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Abstract:   A theory of electro-cordic guidewaves is developed to supplement the 

standard acausal statistical laws of quantum mechanics and account for the growth of 

precision interference patterns from apparently random quantum events.    Every effort 

is made to reveal the physical reality of the guidewaves which organise photons or 

electrons into predictable states.  Einstein’s equations of general relativity have also 

been applied to hydrogen, to yield energy levels identical to those of Dirac’s theory. 

 A companion paper will cover other applications of electro-cordic guidewaves in 

quantum theory to interference, tunnelling, non-local phenomena, and 

superconductivity. 
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1. Introduction 

 Generally, the theory of quantum mechanics is interpreted statistically, but is still 

able to get very accurate classically meaningful results.  This technique, attributed to 

Bohr, Heisenberg and Born, has at times been extended to imply that there exists no 

classically real world of particles or fields supporting quantum theory. Dirac (1962, p 

15) concluded that sufficient justification for the whole scheme of quantum mechanics 

rests on agreement of the final results with experiment. It appears that concepts of 

reality, particles and orbits are being eroded because of the lack of an inclusive physical 

theory.  However, physicists abhor ignorance and require more than numerical results.  

Einstein believed that a causal theory of micro-physics is essential for compatibility with 

macro-physics, and also from a heuristic point of view. Bell (1987) regarded quantum 

theory as being an incomplete theory of observation.  de Broglie (1956), Bohm (1984), 

Vigier (1987), Bohm & Hiley (1995), have produced theories of physical potentials or 

pilot-waves which guide particles in their trajectories. Therefore, received wisdom of a 

mysterious quantum theory need not block new ideas and the advantages of a real 

guiding-field with a statistical-particle interpretation, based on evidence.  After all, 

gravitational and electric field quanta have never been observed directly, but we infer 

their existence for overall consistency in Physics. Newton did not mention gravitons, nor 

Maxwell photons. 

 In this paper, an electro-cordic field will be proposed which determines the 

statistical aspects of quantum theory. The need for this is because observations have 

shown that the stars in some spiral galaxies travel in discrete orbits, obeying 

quantisation rules analogous to those of Bohr orbits, (see Wayte, 2010a). Likewise, the 

dimensions of stars, star clusters, and binary systems show signs of quantisation, 

(Wayte, 2010b). Earlier, the Solar System of planets was shown to be quantised in 

angular momentum, (Wayte, 1982). It was considered improbable that all this 

quantisation on a grand scale could have resulted from statistically random events, so a 

real gravito-cordic field was proposed to exist, acting azimuthally to control angular 

momentum. Thus, normal gravity acting radially and a gravito-cordic field acting 

azimuthally may be described by a gravitational Schrödinger equation. 
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2. The proposed theory of electro-cordic guidewaves  

 The electro-cordic guidewave theory presented here differs from other theories 

mentioned above, but it is equally aimed at producing a real causal physical 

interpretation of quantum theory, to eliminate some incongruity between theory and 

experimental physics. 

2.1 Problems with standard quantum theory 

 Standard quantum theory is a theory of observation only, with problems that 

clearly expose its incompleteness; for example: 

a) Schrodinger’s mathematical equation represents a probability of getting some result, 

without any real physical mechanism or reasoning. The notion of negative probability 

amplitude is unreal. The probability density involves only the spatial eigenfunction, 

while the high frequency temporal aspect of the probability amplitude phase factor is 

ignored.  

b) In a double-slit experiment the fringe pattern of photons or particles is built from 

apparently random events, yet it may become extremely smooth on approaching its 

predictable profile.  Information content in the pattern increases. If the number of slits is 

increased, the fringe pattern becomes more detailed and precise. The fringe pattern is 

calculated by assuming trajectories, which are not supposed to exist. 

c) Absorption and emission-line spectra may be very sharp and predictable, contrasting 

with the broad probability wavefunctions.  Individual atoms emit precisely the same 

spectra yet the wavefunction represents an average result for an ensemble of atoms. 

d) In atoms the proposed fuzzy electron clouds do not conserve energy in detail, and 

there is no inherent stability to maintain atomic structure. Separated atoms and particles 

of a species are identical and long-lived, so some precise laws must determine their 

detailed internal structure. 

e) Tracks in cloud-chambers imply that particles are real and continuous in motion, 

rather than being a series of observational events. The Crookes tube and cathode ray 

tube design assume trajectories. When an electron is accelerated in an electron gun, it 

conserves energy by existing continuously right up to the target and throughout the 

observable scattering process. 
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f) Quantum theory is incapable of dealing with details of particle creation and structure. 

This leads to infinities in the mathematics which have to be cunningly renormalised. 

High energy experiments may require the inclusion of sub-quantum structure. 

g) Existence of Heisenberg’s uncertainty principle is not explained by quantum theory 

because it originates at the lower level of particle structure. 

h) Alpha particle emission appears random and not determined by any mechanism; yet 

we can distinguish between radioactive elements by their predictable mean lifetimes. 

 

2.2 Advantages of electro-cordic guidewave theory 

Truly random events such as dice-throws show no predictable results, so 

quantum theory needs more than that. It is necessary to understand the real causes 

behind the results, and reveal some characteristics of this field, which guides particles 

into a pattern or orbits: 

a) The energetic electro-cordic guidewaves are generated continuously by sub-atomic 

particles or photons. They are freshly created during particle creation, and continue until 

the destruction of the particle. A wavefunction describes these guidewaves and 

wavefunction collapse occurs when a particle or photon is absorbed, but may be 

followed immediately by new generation to suit the new situation. Guidewaves appear 

to propagate at the velocity of light or faster and may exert an inductive force on 

themselves by reflection, or other particles as in stimulated emission. Interference 

produces the characteristic de Broglie wavelength, which is a major feature of the 

guiding phenomenon. In stable atomic orbits, long term stability is guaranteed and 

spontaneous radiation is inhibited by controlling guidewaves.  

b) When confined to a potential well, guidewaves build into a standing wave described 

by the wavefunction.  As far as interactions with other systems are concerned, the 

amplitude may be regarded as probability amplitude, although the source particle 

remains intact and localised in its motion. The wavefunction of one atom will interfere 

with that of another atom and thereby cause the source electrons to change orbit, 

resulting in scattering or a chemical reaction.  
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c) When calculating the energy eigenvalues of an atom, it is not essential to interpret the 

wavefunction as probability amplitude for electron position density; but the equations of 

Schrodinger and Dirac give the observed results whatever their proper interpretation. 

d) The full relativistic wave equation implies propagation of a wavefunction at the 

velocity of light, in the simplest case. The non-relativistic Schrödinger wave equation is 

incomplete and assumes action at a distance. 

e)  The mechanism of quantum jumping of an atomic electron from one orbit to another 

involves the extended guidewave occupying both orbits during the jump. 

 f) The sometime equivalence of guidewave amplitude and probability amplitude is 

analogous to the way that antenna radiation field patterns are calculated as wave 

phenomena but have a quantum nature also. Average guidewave intensity is naturally 

proportional to probability density of quanta or particles. 

g) The Heisenberg uncertainty principle is a consequence of particle properties for 

structured particles, (Wayte 2010c). Electrons have a continuous history of position, 

momentum and energy from their creation onwards, with no random zig-zagging or 

jumping in and out of existence. 

h) Energy levels calculated for hydrogen using Dirac’s relativistic theory may also be 

derived from Einstein’s equations of general relativity, if electron spin is neglected.  

This is a step towards the unification of gravity and electromagnetism because similar 

processes must be operating in the macro and micro-worlds.   

 These characteristics will be applied in a manner which dispels much of the 

mystery regarding the wavefunction.   

 

2.3 Mathematical derivation of the electro-cordic field 

Mathematical derivation of the guidewave properties is based here on previous 

work applied to astronomical systems, as follows. It is postulated that particles at rest of 

mass mo and energy Eo emit real energetic electro-cordic guidewave quanta of Compton 

wavelength Co , where: 

    hc/E = c)h /(m = ooCo .     (2.1) 

The wave amplitude at the particle, as seen by a local observer may be expressed as: 
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    ]texp[±i2 y =y 00o  ,     (2.2) 

for a circularly polarised wave, where frequency is (0 = cq/Co); and the propagation 

velocity cq may be taken as the velocity of light c in general. [In the later Section on 

entanglement, cq may be specified greater than c for that phenomenon]. If now the 

particle has a velocity v in the x direction relative to a coordinate observer, the wave 

amplitude at the particle as seen by the coordinate observer is, by application of the 

Lorentz transformation: 

 ) c/ v-(1 / ) vx/c-(t i2 ±expy' = y' 1/2222
0o  .  (2.3a) 

This may be written as: 

    x)~-t '(i2±exp y' = y' o  ,     (2.3b) 

where   v/c'~   and )/c v- (1' 2-1/222
0  . 

 Given that the relativistic energy and momentum of a particle are (E = h' = mc
2
) 

and (p = mv), then equation Eq.(2.3b) is equivalent to the relativistic quantum 

mechanical wavefunction of a free particle: 

    /Et) -i(px   ±exp  = 0   .     (2.4a) 

In this work, the wavefunction may specifically represent a real energetic high 

frequency guidewave, which leads to the results described by quantum theory. The 

guidewave is tied to its particle and its energy is not available for exchange interactions. 

The free particle wavefunction describes guidewave amplitude and shows no sign of a 

probabilistic interpretation. Only when specifically appropriate, the wavefunction may 

be interpreted as probability amplitude. This gives it the wave/particle duality expected 

for quantum processes. The probability amplitude is proportional to guidewave 

amplitude as expected, since a particle is the source of the guidewave. Double peaks 

seen in some calculated wavefunction amplitudes are not indicative of a particle being in 

two places at once. 

The sign (±) in the exponential of Eq.(2.3b) is arbitrary and describes right or 

left-handed helicity of the circularly polarised guidewave.  It is thought that, for leptons, 

left-handed helicity represents matter, while right-handed helicity represents antimatter.  

Factor i is just the orthogonal unit vector of electromagnetic theory. The given 
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substitution of (E = h' = mc
2
) and (p = mv) into the relativistic expression Eq.(2.3b) to 

get Eq.(2.4a) shows that concepts of negative energy or mass are not required in this 

realistic physical theory.  Similarly, factors px and Et are quantities of positive action 

only. 

  Differentiation of travelling wave equation (2.4a) with respect to x and t yields 

the standard operator equations: 

    
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As briefly mentioned above, when investigating entanglement cq may be 

proposed greater than c. Then ħ in Eq.(2.4a) will become ħq in order to fix (ħc = ħqcq) 

within the fine structure constant; while E and p are unchanged particle properties. 

During wavefunction collapse in a bound system, the extended guidewave loses control 

in an instant and it may fly back to its source at superluminal velocity, as suggested by 

experiments on non-locality phenomena.  For elastic collisions, wavefunction collapse 

does not occur, but inelastic collisions produce either complete collapse or re-

arrangement of an existing guidewave field to suit a new situation; all this happens 

without any mystery. 

 For an ensemble of particles tunnelling through a barrier, the wavefunction is 

interpretable as probability amplitude.  This represents the direct particle application of 

the wavefunction, and gives it the appearance of a force field. Similarly the 

wavefunction as guidewave amplitude may be considered a force field for interactions 

with other particles, which induces motion without energy exchange. Interactions are 

most probable where the amplitude is greatest so it is reasonable to equate the 

probability of interaction with guidewave intensity.  Electron trajectories in atoms and 

interference patterns are controlled by this real electro-cordic field and are characterised 

by the de Broglie wavelength, but the high frequency component of the wavefunction is 

latent.  
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2.4 Nature of the de Broglie wavelength 

 The de Broglie wavelength may be generated physically as follows. A Compton 

guidewave emitted by a particle with velocity v in the direction of motion in a circular 

orbit would be detected by a stationary coordinate observer as having a Doppler 

frequency '(1 + v/c).  Alternatively, a quantum emitted backwards would have a 

coordinate Doppler frequency ' (1 – v/c).  If it is postulated that these two quanta travel 

around the circular orbit as a continuous wave at velocity c and may interfere, the net 

amplitude at a fixed observation point distance x from an arbitrary origin on the orbit 

could be given as: 

    
}]x~t'{2i}]exp['x / (v/c)t'{cos[22y 

v/c)}](1)'/xt'{(2iexp[ y   v/c)}] )(1'x / t'{(exp[-i2 y y 

0

00




,   (2.5) 

where (' = c/'), and t starts from zero as the particle crosses the origin. 

 This is a circularly polarised wave of fundamental frequency: 

   h)/ (mc  h]/ c)/cv(1[m  ' 222/122
o     ,   (2.6) 

and beat frequency '(v/c).  The beat wavelength is then the de Broglie wavelength: 

      = h /mv =  ~ / 1 = c) / v'  /(c B .    (2.7) 

Hence, by superimposing or interfering two Doppler-shifted Compton guidewaves in a 

circular orbit, we get a standing wave pattern rotating around the orbit with the particle 

and a physical interpretation of the de Broglie wavelength (B = 1/~ ). This 

characteristic wavelength for particles depends on the fundamental guidewave being 

returned to interfere with the source. There are no de Broglie quanta as such, but during 

interactions the interference produces the same ponderomotive effect as quanta.   

The individual Compton guidewaves propagate around the orbit at the velocity 

of light but we can show that the beats naturally stay fixed relative to the orbiting 

particle source, as follows.  From Eq.(2.5) the condition for a beat maximum, for a given 

beat number s, is: 

 s  ] 'x / (v/c)t '[ 2   .     (2.8a) 

Hence by differentiation, the beat envelope velocity is: 
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    v (v/c) ' ' dx/dt   .      (2.8b) 

At an anti-node, a particle receives the two Compton quanta in phase with its emission 

so there is resonance at the particle.  The amplitude equation (2.5) will be single-valued 

when (c/v = B/' = integer), if the orbit circumference is an integral number of de 

Broglie wavelengths.  Then the amplitude repeats itself temporarily (x constant) every 

period (B = B
-1

), and spatially (t constant) every distance B . 

 Physical interpretation of the quantum mechanical wavefunction as a guidewave 

amplitude, and probability amplitude when appropriate, enables a realistic explanation 

of phenomena without altering the mathematical analysis. If the propagation velocity of 

the wavefunction is under some circumstances cq rather than c, then the de Broglie 

wavelength is unchanged but the frequency increases proportionally. 

 

3   The hydrogen atom. 

The hydrogen spectrum will now be studied in different ways to see where real 

physical guidewaves complement the standard statistical interpretation of quantum 

theory.  For example, emission lines are observed to be sharp and calculable from 

Schrödinger’s equation, which produces exact energy eigenvalues from broad radial 

wavefunctions in terms of the integral total quantum number n.  But this precision also 

depends on the angular momentum quantum number , which within broad angular 

functions can involve the magnetic quantum number m. Given that the hydrogen 

electron is supposed to describe a statistical fuzzy cloud, one would logically expect to 

observe very broad emission lines centred on the calculated eigenvalues, rather than 

very sharp lines. 

 

3.1 Schrödinger's non-relativistic wave equation for hydrogen atom 

 Schrödinger's basic non-relativistic wave equation is given by Schiff (1968) p24 

as: 

   



)t,r(V

m2t
i 2

2
 .    (3.1a) 

A particular solution of this is given by Schiff (1968) p31, p77 as: 
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/Et
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 .    (3.1b) 

Clearly, the physical component is the temporal part representing a circularly polarised 

guidewave of high frequency. The radial R(r) and angular Y(θ,φ) terms only represent 

the spatial distribution of this guidewave. In polar coordinates, the equation for R(r) is 

given by Schiff (1968) p90 as: 
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This does not mention c and also suffers from the anomalous zero angular momentum 

condition  0 , whence the electron is purported to pass by the nucleus in linear 

oscillation. Schiff (1968) p81 has explained the  1 term as representing ''centrifugal 

potential energy'' due to ''angular momentum'', which adds to the Coulomb potential. We 

shall let    2/1]1[   represent allowed angular momentum within a field-free volume 

only, since it is derived without considering the Coulomb field. Then standard solution 

of the wave equation (3.2a) shows that it is the Coulomb energy term which accounts for 

the actual angular momentum around the proton. This is illustrated by normalising 

Eq.(3.2a) with respect to eigenvalue (E) x 4 as follows: 

  
 

R
4

1
R

1)1(

d

dR

d

d1
2

2

2






































,   (3.2b) 

where, [ 2/12 )/E8(r  ]. Here, ]n)1[(   is the total quantum number,  is 

the radial quantum number, and   )(1   is total angular momentum due to the 

central field. Clearly, the angular momentum cannot fall below  , in agreement with 

Dirac's (1962) relativistic analysis, and the Bohr atom. For any value of n, the most 

elliptical orbit has one unit of angular momentum, which is the  0  condition. This 

therefore excludes purely radial oscillation proposed by the standard interpretation. 

 The physical meaning of n,  , m is understandable in terms of guidewaves and 

electrons in orbits, as follows.  Let the electron in a circular polar orbit (say in the x-z 

plane) around the nucleus generate a guidewave around this orbit.  For stability, this 

guidewave amplitude must be single-valued so an integral number of de Broglie 

guidewavelengths is necessary around the orbit, say n.  This polar orbit has no 
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component of velocity in the direction of azimuthal angle .  If now, the orbit is tilted 

over a little due to an applied magnetic field, a component of electron velocity will exist 

in the equatorial (x-y) plane such that a guidewave may be emitted into the equatorial 

orbit, by the passing electron. For a particular value of this equatorial velocity 

component ve there will exist one de Broglie guidewavelength around the equatorial 

orbit, therefore (2re = B1 = h /meve) for electron mass me , and magnetic quantum 

number (m =1). By tilting the orbit further, there could be two complete de Broglie 

wavelengths around this equatorial orbit when the passing electron's component of 

velocity is increased to 2ve , and  (2re = 2B2 = 2h /me2ve), (m = 2).  Orbit tilting may 

be continued until there are (m = n-1) de Broglie wavelengths around the equatorial 

orbit.  Thus, for integral mφ , the guidewave amplitude u() in the equatorial orbit may 

be single-valued and periodic in 2 such that: 

     )exp(im  U )u(   ,      (3.3) 

which effectively represents the eigenfunction of the z-component of angular 

momentum.   

 If the original circular polar orbit of n de Broglie wavelengths is now made 

elliptical, the component of passing electron velocity into the original circular polar 

orbit is reduced, and fewer de Broglie wavelengths exist around it, say (n-).  The 

ellipticity can increase in steps up till (n-1) when  0 . Then when this elliptical 

electron orbit is again tilted out of the x-z plane, due to an applied magnetic field, the 

number of  de Broglie  guidewavelengths  in the  equatorial orbit  can only increase to 

(m = n--1). 

 The standard interpretation of quantum theory, in which fuzzy electron clouds 

surround a nucleus in separate suspended lobes, is not obviously compatible with 

precise energy eigenvalues or conservation of energy. Negative probability amplitude is 

not really viable, either. In contrast, the theory of real guidewaves stabilising electron 

orbits at exact energy levels, determined by guidewave standing wave patterns, is 

plausible.  The electron may be emitting guidewaves in all directions to produce the 

appearance of clouds, but its precise orbit is stabilised by an integral number of de 

Broglie wavelengths. Thus within atoms, the calculated wavefunctions represent 
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guidewave amplitude or intensity, not electron probability density.  The reality and 

single valuedness of wavefunction amplitude is a physical necessity for these 

guidewaves in stable orbits.  

 When an electron anticipates dropping from its current orbit to a lower orbit, it 

has the ability to send guidewaves in advance to assess the orbit and its surroundings. 

The electron can then move smoothly, following its guidewave into the lower orbit 

while generating a concurrent photon emission process. The electron’s wavefunction 

evolves from the original steady state to the final steady state in a continuous controlled 

manner, until the photon emission is complete, over one or more periods. Abrupt 

discontinuities in the move by sudden jumps do not occur, nor wavefunction collapse. 

 

3.2 On Dirac’s derivation of hydrogen energy-levels 

 Dirac’s relativistic quantum theory of fine-structure in the hydrogen spectrum is 

precise and complete for an electron with spin, see Dirac (1962). It is Lorentz invariant 

and involves the velocity of light c, so instantaneous interactions through wavefunctions 

are not considered. 

 Dirac’s relativistic wave equations can be understood here as representing real 

electro-cordic guidewave amplitude due to the orbiting electron within a hydrogen atom.  

For the radial wavefunction they take the form: 

    0= /r)1/r +r /(c )mc/re + (E ba
22   ,   (3.4a) 

    0= /r)-1/r +r /(c)mc/re +(E ab
22   .   (3.4b) 

Here,  is an integer excluding zero representing total angular momentum with electron 

spin, ranging from 1 to n the total quantum number; so electron trajectories past the 

nucleus are excluded. Following Section 2.3, it is also possible to replace ( ħc ) by (ħqcq) 

for superluminal guidewave trajectories, if they exist inside the atom. 

 Discrete energy-levels of the hydrogen spectrum derived from Eq.(3.4a,b) are 

given by: 

   2/122/12222 ]})(/{1[mc  E    .   (3.5a) 

Here, ( = e
2
/ħc ~ 1/137) is the fine structure constant, and it appears that  and 

[= n] can represent the radial and total quantum numbers of electron orbits in the 
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original quantum theory. When [= n] for different values of  and , a set of 

energy-levels lying close to one another are observed which correspond to the levels 

calculated from Eq.(3.2a). This confirms the importance of interpreting quantum theory 

in terms of the full relativistic treatment; although Schrödinger’s non-relativistic 

equation is a valuable tool. 

 When the radial quantum number is zero, Eq.(3.5a) reduces to: 

      ]/n - [1 mc  E 1/2222  ,     (3.5b) 

which is the same as for the General Relativistic particle derivation, to follow next. 

 There is good evidence for the reality of electron orbits because they fit the de 

Broglie wavelength, as can be determined from the radial wavefunction (χ = ra). The 

maximum value of χ for a circular Bohr orbit is derivable from Dirac (1962) p270, 

where: 

   s

s

s
a/r rce    .      (3.6) 

After differentiation, the maximum value is found where: 
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This is very informative because the first term on the right represents the non-relativistic 

system with n de Broglie wavelengths around an orbit, for stability through guidewaves 

of de Broglie wavelength (given that  = v1/c). The final term can be incorporated if the 

electron has relativistic mass increase due to its velocity around the orbit. In the next 

section, the electron's general relativistic coordinate energy is given by Eq.(3.17) as: 

   2/12221/222 ]rmc/e1[mc ](v/c)  [1 mc  E  ;  (3.8) 

therefore Eq.(3.7) may be written: 

   
c)])c/v(1/[(m(

hn
r2

2/12

2


  .    (3.9) 

Thus, for stability there are exactly n de Broglie wavelengths around the circular orbit 

due to the electron's increased local relativistic mass, in spite of its reduced coordinate 

energy. However, the question arises as to how the general relativity analysis which 

produced Eq.(3.8) can satisfy the Dirac analysis built upon special relativity. It appears 
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that Dirac's analysis is automatically set so that the wavefunctions satisfy local 

dimensions of scale and time in order to fit the local de Broglie wavelengths. That is, 

real guidewaves in the local frame are being fitted around orbits.  

 

3.3 General relativistic theory of hydrogen energy-levels 

 Einstein’s equations of general relativity may be applied to the hydrogen atom if 

electromagnetic field energies of the proton and electron are introduced, as suggested in 

an earlier paper (Wayte, 1983).  It was shown there that when gravitational field energy 

is explicitly introduced, the field of gravitons is analogous to an energetic Coulomb 

field.  Then Einstein’s equations behave like a relativistic version of Poisson’s equation    

representing field energy.  The concept of space-time curvature is no longer applicable 

and has to be replaced by a description of a particle’s time and length variation caused 

by the field environment; which is directly analogous to Lorentz transformation for 

particles in an acceleration field. 

 It will now be shown how this general relativistic solution can produce hydrogen 

energy-levels identical to the Dirac solution, when spin is neglected. The electron's real 

electro-cordic guidewave field controls the electron, in obeying Dirac's wave equation.  

The allowed orbits are thereby selected from a theoretical continuum of particle 

trajectories. Abstract hidden variables are not involved. 

 Briefly, an electron of local rest mass mo at radius r would have a coordinate rest 

mass [mr = (mo - e
2
/co

2
r) =  mo] due to loss of potential energy, which is really mass 

energy. If the electron is actually orbiting at local velocity vlocal , its relativistic local 

mass is increased to {ml = mo /[1 – (vlocal /co)
2
]

 1/2
}. Then the coordinate total electron 

energy should be (E =  ml co
2
), which will be confirmed from the geodesic equations as 

follows. 

 The geodesic equations for the electron trajectory in the proton's Coulomb field 

will be taken as, (Tolman, 1934, p207): 

   A      /ds)(dr(dr/ds) (dt/ds) 222222   ,  (3.12)

    B(dt/ds)2  ,      (3.13) 

    D/ds)(dr2  ,      (3.14) 
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where ds is an element of local time or space, [
 2

 = (1 – e
2
/moco

2
 r)

2
 ] is to be the metric 

tensor component, (A = 1) for particles, (A = 0) for quanta, B represents total electron 

energy, D is an angular momentum constant.   

 From Eq.(3.12) and Eq.(3.13) for a circular electron orbit we have: 

   24222 B/)dt/d(r   ,    (3.15) 

where [r(d/dt) = vcoord] is the electron velocity according to the coordinate observer. 

And from Eq.(3.12), putting (A = 0, ds = 0), we get for the coordinate velocity of light 

in the orbit, (ccoord =  co).  Therefore, all velocities in the orbit are reduced by factor , 

according to the coordinate observer.  Equation (3.15) may then be written: 

 2
olocal

2
ocoord

2
coordcoord

22 )c/v(1)c/v(1)c/v(1B/  . (3.16) 

We need to simplify this by relating  to (v/c) through two conditions: (a) For large 

radius orbit we expect [e
2
/2r ≈ (1/2)mov

2
].  (b) For minimum radius at the electron 

classical radius (r = ro), we have (vlocal = co), where ( = 0) and (e
2
/ro = mo co

2
).  In 

general therefore, (e
2
/r = mov

2
local ), and then { = [1 – (vlocal/co)

2
]}. Thus, from Eq.(3.16) 

the electron total energy constant is: 

 1/21/221/22
oo

21/22   ](v/c)[1   r] c/me1[  ](v/c)[1 /   B  .  (3.17) 

So the orbiting electron has coordinate energy E = Bmoc
2
 =  ml c

2
 as derived earlier. 

Equation (3.13) shows that the orbiting electron's local time element ds is decreased 

relative to coordinate time dt by [1(v/c)
2
]

1/2
, due to local field plus its own velocity. 

 When (r = n
2
ao) for hydrogen, this gives coordinate electron energy: 

   2/1222
oo )n/1()cm/E(B   ,    (3.18) 

which is identical to Dirac’s particular solution Eq.(3.5b) wherein the radial quantum 

number is zero. This result is very important because it demonstrates successful 

application of Einstein’s general relativity field theory of particles to quantum theory of 

electro-cordic guidewaves.  That is, the Coulomb field and gravitational field are 

similar, conserved tensor fields obeying Einstein's equations. Einstein’s interpretation of 

his geometric theory is completely different from electromagnetic theory, and cannot 

lead to Eq.(3.18). 
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 To conclude this section, it is appropriate to briefly describe the normal 

Coulomb electromagnetic field which conveys the electric force.  Analogous to the 

gravitational field (Wayte, 1983), the electric field of a particle consist of tied quanta 

which propagate out and back at the velocity of light.  These quanta interact with the 

quanta from other bodies and are deflected either towards or away from those bodies, 

according to whether they are of the opposite or same helicity. The change in quanta 

momentum is conveyed back to the charges and, for an elastic collision, it is this process 

which constitutes the attraction or repulsion of opposite or like charges, respectively. 

The quanta do not sink into the other particles, or neutralise their charges in the sense 

sometimes graphically depicted. All charges remain intact and total field energy density 

at any point is the sum of individual field intensities from all nearby charges, whatever 

their signs. This total field energy has erroneously been identified as vacuum energy by 

some investigators. 

 

3.4 Schrödinger's relativistic equation for hydrogen energy-levels 

 The aim is to demonstrate the duality of the relativistic particle equation: 

    )c m -/cEp 22222  ,              (3.19a) 

as a wave equation, in order to confirm the reality of electro-cordic guidewaves 

described by the wavefunctions. 

 The corresponding relativistic Schrödinger radial wave equation, for the 

Coulomb field in polar coordinates, is given by Schiff (1968) p470 as: 

 
 

R
c

cm)r/eE(
R

r

1

dr

d
r

dr

d

r 2

4222

2

2
2

2

2











 












 








 
.             (3.19b) 

Velocity of light c is available for guidewaves but ( ħc ) could be replaced by (ħqcq) for 

superluminal guidewave trajectories, if necessary inside the atom. The anomalous 

 0  possibility remains to be interpreted as in Section 3.1. Again, the high frequency 

component of the total wavefunction has been separated, but it must still exist as the 

guidewave fundamental frequency. 

 The total quantum number is now: 

      2/122
2/12/1 )(n   ,     (3.20) 
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where  is the radial quantum number, and )c/e( 2  is the fine structure constant. 

This n is no longer an integer because of relativistic time dilation and orbit length 

contraction. Energy levels are given by: 

  

 
2/1

2
2/122

2/12/1

2
2 }{

)(

1mcE 
















  ,  (3.21) 

which is close to Dirac’s result but does not fit experiment as well.  For particles without 

spin, the applicability of Eq.(3.19b) as a relativistic guidewave equation coexisting with 

the particle equation (3.19a) is satisfactory. 

 

4 Conclusion 

 Electro-cordic guidewave theory has been developed in order to supplement 

statistical quantum theory and account for the way predictable precision in position and 

energy appears within so-called statistically determined systems.  Energy levels of 

hydrogen calculated from Dirac’s theory have now been confirmed using Einstein’s 

equations of general relativity.  This effectively brings a microscopic quantum system 

into agreement with the macroscopic world of astronomy and means that quantum 

theory cannot remain mysterious. A following paper will cover other applications of 

guidewave theory to demonstrate more causal processes, plus non-local phenomena, and 

account for high temperature superconductivity. We have seen that real guidewaves are 

represented by wavefunctions and should not be dismissed, anymore than virtual-

photons of the Coulomb field should be denied because they are not directly observable. 
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