . . , Pn becomes Pj, Pj+1, . . . , P0, Pn, . . . , Pj−1

or you can reverse the order in which you traverse the circuit:

P0, . . . , Pn becomes Pn, Pn−1, . . . , P0.

A graph (G, Γ) is called connected if there is for every pair P and Q in
G with P 6= Q an n ∈ N1 and a chain P0, . . . , Pn with P0 = P and Pn = Q.
“Chain-connectedness” is an equivalence relation, and the equivalence classes
are called components (together with their lines).

5.3 Trees

There are a lot of ways to define trees. We do it like this:

A tree is a connected graph without circuits.

(a) (b) (c) (d)

Fig. 5.11. Examples of trees and non-trees

Theorem 5.1. A finite tree consists of either only one node, i.e., |G| = 1 and

Γ = ∅, or it has a least two tips, i.e., two nodes of degree one.
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Proof. If (G, Γ) is connected, then we define for all P, Q ∈ G:

d(P, Q) =

{
length n of the shortest chain
that connects P and Q

if P 6= Q

0 if P = Q.

(Here d(P, Q) counts the lines in a chain, not the points.)

Assume that |G| > 1. Then

δ = max{ d(P, Q) | (Q, P) ∈ G × G}

is attained in two points, say P and Q. We claim that P and Q are tips.
Assume that P is not a tip. Let {P, P1} be the first line in a shortest chain.

Then there is another line {P, P′} with P′ 6= P1. The point P′ is connected to Q

via some chain. And the distance from P′ to Q is at most δ. Let

P′ = P′
0, P′

1, . . . , P′
k = Q

be a shortest chain. Let m > 0 be the first element in this sequence that also
occurs in P0, . . . , Q. (NB that P0, . . . , Pδ = Q has no repeated points, since
otherwise the chain would not be of minimal length. Likewise, there are no
repeated points in P′ = P′

0, . . . , P′
k = Q.)

Now
P′

0, . . . , P′
m(= Pℓ)Pℓ−1, . . . , P0, P′

0

is a closed chain. If ℓ > 0 then this chain has no repeated lines, since there
are no repeated lines in P′

0, . . . P′
m, and none in Pℓ, . . . , P0, and a line in

P′
0, . . . , P′

m−1 does not occur in Pℓ, . . . , P′
0. The line {P′

m−1, P′
m} can only occur

in Pℓ, . . . , P0, P′
0 if it is {P′

0, P0}, but then ℓ = 0.
Since a tree has no circuits, we have that ℓ = 0. In other words, the shortest

connection between P′ and Q goes via P, and so

k = d(P′, Q) = δ + 1.

Thus δ + 1 6 k 6 δ, which is a contradiction. Thus P is a tip. Likewise Q is a
tip. ⊓⊔

Remark 5.2. The proof relies on the following observation: Let A and B be
points in a graph and let A 6= B. Assume that A and B are connected by a
chain. Then A and B are connected by a chain without repeating points. This
observation is easily checked by considering a shortest chain.

Intermezzo on ordering multisets

Let S be a linearly ordered set. That is, for any two distinct elements of S,
one is the largest and one is the smallest. For example, S = N1 or S = N0 are
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linearly ordered sets. We order the set of multisets over S lexicographically as
follows. Let

φ : S → N0 and ψ : S → N0

be two such multisets. Then

φ < ψ means that ∃k∈S φ(k) < ψ(k) ∧ ∀ℓ∈S ℓ < k ⇒ φ(ℓ) = ψ(ℓ).

The set of multisets thereby becomes linearly ordered, and if S is finite, then
every nonempty subset Φ of multisets has a smallest element.

Proof. Let Φ 6= ∅. For simplicity assume that S = {1, . . . n}. Let Φ0 = Φ and
define recursively for i > 1,

ki = the smallest element of {φ(i) | φ ∈ Φi−1} and

Φi = {φ ∈ Φi−1 | φ(i) = ki}

up to kn and Φn. None of the Φi are empty and Φn contains exactly one
element; the smallest element of Φ. ⊓⊔

If S = N1 then you get a greatest lowerbound i → ki which does not have to
be in the set.

We apply this to graphs. Let (G, Γ) be a finite graph. Number the elements
of Γ with numbers 1, 2, . . . , |Γ |, anyway you like. Color a line of Γ red if it is a
“circuit champion,” that is, if there is a circuit in which this line has the lowest
number.

Example 5.3. Here is an example of a numbering of a graph and the set of red
lines {1, 2, 3, 4, 5, 7, 9, 13, 14}.

6

8

10

11

12

15
16

17
18

1920
1

2

3
4

5

7

9
13

14

Fig. 5.12. Graph with numbered lines and subset of red lines

We color the rest of the lines blue.
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Claim. We get blue trees and the red lines connect points in the trees. The set
of points of each tree plus all the connections between them, form a compo-
nent of the graph.

In other words, you get so-called “spanning trees,” and together they form a
spanning forest. We prove now that this is indeed the case.

Theorem 5.4. If P and Q are connected by a chain, then also by a blue chain.

Proof. Consider a chain from P to Q:

P = P0, P1, . . . , Pn = Q.

Each chain like that corresponds to a multiset φ in Γ , namely

φ : i →
{

the number of times that line i

occurs in the chain.

Now take a chain with the smallest φ. By the intermezzo, that chain exists.

If it contains a red line, then that line was a circuit champion, and then you
can replace that line with a chain that has only higher numbers. The resulting
chain has a smaller φ. (If the number of the red line is a, then φ(a) is lowered,
and φ(x) with x < a is the same.) ⊓⊔

As a corollary we obtain:

Theorem 5.5. If (G, Γ) is a graph and Γ is linearly ordered, then

#(components) + #(blue lines) = #(points).

Let’s do one more:

Theorem 5.6.

#(components) + #(lines) − #(points) =

=

{
0 if there are no circuits

> 0 (#(red lines)) if there are circuits.

The following theorem summarizes the result.

Theorem 5.7. Let (G, Γ) be a finite graph. Then the following are equivalent.

1) (G, Γ) is a tree.

2) #(components) = 1 and #(circuits) = 0.

3) |G| 6 |Γ | + 1 and there are no circuits.

4) |G| > |Γ | + 1 and the graph is connected.

5) There is no circuit and every line-addition results in a circuit.

6) Connected and every line-removal breaks connectivity.

7) Every pair of points P and Q, P 6= Q, is connected by exactly one chain

without repeating points.
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5.4 Prüfer code

In this section we discuss the Prüfer encoding of trees. A consequence of the
Prüfer encoding is that there are nn−2 trees on a given set of n points (when
n > 2.) If G is a set with n points then

{Γ ⊆ P2(G) | (G, Γ) is a tree }

contains exactly nn−2 elements. Cayley proved this. For example, Figure 5.13
shows that there are 3 trees with 3 (numbered) points and 16 trees with 4
points.

Fig. 5.13. Trees with 3 and 4 points

Example 5.8. By way of example we number the points of a tree arbitrarily as
in Figure 5.14. Next, we make a sequence of n − 2 numbers (if n > 2) as

9

1
2

7

8

10
5

4

3 6

Fig. 5.14. Arbitrary numbering of the nodes of a tree

follows:

1. Take the tip with the lowest number.
2. Write down the other endpoint of the line incident with that tip.
3. Remove that tip and the incident line.

Repeat steps 1 − 3 until there are only two points left.

The lowest tips for the tree in our example (with that numbering) are:
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3 5 6 4 9 1 2 7
4 8 4 7 1 2 7 8

the code is the sequence underneath.
The code that you get like that is of course unique. Furthermore, every

sequence of n − 2 numbers from {1, . . . , n} corresponds uniquely with a tree.
The easiest way to prove this, is by giving the inverse algorithm.

code missing elements replace by

4 8 4 7 1 2 7 8 3 5 6 9 10 4 3

3 8 4 7 1 2 7 8 5 6 9 10 8 5
3 5 4 7 1 2 7 8 6 9 10 4 6
3 5 6 7 1 2 7 8 4 9 10 7 4
3 5 6 4 1 2 7 8 9 10 1 9
3 5 6 4 9 2 7 8 1 10 2 1
3 5 6 4 9 1 7 8 2 10 7 2
3 5 6 4 9 1 2 8 7 10 8 7
3 5 6 4 9 1 2 7 8 10

The pairs of underlined elements that appear in the same column, plus the
last two missing elements, are exactly the n − 1 lines of the tree.

How can you prove that this is the inverse algorithm? Of course by show-
ing that every step is the inverse of the encoding algorithm. The original code
started with 4, thus the tree has a line {. . . , 4}. The tips of the original tree are
not in the code, but all others are. The lowest one that is missing is 3, so this
must be the tip that got thrown out. The removal of a tip, plus the incident
line, changes the code for the inverse algorithm in

(number of removed tip)(code of the remaining tree).

The lowest one that is now missing in the whole sequence is not the first item;
so it is the lowest one that is missing in the remaining code.

Finally you have to show that it works for n = 3. Say the tree has lines
{a, b} and {b, c}. The code becomes b. Missing are a and c. The algorithm
replaces b by a (if a < c) and marks {a, b} as a line. Then the code becomes
a. The ones missing are b and c, and this pair forms the last line. The case
c < a is of course similar.

This is all very easy to mechanize; in each step you only have to update
one item in the code and only one item in the list of missing elements.

It is remarkable that the Prüfer encoding dates back to 1918, but the in-
verse algorithm dates back to only 1953 (Neville).4

4 E. H. Neville, The codifying of tree-structure, Mathematical Proceedings of the Cam-

bridge Philosophical Society 49 (1953), pp. 381–385.
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5.5 Counting trees

We are going to count trees. We want to know how many different trees there
are. But, as usual, we must figure out exactly what “different” means.

1. Ordinary equivalence classes. We call these topological trees (equivalent
as topological spaces; homotopic embeddings in R3).

2. Plane trees. These are the homotopic equivalence classes in R2. The fol-
lowing figure shows two trees that are not the same when looked upon as
plane trees. Speaking in combinatorial terms, this means that the branches

Fig. 5.15. Different plane trees

that come together in a point P are given a cyclic order. So we have a class
of bijections

φ : ΓP → {1, . . . , degree of P}

where ΓP is the collection of lines that meet in P. Bijections are equivalent
if there is a cyclic permutation that maps one into the other.

3. Rooted trees. These are triples (G, Γ , r) where (G, Γ) is a tree and r ∈ G.
In other words, rooted trees are trees with one special node, the root.
The class of rooted trees can be subdivided into plane rooted trees and
topologically equivalent rooted trees. Two plane rooted trees can only be
equivalent if there is a bijection

φ : (G, γ, r) → (G′, Γ ′, r′)

that maintains the cyclic orders (and also the roots).
4. Plane stemtrees. These are plane rooted trees, but such that there is an

order at the root, instead of just a cyclic order.

Mathematics is a bit different than biology. In biology, a stemtree is a tree
with a stem (where the root is a tip). But if the root is a tip, then the cyclic
order at the other end is also “cut open.” Therefore the choice of an order
instead of a cyclic order is inherited through the whole tree.

In Figure 5.17 we show a topological tree and the topological rooted trees
that go with it.
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/ / / / / / / / / / / / / /

!

Fig. 5.16. Stemtree in biology and in combinatorics

top. tree

−→

Fig. 5.17. Topological tree and topological rooted trees

The topological tree of Figure 5.17 splits into two classes of plane trees.
See Figure 5.18. For each plane tree we depict the plane rooted trees. The
numbers in the drawings of the plane rooted trees gives the number of plane
stemtrees in which the class subdivides. This number shows in how many
ways the cyclic order at the root can be cut open; so it is simply the degree of
the root.

−→

−→

4 1 1 2 2 1 1

4 1 2 1

Fig. 5.18. Plane trees and plane rooted trees

In the following table we give a list of the smallest trees.
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#

vertices

topological

trees

plane

trees

rooted

trees

plane rooted

trees

plane stemtrees

1 / / / / /

2 / / / / /

3




 / / / / / / /

4
{

/ / / / / / / / / / / / /



 / / / / / / / / / /

Fig. 5.19. Trees with at most 4 vertices

5.6 Cayley’s functional equation

When counting topological trees we observe that a topological rooted tree
consists of either one point, or a point with “something” growing out of it.
That “something” is a multiset of rooted trees. Let B be the set of topological
rooted trees. For b ∈ B we define

ν(b) = #(points of b).

To make a topological rooted tree with n points we choose φ : B → N0 such
that ∑

b∈B

ν(b)φ(b) = n − 1.

For example, here is a list of B:

. . . .

Fig. 5.20. first few elements of B

If we define φ by the following table
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2 1 0 3 0 0 (etc. 0)

then this φ corresponds to the following topological rooted tree:

ρ

(the root)

Fig. 5.21. Tree defined by φ

Namely, since it is a topological rooted tree, the order of the branches at
the root doesn’t matter.

We now do some counting that dates back more than a century.

F(x) =
∑

b∈B

xν(b) =

∞∑

n=1

cnxn

where cn is the number of topological
rooted trees with n points. So we have
F(x) = x + x2 + 2x3 + 4x4 + . . .. By the
arguments above:

F(x) = x
∏

b∈B

(1 + xν(b) + x2ν(b) + . . .)

= x
∏

b∈B

1

1 − xν(b)

= x

∞∏

n=1

(

1

1 − xn

)cn

but also

= x exp

(

∑

b∈B

log

(

1

1 − xν(b)

)

)

= x exp

(

∞∑

k=1

∑

b∈B

xkν(b)

k

)

= x exp

(

∞∑

k=1

1

k
F(xk)

)

.

This is the so-called functional equation of Cayley.
We will show that we can count also arbitrary trees with this generating

function. This follows from an observation of Pólya and Otter (but it was
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known also to Jordan). See also Exercise 5.7. The observation is that every
tree can be given an almost unique root.

Theorem 5.9. Every tree has either

i. a unique central point, or (All lines that come out of that

point carry subtrees (“lobes”) with

< n
2

points.)
ii. a unique central line. (Both lobes at that line have ex-

actly n
2

points.)

Proof. First we prove the uniqueness of the central point c, if it exists.

C

> n
2

< n
2

Fig. 5.22. Any other point has a lobe with more than n
2

points

Any other point has c in one of its lobes. That lobe has more than n
2

points.
The uniqueness of the central line, if it exists, follows by a similar argu-

ment.
We now use induction on n. For n = 1, 2 the claim is obvious. Assume that
n is odd. A tree with n + 1 points, say B, becomes a tree with n points if we
prune a tip together with its incident line. That tree has a unique point, say c.
If the modified lobe has exactly n−1

2
points, then the line of c into that lobe

is a central line of B. If the modified lobe has fewer than n−1
2

points then the
point c is central in B.
Now assume that n is even. If there is a central line in the pruned B, then the
endpoint of the central line that carries that pruned lobe is a central point of
B. If there is a central point in the pruned B then this is also central in B. ⊓⊔

We continue our counting of trees. Next we count plane stemtrees. We
order them according to the number of points, n.
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

Fig. 5.23. Plane stemtrees with n = 1, n = 2, n = 3, and n = 4 points

The generating function

f(x) =

∞∑

n=1

#

(

equivalence classes of plane

stemtrees with n points

)

xn

= x + x2 + 2x3 + 5x4 + . . .

The coefficients are called the Catalan numbers (shifted one position; cn is
the coefficient of xn+1):

cn =
(2n)!

n!(n + 1)!
, for example c3 =

6!

3!4!
=

5 · 6

1 · 2 · 3
= 5.

In the following we do our counting a bit informally. If you want to do
things exactly then you have to use the theory of grammars. That is a different
course and there they also don’t do things that precisely, anyway. You’ll just
have to excuse us for doing things not in the neatest Bourbaki-way.

A plane stemtree looks like this:

/ / / / / / / / / / / / / / /

PS
PS

Fig. 5.24. A plane stemtree is either a point or it has a leftmost nonempty branch

If the plane stemtree has n points then it looks like this:

k points
n − k

points
/ / / / / / / / / / / / / / /

Fig. 5.25. The leftmost branch has k points and the rest has n − k points
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Thus: f(x) = x + f(x)f(x) (5.1)

and this gives f(x) =
1 −

√
1 − 4x

2
=

∞∑

n=1

tnxn, (5.2)

with tn = cn−1, (5.3)

which follows easily from the power series expansion of
√

1 − 4x.

In another way you find the same result:

/ / / / / / / / / / / / / / / / / / / /

Fig. 5.26. This is just the mirror image

A third method gives the same result only after some calculations:

/ / / / / / / / / / / / / / / / / / /
. . . .

/ / / / / / / / / /

Fig. 5.27. A series expansion of plane stemtrees

This gives

f(x) = x + xf(x) + x (f(x))
2
+ x (f(x))

3
+ . . .

In other words, f(x) = x
1−f(x)

, from which Equation 5.1 follows again.

Let’s consider a similar exercise with binary plane stemtrees, which we
shall call simply binary trees for short. In every point we have either 0 or 2
branches growing up.
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n = 1 n = 2

empty

n = 3 n = 5 n = 7

Fig. 5.28. Binary trees

The generating function starts like:

g(x) = x + x3 + 2x5 + 5x7 + . . .

You can “make” a binary tree as follows:

/ / / / / / / / / / / /

BT BT

Fig. 5.29. A binary tree is either a point, or it has a root, and two binary trees are

growing out of that root

Thus: g(x) = x + x (g(x))
2

(5.4)

and this reduces to g(x) =
1 −

√
1 − 4x2

2x
etc., (5.5)

but if we substitute

h(x) =
f
(

x2
)

x
then we can find h from Equation 5.1:

h(x) =
1

x

(

x2 + f
(

x2
)

f(
(

x2
))

=
1

x

(

x2 + x2h2(x)
)

= x
(

1 + (h(x))
2
)

.

Thus the solution of Equation 5.4 is g(x) =
f(x2)

x
.

You can also see this as follows. We establish a 1-1 correspondence be-
tween binary trees and plane stemtrees. We draw a binary tree such that all
the lines grow either in a positive x-direction or in a positive y-direction.
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∗
--

--
--

--
--

--
--

--
--

--

-
root

Fig. 5.30. Orthogonal drawing of a binary tree

From ∗, straight under the “root,” we draw connections to the nontips of
the tree (circled •s) on the horizontal branch directly above it (punctuated
lines). From those points we repeat the procedure until there are only tips
left.

The dotted lines form a tree; a plane stemtree.

Fig. 5.31. The plane stemtree related to the binary tree above

To prove that this is a 1-1 correspondence is not straightforward. This
becomes a little bit easier when we encode the trees in a formal way. We talk
about the UD-encoding for plane stemtrees first; in the next section.

5.7 UD-encoding

Let’s just do it by example.
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Fig. 5.32. A louse traversing a plane stemtree

This tree is planted in a two-dimensional universe and it is passed by a
crawling louse. The louse has to follow the stipulated path to get to the other
side of the tree. We encode the path of the louse by letting him (or her) shout
at every line whether he or she is traversing this line in upward direction or
in downward direction. The louse produces the following code when passing
the tree in the example.

U U D U D U D D U D U U D U D D

Not all the UD-words are codewords. Which ones are?
We make a plot of the UD-word: every U corresponds with a unit lineseg-

ment going up at 45◦ and every D with a unit linesegment going down at 45◦.
Our diagram looks like this:

Fig. 5.33. UD-diagram

The diagrams of the codewords have the following properties:

(1) They start and end at 0, and
(2) they are always above ground: > 0.

The first requirement is especially important: the animal must land with both
feet on the ground; otherwise our poor louse keeps hanging in the air.

The UD-requirements can be described in a number of ways.

Method 1.

We can make use of the “BNF-grammars” (Backus-Naur Form, developed for
the description of the ALGOL 60 programming language).

< UD-code >::= | U < UD-code > D < UD-code >
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This corresponds with the first way to determine a generating function of a
plane stemtree. Or also:

< UD-code >:: = |U < UD-code > D | U < UD-code > DU < UD-code > D |

| U < UD-code > DU < UD-code > DU < UD-code > D | . . .

By the way, how do you get the tree back? Well, that’s pretty simple. Take
the diagram of the code and put some glue at the underside of the drawing.
Let it dry a little bit (otherwise it won’t stick) and then push it together.

Fig. 5.34. Push the diagram together to get the plane stemtree back

Method 2.

Let di be the number of U’s just before the ith D and after the (i − 1)th D.
Then you get a sequence of numbers, all > 0 that satisfy (if there are 8 d’s):

d1 > 1; d1 + d2 > 2; d1 + d2 + d3 > 3; . . . d1 + d2 + . . . + d8 = 8.

In our example:
d1 d2 d3 d4 d5 d6 d7 d8

2 1 1 0 1 2 1 0

If we plot the partial sums, it looks like this:

0 1 2 3 4 5 6 7 8

Fig. 5.35. Partial sums d1 + . . . + di, for i = 1, . . . , 8

The Catalan numbers give the numbers of these kinds of diagrams.
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The Catalan numbers turn up all over the place in combinatorics, and
every time it is fun to discover the connections between those occurrences.

5.8 KE-encoding

We can encode plane stemtrees also in other ways. For example, put letters
a, b, c . . . at lines that go up from a point, in clockwise order.

a

a
b c

a b c

abb

b

ba

cba

bb
K

Fig. 5.36. Planar stemtree encoded with letters a, b, c, . . .

We define the “track” at a point in the tree as the sequence of letters that
you see when you travel from the root to that point.

Now let the louse shout the track of a point that he passes, but only when
he sees that point for the first time. For the encoded tree in the example, the
louse shouts the sequence:

∅

a
a a
a b
a b a
a b b
a b c
a c
b
b a
b b
b b a
b b b
b b c.

These are the words that the louse
shouts are in alphabetic order.

The idea of “backtracking” is that some-
times, you can see at the start of a word
that you don’t need to go into that part
of the tree; that you have no business
there.

We are going to look at an encoding scheme for binary trees. Again the
louse helps us. This time we use the KE (“knot–end”) encoding. The louse,
that is walking over the binary tree, notes only “knot” (internal point) or
“end” (tip; leaf) and, furthermore, it only notes the new points.
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E KEE KKEEE KEKEE

Fig. 5.37. KE-encodings of some binary trees

At the third tree the louse sees two knots, one after the other; he/she
thinks: “what’s the point of all this?”

Note that the KE-code ends with E. The “abbreviated KE-code,” say aKE-
code, is the same as the KE-code but without that last E. There are now as
many K’s as there are E’s and the fun of it all is, that the aKE-code of a binary
tree corresponds with the UD-code of the related stemtree.

Fig. 5.38. Binary tree and plane stemtree

The stemtree with the dotted lines has the following UD-code and the
binary tree has the aKE-code that’s written underneath.

U U D U D D U D U D

K K E K E E K E K E

Let’s see if we can generate the KE-code nicely:

< KE − code >::= E | K < KE − code >< KE − code >

/ / / / / / / / / / / /

Fig. 5.39. A binary tree is either E or K followed by two binary trees

The aKE-code is defined by:
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< aKE > ::= − | K < KE − code >< aKE >

::= − | K < aKE > E < aKE >

and now we see that the grammars for aKE and for UD are the same.

The aKE-code is related to the way to write an algebraic expression in
(reversed) Polish. For example, look at the left picture first. We will explain
the picture on the right in a minute.

0

0 0

0
0 0

0 0

0 0

2

3
2

2

2

3 1

2

x

a b

c
d y

ℓ m

e t
τ(

,

)

ψ(
, ,

) )
q(

ρ( )g( )

f( )

,

,

,

,

,,

h( )

φ( )

Fig. 5.40. Left: At every knot we write the number of outgoing lines. Right:Formula.

(A biologist immediately sees what kind of a tree this is by looking at the
manner in which it has grown.)

At every knot we now write the number of lines that grow out of it (going
up). When the tree is binary you only get zeros and twos. Instead of K or E

the louse now calls the numbers:

2 2 3 0 2 0 0 0 0 2 0 3 2 0 0 0 1 0.

Now compare this with an expression:

f(g(h(x, φ(a, b), c), d), ρ(y, ψ(τ(ℓ, m), e, q(t)))).

This expression relates to the tree as follows. We put the variables at the
points. At the internal knots we also put brackets and commas; depending
whether the louse sees the knot for the first time, some intermediate time,
or for the last time (see the figure). When the louse travels along the tree, it
produces the formula.

You may just as well remove that mess of brackets and commas and instead
put the number that the louse shouts in front of the symbol:

2 f 2 g 3 h 0 x 2 φ 0 a 0 b 0 c . . . etc.

The grammar of this kind of words is

< code >::= 0 | 1 < code > | 2 < code >< code > |

| 3 < code >< code >< code > | etc.
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If you restrict yourself to binary trees then you get exactly the grammar of the
KE-encoding.

Consider the sequence with numbers. If you subtract i from the ith partial
sum then you get a sequence that indicates the number of expressions that
are still to come. Start with 1 for i = 0. The sequence of the example above
changes as follows:

2 2 3 0 2 0 0 0 0 2 0 3 2 0 0 0 1 0
1 2 3 5 4 5 4 3 2 1 2 1 3 4 3 2 1 1 0

↓
Done!

Russell paradox

This is the point where we can discuss the Russell-paradox5 in its tree version.
Some trees are isomorphic with a subtree at the first level, and others (for
example all finite ones) are not. We call a tree special if it is isomorphic with
a subtree in its first level.

Fig. 5.41. Special trees

We now construct a tree that has as subtrees at the first level, all the non-
special trees. Thus all the non-special trees are branches of one common root.
Call this tree B. Note that B is special,

1) if and only if it does not appear in the first level
2) (by the definition of special) if and only if it does appear at the first level.

This is a contradiction.

5.9 Counting alcohols

We are going to do some special tree-counting; namely, we are going to count
alcohol molecules (and you can find much more of these kind of things in
that great article of Pólya from 1937). Actually, alcohol radicals: a chain of

5 B. Russell, Principles of mathematics, Cambridge University Press 1903.
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carbon atoms connected to an OH-group, and the rest of the valencies filled
with H-atoms. The simplest alcohol is therefore:

OH

H

Fig. 5.42. The simplest alcohol (rather tasteless)

The general alcohol looks like:

OH

rad.
with rad.= either

H
or C

rad.

rad. rad.

Fig. 5.43. An alcohol radical looks like the simplest one or with the H-atom replaced

by three radicals

The generating function is therefore

F̃(x) =

∞∑

n=0

cnxn where

cn is the number of “plane” alcohols with n C-atoms. Thus we find:

F̃(x) = 1 + x
(

F̃(x)
)3

.

But actually, it doesn’t really matter where each radical exactly attaches, more
precisely:

an alcohol radical ::= H | a pattern of mappings of {1, 2, 3} →
a set of alcohol radicals.

By a “pattern” we mean an equivalence class under the action of S3. If you
think about this for a minute then you see that

D(x) = 1 + xPS3

(

D(x), D
(

x2
)

, . . .
)

where D(x) is the generating function of the topological alcohols. Thus

D(x) = 1 +
x

6

(

D(x)3 + 2D
(

x3
)

+ 3D(x)D
(

x2
))

.

But, when we look through some polarizing filter at chemical compounds
then we can see the optical activity (sometimes), and if we want to bring this
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into account then we should count only the cyclic permutations, that is, we
should do the calculations with the alternating group A3 instead of S3. If we
do that, we find

E(x) = 1 +
x

3

(

(E(x))
3
+ 2E

(

x3
)

)

for the generating function of the ordinary alcohols–with–stereo-isometry.

5.10 The matrix tree theorem

A tree is a special kind of graph, we have to keep that in mind.
We can orient a tree inductively as follows.

(i) Choose a “root” P1.
(ii) Take a tip P 6= P1. There is a shortest path from P to P1. Put an arrow

along the first line of this path pointing from P towards P1.
(iii) Remove P and the line that carries the arrow from the tree and repeat

this procedure.

In this way we obtain an oriented rooted tree, with an orientation directed
towards P1.

We make a remark.

Theorem 5.10. A finite graph with a distinguished point P1, that can be ori-

ented such that

1) out of every node 6= P1 leaves exactly one arrow and out of P1 leaves no arrow;

and

2) such that there are no oriented circuits,

is a tree.

Proof. Method (I). Consider P 6= P1. Walk out of P until you cannot go any
further or until you reach a node that you already saw before. Because
there are no oriented circuits that node must be P1.
Here are still a few dirty details swept under the carpet:

P

Fig. 5.44. A “loop” incident with P

(a) There can be no loops since that would be an oriented circuit.
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Fig. 5.45. Inconsistently oriented circuit

(b) Circuits that are oriented inconsistently are also not possible since
there would be points with more than two outgoing arrows.

Disorient the graph. Then the graph is connected and there are no circuits.
The result follows from Theorem 5.7 on page 83.

Method (II). Method (I) proves that the graph is connected. Furthermore we
have that

#(points) = #(lines) + 1.

The result follows again from Theorem 5.7.
⊓⊔

We start with a bit of theory developed by Kirchhof and Maxwell (ca
1850).6 7

Start with a finite, oriented graph (G, ∆). A spanning tree for (G, ∆) is an
oriented graph (G, E) such that E ⊆ ∆ and such that (G, E) an oriented tree
(oriented towards a root).

For example take Figure 5.46 (for the moment don’t look at the dotted
lines).

P1

P3

P2

P5

P4

Fig. 5.46. Oriented graph and spanning tree

We ask ourselves: how many spanning trees are there in the given graph
with root P1? An example of such a spanning tree is given by the dotted lines.

6 G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der Un-

tersuchung der linearen Vertheilung galvanischer Ströme geführt wird, Ann. Phys.

Chem. 72 (1947), pp. 497–508.
7 J. C. Maxwell, A treatise on electricity and magnetism, Clarendon Press 1892.
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Note that the arrows from P3 to P1 and from P5 to P4 must be in any
spanning tree (rooted at P1). From P4 we have a choice; either we choose
P4 → P1 or P4 → P3. And from P2 we have three choices: P2 → P1, P2 → P4,
or P2 → P5. All combinations are possible. Thus in our example we have 6
spanning trees in total.

In this manner you can get an algorithm that finds all spanning trees
quickly. But now we will count the number of possibilities. In order to do
that we associate with the graph a matrix, of size |G| × |G|:

In row i we write in the jth column:

{
if i 6= j: −#(arrows from Pi to Pj)

if i = j: the total out-degree of Pi.

The total column-sum is therefore 0.

For the example above the matrix is













0 0 0 0 0
−1 3 0 −1 −1
−1 0 1 0 0
−1 0 −1 2 0

0 0 0 −1 1













Theorem 5.11 (Matrix Tree Theorem). The number of spanning trees with

root Pk is the (k, k)-minor (the determinant of the matrix that results by remov-

ing the kth row and kth column from the matrix).

In our example we get the determinant of

∣

∣

∣

∣

∣

∣

∣

∣

3 0 −1 −1
0 1 0 0
0 −1 2 0
0 0 −1 1

∣

∣

∣

∣

∣

∣

∣

∣

= 6.

Notice that the loops in an oriented graph don’t play any role; they don’t
appear in the matrix and for the trees they are also of no importance; you
may as well leave them out.

Here’s the proof.

Proof. Assume k = 1. (We can accomplish that by rearranging rows and
columns.) Now simply leave out all the arrows that go out of P1. They don’t
play a role in the trees that are oriented towards P1.

Case I: Out of every point 6= P1 leaves exactly one arrow.
Ia: There is no oriented circuit. Now we are done, since the graph is al-

ready a tree. Renumber the the points such that all arrows point from
high to low; that is, arrows (k, ℓ) are such that ℓ < k.
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In order to do that, take a tip 6= P1 and give it number n. Leave out
the tip and the incident line, and go on like that. For example, the tree
in figure 5.47 can be numbered as illustrated.

2

1
4

5

7
9

10

6

8

3

Fig. 5.47. Numbering of tree such that all arrows point from high to low

Now the matrix is lower-triangular (all elements above the diagonal
are zero) and the diagonal has ones, namely the total out-degree of a
point. Thus the (1, 1)-minor is one.

























0
1

1
1

1
1

1

...

Fig. 5.48. Lower triangular matrix

Ib: There is an oriented circuit. Now the graph contains no tree, because
when you land in that circuit you can’t get out of it anymore.

a

b

53

4

Fig. 5.49. Oriented cycle
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The rows that belong to one cycle add up to zero: For every member
of the cycle there is one column entry −1 (among those rows) and
one column entry +1. Row 3 has a −1 in column 4. Row 4 has +1 in
column 4 and otherwise zeros in rows 3, 4, a, b, . . . , 5. The minor is
therefore zero, since those rows are dependent.

Case II. Out of some point, say P2, leaves more than one arrow. Any split of
those arrows out of P2 in two nonempty groups, say red and blue, divides
the spanning trees into two kinds:
1. trees with the arrows going out of P2 red, and
2. trees with the arrows going out of P2 blue.

Now let ∆1 = ∆ \ {red arrows} and let ∆2 = ∆ \ {blue arrows}. Then the
total number of trees in (G, ∆) is equal to #(in (G, ∆1)) + #(in (G, ∆2)).
But also, the second row in the matrix of (G, ∆) is the sum of the second
rows in the matrices of (G, ∆1) and (G, ∆2), and thus the determinant is
the sum of the determinants that go with these graphs. The claim follows
by induction.

⊓⊔
For a non-oriented graph you can calculate the same thing. Just change

every line into two arrows, and apply the previous theorem. The undirected
graph from the previous example,

1

5

2

3

4

Fig. 5.50. Undirected graph

has a matrix












3 −1 0 −1 −1
−1 3 −1 −1 0

0 −1 2 −1 0
−1 −1 −1 4 −1
−1 0 0 −1 2













and the number of trees with root 1 is therefore
∣

∣

∣

∣

∣

∣

∣

∣

3 −1 −1 0
−1 2 −1 0
−1 −1 4 −1

0 0 −1 2

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

3 −1 −1 0
−1 2 −1 0
−1 −1 4 −1
−2 −2 7 0

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

3 −1 −1
−1 2 −1
−2 −2 7

∣

∣

∣

∣

∣

∣

=

= 3 · 12 + 1 · (−9) − 2 · 3 = 36 − 15 = 21.
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As a special application we can count again the number of labeled trees
with n points. Apply the previous theorem to the complete n-graph. The de-
terminant that has to be calculated becomes:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n − 1) −1 −1 . . . −1
−1 (n − 1) −1 . . . −1
−1 −1 . . . . . . . −1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−1 −1 . . . . . . . (n − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(with n − 1 rows and columns). This is a symmetric matrix. You can see the
eigenvalues blindfolded:

λ = n (rk(A − nI) = 1, thus multiplicity is n − 2)
λ = 1 (rk(A − I) = n − 2 (has to be) thus multiplicity is 1.)

The determinant is the product of the eigenvalues which is nn−2. This is Cay-
ley’s theorem again. NB Of course there are other ways to calculate that
determinant.

Another special case occurs when the in-degree equals the out-degree for
every vertex. That makes the row-sum also zero. Let n be the number of
points in the graph. The number of spanning trees rooted at point 1 is the
(1, 1)-minor indicated in Figure 5.51.

︸ ︷︷ ︸

n

Fig. 5.51. Lower righthand minor

Adding all columns (except the first) to the rightmost column does not
change the (1, 1)-minor. If we do that, the rightmost column is −1 times
the first column. We can now change the columns (2, 3, . . . , n) into columns
(n, 2, 3, . . . , n − 1) by n − 1 swaps. Each swap multiplies the (1, 1)-minor by
−1. This shows that the (1, 1)-minor is equal to (−1)n times the (1, n)-minor
shown in Figure 5.52.
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Fig. 5.52. Lower lefthand minor

But the (n, n)-minor shown in Figure 5.53 can be transformed in exactly the
same manner as above into the (1, n)-minor of Figure 5.52.

Fig. 5.53. Minor of the (n × n)th element

This proves that the number of trees rooted at 1 is the same as the number
of trees rooted at n and we conclude that the number of rooted trees is the
same at every point.

The matrix that belongs to an ordinary graph is symmetric and by defi-
nition, the in-degree is equal to the out-degree for every point in the graph.
Therefore, the number of trees in an ordinary graph does not depend on the
root that you choose, which follows nicely from the calculations.

An analogous problem is that of covering a graph with dimers (“dumb-
bells” on the lines). For example:

Fig. 5.54. Covering an oriented graph with dimers
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You can solve this by finding a suitable, “Pfaffian” orientation ∆ of the
graph and by defining the (i, j)th element aij of a matrix A as

aij =






+1 if (i, j) ∈ ∆

−1 if (j, i) ∈ ∆

0 otherwise.

In this manner you get a skew-symmetric matrix and (without proof) the
number of ways to cover G with dimers is exactly

√

determinant(A) (see
Exercise 6.16). Kasteleyn showed that every planar graph has a Pfaffian ori-
entation.8

5.11 Euler graph

We come to Euler circuits. An Euler circuit is a circuit that uses all the lines of
Γ exactly one time. This is named after the Königsberg’s bridge problem.

An Euler-circuit collection is a collection of disjoint circuits that together
use up all the lines exactly once. NB A Hamilton circuit is a circuit that visits
all the points of a graph exactly once. We discuss Euler’s famous theorem next.

Theorem 5.12. Let (G, Γ) be a graph. Then all the degrees are even if and only

if there is an Euler-circuit collection. Furthermore, there exists an Euler circuit

if and only if the graph is connected and all the degrees are even.

Proof. Obviously, an Euler-circuit collection can exist only if all the degrees
are even. Assume that this is the case. We first prove that there exists an
Euler-circuit collection.

(i) Assume P1 has degree 0. Then remove P1 from the graph.
(ii) Assume P1 has degree 6= 0. Then start walking through the graph. Since

all degrees are even, whenever you enter a point you can also leave it.
Sooner or later you get back to vertex P1. Then remove the lines of that
circuit and start again.

Now we add the connectedness.
Assume that we have an Euler-circuit collection that is minimal. With min-

imal we mean that the number of elements in the collection is as small as
possible. Claim: They are point-disjoint since, if they were not, then we could
merge two of them together into one as illustrated in Figure 5.55.

8 P. W. Kasteleyn, Graph theory and crystal physics. In (F. harary ed.) Graph theory

and theoretical physics, Academic Press 1967, pp. 43–110.
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circuit 1 circuit 2
x

Fig. 5.55. Merge two circuits into one

⊓⊔

A nice application is the beer-bottle problem.

Along a Falaise terrace there are two small paths going up. Two party
members want to carry a load of beer upstairs to the party. They want to
attempt this in the following way. Between them they carry a long plank that
carries all the beer bottles and together they walk up. Of course they have to
keep the plank horizontal, otherwise the whole load shifts right or left.

How to solve this problem?

Let the heightfunction of one path be h1(x) = H1(x − x0) and let the
heightfuntion of the other path be h2(x) = H2(x − x1). Construct the set

V = {(ξ, η) | h1(ξ) = h2(η)}.

If the path consists of straight stretches then V is a “graph” with vertices of
degrees 4 and 2 and start– and endpoint or degree 1. Connect the start and
finish and notice that they are now contained in one component of the graph.
That component has an Euler circuit. See Figures 5.56 and 5.57.

x0 x1

Fig. 5.56. Illustration of the beer-bottle problem



5.11 Euler graph 111

Fig. 5.57. Euler graph of the beer-bottle problem

For a brief moment we have a look at Hamilton paths. In Figure 5.58 we
show a graph and a Hamilton circuit in there.

A

B

C

D

F

E
I

H

G B

G

FH

E

I

C
D

A

Fig. 5.58. Graph with Hamilton circuit
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The theory of the Hamilton paths is boring and offers only few possibili-
ties. Under certain conditions you can interpret the points as lines in another
graph, and then there are possibilities using Euler paths and circuits.

Let us formulate Euler’s theorem for oriented graphs.

Theorem 5.13. Let (G, ∆) be a finite oriented graph. Assume that for every P ∈
G the in-degree of P equals the out-degree of P. Then there exists a Euler-circuit

collection. Furthermore, if (G, ∆) is “strongly connected” then there is a single

Euler circuit.

NB

1) Out-degree(P) = the number of Q such that (P, Q) ∈ ∆.
2) In-degree(P) = the number of Q such that (Q, P) ∈ ∆.
3) (G, ∆) is strongly connected if for every pair P and Q, P 6= Q, there is a

path from P to Q:

P = P0, P1, . . . , Pk = Q and (Pi, Pi+1) ∈ ∆ for i = 0, . . . , k − 1.

If we rub out the arrows of a strongly connected oriented graph and re-
place them by ordinary lines (and remove all double lines and loops) then we
obtain a connected graph. This shows the connection between the two con-
cepts. BTW, the concept of “strongly connectedness” is fabricated especially
for this purpose.

Remark 5.14. BTW, the proof shows that for an oriented Euler graph (in-
degree(P) equals out-degree(P) for all P) that, if the underlying undirected
graph is connected, then the (directed) graph is strongly connected.

Proof. Simple. Start anywhere in the Euler graph, say in P0. Lengthen the
chain step by step. In every point that you enter there is an exit, except in P0

where the exit has already been used.
Sooner or later you can’t go any further because ∆ is finite and so you

must be back at P0. In that way you carry on. If there are circuits that have
points in common, then you can merge them into one circuit just as in the
undirected case. Etc. (Finiteness is essential.) ⊓⊔

5.12 Linegraph

Let σ ∈ N0. We say that an Euler graph (G, ∆) is of type σ if for every P ∈ G

in-degree(P) = σ = out-degree(P).

Example 5.15. Let G be a set, then (G, ∅) is an Euler graph of type 0.

Example 5.16. Another example:
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Fig. 5.59. Euler graph of type 1

We define the linegraph L(G, ∆) of an oriented graph:

L(G, ∆) = (G1, ∆1) where

G1 = ∆ and






∆1 consists of all pairs of ∆ that are in
a head-tail relation. Formally:

∆1 = { ((P, Q), (R, S)) ∈ ∆×∆ | Q = R }.

To put it even more casually; the arrows are now the points and the points
now act as the connections between the lines. See Figure 5.60.

Fig. 5.60. Piece of an oriented graph transformed in a piece of the linegraph

Example 5.17. In Figure 5.61 we drew a graph and its linegraph in one pic-
ture.

Fig. 5.61. Graph and linegraph in one picture
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Remark 5.18. If (G, ∆) is an Euler graph of type σ then is L(G, ∆) again an
Euler graph of type σ. That is pretty obvious: The out-degree of a line d in ∆

is the number of lines that go out of the head of d, etc.

Definition 5.19. Pw(G, ∆) is the number of spanning, oriented rooted trees with

a specified root in Euler graph (G, ∆).

Remark 5.20. It does not matter which root you choose.

Definition 5.21. PE(G, ∆) is the number of Euler circuits in the oriented graph

(G, ∆).

Theorem 5.22. Let (G, ∆) be an Euler graph of type σ, σ > 0. Then

PE(L(G, ∆)) = PE(G, ∆)
1

σ
(σ!)

|G|(σ−1)

Theorem 5.23. Let (G, ∆) be an Euler graph. Then

PE(G, ∆) = Pw(G, ∆)
∏

p∈G

(σp − 1)!

where

σp = in-degree of p = out-degree of p.

Example 5.24. σ = 1. Now PE(L(G, ∆)) = PE(G, ∆) = 1. The linegraph

Fig. 5.62. σ = 1; 4-cycle

L(G, ∆) is isomorphic to (G, ∆). Another example is illustrated in Figure 5.63.

5.13 De Bruijn sequence

An example how to use graphs and their linegraphs is the following. Consider
the graph in Figure 5.64.

There are three consecutive points numbered as 000:
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(G, ∆) L(G, ∆)

one Euler path

two Euler paths

Fig. 5.63. σ = 2: very simple example

0

00

1

1

1 0

1

Fig. 5.64. Circuit with points labeled 0 and 1

000
shift one position in the cycle: 001
etc. 010

101
011
111
110
100

In this way we obtain all 3-letter words (with letters 0 and 1).

How do you construct a labeled cycle like that for an arbitrary wordlength?

A cyclic order of 0 and 1 as above is called a shift-register sequence.9 In
the old days this was an interesting problem for telex machines. Nowadays
these things work totally differently.

We define the de Bruijn graph (Gn, ∆n) as follows.

9 A shift-register sequence is nowadays better known as a de Bruijn sequence.



116 5 Graphs

Gn = the set of all n − 1 letter words

∆n =






consists of F(Gn+1): Let (ǫ1, . . . , ǫn) ∈ Gn+1. Then
F(ǫ1, . . . , ǫn) ∈ Gn × Gn, namely the element:

((ǫ1, . . . , ǫn−1), (ǫ2, . . . , ǫn)) .

1101

0110

1110 1010

1011F(10110)

F(01101)

F(11101)
F(11010)

F(11011)

Fig. 5.65. Little piece of (G5, ∆5)

Example 5.25. Every vertex has two outgoing arrows: one extends the word
at the head with a 0 and the other extends it with a 1. Both cut off one letter
of the tail.

A shift-register sequence for 5 letters is an Euler circuit in (G5, ∆5).

Example 5.26. We show some examples in Figures 5.66 and 5.67.

00

11

10 01

1

0

Fig. 5.66. Bit boring: (G2, ∆2)

We also see that L(Gn, ∆n) = (Gn+1, ∆n+1).

We saw already that Gn+1 can be looked upon as ∆n. When are two points
connected in L(Gn, ∆n)? Point A of L(Gn, ∆n) is connected to B if the head
of A equals the tail of B (Figure 5.68). That means that

A = ǫ1a and B = aǫ2,

in other words, A and B are the first part (n letters) and the last part (also n

letters) of the word ǫ1aǫ2.
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111

000

01 10

00

11

001

011

100

110

101

010

Fig. 5.67. (G3, ∆3): here is the circuit that we designed above as the Euler circuit

a

A

B

Fig. 5.68. Two lines A and B in head-tail relation; meeting in a

Let’s put some of the numbers in a table:

Wordlength n 2 3 4 5 6

#(points in the cycle) 4 8 16 32 64

#(points in the graph) 2 4 8 16 32

# Euler circuits 1 2 16 2048 6710864
2 log # Euler circuits 0 1 4 11 26

Around 1945 an ingenieur10 was doing some calculations on this table.
Before he got to the last column he discovered that the numbers in the bottom
row are 2n−1 − n. N. G. de Bruijn added the last column. Then he discovered
that a Frenchman, Flye St Marie11 had done the same thing in 1845, and if
you know how to do it, then his article is not too hard to understand.12

The formula is quite clear: On the basis of our general result, Theo-
rem 5.22 on page 114, with the transition from (Gn, ∆n) to (Gn+1, ∆n+1)

the number of Euler circuits gets multiplied by

10 K. Posthumus.
11 See Technical Report 75-06, Technical University Eindhoven; this contains an

overview of the literature.
12 C. Flye Sainte-Marie, Solution to question nr. 48, L’intermédiaire des Mathématiciens

1 (1894), pp. 107–110.
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1

σ
(σ!)

|Gn|(σ−1)
= 2|Gn|−1

since σ = 2. Thus (Gn consists of the 2n−1 words of length n − 1)

2 log(PE(Gn+1, ∆n+1)) = 2 log(PE(Gn, ∆n)) + 2n−1 − 1

= 2n−1 − (n − 1) + 2n−1 − 1 = 2n − n.

We prove the theorem for the case that σ = 2. For more general proofs,
see the remark at the end of the theorem.

First a simple case. Assume that the graph is a cycle with pimples: Fig-
ure 5.69. There is only one Euler circuit; a path that passes through node x

(G, ∆)

Fig. 5.69. Cycle with pimples

must also travel through the loop at x.

The linegraph looks as in Figure 5.70.

1
2

3

4
5

6

A

Fig. 5.70. Linegraph of the cycle with pimples
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An Euler circuit can travel a vertex-plus-loop or not; alternatively it can
pass by the vertex-plus-loop on the inside. If we start with the indicated line,
then we are at n − 1 steps back at A. (In this case n = 7). In each of those
steps we have a choice between two possibilities. After one full turn the circuit
is fixed; all paths that were avoided in the first turn, must now be traversed.
So there are 2n−1 paths in L(G, ∆), and this agrees with the general formula
that we want to prove.

We now look into the general case. Assume that there is a point in G which
is not a vertex-with-loop as in the picture 5.71. Note that if every vertex is a

Fig. 5.71. Vertex with loop

vertex-with-loop, then we are done since this is the special pimple-case that
we looked at. Thus now we may choose a point p without a loop.

3 4

1 2

ρ

(G, ∆)

3 4

1 2

(G∗, ∆∗)

3 4

1 2

(G∗, ∆∗∗)

Fig. 5.72. A point p and the monster. In the second and third figure we leave G \ {p}

as it was, but we change something in the mouth of the monster

It’ll take you a while to do this formally, but by looking at the figures you
get the idea also.

Claim :

PE(L(G, ∆)) = 2PE(L(G∗, ∆∗)) + 2PE(L(G∗, ∆∗∗)). (5.6)

Notice that this is exactly what we need for an induction step in the proof
of Theorem 5.22 on page 114:

PE(L(G, ∆)) = 2|G|−1PE(G, ∆).

Namely, G∗ and G∗∗ both have one vertex less than G and

PE(G, ∆) = PE(G∗, ∆∗) + PE(G∗, ∆∗∗).
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By induction

PE(L(G, ∆)) = 2 · 2|G∗|−1PE(G∗, ∆∗) + 2 · 2|G∗|−1PE(G∗, ∆∗∗) =

= 2|G∗|PE(G, ∆) = 2|G|−1PE(G, ∆).

Now we make the linegraph of this graph. For that we have to rub the
sleep out of our eyes. Luckily most of the rubbish disappears into the monster
and we don’t care about that.

We show the linegraph of (G, ∆) in Figure 5.73. (A and B in this picture
represent the incoming and outgoing arrows of 1,2,3, and 4.)

3A 3B 4A 4B

1A 1B 2A 2B

Fig. 5.73. Linegraph of (G, ∆)

3A 3B 4A 4B

1A 1B 2A 2B

3A 3B 4A 4B

1A 1B 2A 2B

Fig. 5.74. L(G∗, ∆∗) and L(G∗, ∆∗∗)

Given the connections in the intestines of the monster, we now check the
number of Euler paths in L(G, ∆), in L(G∗, ∆∗), and in L(G∗, ∆∗∗).
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There are two kinds of connections in the intestines:

1A 1B 2A 2B

3A 3B 4A 4B
︸ ︷︷ ︸

Case 1: two separate groups

and
2A 1B 1A 2B

3A 4A 4B 3B
︸ ︷︷ ︸

case 2: two mixed groups.

Let’s first look at the separate groups in Figure 5.75.

p q r s

L(G, ∆)

p q r s

L(G∗, ∆∗)

p q r s

L(G∗, ∆∗∗)

Fig. 5.75. Separate groups

If we start with the dotted line in L(G, ∆) then we traverse first r, and
then s, or the other way around; but r and s always come together, because if
you are on the left you cannot go back, unless you use the dotted line twice.

On the left you have a choice to traverse first p and then q or the other way
around. Thus in total there are 4 possibilities for traveling through L(G, ∆).
In L(G∗, ∆∗) there are no possibilities, and in L(G∗, ∆∗∗) we have two:

r q s p or r p s q.

Thus in this case the Claim 5.6 holds.

Now let’s deal with the mixed groups:

p q r s

L(G, ∆)

p q r s

L(G∗, ∆∗)

p q r s

L(G∗, ∆∗∗)

Fig. 5.76. Mixed groups

On the left we see 4 possibilities in L(G, ∆):

r s p q

r q p s

r p s q

s p r q.

On the right we see that there is exactly one possibility for L(G∗, ∆∗),
namely
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r s q p

and we see that there is also exactly one possibility for L(G∗, ∆∗∗), namely

r p q s.

Actually, L(G∗, ∆∗) and L(G∗, ∆∗∗) are both similar to Figure 5.77.

Fig. 5.77. The two figures on the righthand-side of 5.76 are the same

Summarizing, we see that in each case there are 4 Euler circuits in L(G, ∆)

and 2 Euler circuits in L(G∗, ∆∗) and in L(G∗, ∆∗∗) together. This proves
Claim 5.6 and so we are done.

Remark 5.27. For the general case we refer to T. van Aardenne-Ehrenfest and
N. G. de Bruijn, Circuits and trees in oriented linear graphs, Simon Stevin 28,
203–217, (1951).

5.14 Spanning trees

1

2

3

4

5

6

Fig. 5.78. Euler graph
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Example 5.28. Take an Euler circuit in the Euler graph of Figure 5.78 that
starts with the arc (1, 2). For example

1 2 3 3 4 5 1 4 6 5 2 1 3 1.

Now number the lines of this Euler circuit and take with every point 6= 1
the last exit.

Claim: Together these lines form a tree; the last-exit-tree.

1) The number of points is one more than the number of lines.
2) The outgoing line of every point has a higher number than the incoming

lines, so there are no circuits.

In our example we get the tree of Figure 5.79.

1

2

3

4

5

6

Fig. 5.79. Spanning tree

This example illustrates the proof of Theorem 5.23 on page 114 and we
will discuss this next.

Theorem 5.29. Let (G, ∆) be an Euler graph with a finite number of points.

That means that (G, ∆) is an oriented graph and that for every point P ∈ G,

in-degree(P) = out-degree(P).

Let G = {P1, . . . , Pn} where n = |G|. Let σi = in-degree(Pi) for i = 1, . . . , n.

Then

PE(G, ∆) = Pw(G, ∆, P1)

n∏

i=1

(σi − 1)!

where Pw(G, ∆, P1) is the number of spanning trees with root P1 that are ori-

ented towards P1.
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Proof. We prove that every tree with root P1 and oriented towards P1 occurs
exactly in

∏
(σi − 1)! Euler circuits as a last-exit-tree.

Recall how we constructed the last-exit-tree: Color arrow (P1, P2) red.
With every point 6= P1 we color the last exit blue. Then we get a blue tree:
Every point (except P1) has an exit that has a higher number in the Euler cir-
cuit. Thus there are no circuits and the number of points is exactly one more
than the number of lines. So this is a blue tree.

Vice versa, consider a spanning tree for (G, ∆). Color the lines of that tree
blue. Every point has one outgoing blue arrow, except P1. Give P1 an outgoing
red line, say (P1, P2).

With every point we now fix an ordering of the outgoing lines, such that
the colored line comes last. There are

n∏

i=1

(σi − 1)!

ways to do that.

Now take a hike (we just put it to you plain and simple). Start with the red
line and choose at every point that you enter the next exit in the local order.
Thus the colored arrows always come last.

Is the result an Euler circuit?

Assume that you missed some arrow when you stop in P1. Assume that
some exit at Q 6= P1 was not used. Then the blue exit of Q was not used. Now
follow the blue trail that starts in Q. The blue exit in Q = Q0 leads to, say Q1.
In Q1, the blue arrow that comes in is not used, and so there is also some exit
of Q1 that is not used. But then also the blue exit of Q1 is not used. This leads
to Q2, etc.

This process ends in P1 since the blue arrows form a tree that is oriented
towards P1. There we find a contradiction: Some blue arrow that comes into
P1 is not used. But then the exits of P1 are not yet exhausted. ⊓⊔

5.15 Problems

5.1. Let T1, . . . , Tn be a collection of subtrees of a tree T with the property
that every pair of them has at least one point in common. Show that there is
at least one point in T that is a point of every Ti.

5.2. Show that for n > 3 there are nn−3 trees with n − 1 lines labeled with
the numbers 1, . . . , n − 1.

5.3. A threshold graph is defined recursively as follows.

(1) A graph with 1 vertex is a threshold graph.
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(2) The disjoint union of a single vertex and a threshold graph is a threshold
graph.

(3) A graph with a vertex connected to all vertices of a threshold graph is a
threshold graph.

I. Prove that the number of non-isomorphic, unlabeled threshold graphs
with n vertices is 2n−1.

II. Let tn be the number of labeled threshold graphs on {1, . . . , n} and let sn

be the number of those with no isolated vertex. Define also t0 = s0 = 1.
Then the first few values are:

n 0 1 2 3 4 5
tn 1 1 2 8 46 332
sn 1 0 1 4 23 166

Define the exponential generating functions t(x) and s(x) by

t(x) =

∞∑

k=0

tk

xk

k!
s(x) =

∞∑

k=0

sk

xk

k!
.

(a) Prove that

tn =

n∑

k=0

(

n

k

)

sn−k.

(b) Show that

tn =

n∑

k=0

(

n

k

)

sn−k ⇒ t(x) = s(x)ex.

(c) All threshold graphs with at least 2 vertices come in complementary
pairs; one connected and the other disconnected. This implies

tn = 2sn for n > 2 ⇒
t(x) = 2s(x) + x − 1 (and with (b)) ⇒

s(x) =
1 − x

2 − ex
and t(x) =

(1 − x)ex

2 − ex
.

(d) Recall the numbered partitions of Section 3.6. Let An be the number
of numbered partitions of {1, . . . , n}, and let A(x) be the exponential
generating function of the sequence An. Then

A(x) =

∞∑

n=0

A(n)

n!
xn =

1

2 − ex
,

if we let A(0) = 1. This implies

sn = An − nAn−1.

Give a combinatorial proof of this.
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5.4. A cograph is defined recursively as follows.

1. A graph with 1 vertex is a cograph.
2. The disjoint union of two cographs is a cograph.
3. The complement of a cograph is a cograph.

Let gn be the number of non-isomorphic, unlabeled cographs with n vertices
and let cn be the number of those that are connected. Define also g0 = 1,
c0 = 0, and g1 = c1 = 1. The first few values are

n 0 1 2 3 4
gn 1 1 2 4 10
cn 0 1 1 2 5

Consider the generating functions

G(x) =

∞∑

n=0

gnxn and C(x) =

∞∑

n=0

cnxn.

(a) The cographs with n > 2 vertices come in pairs; one connected and the
other disconnected. This implies

G(x) − x − 1 = 2(C(x) − x) so G(x) + x − 1 = 2C(x).

(b) If G is a cograph then all components are connected cographs.
Use Cayley’s method to show that

G(x) =

∞∏

k=1

(1 − xk)−ck ⇒

log (G(x)) =

∞∑

k=1

C(xk)

k
(and with (a)) ⇒

2C(x) − x + 1 = exp

(

∞∑

k=1

C(xk)

k

)

.

(c) Use Problem 2.2 to show that

gn =
1

n

n∑

k=1

gn−k

∑

d|k

dcd,

and gk = 2ck for k > 2. Check that this gives

g(x) = 1 + x + 2x2 + 4x3 + 10x4 + . . . .

5.5. Let fn be the number of labeled cographs with vertices {1, . . . , n} and let
sn be the number of those that are connected. Define f0 = f1 = s1 = 1 and
s0 = 0. The first few values are
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n 0 1 2 3 4
fn 1 1 2 8 52
sn 0 1 1 4 26

Let F(x) and S(x) be the exponential generating functions

F(x) =

∞∑

k=0

fk

k!
xk and S(x) =

∞∑

k=0

sk

k!
xk.

(a) Cographs with at least 2 vertices come in complementary pairs; one con-
nected and the other disconnected. Thus

fn = 2sn for n > 2 ⇒ F(x) = 2S(x) − x + 1.

(b) A graph is a cograph if and only if every component is a cograph. This
implies

F(x) = 1 +

∞∑

k=1

Sk(x)

k!
= eS(x).

(c) Show that this implies

S′(x) (2S(x) − x − 1) = −1 ⇒

sn+1 + nsn = 2

n∑

k=0

(

n

k

)

sk+1sn−k for n > 0.

5.6. Let TB(x) =
∑∞

k=1 tkxk be the generating function for the topological

binary trees. Thus the trees are equivalent under swapping of lobes.

(a) Check that

t1 = t3 = t5 = 1 t7 = 2 t9 = 3 t11 = 6 and t2n = 0 for all n > 1.

(b) Show that TB(x) satisfies the functional equation

TB(x) = x + xPS2
(TB(x), TB(x2), . . .) = x +

x

2

(

TB2(x) + TB(x2)
)

.

(c) Derive a recurrence relation for the coefficients tn.

5.7. Recall Cayley’s functional equation for rooted trees:

T(x) = x exp

(

∞∑

k=1

T
(

xk
)

k

)

.

Let (see [29]):

T(x) =

∞∑

k=1

Tkxk = x + x2 + 2x3 + 4x4 + 9x5 + 20x6 +

+ 48x7 + 115x8 + 286x9 + 719x10 + . . . .

We first show that the coefficients Tk are determined by Cayley’s formula.
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(a) Let
∞∑

k=1

akxk =

∞∑

k=1

T
(

xk
)

k
,

then

an =
1

n

∑

d|n

dTd.

(b) Use Problem 2.2 to show that

Tn+1 =
1

n

n∑

k=1

kakTn−k+1

=
1

n

n∑

k=1





∑

d|k

dTd



 Tn−k+1.

(c) Let L(x) be the generating function for trees that are rooted at a line. To
count trees rooted at a line, we may root a tree at each of its endpoints.
This counts them double, except those that are symmetric at the root. This
gives

L(x) =
1

2

(

T2(x) + T
(

x2
))

.

(d) Let S(x) be the generating function of trees that have a symmetry line; that
is a line for which there is an automorphism of the tree which switches
the two endpoints. Show that

S(x) = T
(

x2
)

.

(e) Let T be a tree with n points. Two points are equivalent if there is an
automorphism of T that maps one onto the other. Similarly, two lines are
equivalent if there is an automorphism that maps one onto the other.
Let T0 be a maximal subtree for which no two vertices are equivalent.
Consider a point P not in T0 and assume that P is adjacent to a point Q

of T0. Since T0 is maximal, there is an automorphism σ that maps P onto
some point P′ ∈ T0. Let σ(Q) = Q′. Let ℓ be the line with ends P and Q.
Then either ℓ is a symmetry line and the automorphism switches P and Q,
or Q = Q′. Thus a point that is a neighbor to a point in T0 is equivalent to
a point in T0.
Prove (by induction) that T0 contains exactly one point of every equiva-
lence class and exactly one line of every equivalence class, except a line
of symmetry.

(f) Since T0 is a tree, the number p∗ of nonsimilar points (the number of
equivalence classes) minus the number of nonsimilar lines q∗ (except a
symmetry line s; s = 0 or s = 1) is one:

p∗ − q∗ + s = 1.

(This is Otter’s dissimilarity characteristic [34].)
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(g) Sum this equation over all trees with n vertices. The total will be the
number of trees. The sum over p∗ is the number of trees rooted at a point.
The sum over q∗ is the number of trees rooted at a line. Let t(x) be the
generating function for the non-isomorphic trees. Then

t(x) = T(x) − L(x) + T
(

x2
)

= T(x) −
1

2

(

T2(x) − T
(

x2
))

.
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Bipartite graphs

We are going to do something completely different now, namely bipartite
graphs.

6.1 Introduction

A bipartite graph is a graph of which the set of points is partitioned into two
sets, say A and B, and there are only lines between A and B. More precisely:

(G, Γ) is a bipartite graph if G = A ∪ B with A ∩ B = ∅ and

Γ ⊆ {{a, b} ∈ P2(G) | a ∈ A, b ∈ B}.

Sometimes problems may look different only because A and B play dif-
ferent roles. We write also (a, b) instead of {a, b} for lines with a ∈ A and
b ∈ B.

We associate a matrix with a bipartite graph, with A a set of row indices
and B a set of column indices such that

(a, b) ∈ Γ ⇔ element in row a and column b is 1, and

(a, b) 6∈ Γ ⇔ element in row a and column b is 0.

A problem that can be formulated as a bipartite graph problem is the well-
known pentomino-game. A pentomino is a connected object of 5 squares.
There are 12 of those pentominos (when we allow rotations and reflections).
Together the pieces contain 12 · 5 = 60 squares. The puzzle is to put the 12

Fig. 6.1. Some pentomino pieces
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pieces in a box of 6 × 10 squares.
We transform this into a bipartite graph problem. Let A be the set of all

60 squares and let B be the set of those subsets of A that have the shape of a
pentomino-piece. We draw 5 lines from every point in B to the 5 squares in A

Fig. 6.2. Here is one element of B; there are 8 × 4 = 32 such crosses

that are occupied by the point in B. The problem is to choose some elements
of B such that

1) all pieces are different, and
2) together they cover A.

We can make the first condition a part of the graph formulation with a
little trick: Enlarge A with a “storeroom” of 12 elements, each named after
one of the pentomino pieces. At every element of B add one extra line, namely
to the storage-element that it represents. Then the problem becomes like this:

Given a bipartite graph (G, Γ , A, B). Find a subset B′ ⊆ B such that

{{a ∈ A | (a, b) ∈ Γ } | b ∈ B′}

is a partition of A.

The dual problem is the following:
Given a set T , and some subsets of T , say T1, . . . , Tn. The problem is to find

t1, . . . , tℓ such that for all i, 1 6 i 6 n, there is exactly one j, 1 6 j 6 ℓ, with
tj ∈ Ti.

This kind of problem occurs when a diverse group (of people) has to be
represented, possibly with some side constraints. (For example the university
board has to represent groups like students, coworkers, people doing stochas-
tics, feminists, etc. Sometimes every person can represent only one group; or,
maybe this is not necessary, but the condition is rather that every group is
represented only by one person.)

NB The set T in this case is the set of “hats” (the set of groups, or offices;
“the students,” and “the feminists,” etc.) and 1, . . . , n are the people of the
department; in the case above there can be only one person per hat (a group
is represented by one person only).

Example 6.1. Let’s get this clear.

(a) T is a deck of cards. |T | = 52 (that is, when it is a complete deck).
(b) T1 consists of all Jacks,
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(c) T2 consists of all spades,
(d) T3 consists of all red sixes,
(e) T4 consists of all diamonds < 8, and
(f) T5 is the Ace of clubs.

B = T , A = {T1, . . . , T5}. The question is the choose some subset of cards in B

such that every Ti has exactly one card in that subset. Here is one solution,

{Jack of spades, Ace of clubs, 6 of diamonds},

and here is another one

{Jack of clubs, 2 of spades, 4 of diamonds, 6 of hearts, Ace of clubs}.

What does “duality” mean? Well, the duality is in the way the problem is
formulated as a graph problem:

In the covering problem you draw a line from a to b if a ∈ b, (so B ⊆ P(A)),
and in the representatives problem when b ∈ a, (thus A ⊆ P(B)).

You can also look at it like this. If B ⊆ P(A), then you speak about a
covering problem when you look for a partition of A, and you speak about a
representatives problem when you look for a partition of B.

6.2 Covering – and representatives problem

We come to the classic theory of Kőnig and Hall, developed in 1932–1936 by
those two and by others.1 2

The classic result of Kőnig and Hall concerns the representatives problem
with the restriction that no representative can represent more than one group.
(The Jack of spades and 6 of diamonds in the first solution of our example of
the previous section wore “two hats;” they represented more than one group.
In the second solution every card had only one hat.)

In terms of mappings, we can formulate it like this. Find a mapping A → B

such that

f : A → B is an injection, such that ∀a∈A [(a, fa) ∈ Γ ].

Example 6.2. B is a set of football players (we talk about the soccer game) and
A is the set of 11 functions. Thus

A = {goalkeeper, left back, . . . , right wing}.

(Perhaps these terms are a bit old-fashioned; they change them so often; but
they have the advantage that I, i.e., de Bruijn, am familiar with them.) Not

1 P. Hall, On representatives of subsets, Journal of the London Mathematical Society

10 (1935) pp. 26–30.
2 D. König, Über Graphen and Ihre Anwendung auf Determinantentheorie und Men-

genlehre, Mathematische Annalen 77 (1915) pp. 453–465.
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every player can play in every position, for example one guy’s left leg could
be on the wrong side, or another is a bad goalie. We add in A∪B the allowed
lines.

In the representatives-terminology, football players are members of one or
more “clubs;” the goalkeepers-club, the club of left-backs, etc.

In the covering terminology every football player has a certain set of ca-
pacities.

Of course, you can’t select a team from B just like that: you need a goal-
keeper, and you need a left back, etc. But it won’t work either if you have only
two candidates for the subset

{left back, right back, left wing}.

6.3 Theorem of König and Hall

Another version is the marriage problem. We have A = the set of women and
B = the set of men. Some men and women like each other and some don’t.
The idea is to form pairs of men and women (as you see; it’s an old-fashioned
problem) such that the members like each other. Even when |A| = |B| and
every man likes at least some woman, then this is not always possible; if there
is one woman that all men like (and if they like no other), then there is no
solution (at least there wasn’t one in the old days).

Let’s get formal again. The sort of conditions as above that make a map-
ping impossible, are the only ones that do that:

Theorem 6.3 (Hall’s theorem ). Let

G = A ∪ B, A ∩ B = ∅, and Γ ⊆ {{a, b} | a ∈ A, b ∈ B}.

Then the following conditions are equivalent:

(I) ∀K∈P(A) | {b ∈ B | ∃a∈K {a, b} ∈ Γ } | > |K|

(II) ∃f:A→B f is injective and ∀a∈A {a, fa} ∈ Γ .

Proof. Introduction: (II) ⇒ (I) is trivial. To prove that (I) ⇒ (II) we produce
an algorithm that either finds a K that contradicts (I) or a function f that
satisfies (II). In other words, we prove ¬(I) ∨ (II).

The proof goes roughly as follows: Try something. If it doesn’t work then
start exchanging. If you can’t do that fruitfully, then you’ve found your coun-
terexample to (I).

Assume k of the football players have been given a position. Try to find a
player that fits the (k + 1)th position. In other words, let k < |A| and assume
that there is an injection f : A′ → B with |A′| = k and

∀a∈A′ {a, fa} ∈ Γ .
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A

B

︸ ︷︷ ︸

A′ ak+1

Fig. 6.3. Red arrows point from B down to A′

Write A′ = {a1, . . . , ak}. Choose an element ak+1 ∈ A \ A′. We color the
connections {a, fa} red (going down into A), and we color all other lines
{a, b} with a ∈ A′ ∪ {ak+1} blue (going up into B). We call points reachable

from ak+1 if you can get there by going up in the graph via blue lines and
down in the graph via red lines. The point ak+1 itself is also reachable.

Case 1. The number of reachable points in B is at least equal to the number
of reachable points in A.

Case 2. Similar, but now the number of reachable points in B is less than the
number of reachable points in A.

In the first case we take a path, along points that are reachable from ak+1,
to a point γ ∈ B that is not incident with a red line. For every point in f(A′)
there is a point in A′ that can be reached via a red line so, by assumption,
since ak+1 is also reachable, the point γ exists. On that path the points from
A will alternate with the points from B. The path looks something like that in
Figure 6.4.

ak+1 = α1

γ

α2α4α3α5

β2β4β3β5

︸ ︷︷ ︸

A′

Fig. 6.4. Alternating path

Now change f by a cyclic shift of the images of αi: αi → successor of αi:

α1 α2 α3 α4 α5

↓ ↓ ↓ ↓ ↓
β2 β3 β4 β5 γ

By doing that we “push” the injection one step further.

Case 2: Take K equal to the points in A that are reachable from ak+1.
Then, apparently

| {b ∈ B | ∃a∈K [{a, b} ∈ Γ ]} | < |K|,

and we found a counterexample. ⊓⊔
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It is a nice algorithm. It also works in practice, since if it does not work,
it tells you why it does not work. Customers are not satisfied when you tell
them that the computer can’t find an answer.

6.4 Theorem of König and Egerváry

A bit more general is the theorem of König and Egerváry. 3 4

To introduce this: Let A and B be two sets and let M be an |A|× |B| matrix.
We let Γ be a characteristic function on A × B.

We say that M has a q-diagonal if there is a diagonal with q ones after a
suitable permutation of rows and columns. If there exists a block of k×ℓ zeros
in M after a suitable permutation of rows and columns, then we call this a
q-block for every q > |A| + |B| − k − ℓ. Large blocks of zeros (with small q; q

is the “defect” of the block) obstruct a q-diagonal.

If A and B have subsets A′ and B′ such that (A′×B′)∩ Γ = ∅ then A′×B′

is a q-block for every q > |A| − |A′| + |B| − |B′|. Given A, B, and Γ , there is a
largest q such that there is a q-diagonal, and there is a smallest q such that
there is a q-block.

Theorem 6.4 (König-Egerváry). For every q there is either a q-diagonal or a

q-block (but not both).

For a proof of this theorem we refer to Exercise 6.5. Let’s look at a few
special cases.

For q = 1 this means that the matrix is not zero or else there is a 1-block,
which is an A′ and B′ with |A| − |A′| + |B| − |B′| = 0; thus A′ = A and B′ = B,
which is an |A| × |B|-submatrix of zeros. In other words Γ = ∅.

If |A| 6 |B| and q = |A|, then you get that there is either an injection
f : A → B (a q-diagonal) or a block with k × ℓ zeros with k + ℓ > |B|, that is
k > |B|−ℓ. This is also an application of König and Hall: Let K ⊆ A be a subset
for which the neighborhood in B has too few elements. Let |K| = k. Let L ⊆ B

be the non-adjacencies of K and let |L| = ℓ. Thus ℓ = |L| = |B| − |N(K)|, where
N(K) is the set of elements in B that are connected to K. Now |N(K)| < k

implies |L| > |B| − k, which means that ℓ + k > |B|. In other words, such a set
K in A with too few neighbors corresponds with a q-block.

A special case of the theorem of König and Hall is where all points have
the same degree (g > 0). (And so |A| = |B|.)

Now the condition is satisfied: From every point leave g lines, so in total
there are k ·g lines leaving a subset A′ ⊆ A with |A′| = k. Those k ·g lines can-
not end in less than k points of B. To see that simply count the lines between
A′ and N(A′) in two ways:

3 E. Egerváry, On combinatorial properties of matrices, Translated by H. W. Kuhn,

Logistics Papers, 11, George Washington University, paper 4 (1955), pp. 1–11.
4 D. Kőnig, Graphen und Matrizen, Math. Lapok 38 (1931), pp. 116–119.
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|A′| · g =
∑

b∈N(A′)

|N(b) ∩ A′| 6
∑

b∈N(A′)

|N(b)| = |N(A′)| · g,

where N(A′) is the set of points in B that are connected by a line to A′ and
N(b) is the set of points in A that are connected to b. Thus |N(A′)| > |A′|. By
Theorem 6.3 there is a bijection between A and B that uses only lines of the
graph. The next conclusion is that the graph is a super-position of bijection
graphs.

1 2 3 4

1′ 2′ 3′ 4′

Fig. 6.5. Bipartite graph; every vertex has degree 3

Example 6.5. Remove the bijection

(

3 1 2 4
1′ 2′ 3′ 4′

)

and you get the following graph:

1 2 3 4

1′ 2′ 3′ 4′

Fig. 6.6. After the removal of the bijection; every vertex has degree 2

Now we may remove another bijection, for example:

(

2 4 3 1
1′ 2′ 3′ 4′

)

and what is left is this bijection:

(

1 2 4 3
1′ 2′ 3′ 4′

)

Nicely formulated: Γ = Γ1∪Γ2∪. . .∪Γg where the (A∪B, Γi) are all bipartite
graphs of degree 1.
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Another famous application is the following. Let G be a finite group and

let H be a subgroup. Let k =
|G|

|H|
be the index of H. We let A be the set of left

cosets, and we let B be the set of right cosets. For every element x of G we
connect xH with Hx.

An analogous theorem for multigraphs, (the joined multiplicity of the
neighborhood must be no less than the joined multiplicity of the origin) says
that there is a bijection: and this is a common representative system for left–
and right cosets.

This fact was known by algebraic methods long before Van der Waerden
noticed that this was a combinatorial exercise. See Exercise 6.13. 5

Let’s look at another application, namely doubly stochastic matrices. We
call an n × n-matrix doubly stochastic if the coefficients satisfy

∀i,j aij > 0 and ∀j

∑

i

aij = 1 and ∀i

∑

j

aij = 1.

So we have that
∑

i,j aij = n.

Theorem 6.6. The permanent of a doubly stochastic matrix is > 0.

(The permanent of a matrix is the same as the determinant, but without the
minus-signs in the calculations.)

Proof. Assume that matrix has a k × ℓ-submatrix of zeros. Then k + ℓ 6 n.
Conclusion: there is an n-diagonal, thus the permanent has a term 6= 0. ⊓⊔

n

}︸ ︷︷ ︸

k ℓ

Fig. 6.7. k × ℓ block of zeros

6.5 Latin squares

A latin square is an n × n square filled with n elements, every column and
every row has exactly one copy of every element.

5 B. L. van der Waerden, Ein Satz über Klasseneinteilungen von Endlichen Mengen,

Abh. Math. Sem. Hamburg 5 (1927), pp. 185–188.
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Example 6.7. For n = 3 you can have:

1 2 3
2 3 1
3 1 2

If we construct a 7 × 7 latin square, then we can start the construction
easily enough,

7 3 2 5 6 1 4
4 1 3 6 5 7 2
5 2 4 1 7 6 3
. . . . . . . . . . . . .

and you can always continue.
To see this, make a bipartite graph:

A: numbers
B: places in the matrix

}
and connect the places with the
available numbers.

For every place in the matrix above there are 7−3 = 4 numbers still available.
On the other hand, every number appears 3 times (in 3 columns), and so there
are also 4 places still available. We have seen that you can always partition
the lines of this bipartite graph into 4 bijections. These are 4 additional rows.

6.6 Theorem of Ford-Fulkerson

In this section we will have a look at the theorem of Ford-Fulkerson (1952). 6

This concerns a flow problem in a finite oriented graph (G, ∆).
Let (G, ∆) be a finite oriented graph and let B (the source) and P (the

sink) be two vertices in G. Let ν : ∆ → R+ be a function. Instead of ν(l) we
will write νl. In Figure 6.8 we show an example (we explain the dotted line
in a minute). We call νℓ the capacity of the line. We want to find a function
f : ∆ → R+ such that

∀ℓ∈∆ f(ℓ) 6 νℓ

and
∀x∈G\{B,P}

∑

ℓ towards x

f(ℓ) =
∑

ℓ out of x

f(ℓ).

The function f is a flow through the network (if you want to model traffic
in two directions, then you can make two lines; the traffic has to use differ-
ent lanes anyway). The condition means that nothing gets stashed away at
crossings and that also nothing gets added at crossings.

Let’s write

6 L. R.Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press 1962.
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B

P

3

4 3

6

6

3

1

4

4

1

9

5

8

2

Fig. 6.8. Oriented graph and capacity function ν : ∆ → R+

flow-in(x) =
∑

ℓ towards x

f(ℓ) and flow-out(x) =
∑

ℓ out of x

f(ℓ).

Then the flow preservation rule says that

∀x∈G\{B,P} flow-out(x) = flow-in(x).

If we now sum the flow f over all arrows in the network, we find:

flow-out(B) + flow-out(P) +
∑

x6=B,x6=P

flow-out(x) =

flow-in(P) + flow-in(B) +
∑

x6=B,x6=P

flow-in(x).

For points x ∈ G \ {P, B} the total out-flow is equal to the total in-flow. So we
must have

flow-out(B) − flow-in(B) = flow-in(P) − flow-out(P).

In other words:

net-out-flow(B) = net-in-flow(P).

We only consider the case where there are no arrows coming in at B and
where there are no arrows leaving P. Then the identity above becomes:

flow-out(B) = flow-in(P).

We call this number the total flow of f and we write ν(f) for it. The problem
is to maximize ν(f) over all f.

Looking at our example we see that there are no flows possible with total
flow ν(f) > 6 because no larger amount can pass across the dotted line.
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We define a cut S of G as follows. This is a partition S = {S1, S2} of G in
sets S1 and S2 with B ∈ S1 and P ∈ S2. Thus

S1 ∪ S2 = G, S1 ∩ S2 = ∅, B ∈ S1, and P ∈ S2.

If we denote the arrows that point from a point in S1 into a point in S2

with ℓ1, . . . , ℓk then the capacity of the cut is

c(S) = ν(ℓ1) + ν(ℓ2) + . . . + ν(ℓk).

It is pretty clear that we now have that

∀flows f ∀cuts S ν(f) 6 c(S).

To see that, just draw S as in Figure 6.9. If we sum the net-out-flow in every

B

m1

m2

mt
ℓ1

ℓ2

ℓk

S1 S2

P

Fig. 6.9. ν(f) = f(ℓ1) + . . . + f(ℓk) − (f(m1) + . . . + f(mt))

point of S1 then this must be the flow out of B, since the net-flow in every
other point is zero. But you can also sum over the arrows that have exactly
one endpoint in S1, because the arrows that point from a point in S1 into
another point of S1 add a net profit of zero, and left are those arrows that
have only one end in S1. Thus

ν(f) = flow-out(B) =
∑

x∈S1

(flow-out(x) − flow-in(x)) =

∑

x∈S1

∑

(ℓ out of x)

f(ℓ) −
∑

x∈S1

∑

(ℓ towards x)

f(ℓ) =

f(ℓ1) + . . . + f(ℓk) − f(m1) − . . . − f(mt).

And of course this gives

ν(f) 6 f(ℓ1) + . . . + f(ℓk) 6 c(S).

The Ford-Fulkerson theorem says that there exists a cut S with ν(f) = c(S),
for a maximal flow.
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Theorem 6.8. In formal language the theorem says:

max
f is a flow

ν(f) = min
S is a cut

c(S),

and in slogan it says:

max flow = min cut.

In our example we get Figure 6.10 (with the capacities in brackets). Notice
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4
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(3) 3

2
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(3)
1

(1)
1
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4

0

(4)

1
(1)

4
(9)

1

(5)

3

(8)

2

(2)

Fig. 6.10. Max flow = min cut

that the flow across the dotted cut uses the maximum capacity. Also notice
that you can add 1 to the flow in every line of the shaded triangle.

Proof (Ford-Fulkerson). We associate with an oriented graph (G, ∆), with a
capacity function ν and a compatible flow f, a new oriented graph (G, Θ). For
simplicity we assume that the values of ν and f are integers.

(x, y) ∈ Θ ⇔ ((x, y) ∈ ∆ and f(x, y) < ν(x, y)) or

((y, x) ∈ ∆ and f(y, x) > 0).

In other words: the arrows along which f can get bigger, according to ν, are
also in Θ (with the same orientation), and the reverses of the arrows where f

can be lowered are in Θ (so these last arrows point in opposite directions in
∆ and in Θ). So the arrows ℓ ∈ ∆ with 0 < f(ℓ) < ν(ℓ) are “twice” in Θ; once
forward and once backward.

Let S1 be the set of points of G that can be reached from B via Θ and let
S2 = G \ S1. Assume P ∈ S1. Then there exists a directed path from B to P

with arrows in Θ that is completely contained in S1. Increase f by 1 on the
lines of the path that are directed in the same direction as ∆ and lower f by 1
on the lines of the path that are directed opposite to ∆. The new flow f then
again satisfies that

0 6 f(ℓ) 6 ν(ℓ).
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We show that the new flow satisfies the flow preservation rule. Consider
two arrows ℓ1 and ℓ2 in ∆ that are on the path in (G, Θ) and assume that both
ℓ1 and ℓ2 have vertex x as an endpoint. If both arrows are pointing towards
x, or both of them are pointing away from x, then one of them has the same
direction in Θ and one of them has the opposite direction in Θ. So, on one of
them the flow is increased by one and on the other the flow is decreased by
one. Thus the net-out-flow in x remains zero. If ℓ1 points into x and ℓ2 points
away from x, then either they both have the same direction on the path in
Θ, or they both have the opposite direction on the path in Θ. Thus the flow
is either increased by one on both, or the flow is decreased by one on both.
Thus flow-out(x) − flow-in(x) remains zero.

Note that the total flow increases; the source B has only outgoing arrows
in ∆ and each directed path from B to P starts with an arrow pointing out
of B in Θ. On this arrow the flow is increased by one, thus the flow out of B

increases.

Example 6.9. For example: suppose we have in our original diagram a flow as
in Figure 6.11 (the numbers in brackets are the capacities). (Don’t look at the
numbers in the circles yet; we explain those in a minute.) We indicated a path
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ª
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Fig. 6.11. Path in Θ

in (G, Θ) by the dotted lines. Usually the arrows in this path point in Θ in
the same direction as in ∆, but in the arrow with capacity (8) it points in the
opposite direction: there f can be decreased. The path that leaves the point in
the middle of the figure in the 1 o’clock direction cannot be decreased; so that
line is contained in Θ only in the same direction as in ∆. The line with flow
3 and with capacity (3) that leaves B can only be decreased, so that arrow is
only present in opposite direction in Θ.

The value of f can be increased to the value given in the circles. We see at
X that one in-flow is increased but that another in-flow is decreased. At the
point Y one out-flow is increased and one out-flow is decreased.
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You go on like that, increasing the total flow in each round, and in case
we work with integers the process stops.

This proves that for a maximal flow we must have that P ∈ S2 (even in the
case where the capacities are arbitrary, positive real numbers; in that case the
existence of a maximal flow follows from a compactness argument). In other
words, for the cut {S1, S2} in (G, ∆) now holds that the forward flows are not

B P

m1

m2

mt
ℓ1

ℓ2

Fig. 6.12. Final cut

in Θ (so they use the full capacity) and that the backward flows do not appear
in opposite direction in Θ, thus f cannot be lowered on those lines. Thus

f(ℓ1) = ν(ℓ1), . . . , f(ℓk) = ν(ℓk) and f(m1) = . . . = f(mt) = 0.

In other words, we have a cut, and the capacity of this cut is exactly the value
of the flow.

The algorithm, as we described it above, extends to the case where the
capacities are rational numbers; it is easy to see that the algorithm terminates
also in that case. (With real numbers, even if you increase the flow as much
as possible at every step, the algorithm does not necessarily terminate.7) ⊓⊔

Remark 6.10. Ford and Fulkerson showed that their algorithm does not neces-
sarily terminate when the capacities are real numbers. The theorem remains
true of course, but the algorithm does not necessarily converge to a maxi-
mal flow. Edmonds and Karp showed that the number of iterations can be
bounded by |G| · |∆| by choosing the shortest path, i.e., with the smallest num-
ber of arrows, in (G, Θ) to update the flow in each round.8

6.7 Problems

6.1. Show that a graph (G, Γ) is bipartite if and only if all cycles in G are even.

7 M. Queyranne, Theoretical efficiency of the algorithm “Capacity” for the maximum

flow problem, Mathematics of Operations Research 5 (1980), pp. 258–266.
8 J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency

for network flow problems, Journal of the Association for Computing Machinery 19

(1972), pp. 248–264.
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6.2. Let (G, Γ) be a graph. A stable set is a subset of points with no line be-
tween them. Let α(G) be the cardinality of a largest stable set in G. A node
cover is a subset S of points (nodes) such that every line has an endpoint in
S. Let τ(G) be the cardinality of a smallest node cover in G. Prove that

α(G) + τ(G) = n,

where n is the number of points in G.

6.3. Let (G, Γ) be a graph without isolated points; thus every point is the
endpoint of at least one line. A matching is a subset of lines M such that every
point is incident to at most one line of M. Let ν(G) be the cardinality of a
largest matching in G. An edge cover is a set of lines L such that every point is
an endpoint of a line in L. Let ρ(G) be the cardinality of a smallest edge cover
in G.

(a) Let M be a largest matching. Let U be the set of points that are not end-
points of lines in M. For each u ∈ U choose one line e(u). Let S be this set
of lines. Prove that M ∪ S is an edge cover.

(b) Show that
|M| + |M ∪ S| = n ⇒ ν + ρ 6 n,

where n = |G|, ν = ν(G), and ρ = ρ(G).
(c) Let L be an edge cover with |L| = ρ. Show that the lines of L induce a

forest; thus there is no circuit in G that consists of only lines in L. Let k be
the number of components of this forest. Show that k + ρ = n.

(d) Each component of this forest contains at least one line. Choose one line
in each component. This is a matching of cardinality k. Show that this
implies

ν + ρ > n and with (b) ν + ρ = n

where ν = ν(G), ρ = ρ(G), and n = |G|.

6.4. Let (G, Γ) be a graph, and let ν, τ, ρ, and α be the cardinalities of a largest
matching, a smallest node cover, a smallest edge cover, and a largest stable
set. Then

ν 6 τ and ρ > α.

6.5 (König-Egerváry). Let G = (V1 ∪ V2, Γ) be a bipartite graph. In this exer-
cise we show that the cardinality of a largest matching in G, ν(G), is equal to
the cardinality of a smallest node cover in G, τ(G):

ν(G) = τ(G) and, if there are no isolated points α(G) = ρ(G).

(a) Show that this formulation is equivalent to the one in the text.
Let M be a matching and let U be a node cover.

(b) Since every line of M must have at least one endpoint in U, |U| > |M|.
(c) Assume that U is a node cover of cardinality τ. Let X = U ∩ V1 and let

Y = U ∩ V2. There are no lines from V1 \ X to V2 \ Y.
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(d) Consider the bipartite subgraph H with bipartition X∪ (V2 \ Y). Let S ⊆ X

and let NH(S) be the points in V2 \ Y that are connected by lines to S.
If |NH(S)| < |S|, then we can substitute NH(S) for S in U and obtain a
smaller vertex cover. Use Hall’s theorem to show that H has a matching of
X into V2 \ Y.

(e) Similarly, let H′ be the bipartite subgraph with bipartition Y ∪ (V1 \ X).
Then H′ has a matching of Y into V1 \ X.

(f) Since H and H′ are disjoint, the two matchings together form a matching
of cardinality |U|.

6.6 (König-Egerváry). Consider a 0, 1-matrix. A line is a row or a column.
Show that the minimum number of lines that contain all the 1’s is the same
as the maximum number of 1’s no two of which are in the same line.

6.7 (Berge’s augmenting path9). Let (G, Γ) be a graph. Let M be a matching.
A path is a chain without repeated points. An M-alternating path is a path
whose lines alternate between M and Γ \M. The matching saturates a point if
the point is on a line of M. An M-augmenting path is an M-alternating path
whose start and endpoint are not saturated. In this exercise we show that a
matching M is maximum if and only if there is no M-augmenting path.

(a) Show that the condition is necessary; if there is an M-augmenting path P

then replace the lines of M that are in P by the lines of P that are not in
M.

(b) Suppose that M is not a maximum matching. Let M′ be a matching with
|M′| > |M|. Consider the symmetric difference M ÷ M′, defined as (M ∪
M′) \ (M∩M′). Let H be the graph induced by the lines of M÷M′. Each
point of H has degree one or two, since it is incident with at most one line
of M and at most one line of M′.

(c) This implies that H is a disjoint union of paths and even cycles.
(d) Since |M′| > |M|, there is some path in H that starts and ends with an

edge in M′. This is an M-augmenting path.

6.8 (de Caen10). Let (G, Γ) be a bipartite graph with at least one line. Prove
that every line has at least one endpoint that is saturated by every maximum
matching.

6.9 (Edmonds11). Let (G, Γ) be a graph. Berge’s original proposal for finding
an augmenting path via a simple depth-first-search approach does not lead
to a polynomial-time algorithm, because the path could end up in a cycle.
Edmonds came up with the idea to shrink such a cycle into a new point and

9 C. Berge, Two theorems in graphs, Proc. Nat. Acad. Sci. 43 (1957), pp. 842–844.
10 D. de Caen, On a theorem of Kőnig on bipartite graphs, Journal of Combinatorics,

Information & System Sciences 13 (1988), pp. 127.
11 J. Edmonds, Paths, trees, and flowers, Canadian Journal of Mathematics 17 (1965),

pp. 449–467.
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to apply recursion to the new, smaller graph. We follow the description of
Schrijver. 12

Let M be a matching in G and let X be the set of points in G that are not
in any line of M. A chain

P = [v0, . . . , vt]

is called M-alternating if for each i = 1, . . . , t − 1 exactly one of the lines
{vi−1, vi} and {vi, vi+1} is in M.

We first show that we can find a shortest alternating chain with endpoints
in X. Let (G, A) be the directed graph with arrows

A = {u → v | ∃x∈G{u, x} ∈ Γ and {x, v} ∈ M}

(a) Each M-alternating chain of positive length, with start and endpoint in X,
gives a directed path from X to N(X) in (G, A), where as usual, N(X) is
the set of points of G \ X that are connected to a point of X by a line of Γ .

(b) Each directed path in (G, A) from X to N(X) corresponds with an M-
alternating chain from X to X in (G, Γ).

An M-alternating chain P = [v0, . . . , vt] is called an M-flower if

1. t is odd,
2. v0, . . . , vt−1 are distinct, and
3. vt = vi for some i < t where i is even.

The circuit [vi, . . . , vt] is called the M-blossom of the M-flower.
We show that a shortest M-alternating chain P = [v0, . . . , vt] from X to X

is either an M-augmenting path or [v0, . . . , vj] is an M-flower for some j 6 t.

(i) Assume that P is not a path. Let i < j be such that vi = vj and j as small
as possible. Thus v0, . . . , vj−1 are distinct. If j − i is even, then we can
delete vi+1, . . . , vj from P and obtain a shorter M-alternating chain from
X to X. Thus we may assume that j − i is odd.

(ii) If j is even and i is odd then vi+1 = vj−1 since M is a matching. This
contradicts the assumption that j is minimal.

(iii) Hence j is odd and i is even. Then [v0, . . . , vj] is an M-flower.

We now show how to shrink a blossom to a single point. Let B ⊆ G. Let B

be a new point; this new point replaces the points of B. The graph G/B has
points G \ B ∪ {B}. The lines of G/B are the lines of Γ in which any endpoint
b ∈ B is replaced by the new point B. Any loop that appears in the process is
ignored. If M is a matching in G then we let M/B denote the corresponding
set of lines in G/B; lines of M with two endpoints in B are not in M/B.

Show that M/B is a matching in G/B if M has at most one line with
one endpoint in B.

12 A. Schrijver, [Section 24.2, Volume A] Combinatorial optimization: Polyhedra and

efficiency, Springer Series: Algorithms and Combinatorics 24, Berlin 2003.
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Let B = [vi, . . . , vt] be an M-blossom in G. We prove that M is a matching
in G of maximum size if and only if M/B is a matching in G/B of maximum
size.

(1) First assume that M/B is a matching in G/B which is not maximum. Let
P be an M/B-augmenting path in G/B. If P does not contain B then P is
a M-augmenting path in G.

(2) Assume that P visits B. We may assume that P enters B via a line {u, B} 6∈
M/B. Thus {u, vj} ∈ Γ for some j ∈ {i, . . . , t}.

(3) If j is odd, then replace B in P by [vj, vj+1, . . . , vt]. If j is even, then replace
B in P by [vj, vj−1, . . . , vi]. In both cases we obtain an M-augmenting path
in G. Thus |M| is not maximal.

(4) Assume that M is not maximum. We may assume that i = 0, that is,
vi ∈ X. Otherwise replace M by M ÷ Q, where Q is the set of lines in the
chain [v0, . . . , vi].

(5) Let P = [u0, . . . , us] be an M-augmenting path in G. If P does not visit B

then P is an M/B-augmenting path in G/B.
(6) If P visits B then we may assume that u0 6∈ B. Otherwise, replace P by its

reverse. Let uj be the first vertex of P in B.
(7) Then [u0, u1, . . . , uj−1, B] is an M/B-augmenting path in G/B. Thus |M/B|

is not maximal.

6.10 (Hall). Let A1, . . . , An be subsets of a set T . A system of distinct represen-

tatives is a set {t1, . . . , tn} of elements of T such that ti ∈ Ai for all i = 1, . . . , n
and such that ti 6= tj whenever i 6= j.

(a) Construct a bipartite graph G = (T ∪ {1, . . . , n}, Γ), where a line joins an
element t ∈ T with i ∈ {1, . . . , n} if and only if t ∈ Ai. Show that a system
of distinct representatives corresponds to a maximum matching in G.

(b) Show that the collection A1, . . . , An has a system of distinct representa-
tives if and only if

| ∪i∈J Ai| > |J| for all J ⊆ {1, . . . , n}.

6.11 (Frobenius13). A cover with dimers is also called a perfect matching or
a 1-factor. A bipartite graph (A ∪ B, Γ) has a perfect matching if and only if

|A| = |B| and ∀X⊆A |X| 6 |N(X)|,

where as usual, N(X) is the set of points in B that are connected by a line to
some point in X.

13 G. Frobenius, Über zerlegbare Determinanten, Sitzungsberichte der Königlich

Preussischen Akademie der Wissenschaften zu Berlin (1917), pp. 456–477.
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6.12 (Birkhoff-von Neumann14 15). An (n × n)-matrix A with elements aij

is doubly stochastic if

∀i,j aij > 0 and ∀j

∑

i

aij = 1 and ∀i

∑

j

aij = 1.

Recall Theorem 6.6 which says that A has an n-diagonal. Use this to show
that A is the convex linear combination of permutation matrices; that is

A = λ1 · P1 + . . . λk · Pk

where each Pi is a permutation matrix, and the λi’s are nonnegative real
number with

∑k
i=1 λi = 1.

6.13 (van der Waerden). Let M be a finite set and let U = {U1, . . . , Uµ} and
B = {B1, . . . , Bµ} be two partitions of M with |Ui| = |Bi| = n for i = 1, . . . , µ.
In this exercise we prove that there exists a a collection x1, . . . , xµ of elements
of M that represents each B-class and each U-class.

(a) Let x1, . . . , xν be a maximal system of elements such that no two xi are in
the same U-class or in the same B-class. Thus ν 6 µ, and we may assume
that ν < µ since otherwise we are done.

(b) We can assume that xi is in Ui and in Bi, for i = 1, . . . , ν.
(c) Let y ∈ Bν+1. Then y is also in Ui for some i 6 ν, otherwise we could

add y to the collection x1, . . . , xν.
Let’s say that a class Uh is connected to y if there is a “chain”

Ui = Ui1
, B11

, Ui2
, Bi2

, . . . , Uiω−1
, Biω−1

, Uiω
= Uh, (∴ i1 = i, iω = h)

which is a sequence in which every consecutive pair Biλ
, Uiλ+1

have an
element yλ in common.

(d) If the chain has two copies of the same Ui, then we can omit the part of
the sequence from one copy to the next. Thus we may assume that in a
chain all U-classes are different.

(e) Assume that one of the indices i1, . . . , iω of a chain is > ν. Without loss
of generality, assume that i1, . . . , iω−1 6 ν and that iω > ν. Then we
can replace the elements xi1

, . . . , xiω−1
in {x1, . . . , xν} by y, y1, . . . , yω−1;

those elements are contained, in that order, in the U-classes

Ui1
, Ui2

, . . . , Uiω

and in the B-classes

14 Birkhoff, G., Tres observaciones sobre el algebra lineal, Univ. Nac. Tucumán Rev.,

Ser. A, no. 5 (1946), pp. 147–151.
15 J. von Neumann, A certain zero-sum two-person game equivalent to the optimal

assignment problem. In: Contributions to the theory of games, Vol. 2, Princeton Uni-

versity Press, Princeton, N.J. USA, 1953, pp. 5–12.
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Bν+1, Bi1
, . . . , Biω−1

.

However, this contradicts the maximality of the set {x1, . . . , xν}; the new
set satisfies the condition that no element is in more than one U-class or
in more that one B-class as well, and the cardinality of the new set is one
greater than that of the old set.
To recapitulate; we now have that i1, . . . , iω 6 ν, and if Uh is connected
to y then h 6 ν.

(f) The union of all U-classes that are connected to y contains all the corre-
sponding B-classes: Let z ∈ Bh, for some h for which y is connected to
Uh. Let Uj be the class that contains z. Consider the extension

Ui1
, Bi1

, . . . , Uiω
, Biω

, Uj, (i1 = i, iω = h).

Then y is connected to Uj, and thus z is in the union of the U-classes that
are connected to y.

(g) Since all classes have the same number of elements, we have that the
union of U-classes that are connected to y is the same as the union of the
corresponding B-classes. Since y is in the y-connected class Ui, y must
also be in some Bh for which the corresponding Uh is connected to y.

(h) If Uh is connected to y then h 6 ν, thus y must be in

B1 ∪ . . . ∪ Bν.

This is a contradiction, since y ∈ Bν+1.

Bartel L. van der Waerden mentions in his paper, that we outlined here, the
application of a common system of representatives for the left and right cosets
of a subgroup of a finite group. An extension of the theorem to the infinite case
was given by de Bruijn.16

6.14 (Tutte17). Let (G, Γ) be a graph. A component is a maximal subset of
vertices which induces a connected subgraph. Thus C ⊆ G is a component if
|C| is maximal under the condition that the graph (C, Γ ′), where

Γ ′ = { {x, y} | {x, y} ∈ Γ and x, y ∈ C}

is connected. If (G, Γ) is connected then G is its only component; in all other
cases G has at least two components.

A component C is odd if |C| is odd. For a graph (G, Γ) we write θ(G) for
the number of odd components in G. If X ⊆ G, then we write G − X for the
subgraph induced by G − X; thus this is the graph with G \ X as its set of
points and with Γ ′ ⊆ Γ as its set of lines, where Γ ′ is the set of those lines that
connect two points of G \ X.

16 N. G. de Bruijn, Gemeenschappelijke representantensystemen van twee klassenin-

deelingen van een verzameling, Nieuw archief voor wiskunde 22 (1943), pp. 48–52.
17 W. T. Tutte, The factorisation of linear graphs, J. London Math. Soc. 22 (1947),

pp. 107–111.
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In this exercise we prove Tutte’s theorem: (G, Γ) has a perfect matching if
and only if

∀X⊆G θ(G − X) 6 |X|. (6.1)

(a) First we show that ( 6.1) is necessary. Let (G, Γ) be a graph and let M be
a perfect matching. Let X ⊆ G. If C is an odd component in G − X then at
least one line of M must join a point in C with a point in X. If J is the set
of all those lines then

θ(G − X) 6 |J| 6 |X|,

since M is a matching. This proves necessity.
(b) Suppose ( 6.1) holds. We proceed by induction on the size of G. Consider

X = ∅. It implies that every component of G must be even. We may
assume that (G, Γ) is connected and that |G| is even.
Also, |X| and θ(G − X) have the same parity for all X.

(c) Assume that
∀X⊆G

X6=∅

|X| > θ(G − X).

Delete two points u and v that are on a line {u, v} ∈ Γ . Then, by induction
G − {u, v} has a perfect matching M′, and thus M = M′ ∪ {{u, v}} is a
perfect matching for (G, Γ).

(d) Suppose
∃X⊆G

X6=∅

|X| = θ(G − X).

Then choose such a subset X of maximal cardinality. Let S be the set of
points of G \ X that belong to even components of G − X. The graph G[S]

induced by S is the graph with S as its point-set and those lines of Γ that
connect points in S. We claim that G[S] has a perfect matching. Indeed,
if there exists a subset X′ ⊆ S such that G[S] − X′ has more than |X′| odd
components, then X ∪ X′ violates ( 6.1) for the graph (G, Γ).

(e) Let K be the set of points in odd components G − X. Let κ ∈ K. We claim
that G[K \ {κ}] has a perfect matching.
Otherwise there exists a X̄ ⊆ K \ {κ} such that G[K \ (X̄ ∪ {κ})] has at least
|X̄| + 2 odd components. Then delete X∪ X̄∪ {κ} from (G, Γ). This gives at
least |X ∪ X̄ ∪ {κ}| odd components, which contradicts our choice of X.

(f) Now consider the bipartite graph Gb obtained by deleting
(i) all points of S, and

(ii) all lines from Γ that have both ends in X, and
(iii) by ‘contracting’ all odd components of G − X to ‘pseudo-nodes.’
By this contraction we mean that we delete all the points of any odd
component C and replace it with a single pseudo-node c. All lines that
have one end in C are given the same endpoint c.
Let W be the set of pseudo-nodes. If Gb has a perfect matching, then we
can combine a perfect matching of G[S] with perfect matchings in each
G[C − v], where C is an odd component and v a suitable point in C.
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(g) Finally, assume that Gb has no perfect matching. By Hall’s, or Frobenius’
theorem, since Gb is bipartite:

∃W′⊆W |NGb(W′)| < |W′|.

Now X∗ = NGb(W′) ⊆ X violates ( 6.1).

B P

ℓ2

ℓ3

ℓ1

ℓ4

ℓ5

ℓ6 ℓ9

ℓ8

ℓ7

Fig. 6.13. A flow network

6.15 (Edmonds-Karp18 19). In this exercise we look at the maximal flow al-
gorithm of Edmonds and Karp, which guarantees termination after at most
|G| · |∆| augmentations. Thus this algorithm runs in O

(

|G||∆|2
)

time.

Before we go into that, let’s first look at an example which shows that the
Ford-Fulkerson algorithm does not need to converge to a maximal flow.

Consider the flow network in Figure 6.13. It consists of a finite oriented
graph (G, ∆), two special vertices B (the source) and P (the sink), and a ca-
pacity function ν : ∆ → R+. In this example we take

ν(ℓ1) = ν(ℓ3) = 1,

ν(ℓ2) =

√
5 − 1

2
, and

ν(ℓ4) = ν(ℓ5) = ν(ℓ6) = ν(ℓ7) = ν(ℓ8) = ν(ℓ9) = M > 4.

(i) Show that the maximum flow in this network is 2M + 1.
(ii) Suppose we use the augmenting path from B to P along ℓ5, ℓ3, and ℓ8. A

flow of 1 is sent along this path and ℓ3 becomes saturated. The residual

capacities of ℓ1, ℓ2, and ℓ3 are now 1,
√

5−1
2

, and 0, respectively.
(iii) We now consider the following augmenting paths:

(a) P1 is an augmenting path from B along ℓ4, ℓ2, ℓ3, ℓ1, and ℓ9 to P.
(b) P2 is an augmenting path from B along ℓ5, ℓ3, ℓ2, and ℓ7 to P.

18 J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for

network flow problems, Journal of the ACM 19 (1972), pp. 248–264.
19 U. Zwick, The smallest networks on which the Ford-Fulkerson maximum flow proce-

dure may fail to terminate, Theoretical Computer Science, 148 (1995), pp. 165–170.
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(c) P3 is an augmenting path from B along ℓ6, ℓ1, ℓ3, and ℓ8 to P.

Suppose that we choose the following sequence of augmenting paths.

P1, P2, P1, P3, P1, P2, P1, P3, P1, P2, P1, P3, . . .

(Thus repeatedly choose the augmenting paths P1, P2, P1, P3.)
Show that the total flow in the network at any stage is at most 3.

(iv) This proves that the Ford-Fulkerson algorithm may fail to terminate. Fur-
thermore, it may not even converge to a maximal flow.

Let us now have a look at the Edmonds-Karp algorithm.
Suppose (G, ∆) is a flow network with capacity function ν : ∆ → R+, a

source B, and a sink P.

(1) Define
∆−1 = { ℓ−1 | ℓ ∈ ∆ }

where ℓ−1 is defined as

ℓ = (u, v) ∈ ∆ ⇒ ℓ−1 = (v, u).

(2) For a flow f : ∆ → R+ satisfying 0 6 f(ℓ) 6 ν(ℓ) for all ℓ ∈ ∆, define the
residual network (G, Θf) by

Θf = { ℓ | ℓ ∈ ∆ and f(ℓ) < ν(ℓ) } ∪ { ℓ−1 | ℓ ∈ ∆ and f(ℓ) > 0 }.

(3) Let µ(G, Θf) denote the minimal length of a directed B−P path in (G, Θf).
Let α(G, Θf) denote the set of arrows that are contained in at least one
shortest B − P path.

(4) Suppose we augment a flow f along a shortest B − P path P in (G, Θf) as
much as possible by the bottleneck capacity in P. Let f′ be the new flow.
Then (G, Θf′) is a subgraph of (G, Θ′) where

Θ′ = Θf ∪ α(G, Θf)
−1.

(5) Show that
µ(G, Θf′) > µ(G, Θ′) = µ(G, Θf).

(6) Show also that
α(G, Θf′) ⊆ α(G, Θ′) = α(G, Θf).

(7) At least one line in P belongs to Θf but not to Θf′ . This implies

α(G, Θf′) ⊂ α(G, Θf).

(8) Show that µ(G, Θf) increases at most |G| times.
(9) As long as µ(G, Θf) does not change, show that α(G, Θf) decreases at

most |∆| times.
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(10) By (8) and (9), show that, if we choose in each round a shortest B − P

path in (G, Θf) as a flow-augmenting path, then the number of rounds is
at most |G| · |∆|.

6.16 (de Bruijn20). Let (G, Γ) be a graph with n = 2m points. A line {i, j}
has a weight bij. We go into the problem of covering a graph with dimers,
embarked upon on Page 108.

(a) A cycle is a subset of Γ that can be written as

{{i1, i2}, {i2, i3}, . . . , {ik−1, ik}, {ik, i1}}, (6.2)

where i1, . . . , ik are k > 2 distinct points. The number k is the length of
the cycle. Note that here we allow a cycle of length 2, which is just a line.

(b) The weight of a cycle as above, is the product

bi1i2
bi2i3

. . . biki1
.

Thus the weight of a cycle {{i, j}, {j, i}} of length 2 is b2
ij.

(c) A complete set of cycles is a set of cycles whose point sets form a partition
of G. The weight of a complete set of cycles is the product of the weight
of the cycles in the set. A complete set of even cycles is a complete set of
cycles in which all cycles are even. Note that a complete set of cycles of
length 2 is a perfect matching.

(d) If
{{i1, i2}, {i3, i4}, . . . , {in−1, in}}

is a perfect matching then the product

ρ = bi1i2
bi3i4

. . . bin−1in

is the root weight of the matching. Note that ρ2 is the weight of the match-
ing (in the sense of the weight of a complete set of cycles).

(e) An orientation of (G, Γ) is a skew symmetric n × n matrix ǫ with

ǫij = 0 if {i, j} 6∈ Γ

ǫij = +1 or − 1 if {i, j} ∈ Γ and ǫji = −ǫij.

(f) We give even cycles as in (6.2) a sign

−ǫi1i2
ǫi2i3

. . . ǫiki1
.

Note that this sign does not depend on the way the even cycle is repre-
sented; a cyclic shift or an opposite traversal does not change it. A cycle
of length 2 has sign 1.

20 N. G. de Bruijn, Counting complete matchings without using Pfaffians, Indagationes

Mathematicae 42 (1980), pp. 145–151.
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(g) An orientation is admissible, if in every complete set of even cycles all
even cycles have sign +1. Graphs that have an admissible orientation are
called Pfaffian.

(h) Let ǫ be an admissible orientation and let

S =
∑

β

ρ(β)

where β runs through the set of all perfect matchings and ρ(β) is the root
weight of β. Then

S2 = det A,

where A is the skew matrix with elements aij = ǫijbij; we prove that in
the following steps.

(i) Consider
S2 =

∑

β1,β2

ρ(β1)ρ(β2)

where the sum is taken over all pairs (β1, β2) of perfect matchings. If
β1 and β2 are perfect matchings then we obtain a complete set of even
circuits γ(β1, β2) by taking the union β1 ∪ β2; the edges of an even cycle
of length > 2 in γ(β1, β2) alternate between β1 and β2. A cycle of length
2 is a single edge that belongs to both β1 and β2.

(j) Conversely, let γ be a complete set of even cycles with weight ω(γ). Let
ν(γ) be the number of cycles of length > 2. We can split γ in 2ν(γ) ways
into pairs β1 and β2 with γ = γ(β1, β2) by 2-coloring the edges of every
cycle of length > 2 in γ. The weight of γ is the product of the root weights
of β1 and β2. Thus

S2 =
∑

γ

2ν(γ)ω(γ), (6.3)

where γ runs through the set of all complete sets of even cycles.
(k) Recall the Leibniz formula for the determinant of an n × n matrix:

det A =
∑

π

sign(π)a1π(1) . . . anπ(n) (6.4)

where π runs through all permutations of {1, . . . , n}. The sign(π) is +1 or
-1 according to whether π is even or odd (Page 26). We can omit permuta-
tions with {i, π(i)} 6∈ Γ for some i since those do not contribute to the sum.
In particular we omit all those permutations π with π(i) = i for some i.

(l) For the permutations π that we are considering, the cycles of π are the
cycles of (G, Γ) equipped with some orientation. Cycles in (G, Γ) of length
> 2 have two possible orientations, and cycles of length 2 only one.

(m) If γ is any complete set of cycles, then there are 2ν(γ) ways to orient the
cycles, and this leads to 2ν(γ) permutations π.

(n) Reversing a cycle of odd length changes the sign of the term in (6.4), since
the matrix is skew. Thus if γ has odd cycles, then the 2ν(γ) terms cancel
in pairs. Thus we need to consider only complete sets of even cycles.
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(o) We now show that (6.3) and (6.4) are equal. We claim that all the 2ν(γ)

terms in (6.4) that belong to the same γ (with even cycles only) are equal
to ω(γ). We have

ω(γ) = b1π(1) . . . bnπ(n).

Note also that sign(π) is the product of as many factors -1 as there are
even cycles. And finally note that the product of the ǫ’s in the even cycles
is -1 because the orientation is admissible.

6.17 (de Bruijn21). Consider n-dimensional bricks a1 × . . . × an and boxes
A1 × . . . An. A box A1 × . . . × An is a multiple of a1 × . . . × an if there are
integers q1, . . . , qn such that the numbers q1a1, . . . , qnan are a permutation
of A1, . . . , An. Of course, if the box is a multiple of the brick, then the box can
be filled trivially with all bricks in parallel.

We first prove that if a box can be filled with bricks then at least one of the
Ai is a multiple of a1, and at least one of the Ai is a multiple of a2, etc.

(a) Any brick a1 × . . . × an can be subdivided into bricks a1 × 1 × . . . × 1.
Assume that the box A1 × . . . × An can be filled with bricks. Then it can
also be filled with bricks a1 × 1 × . . . × 1.

(b) Divide each a1 × 1 × . . . × 1 into a1 cubes 1 × . . . × 1. The box now
contains A1 · · ·An cubes. Each cube has coordinates (k1, . . . , kn) where
1 6 k1 6 A1, . . . , 1 6 kn 6 An. Consider the sum

S(A) =

A∑

k=1

e2πik/a1 ,

and the multiple sum

A1∑

k1=1

. . .

An∑

kn=1

exp (2πi(k1 + . . . + kn)/a1) = S(A1) · · · S(An).

(c) Each term corresponds with a cube in the box. These cubes can be grouped
together into blocks of a1 terms each, combining terms that belong to the
same brick a1 ×1× . . .×1. In each group of terms the index runs through
a set of a1 consecutive integers and the other indices remain constant.
The contribution of such a group to the total sum is zero.

(d) The whole box is filled with bricks a1 × 1× . . .× 1, thus the multiple sum
over all cubes vanishes. Therefore one of the S(Aj) is zero.

(e)

S(Aj) = x + x2 + . . . + xAj = x ·
(

xAj − 1
)

x − 1
, where x = e2πi/a1 .

21 N. G. de Bruijn, Filling boxes with bricks, American mathematical Monthly 76

(1969), pp. 37–40. Apparently the problem arose from a remark by the author’s

son, F. W. de Bruijn, who discovered, at the age of seven, that he was unable to fill

his 6 × 6 × 6 box with bricks 1 × 2 × 4.
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Thus
S(Aj) = 0 ⇒ e2πiAj/a1 = 1 ⇒ a1 | Aj.

A brick a1×. . .×an is harmonic if the numbers a1, . . . , an can be permuted
into a′

1, . . . , a′
n such that

a′
1 | a′

2 and a′
2 | a′

3 and . . . and a′
n−1 | a′

n.

We claim that if the box can be filled with harmonic bricks a1 × . . .× an then
the box is a multiple of the brick. We prove this is the next few steps.

(i) We prove this by induction on the dimension n. If n = 1 then the claim
is trivial.

(ii) Without loss of generality assume that

a1 | a2, a2 | a3, . . . an−1 | an.

If the box A1 × . . .×An is filled with bricks then, by the previous result,
one of the Ai is a multiple of an. Assume that An is a multiple of an.

(iii) Consider one (n − 1)-dimensional face of the box A1 × . . . × An−1. This
is filled with bricks of various sizes a2 × . . .×an, a1 ×a3 × . . .×an, and
so on, up to bricks a1×a2× . . .×an−1. Because the bricks are harmonic,
all of them can be subdivided into bricks a1 × . . . × an−1.

(iv) By induction A1×. . .×An−1 is a multiple of the harmonic brick a1×. . .×
an−1. Since we already have that an | An, we conclude that A1×. . .×An

is a multiple of a1 × . . . × an.

Finally we show that if the brick is not harmonic, then there is a box which
can be filled and which is not a multiple of the brick.

We may assume that n > 1 and that a1 6 . . . 6 an.

(1) Let k be the largest integer, 2 6 k 6 n, such that

ak−1 6 | ak.

Thus ak+1, . . . , an are multiples of ak.
(2) A box (a + b) × ab can be filled with bricks a × b. Therefore, the box

a1 × . . . × ak−2 × (ak−1 + ak) × ak−1ak × ak+1 × . . . × an

can be filled with bricks a1 × . . . × an. We show that this box is not a
multiple of the brick.

(3) Let j be the smallest integer such that

aj = aj+1 = . . . = ak−1.

Note that ak−1 + ak is not divisible by ak−1 or by ak or by any mul-
tiple of ak. Since ak+1, . . . , an are all multiples of ak, no number of
a1, . . . , aj−1, ak−1 + ak is divisible by any number of

aj, . . . , ak−1, ak, . . . , an.
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(4) If a box A1 × . . . × An is a multiple of the brick a1 × . . . × an, then there
can be at most j − 1 i’s such that Ai is no multiple of any of aj, . . . , an.
Therefore, the box above is not a multiple of the brick a1 × . . . × an.
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Graphs and games

Because it is almost Saint Nicholas, we play some games; mathematical two-
person games. Only 2-person games are Democratic; if more persons are in-
volved then the situation is seldom democratic, due to coalitions etc. For
example, marriage is a democratic game: most votes win if and only if the
decision is unanimous.

7.1 Introduction

Let (G, ∆) be an oriented graph, not necessarily finite, that satisfies:

(1) there are no oriented circuits,
(2) every point has finite out-degree, and
(3)

∀p∈G ∃c>0 [ every chain that starts in p has length < c ].

For example (N0, ∆) with

∆ = {(n + 1, n) | n ∈ N0} ∪ {(n + 2, n) | n ∈ N0}.

A dead point is a point with out-degree 0. In our example 0 is a dead point.

The game will be played by two players A and B (not necessarily men or
women) and a “fiche” (a token). At the start of the game the fiche is some-
where at some point in the graph. A “move” is a movement of the fiche along
an arrow of the graph to a new point. Players make alternate moves.

There is also a prize function w that maps every dead point to a real
number. The player who cannot make a move gets the prize, namely the w of
that dead point.
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In the game above you can win if you can leave a multiple of 3 for your
opponent. Then you can leave him another multiple of 3 after any move of
your opponent.

Finally, we define the run-out of a point P. This is the supremum of the
lengths of the chains that start in P. The run-out is also defined for arbitrary
oriented graph, in which case the run-out can be infinite. We have König’s
infinity lemma.

Lemma 7.1 (König’s infinity lemma). If every vertex has finite out-degree and

some vertex P ∈ G has infinite run-out, then there is an infinite chain that starts

in P.

NB The condition that the out-degree is finite is of course essential, as the
following example shows:

*µ̧6I

Fig. 7.1. Run out and out-degree both infinite, but there is no infinite path

Proof. The run-out of P is infinite, so there must be a point at other end of an
arrow that starts in P, that has also infinite run-out. So you can start the chain
in P and always choose a successor with an infinite run-out. ⊓⊔

3

µ

I

R

ª

ρ

Fig. 7.2. Point with infinite run-out

Most games have a negative prize in dead points, and the objective is to
maximize the prize, thus to avoid the negative prize.

Chess.

Some games can be modelled with a graph.
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Consider chess. There are some complications, for example the “white
player” is not allowed to move black’s pieces and vice versa.

Any board situation has two representatives in the “game graph:” in one
“white starts,” or “white plays” and in the other “black plays.” A “white plays”
point is always followed by a “black plays” point.

But there are more complications. Whether some moves are allowed or
not may depend on the history of the game. For example, such moves are
“rochade” and “en passant.”

There are two types of dead points. In one the king is under attack and in
the other it is not. Different types of dead points have different prizes.

Then there are rules such as the 40 moves rule, and the rule that you
may claim a draw when the same situation appears on the board for a third
time. Furthermore, any player may give up at any point in the game. This
corresponds with a game in which every point P has a prize w(P) attached to
it. A move now either collects the prize, or moves in the graph. We can also
simulate this in an ordinary game-graph by growing a tail of length 2 at every
point, and attaching w(P) to the end of that tail.

µ

¸

6µ

*j
j

Q w(Q)

P

w(P)
R

w(R) µ

¸

6µ

*j

I

I I

I

j

U

U

Q

w(Q)b

P

w(P)a

R

w(R)c

Fig. 7.3. Attaching a tail to every point

We may simulate chess by a graph but we haven’t covered the situation
yet where one of the players offers a draw, and where the other player then
turns beet red and resigns.

7.2 Pay-off function

Let’s get back to graphs.
We can partition G as G0 ∪ G1 ∪ . . . ∪ Gk ∪ . . . where each
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Gk is the set of points with run-out k.

You can also allow G∞ if there are points with infinite run-outs.

Theorem 7.2. Let (G, ∆) be an oriented graph, such that every point has finite

run-out and finite out-degree. Let w : G0 → R. Then there is exactly one function

ψ : G → R such that

(i) ψ |G0
= w, and

(ii) for every P ∈ G \ G0

ψ(P) = max
Q∈Γ(P)

−ψ(Q). (7.1)

where Γ(P) is the set of points that can be reached from P within one move:

Γ(P) = {Q ∈ G | (P, Q) ∈ ∆}.

Proof. Evident: ψ can be defined recursively. The function-values on G0 are
determined. Assume that ψ is determined on G0 ∪ . . . ∪ Gk. Then for every
P ∈ Gk+1, Γ(P) is in G0 ∪ . . . ∪ Gk and then ψ(P) is determined by 7.1. ⊓⊔

The game strategy is now as follows. Move the fiche to a point with a ψ as
small as possible. Assume that there are the following situations in a point P

(we illustrate all the possibilities).

P P P
µ µ µ1 1 1
q q q
R R R

-1 -1 +1

-1 -1 +1

-1 +1 +1

-1 +1 +1

Fig. 7.4. Left: whatever you do, the opponent loses; ψ(P) = 1. Right: Whatever you

do, the opponents wins; ψ(P) = −1. In the middle case: You can make a wrong move,

but you win by moving to −1; ψ(P) = 1

This also proves the optimality of the strategy for the “1-or-2-back game”
that we started with. Every two +1’s in a row are followed by a −1 (in that

0 1 2 3 4 5 6 7

I I I I I I I

+ + + + + +

ψ: -1 +1 +1 -1

Fig. 7.5. 1-or-2-back game evaluation

situation any move goes to a +1 and thus it loses). A −1 is followed by two
+1’s; in that situation you can make a move such that your opponent loses.
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7.3 Nim

In this section we discuss Nim; in Chinese “jianshizi.”
This is a pretty well-known game, but it is surprising how many people

have never heard of it. It is played with a bunch of matches. There are a
number of heaps of matches (say k). A move consists of taking away one or
more matches from one of the heaps. Who can’t move, loses. (So the one who
takes the last match, wins.)

What are the positions in which you lose? To analyze that we take the
nim-sum: Write the numbers n1, . . . , nk ∈ N0 in binary, add them up modulo
2, and interpret that as a number in binary. For example:

3 11
5 101
8 1000

14 = 1110

Let us write 3+̇5+̇8 = 14; likewise 3+̇3+̇3+̇3+̇3 = 3. The result is that
position n1, . . . , nk loses if n1+̇n2+̇ . . . +̇nk = 0. We prove that by showing
the following. Define

ψ̃(n1, . . . , nk) =

{
−1 if n1+̇ . . . +̇nk = 0
+1 otherwise.

We prove that ψ̃ has the required property.

Proof. In the 0-position it works: ψ̃(0, . . . , 0) = −1.
We must now prove that

ψ̃(n1, . . . , nk) = max
Q∈Γ(n1,...,nk)

−ψ̃(Q).

If the nim-sum 6= 0, for example

45 101101
54 110110
13 1101

22 = 010110

then we can reach nim-sum = 0 in one move: Take the first column that sums
up to 1. That column contains a 1. Pick a row that has a 1 there. Adjust the
number in that row (in our case 54) as follows. Lower the 1 to zero and make
sure that in every other column the total number of 1’s becomes even. The
middle row in our example becomes

32 100000

This means that by taking 22 matches from the middle heap we change the
nim-sum into 0.

Vice versa, if the nim-sum=0, then any move ruins the nim-sum. ⊓⊔
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Actually, this procedure works also with additions, but then you need of course
another stop-rule, and other rules to play the game altogether, otherwise the
game doesn’t end.

A game that looks like Nim is the following. Start with an infinite row of
slots, in which you put 10 NT$-coins. Players alternately move coins to the

0 0 0 0 0 0 0

Fig. 7.6. Infinite row of slots with 10 NT$-coins

left, but not passing over another coin. Who can’t move, loses. (You can also
play this with sugar-rice cakes.)

N. G. de Bruijn recalls that he invented the game, some long time ago,
and then discovered that a book of R. Sprague1 contained it also. But when
he looked into a first edition of that book, he saw that the Sprague alluded
the game to de Bruijn!

For now, we leave the solution as an exercise; we include it at the end. Try
the following hint, before looking at the back: The holes between the coins
act like heaps of matches, but you need a little trick to take care of the fact
that two “heaps” change at the same time when you make a move.

If your partner is already familiar with Nim, you may try a tree-version
to fool your friends and family. Draw a number of rooted trees, and indicate
the roots for example by putting a fiche on it. A move consists of moving the
fiche up in the tree. Here you need to consider the Nim-position defined by

Fig. 7.7. Starting position for the game with trees

the collection of run-outs from the fiches (this is a multiset). The original Nim
game corresponds to this game on trees where all the points have out-degree
at most one.

1 R. P. Sprague, Recreations in mathematics, Blackie and sons, London-Glasgow 1963.
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7.4 Grundy function

We come to a general theory of Grundy (1939).2

Let (G, ∆) be an oriented graph with finite out-degree and finite run-out in
every point. Let w : G0 → R be constant −1. We define g : G → R as follows:

g(P) =






0 if P ∈ G0 and, otherwise:
the smallest number in N0 which does not ap-
pear as g-value among the vertices that can be
reached from P in one move.

g(P) = 0

g(P) = 1

2 0
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Fig. 7.8. Overview of some g-values

We now take the sum of games. First we do this for the case of a Nim-
game with one tree as in Figure 7.9. If we have more games, for example as
in Figure 7.10, then we define the product (or sum-) game as follows.

2 P. M. Grundy, Mathematics and games, Eureka 2 (1939), pp. 6–8.
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Fig. 7.10. More games (Gi, ∆i), i = 1, 2, . . .

Choose i and make a move in (G(i), ∆i). Define the graph (G, ∆) as fol-
lows. Let

G = G(1) × G(2) × . . . × G(k).

If (g1, . . . gk) ∈ G and 1 6 m 6 k and (gm, h) ∈ ∆m, then

((g1, . . . , gk), (g1, . . . , gm−1, h, gm+1, . . . , gk)) ∈ ∆.

The theorem of Grundy now says: The Grundy-function of the product-
game is the nim-sum of the original games:

g(P1, . . . , Pk) = g1(P1)+̇ . . . +̇gk(Pk)

The proof is a bit of a puzzle. We leave it as an exercise!

Notice that if the Grundy-funtion is 6= 0 then there is an exit in G0; in
other words, a losing position is one of the exits. If the Grundy-function is 0
then none of the exits belongs to G0. So we have that

(a) Grundy-function = 0 ⇔ losing position.
(b) Grundy-function 6= 0 ⇔ winning position.

This classifies the winning– and losing positions of the Nim game.

7.5 Wijthoff game

A variation on Nim is the game of Wijthoff.3 There are two heaps of matches.
You can take matches of one of the two heaps or of both, but in that last case
you can only take the same amount from both heaps. Thus

3 W. A. Wijthoff, A modification of the game of Nim, Nieuw Archief voor Wiskunde 2

(1906-07), pp. 199–202.
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{5, 9} →






{2, 9}

{5, 2}

{3, 7}

are legal moves. Who can’t move loses the game.
The losing positions are:

difference: 0 1 2 3 4

smallest heap: 0 1 3 4 6

largest heap: 0 2 5 7 10
. . . . . . . . .

The number in the middle row is every time the smallest number that has
not occurred yet. Suppose you move into a situation with a different smallest
number. If you made the difference smaller, then your opponent can move to
a losing position by taking away from both heaps, and otherwise he can move
to a losing position my taking away from one of the two heaps. For example
you move {6, 10} → {5, 9}. Then you opponent can move to {5, 3} and you
lose. The point is that all pairs that have 5 in it can be brought back to one of
the positions with a dot underneath.

We prove that these are the losing positions. Say a losing position is
{largest, smallest} = {a, b}. Let b be the smallest number that does not oc-
cur in any losing position with a smaller difference. We have the following
possibilities.

1. A move → {a′, b} with b 6 a′ < a.
This is answered by taking away from both heaps to a losing position with
a difference a′ − b.

2. A move → {a′, b} with a′ < b.
This is answered by choosing a new losing position with a′ and with a
partner b′ < b. By choice of b this pair exists.

3. A move → {a′, b′} with a′ = a − k and b′ = b − k.
This is answered by a move that lowers a′ to a losing pair with a smaller
difference.

What number are these? They are, for the smallest [kτ] and for the largest
[kτ2] where

τ =
1

2
+

1

2

√
5 and τ2 = 1 +

1

2
+

1

2

√
5.

Indeed, kτ and kτ2 differ by exactly k, and so do their integer parts [kτ] and
[kτ2].

The proof is based on the following theorem.
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Theorem 7.3. Let α and β be two positive numbers that are

(1) irrational, and that satisfy

(2) 1
α

+ 1
β

= 1.

Then the sequence

[α], [β], [2α], [2β], . . .

contains all the natural numbers exactly once.

Proof. We first give two proofs of the fact that no number occurs twice.

Proof (that no number occurs twice). Assume that

m < kα < m + 1 and m < ℓβ < m + 1

then
mβ < kαβ < (m + 1)β and mα < ℓαβ < (m + 1)α

and so
m(α + β) < (k + ℓ)αβ < (m + 1)(α + β)

and α + β = αβ thus
m < k + ℓ < m + 1

which is a contradiction. ⊓⊔

Another (shorter) proof for the fact that no number occurs twice goes as
follows:

Proof (that no number occurs twice). There are
[

n
α

]

multiples of α smaller than

n and
[

n
β

]

multiples of β smaller than n. Also

n − 2 =
n

α
+

n

β
− 2 <

[n

α

]

+

[

n

β

]

<
n

α
+

n

β
= n

so
[n

α

]

+

[

n

β

]

= n − 1.

⊓⊔

Now let 1
α

be the one of 1
α

and 1
β

that has 1
2

< 1
α

< 1. Then 1 < α < 2 and so

the sequence
[α], [2α], . . .

has only holes of length 1. We show that those holes are filled with multiples
of β.
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Assume m < kα < m + 1

and m + 2 < (k + 1)α < m + 3.

Then (m + 2)β < (k + 1)αβ = (k + 1)(α + β)

thus (m + 1 − k)β < (k + 1)α < m + 3.

Further kαβ < (m + 1)β

⇒ k(α + β) < (m + 1)β,

so m < kα < (m + 1 − k)β.

Thus [(m + 1 − k)β] ∈ {m, m + 1, m + 2}.

But m and m + 2 are already occupied by [kα] and [(k + 1)α] and so:

[(m + 1 − k)β] = m + 1.

Thus all elements of N0 are covered. ⊓⊔

7.6 Other games

You can prove that the following game has a winning strategy but nobody
knows what it is. Write down the numbers from 1 up to n. It does not matter;
you can still analyze n = 7 or 8 but certainly not n = 100 or 200. A move
consists of rubbing out a number and its divisors (that are not yet rubbed
out). For example, with n = 10 you can get the following situations:

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

and the rest gets wiped out one by one. So this is a losing position: the one
who has to move loses.

The starting position wins. Namely, assume that

1 2 . . . n

is a losing position, then this is the winning first move. Assume that this po-
sition is winning. Then there is a winning move. But you can also start with
that move.

This is analogous to a tempo problem in chess. The move that wipes out
the 1 is a tempo that you can use or not.

Here’s another nice game. You play it on a chess board, or a checkers
board, or a 6 × 6-board. You start at some column that has an arrow. Players
have to draw an arrow from the head of the arrow to one of the 3 other sides
of the square. The person who cannot draw an arrow, wins. You can not draw
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Fig. 7.12. Moves

an arrow if there is no empty square.

The strategy is simple. Cover the board with dominos. Always walk to the
middle of such a domino. The opponent has always a free square to move to
and he moves to a new domino. Thus the person who starts, wins.

See also: N. G. de Bruijn, Spelen op een graaf, Nieuw Tijdschrift voor
Wiskunde 63 (1976), pp. 201–206.

That paper of de Bruijn also contains the solution of “Sprague’s game:”
for nim-numbers take every other hole, starting at the end.

7.7 Problems

7.1. Two players, Jones and Alice, alternately write down numbers. Jones
starts by writing down 0. Alice can add either 1, 2, or 3 to this. Then Jones
can add 1, 2, or 3 to the total, and so on. The person who writes down 25
first, wins and collects NT$ 25. Numbers above 25 are not allowed. Show how
Alice can win this game.

7.2. Two people play a game on a graph (G, Γ). They alternately select differ-
ent points x0, x1, . . ., such that for each k > 0 {xk−1, xk} ∈ Γ . The last player
who can select a point wins. Show that the first player has a winning strategy
if and only if (G, Γ) has no perfect matching.

7.3 (de Bruijn4). Consider an infinite grid. Thus the grid-corners are points
(i, j), (i + 1, j), (i, j + 1), and (i + 1, j + 1), for i, j ∈ Z. Two players, Alice and
Jones, alternately put stones in the grid-squares. Alice plays with white stones

4 N. G. de Bruijn, Spelen op een graaf, Nieuw tijdschrift voor wiskunde 63 (1976),

pp. 201–208.
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and Jones plays with black stones. Only one stone per square is allowed.
The person who can put first 9 stones in a horizontal, vertical, or diagonal
sequence wins. If Alice starts, then Jones can always make a draw.

Hint.

Jones partitions the grid into H’s numbered as follows.

1 5
2 4 6
3 7

If there are 9 white stones in a sequence, somewhere in the grid, then there
must be an H with 3 white stones in a sequence, and this is

(i) a sequence of the left leg of an H if the 9-sequence is vertical,
(ii) a sequence of numbers 2, 4, and 6, if the 9-sequence is horizontal, and

(iii) a sequence 1, 4, 7 or a sequence 3, 4, 5, if the 9-sequence is a diagonal.

If Jones makes sure to put his stone always in the same H as the H in which
Allice put her last stone, then Jones can keep the game a draw. If Allice starts
on 4, then Jones puts his stone on 2. If Allice does not put her stone on 4, then
Jones puts his stone there. Allice may be able to complete a right leg, but to
win the game with a vertical sequence she also needs to complete a left leg.
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31. Kőnig, D., Theorie der endlichen und unendlichen Graphen, Akademische Verlags-

gesellschaft, Leipzig 1936.

32. van Lint, J. H. and R. M. Wilson, A course in combinatorics, Cambridge University

Press, 1992.

33. Neumann, P. M., A lemma that is not Burnside’s, The mathematical scientist 4

(1979), pp. 133–141.

34. Otter, R., The number of trees, Annals of Mathematics 49 (1948), pp. 583–599.
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necklace, 67

net-in-flow, 140

net-out-flow, 140

network flow, 139

Neumann, J. von, 149

Neville’s algorithm, 85

inverse algorithm, 85

Neville, E. H., 85

Nienhuys, J. W., 1

Nim, 163

game with more trees, 165

game with one tree, 165

number, 170

position, 164

sum, 163

tree-version of Nim, 164

nim-number, 170

nim-sum, 163

of sum of games, 166

node, 76

of a graph, 76

node cover, 145

minimum node cover, 145

Noether, A. E., 44

non-tree, 80

number of binary trees, 92
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number of cycles, average, 27

number of elements, 7

number of Euler circuits, 114

number of labeled trees, 107

number of logics, 1

number of partitions of a set, 30

number of permutations of a given type,

25

number of stemtrees, 90

number of topological binary trees, 127

number of topological rooted trees, 88

number of unlabeled trees, 127

numbered partition, 33

numbered partitions, 29

odd component, 150

orbit, 43, 46

ordered partition, 16

with k summands, 16

orientation, 154

admissible, 155

Pfaffian, 109

oriented graph, 76, 78

arrow, 77

linegraph, 113

Otter’s dissimilarity characteristic, 128

Otter, R., 89, 128

Pólya’s enumeration theorem, 39

Pólya’s theorem, 46, 47

Pólya’s theory, 66

Pólya, G., 16, 46, 64, 89, 100

Pólya, György, 39

partition, 29

numbered, 33

partition of a number, 14

different parts, 15

in exactly k parts, 20

odd parts, 15

ordered, 16

with k summands, 16

partition of a set, 14, 29

numbered, 37

type, 29

path, 79, 146

alternating path, 146

augmenting path, 146

pattern, 69

(G, π)-pattern, 69

color pattern, 45

invariant, 54

super pattern, 57

pay-off function, 161

pentomino, 131

pentomino piece, 131

pentomino-game, 131

permanent, 138

permutation, 23, 24, 34

cycle notation, 24

cycle pattern, 24

cyclic, 66, 67

degree of a permutation, 25

diagram, 24

equivalence, 25

even, 26

odd, 26

type of a permutation, 24, 67

weight, 28

with k cycles, 27

Pfaffian, 154

orientation, 109

pimple-case, 119

plane alcohol, 101

plethysm, 72

point, 76

of a graph, 76

saturated point, 146

polarizing filter, 101

polygon, 18

convex, 18

dissection into triangles, 18

Posthumus, K., 117

Prüfer code, 84

Prüfer, H., 84

prize, 160

negative, 160

prize function, 159

proper divisor, 58

pseudo-node, 151

Queyranne, M., 144

radius of convergence, 5

reachable point, 135

recurrence relation, 30

regular polygon, 67

relatively prime, 66

representation, 46
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representatives problem, 134

reversed Polish, 99

ring, 5, 44

commutative, 8, 51

ideal, 44

of formal power series, 8

Riordan, J., 19

Riordan, J., 17, 27

rochade, 161

run-out, 160

finite, 162

infinite, 160

Russell, B., 100

Russell-paradox, 100

Sömmering, S. T. von, 115

Saint Nicholas, 159

scalar, 44

scales with two pans, 13

Schrijver, A., 147

sheep, 23, 29

counting, 23

shepherd’s principle, 23–25, 44

shepherd’s theorem, 32

shift-register sequence, 114

small change, 6

something completely different, 131

spanning tree, 83, 122

number of spanning trees, 103

Sprague’s game, 164, 170

Sprague, R. P., 164

stabilizer, 43

coset of a stabilizer, 43

stable set, 145

maximum stable set, 145

staircase, 19

stemtree

stemtree in biology, 87

stemtree in combinatorics, 87

stereoisomer, 73

Stirling number, 27

first kind, 27

second kind, 35

storeroom, 132

strongly connected, 112

substitution, 17

sugar-rice cake, 164

super color, 65

super pattern, 57, 60

number, 62

super-color pattern, 65

super-position of bijection graphs, 137

surjection, 23

surprise, 11, 19

symmetric difference, 146

symmetric group, 66

symmetry line, 128

system of distinct representatives, 148

Szëgo, G., 16

tail, 161

tetrahedron

cycle index, 68

threshold graph, 124

labeled, 125

exponential generating function, 125

tip, 78

topological alcohol, 101

topological binary tree, 127

total in-flow, 140

total out-flow, 140

très chique, 60

trail, 79

tree, 80

binary tree, 92

number of binary trees, 92

branch, 100

central line, 90

central point, 90

characterization of, 83

last-exit-tree, 123

lobe, 90

matrix tree theorem, 102

number of labeled trees, 84, 107

number of stemtrees, 90

number of topological binary trees,

127

number of topological rooted trees, 88

number of unlabeled trees, 127

oriented, 102

plane rooted tree, 86

plane stemtree, 86, 91

plane tree, 86

Prüfer encoding, 84

root, 102

rooted tree, 86

spanning, 83, 122

special, 100
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tip, 80

topological rooted, 88

topological tree, 86

triangular prism, 68

Tutte, W., 5

Tutte, W. T., 150

two-person game, 159

type of a word, 32

UD-encoding, 94, 95

vertex, 76

of a graph, 76

Waerden, B. L. van der, 138

Waerden, B. L. van der, 138, 150

weighing problem, 13

weight

box with weights, 13

of color, 46

of coloring, 46

real, 14

weight function, 44, 51

Wijthoff game, 166

Wijthoff, W. A., 166

wreath product, 64

cycle index, 73

Young diagram, 21

Young, A., 21

Zwick, U., 152






