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Abstract

We continue with the study of Clifford-space Gravity and analyze fur-
ther the Clifford space (C-space) generalized gravitational field equations
which are obtained from a variational principle based on the generaliza-
tion of the Einstein-Hilbert-Cartan action. One of the main features is
that the C-space connection requires torsion in order to have consistency
with the Clifford algebraic structure associated with the curved C-space
basis generators. Hence no spin matter is required to induce torsion since
it already exists in the vacuum. The field equations in C-spaces asso-
ciated to a Clifford algebra in D-dimensions are not equivalent to the
ordinary gravitational equations with torsion in higher 2D-dimensions.
The most physically relevant conclusion, besides the presence of torsion
in the vacuum, is the contribution of the higher grade metric components
gµ1µ2 ν1ν2 , gµ1µ2µ2 ν1ν2ν3 , ..... of the C-space metric to dark energy/dark
matter.

1 Introduction

In the past years, the Extended Relativity Theory in C-spaces (Clifford spaces)
and Clifford-Phase spaces were developed [1], [2]. The Extended Relativity
theory in Clifford-spaces (C-spaces) is a natural extension of the ordinary Rela-
tivity theory whose generalized coordinates are Clifford polyvector-valued quan-
tities which incorporate the lines, areas, volumes, and hyper-volumes degrees
of freedom associated with the collective dynamics of particles, strings, mem-
branes, p-branes (closed p-branes) moving in a D-dimensional target spacetime
background. C-space Relativity permits to study the dynamics of all (closed)
p-branes, for different values of p, on a unified footing. Our theory has 2 fun-
damental parameters : the speed of a light c and a length scale which can be
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set equal to the Planck length. The role of “photons” in C-space is played by
tensionless branes. An extensive review of the Extended Relativity Theory in
Clifford spaces can be found in [1].

The polyvector valued coordinates xµ, xµ1µ2 , xµ1µ2µ3 , ... are now linked to the
basis vectors generators γµ, bi-vectors generators γµ ∧γν , tri-vectors generators
γµ1 ∧ γµ2 ∧ γµ3 , ... of the Clifford algebra, including the Clifford algebra unit
element (associated to a scalar coordinate). These polyvector valued coordinates
can be interpreted as the quenched-degrees of freedom of an ensemble of p-
loops associated with the dynamics of closed p-branes, for p = 0, 1, 2, ..., D − 1,
embedded in a target D-dimensional spacetime background [6].

The C-space poly-vector-valued momentum is defined as P = dX/dΣ where
X is the Clifford-valued coordinate corresponding to the Cl(1, 3) algebra in
four-dimensions, for example,

X = s 1 + xµ γµ + xµν γµ∧γν + xµνρ γµ∧γν∧γρ + xµνρτ γµ∧γν∧γρ∧γτ (1.1)

it can be generalized to any dimensions, including D = 0.
The component s is the Clifford scalar component of the polyvector-valued

coordinate and dΣ is the infinitesimal C-space proper “time” interval which is
invariant under Cl(1, 3) transformations which are the Clifford-algebra exten-
sions of the SO(1, 3) Lorentz transformations [1]. One should emphasize that
dΣ, which is given by the square root of the quadratic interval in C-space

(dΣ)2 = (ds)2 + dxµ dx
µ + dxµν dx

µν + . . . (1.2)

is not equal to the proper time Lorentz-invariant interval dτ in ordinary space-
time (dτ)2 = gµνdx

µdxν = dxµdx
µ. In order to match units in all terms of

eqs-(1.1,1.2) suitable powers of a length scale (say Planck scale) must be in-
troduced. For convenience purposes it is set to unity. For extensive details of
the generalized Lorentz transformations (poly-rotations) in flat C-spaces and
references we refer to [1].

Let us now consider C-space [1]. A basis in C-space is given by

EA = γ, γµ, γµ ∧ γν , γµ ∧ γν ∧ γρ, ... (1.3)

where γ is the unit element of the Clifford algebra that we label as 1 from now
on. In (1.3) when one writes an r-vector basis γµ1

∧ γµ2
∧ ... ∧ γµr

we take the
indices in ”lexicographical” order so that µ1 < µ2 < .... < µr. An element of
C-space is a Clifford number, called also Polyvector or Clifford aggregate which
we now write in the form

X = XAEA = s1 + xµγµ + xµνγµ ∧ γν + ... (1.4)

A C-space is parametrized not only by 1-vector coordinates xµ but also by the
2-vector coordinates xµν , 3-vector coordinates xµνα, ..., called also holographic
coordinates, since they describe the holographic projections of 1-loops, 2-loops,
3-loops,..., onto the coordinate planes [6]. By p-loop we mean a closed p-brane;
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in particular, a 1-loop is closed string. In order to avoid using the powers of
the Planck scale length parameter Lp in the expansion of the polyvector X (in
order to match units) we can set it to unity to simplify matters.

In a flat C-space the basis vectors EA, EA are constants. In a curved
C-space this is no longer true. Each EA, EA is a function of the C-space coor-
dinates

XA = { s, xµ, xµ1µ2 , ....., xµ1µ2.....µD } (1.5)

which include scalar, vector, bivector,..., p-vector,... coordinates in the underly-
ing D-dim base spacetime and whose corresponding C-space is 2D-dimensional
since the Clifford algebra in D-dim is 2D-dimensional.

In curved C-space one introduces the X-dependent basis generators γM , γ
M

defined in terms of the beins EAM , inverse beins EMA and the flat tangent space
generators γA, γ

A as follows γM = EAM (X)γA, γ
M = EMA (X)γA. The curved C-

space metric expression gMN = EAME
B
NηAB also agrees with taking the scalar

part of the Clifford geometric product < γMγN >= gMN .
The covariant derivative of EAM (X), EMA (X) involves the generalized connec-

tion and spin connection and is defined as

∇KEAM = ∂KE
A
M − ΓLKM EAL + ωAKB EBM (1.6a)

∇KEMA = ∂KE
M
A + ΓMKL E

L
A − ω B

KA EMB (1.6b)

If the nonmetricity is zero then ∇KEAM = 0, ∇KEMA = 0 in eqs-(1.6).
One of the salient features in [3] is that the C-space connection requires

torsion in order to have consistency between the Clifford algebraic structure
and the zero nonmetricity condition ∇KgMN = 0. In the case of nonsymmetric
connections with torsion, the curvature obeys the following relations under the
exchange of indices

RMNJK = − RNMJK , RMNKJ = − RMNJK , but RMNJK 6= RJKMN

(1.7)
and is defined in terms of the connection components ΓLKM as follows

R K
MNJ = ∂M Γ K

NJ − ∂N Γ K
MJ + ΓKML ΓLNJ − ΓKNL ΓLMJ (1.8)

If the anholonomy coefficientsfKMN 6= 0 one must also include them into the
definition of curvature (1.8) by adding terms of the form −fLMNΓKLJ .

The standard Riemann-Cartan curvature tensor in ordinary spacetime is
contained in C-space as follows

Rµ1µ2ρ1
ρ2 = ∂µ1

Γρ2µ2ρ1 − ∂µ2
Γρ2µ1ρ1 + Γρ2µ1σ Γσµ2ρ1 − Γρ2µ2σ Γσµ1ρ1 ⊂

Rµ1µ2ρ1
ρ2 = ∂µ1Γρ2µ2ρ1 − ∂µ2Γρ2µ1ρ1 + Γρ2µ1 M ΓM

µ2ρ1 − Γρ2µ2 M ΓM
µ1ρ1 (1.9)

due to the contractions involving the polyvector valued indices M in eq-(1.9)
There is also the crucial difference that Rρ2

µ1µ2ρ1(s, xν , xν1ν2 , ...) has now an
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additional dependence on all the C-space polyvector valued coordinates s, xν1ν2 , xν1ν2ν3 , ...
besides the xν coordinates. The curvature in the presence of torsion does not
satisfy the same symmetry relations when there is no torsion, therefore the
Ricci-like tensor is no longer symmetric

RMNJ
N = RMJ , RMJ 6= RJM , R = gMJ RMJ (1.10)

Denoting the Clifford scalar s component by the index 0, and that must not
be confused with the temporal coordinate t, the C-space Ricci-like tensor is

R N
M =

D∑
j=1

R
N [ν1ν2...νj ]

M [ν1ν2...νj ]
+ R N 0

M 0 (1.11)

and the C-space curvature scalar is

R =

D∑
j=1

D∑
k=1

R[µ1µ2...µj ] [ν1ν2...νk]
[µ1µ2...µj ] [ν1ν2...νk] +

D∑
j=1

R[µ1µ2...µj ] 0
[µ1µ2...µj ] 0

(1.12)
The physical applications of C-space gravity to higher curvature theories

of gravity were studied in [3]. One of the key properties of Lanczos-Lovelock-
Cartan gravity (with torsion) is that the field equations do not contain higher
derivatives of the metric tensor beyond the second order due to the fact that
the action does not contain derivatives of the curvature, see [10], [13], [12] and
references therein.

One may construct an Einstein-Hilbert-Cartan like action based on the C-
space curvature scalar

1

2κ2

∫
ds
∏

dxµ
∏

dxµ1µ2 . . . dxµ1µ2...µD µm(gMN ) R (1.13)

where µm(gMN ) is a suitable integration measure.
There are two approaches to construct measures in C-spaces. One approach

requires the use of hyper-determinants of hyper-matrices. And the other ap-
proach requires ordinary determinants of square matrices in 2D-dimensions.
The hyper-determinant of a hyper-matrix [14] can be recast in terms of discrim-
inants [15]. Hyper-determinants have been found to play a key role in the black-
hole/qubits correspondence [16]. Because the hyper-determinant of a product
of two hyper-matrices is not equal to the product of their hyper-determinants
this complicates matters.

One can avoid the use of hyper-determinants by working in a blockwise
fashion, when dealing with polyvector valued indices, rather than dealing with
each one of the indices of their associated hyper-matrices individually. The
C-space metric gMN associated with a Clifford algebra in D-dimensions has
a one-to-one correspondence with an ordinary metric gij in 2D-dimensions. In
particular, the metric gij is a square 2D×2D symmetric matrix with 1

22D(2D+1)
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independent components. The determinant of the square matrix gij is defined as
usual in terms of epsilon tensors, where the indices range is i, j = 1, 2, 3, ...., 2D.

The polyvector coordinates X = s, xµ, xµ1µ2 , ...., and their derivatives, have

also a one-to-one correspondence with the coordinates yi = y1, y2, ......, y2
D

, and
their derivatives, of the associated 2D-dim space. Thus, one has a correspon-
dence of the action (1.13) in C-space with the ordinary Einstein-Cartan action
in 2D-dimensions

1

2κ2

∫
d2

D

y
√
|det gij | R (1.14)

However, having a correspondence between the actions in (1.13) and (1.14)
does not mean that they are physically equivalent, even if one replaces the
measure in eq-(1.13) by

√
|det gij |. The reason being that the Clifford algebraic

structure imposes very strong conditions on the allowed C-space connections,
and in particular, on the metric components gMN , when the zero grade-mixing
condition (gauge) gMN = 0 is chosen [3]. These conditions are ∇KCMNL = 0
where CMNL are the curved Clifford space structure functions. This will be the
main subject of the next section : to study the field equations in C-spaces and to
show why they are not equivalent to ordinary gravity in higher 2D-dimensions.

Among some of the main results in [3] were that C-space gravity, in general,
involves spacetime multi-metrics gµν(n), n = 1, 2, 3, ...., D; higher-spins beyond

spin 2 [18] ; the Lanczos-Lovelock-Cartan higher curvature gravitational actions,
and other extended gravitational theories based on f(R), f(Rµν), f(R, T )... ac-
tions [17], for polynomial-valued functions of curvatures and torsion, could be
obtained as effective actions after integrating the C-space gravitational action
with respect to all the polyvector-valued coordinates, except the vectorial ones
xµ.

To conclude this introduction, we shall choose for C-space measure the fol-
lowing function µm(gMN ) in (1.13) such that it has the same properties as√
|g| =

√
|det gij | in (1.14) in so far as the differentation/variation is concerned

δµm(gMN ) =
1

2
µm(gMN ) gMN δ gMN = − 1

2
µm(gMN ) gMN δ gMN ; µm(gMN )↔

√
|g|

(1.15)
In this fashion the Clifford space (C-space) generalized gravitational field equa-
tions are obtained, next, from a variational principle and which is based on an
extension of the Einstein-Hilbert-Cartan action.

2 Clifford Space Gravitational Field equations

In this section we shall provide the Clifford Space Gravitational Field equations.
When there is torsion, the Palatini variation of the curvature tensor in ordinary
spaces is given by

5



δRλαµβ = ∇µδΓλαβ − ∇βδΓλαµ + T ρµβ δΓ
λ
αρ (2.1)

contracting indices one has the variation of the Ricci tensor

δRαβ = ∇µδΓµαβ − ∇βδΓ
µ
αµ + T ρµβ δΓ

µ
αρ (2.2)

Generalizing these results to C-space gives

δRMN = ∇JδΓJMN −∇NδΓJMJ + TLJN δΓJML (2.3)

The variation of the action is∫
[D2DX] δ (

√
|g| gMN RMN ) =∫

[D2DX] [δ (
√
|g| gMN )RMN +

√
|g| gMN (∇JδΓJMN−∇NδΓJMJ + TLJN δΓJML) ]

(2.4)
If the contorsion and nonmetricity were zero, the last terms (2.4) yield a total
derivative due to the fact that the divergence operator, associated to a sym-
metric (torsionless) metric compatible Levi-Civita connection, can be written
as

∇{}
M (gNJ δΓMNJ) =

1√
|g|

∂M (
√
|g| gNJ δΓMNJ) (2.6)

and such that one recovers a total derivative of the form∫
[D2DX]

√
|g| ∇{}

M (gNJ δΓMNJ) =

∫
[D2DX] ∂M (

√
|g| gNJ δΓMNJ ) (2.7)

As usual, despite that Γ does not transform as a tensor, the variation δΓ does.
However, when the contorsion is not zero, there are extra torsion terms in

the right hand side of the covariant divergence expression (2.6) given by

∇M (gNJ δΓMNJ) =
1√
|g|

∂M (
√
|g| gNJ δΓMNJ) + TM ( gNJ δΓMNJ) (2.8)

where the torsion vector is TLML = TM and which lead to the final variation of
the action, up to total derivatives terms, of the form∫

[D2DX] [ δ (
√
|g| gMN ) RMN +

√
|g| (gMN TJ − TNδMJ + TMN

J ) δΓJMN ]

(2.9)
A Palatini variation of the action (2.3) with respect to the C-space metric gMN ,
and the connection ΓJMN separately, furnishes the vacuum field equations

δS

δgMN
= 0 ⇒ R(MN) −

1

2
gMN R = 0 (2.10)
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and

δS

δΓJMN

= 0 ⇒ gMN TJ − TNδMJ + TMN
J = 0 (2.11)

When there is matter one should add the stress energy tensor contribution to
the right hand side of (2.10)

κ2 TMN = − 2κ2√
|g|

δ(
√
|g| Lmatter)
δgMN

(2.12)

and replace (2.11) with

δ(
√
|g| L)

δΓJMN

=

√
|g|

2κ2
( gMN TJ − TNδMJ + TMN

J ) = −
δ(
√
|g| Lmatter)
δΓJMN

(2.13)
The anholonomic version of the field equations in affine theories of gravity

with torsion and nonmetricity, and Weyl-Cartan gravity can be found in [11],
[8], among others. See [9] and references therein as well. Eqs-(2.10-2.13) are the
C-space extension of the Einstein-Cartan field equations with zero nonmetricity.
One could include a cosmological constant term ΛgMN to (2.10) if one wishes.
One should note that the field equations (2.10) contain torsion since R(MN),R
are defined in terms of the connection involving the torsionless Levi-Civita con-
nection and the contorsion. RMN = R(MN) + R[MN ];R can be decomposed
into the standard Riemannian pieces involving the Levi-Civita connection plus
torsion squared terms and covariant derivatives of torsion.

A key difference between Einstein-Cartan gravity in 2D-dimensions and C-
space gravity in D-dimensions is that one must supplement the above field
equations (2.6) with the Clifford algebraic compatibility conditions on the con-
nection [3]

∇KCMNL = 0 (2.14)

where CMNL are the curved Clifford space structure functions. Such additional
equation results in an over-determined system of differential equations. It is
important to emphasize that one is implementing the conditions (2.14) after
the variation of the action is performed. We shall discuss below the case when
the conditions are implemented before a variation of the action is performed.
One can view Clifford space as a Clifford group manifold, and as such, strong
restrictions on the connections are imposed. Invariant, metric-compatible con-
nections with torsion on homogeneous spaces G/H and their applications to
Kaluza-Klein theories were described by [4].

In the vacuum case, if the nonmetricity tensor is set to zero, from eq-(2.11)
one can infer that the torsion is zero (on-shell) and one recovers the Levi-Civita
connection as expected in the Palatini formulation. However, there is a problem
because the torsionless Levi-Civita connection is not consistent with the Clifford
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algebraic compatibility condition of the connection ∇KCMNL = 0, unless addi-
tional differential constraints are imposed on the first derivatives of the metric
[3].

One could add spin matter sources (like spin fluids) to the action so that the
equations (2.13) with spin matter sources generate (non-propagating) torsion
terms. Another possibility is to include nonzero nonmetricity ∇MgNK 6= 0 such
that eq-(2.11) is modified by the inclusion of extra nonmetricity terms. One
must now go back to the variation of the action and take into account that
∇M (

√
g gNK) 6= 0 when one integrates by parts. After straightforward algebra

one arrives at

∇L (
√
|g| δMJ gLN ) − ∇J(

√
|g| gMN ) +

√
|g| ( gMN TJ − TNδMJ + TMN

J ) =

−2κ2
δ(
√
|g| Lmatter)
δΓJMN

(2.15)

Eqs-(2.15) are the C-space extension of the equations displayed in the mono-
graph [9], up to an overall minus sign. The first two terms in (2.15) contain
nonmetricity terms like

√
|g| QMN

J ,
√
|g| δMJ QN .

The most general connection, in a holonomic coordinate basis, is comprised
of the torsionless Levi-Civita connection, the contorsion and nonmetricity ten-
sors, respectively

Γ̂LMN = {LMN} + KL
MN −

1

2
QLMN (2.16)

In this case one must use this Γ̂ connection (2.16) in the field equations for
the C-space metric and also in the Clifford algebraic compatibility condition
∇̂KCMNL = 0. Once again, one arrives at an over-determined system of equa-
tions that may not have nontrivial solutions. In the rest of this work we will
explore the procedure of how to avoid an over-determined system of differential
equations

For simplicity we shall set the nonmetricity QLMN to zero from now on, so
that

ΓLMN = {LMN} + KL
MN (2.17)

In [3] it was shown that a metric compatible connection (zero nonmetricity case)
which is consistent with eq-(2.14) is given by

ΓKMN =
1

2
gKL ∂MgNL, ΓMNL =

1

2
∂MgNL, (2.18)

and has torsion TKMN = ΓKMN − ΓKNM . The contorsion tensor is in this case

KMNK = ΓMNK − {MNK} =
1

2
(∂KgNM − ∂NgKM ) = −1

2
Γ[NK]M = −1

2
TNKM

(2.19)
The contorsion tensor is defined in terms of the components of the torsion tensor
as

KJMN =
1

2
(TJMN − TMNJ + TNJM ) (2.20a)
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KL
MN = gLJ KJMN , KJMN = − KJNM , TJMN = − TMJN (2.20b)

One can verify that the contorsion KMNK found above in eq-(2.19) is indeed
consistent with the definition of the contorsion in eqs-(2.20) after plugging-
in directly the expression for the connection given by eq-(2.18). KMNK is
antisymmetric in the last two indices while TNKM is antisymmetric in its first
two indices. In an ordinary manifold, the contorsion is a one-form while the
torsion is a two-form. This can more easily be seen in the anholonomic basis.
The contorsion one-form is Kab

µ dx
µ and the torsion two-form is given in terms of

the bein ea = eaµdx
µ, and spin connection ωabµ dx

µ as T aµνdx
µ∧dxν = dea+ωab∧eb.

One should add that the decomposition

ΓMNK = Γ(MN)K + Γ[MN ]K (2.21)

of the metric compatible connection ΓMNK = 1
2∂MgNK is not desirable because

the connection piece Γ(MN)K is not metric compatible, whereas the Levi-Civita
connection {MNK} is. The correct decomposition is the one displayed in eqs-
(2.17).

The results (2.18) were obtained in the so-called ”diagonal gauge” [3] where
in a given coordinate system (generalized Lorentz frame) the mixed-grade com-
ponents of the metric gMN , g

MN , and beins EAM , inverse beins EMA , can be set to
zero in order to considerably simplify the calculations; namely due to the very
large diffeomorphism symmetry in C-space, one may choose a frame (”diagonal
gauge”) such that the mixed grade components of the metric, beins, inverse
beins are zero. In this case, the Clifford algebra associated to the curved space
basis generators γM = EAMγA assumes the same functional form as it does in
the flat tangent space, and obeys the (graded) Jacobi identities. The metric,
beins, inverse beins, admit a decomposition into their irreducible pieces like in
eq-(2.22) below. Only a restricted set of poly-coordinate transformations (gen-
eralized Lorentz transformations in the tangent space) will preserve such zero
mixed-grade condition, namely the grade-preserving transformations.

The same-grade metric components g[µ1µ2...µk] [ν1ν2...νk] can be decomposed
into its irreducible factors as antisymmetrized sums of products of gµν as follows

det


gµ1ν1 . . . . . . gµ1νk

gµ2ν1 . . . . . . gµ2νk

−−−−−−−−−−− −−−−−−−−−−−−−−
gµkν1 . . . . . . gµkνk

 (2.22)

One can avoid an over-determined system of differential equations by im-
plementing the compatibility conditions (2.14), in the diagonal gauge, before
performing a variation of the action; i.e. to go ahead and plug-in directly the
connection (2.18) in terms of the metric and derivatives (no longer following
a Palatini variation procedure), and to insert the metric decomposition (2.22),
before performing the variation of the action, leading to

δS =
δS

δg00
δg00 +

δS

δgµν
δgµν +
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δS

δg[µ1µ2] [ν1ν2]

δg[µ1µ2] [ν1ν2]

δgµν
δgµν + .... (2.23)

A variation of the connection (2.18) gives

δΓJMN =
1

2
(∂MgNK) δgJK +

1

2
gJK ∂M (δgNK) (2.24)

Defining the poly-tensor density which appears in the variation of the action
displayed in (2.9) as

PMN
J ≡

√
|g| PMN

J ≡
√
|g| ( gMN TJ − TNδMJ + TMN

J ) (2.25a)

PMJN ≡
√
|g| PMJN ≡

√
|g| ( δMN TJ − δMJ TN + TMJN ) (2.25b)

and after using the relations

(ΓNMN − ΓNNM ) PMJK = TM PMJK (2.26)

combined with

( ΓMJN PMN
K − ΓMKN PMN

J ) δgJK = 0 (2.27)

due to the symmetry of δgJK and antisymmetry under the exchange of JK
indices of the terms inside the parenthesis, one can show after some algebra and
integrating by parts, that the explicit torsion terms contribution to the variation
of the C-space gravitational Lagrangian density is

PMN
J δΓJMN = − 1

2
( TM PMJK + ∇MPMJK ) δgJK (2.28a)

so the vacuum field equations become

R(JK) −
1

2
gJK R − 1

2
(TL PL(JK) + ∇LPL(JK)) = R(JK) −

1

2
gJK R = 0

(2.28b)
because PL(JK) = 0 due to the antisymmetry of the tensor PLJK in the JK indices

as described in (2.25b). For antisymmetric metrics the terms in (2.28a) will not
be zero. For symmetric metrics (2.28a) is zero due to the symmetry of δgJK

and antisymmetry of PLJK = 0.
Decomposing the curvatures in (2.28b) into their Riemmanian-like pieces

plus torsion terms yield

RJK({}) −1

2
gJK R({}) +

1

2
TMN
(J TK)MN −

3

8
gJK TLMN TLMN = 0 (2.28c)

where we denote the Riemannian parts by RJK({}) = RKJ({});R({}).
There is a caveat because one must not forget that the higher grade gMN

metric components are not independent functions of gµν due to the decompo-
sition in (2.22) that result after imposing the Clifford algebraic compatibility
conditions (2.14) in the diagonal gauge [3]. For this reason instead of having the
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field equations (2.28b, 2.28c), the C-space vacuum gravitational field equations
in the diagonal gauge become, after renaming indices,

δ(
√
|g|L)

δg00
− ∂(

δ(
√
|g|L)

δ ∂g00
) = 0 (2.29)

and
δ(
√
|g|L)

δgµν
− ∂(

δ(
√
|g|L)

δ ∂gµν
) +(

δ(
√
|g|L)

δg[µ1µ2] [ν1ν2]
− ∂(

δ(
√
|g|L)

δ ∂g[µ1µ2] [ν1ν2]

)
δg[µ1µ2] [ν1ν2]

δgµν
+ ....... = 0 (2.30)

with
δ(
√
|g|L)

δgµν
− ∂(.......) ↔ R(µν) −

1

2
gµν R (2.31)

the other remaining contributions of the polyvector-components denoted by the
hatted indices give

δ(
√
|g|L)

δgM̂N̂
− ∂(.........) ↔ R(M̂N̂) −

1

2
gM̂N̂ R (2.32)

such that the gµν field equations in (2.30) acquire now the extra terms given by

∆µν =

(
R(M̂N̂) −

1

2
gM̂N̂ R

)
δgM̂N̂

δgµν
(2.33)

These extra terms (2.33) to eqs-(2.31) have the same role as an effective stress
energy tensor term κ2Teff

µν contribution, up to a minus sign. The advantage
of using the connection (2.18) and the metric decomposition (2.22) before the
variation of the action takes place, in the diagonal gauge, is that one does not
longer have an over-determined system of differential equations. Therefore, the
effective field equations for the ordinary metric gµν in the so-called ”diagonal”
gauge described earlier become

R(µν) −
1

2
gµν R = − ∆µν = κ2 Teff

µν (2.34)

where the effective Teff
µν is defined in terms of the higher grade metric compo-

nents as shown in eq-(2.33). The relevance of having one single set of equations
in (2.34), instead of setting to zero, separately, both equations in (2.31, 2.32),
is that one does not longer have an over-determined system of differential equa-

tions for gµν . One should notice once more that the higher grade gM̂N̂ metric
components are functions of gµν due to the decomposition in (2.22). For this
reason if one were to set to zero both eqs-(2.31, 2.32) this would lead to an
over-determined system of equations for the ordinary metric gµν .

Furthermore, the most salient and physically relevant feature is that the
effective Teff

µν may be interpreted as dark energy/dark matter. It has been

11



known for a long time that the torsion terms inside R(µν),R may contribute to
dark energy/dark matter as well [11], [8]. What is novel in C-space gravity, to
our knowledge, besides having torsion is :

(i) the contribution of the higher grade metric components gM̂N̂ of the C-
space metric to dark energy/dark matter as described in eqs-(2.33, 2.34).

(ii) No spin matter is required to induce torsion because torsion is imposed
by the Clifford algebraic structure itself and which is reflected in (2.14) leading
to a connection with torsion (2.18). Even in the absence of matter one has
torsion in C-space. Even in the case for those metrics which might obey the
restricted condition ∂MgNL = ∂NgML constraining the torsion to zero, we still
have the contribution ∆µν of the higher grade metric components to the field
equations (2.34) mimicking the role of dark energy/dark matter.

A model of dilaton matter based on particles which are endowed with in-
trinsic spin and dilaton charge (a dilaton-spin fluid) has been considered as
the source of the gravitational field in a Weyl-Cartan spacetime [11], [8]. Dark
matter was modeled in terms of the dilaton and inflation-like and accelerat-
ing expansion solutions for the universe were obtained. Since C-space gravity
encodes Weyl scalings as shown in [1] the latter dilaton-spin fluid model can
naturally be incorporated within the framework of C-space gravity. However as
stated above, no spin matter is required to induce torsion in C-space.

Furthermore, no dilaton matter charge is required either because the Clifford
scalar component g00 of the C-space metric is a scalar field which can replace
the dilaton. It is tempting to speculate whether the Clifford scalar g00 might be
related to the Higgs. The Clifford pseudo-scalar component gµ1µ2....µD ν1ν2....νD

of the C-space metric is the pseudoscalar counterpart and due to the decompo-
sition (2.22) it is a composite field made out of gµν .

One must include also the additional equation to (2.34)

δ(
√
|g|L)

δg00
− ∂(

δ(
√
|g|L)

δ ∂g00
) = 0 ⇒ R00 −

1

2
g00 R = 0 (2.35)

Because there is the residual grade-preserving symmetry transformations of the
polyvector valued coordinates in C-space, and which is left over after the diag-
onal gauge is imposed [3], this is the symmetry operating in the effective field
equations (2.34, 2.35) for gµν and g00, respectively.

In forthcoming work we shall freeze the dependence on all polyvector coordi-
nates except the vectorial ones xµ in the field equations (2.34, 2.35), to simplify
the calculations, and explore the correspondence between our numerical results
and current astrophysical observations. Another project which warrants inves-
tigation is the introduction of Finsler geometric structures in Clifford spaces.
Clifford-Finsler Algebroids and Nonholonomic Einstein-Dirac Structures have
been introduced by [7].
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