
IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011

ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal

http://www.ijces.com/

23

Representing System Processes using the Actor Model /

Processor Net

Anthony Spiteri Staines

Department of Computer Information Systems, Faculty of ICT,

University of Malta, Msida MSD 2080, Malta

Abstract. This paper describes the issue that modern systems, being composed

of multiple components, have certain processing requirements that need to be

properly addressed. Unfortunately very few models and notations provide for

the idea of process modeling. For this purpose, separate notations have to be

used. This work proposes the use of notations that have a specific focus on

process modeling concepts. The solution is to use the Actor Model/ Processor

Net. The solution is taken a step further by suggesting the use of Processor

Network Patterns. These can be useful for describing and categorizing typical

behavior in different types of systems.

Keywords: Actor Model, Design Patterns, Process Modeling, Processor Net

1 Introduction

Given systems complexity issues, many different notations and techniques have been

developed for modeling systems. The main focus of these techniques separates the

behavioral aspects from the static ones. There exists no perfect notation for modeling

the behavioral aspect. The problem is made worse if proper process modeling is

considered. Traditionally, process modeling is represented using special techniques or

notations. When processes are modeled, the activity or process is shown separate

from the entity causing the process to occur. Both the actor and the process are

fundamentally interlinked.

Process modeling is of fundamental importance to different types of information

systems, hardware modeling, computer networking and even systems like

manufacturing systems.

2 Background and Motivation

Consider any system. The main system parts can be described using different

diagrams, models or languages. Some might be visual whilst others can be more

symbolic or mathematical. The obvious building blocks, consisting of components or

main components, are normally depicted graphically. For this a variety of techniques

IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011

ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal

http://www.ijces.com/

24

exist, such as those in object oriented modeling, modeling languages and formal

methods.

The idea here is not to create a new method or suppress the use of others but to use

diagrammatic notations that simplify possible descriptions making it more modular

and structured with the ability to combine blocks and create new formations, whilst

simultaneously use and extract possible high level Petri nets from the structure.

Further analysis could be applied as required. At the same time, the models must be

more modular and comprehensible than current techniques in use. The idea of

compactness is important for successful application which is not normally seen in

Petri net structures [5]-[6]. The approach for construction has to be more intuitive.

Components or sub-components need to connect and communicate properly.

Interactions between different entities need to be properly understood. The ability to

express system behavior is important for system architects, developers, project

managers and different system stakeholders. Evidence of this is in large scale

industrial system projects. Before even designing systems the interactions related to

system processes have to be identified and understood. These ideas are clearly visible

in FMC (Fundamental Modeling Concept) techniques, design patterns, MDE(Model

Driven Engineering), SOA (Service Oriented Architectures), etc. The idea of

abstracting is to comprehend systems even though there are great differences in

technologies, architecture, hardware and software being used. Models for

visualization need to observe key principles like: i) proper drawing, ii) shape and

layout harmonization, iii) proper orientation and iv) symmetry. Aesthetically the

model should be pleasant to visualize without there being overlapping nodes and

edges.

There are several ways how to create a perfect model [1],[2] but what is good for

one problem might not be suited for others. Some basic ideas for creating a good

model are: i) perception of nodes, edges and labeling, ii) plausible diagram as regards

to structure, iii) recognition of familiar structures, iv) compositionality/ability to add

more building blocks as one requires, v) layout that is easy to recognize, and vi)

reduced model layout.

Even though the UML and other formalisms definitely provide for representing

system behavior and interaction, however at least two separate notations have to be

used to represent processes and classes.

Ideally a notation that can combine both should be useful for proper process

representation [1]. In a sense UML use case diagrams do this in a rather crude

manner. On the other hand, Petri nets could be used, but classes would not be suitable

for representing this. A possible solution to these issues is to use a Processor Net

model which could also be called an Actor model. This type of model handles both

the static and dynamic aspect.

3 Process Modeling Problems and Issues

Process modeling requires proper representation using consistent and tidy ways of

representation [1]. Normally something like a processor model could be suitable.

IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011

ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal

http://www.ijces.com/

25

Activities or tasks denote sequences of one or more actions also called operations.

Particular entities are responsible for the activity, these are also called ‘actors’ or

‘agents’. Actors can include a whole spectrum of entities ranging from physical

entities like customers to complete systems that interact with another system. The

granularity of process modeling is relative to what is required. The way of

representing processes depends on the temporal ordering of the tasks and the

particular modeling language or notation in use. When multiple actors are involved in

processes, the role of the individual actors needs to be clearly specified. Today

process or activity design is being given significant importance. This is evident from

the work of MDE (model driven engineering) and SOA (service oriented

architectures) that are process oriented.

The UML, other notations and formal languages are used to specify process

models, however these have not been properly designed to focus specifically on

process modeling. The result is that a disjoint or fragmented set of models are

produced and many new notations and ideas are used just to represent processes. E.g.

UML class diagrams, use case diagrams are more focused on static representation

whilst activity diagrams and sequence diagrams focus on specific activities rather than

seeing a complete process. Ideally, process representation needs convenient and

systematic representation. Representation has to be simple and readable using basic

identifiers for the system, human agents, machines, external systems, external agents,

etc. Connectivity between the entities/ system and the process need to be clearly

identified and specified. Ideally the notation used should also be formally verifiable.

A mixture of textual and graphical representation is suggested.

Using the UML, FMC, design patterns, etc., some confusion arises as to which

particular notation should be used [7]-[10]. Normally at least two notations are

required. This would be the case for design patterns where dynamic and static

representation is needed. E.g. if UML is used, class diagrams/component diagrams

and activity diagrams would have to be used. Normally these notations do not focus

specifically on the process modeling. A convenient way of solving these issues is

normally to add proper labeling and include other structures in the notations.

Unfortunately, the result is that these notations become overtly complex. If design

patterns are used the representation is static. Usually pattern information gets

confusingly mixed up with class information in pattern design process modeling.

Unfortunately, class representation is not sufficient for explaining and exploring

operational information. Notations used for pattern representation cannot associate

information with real nodes like those identified in activity or actor modeling. Adding

all these details is possible at the expense of creating unreadable diagrams. Many

solutions do not attach information about operations and processes to a singular

notation. This implies two sets of notations are required.

4 Process Modeling Solution

4.1 Patterns

IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011

ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal

http://www.ijces.com/

26

Patterns in software engineering and computing are useful for solving recurring

problems. Communication between different stakeholders and understanding new

paradigms are possible [2]. One of the deepest problems that exist is that of

representing reality using graphical notations or natural languages. System can be

segmented and unified from different aspects and degrees. Patterns that are exhibited

in one instance normally represent a particular temporal state which does not

necessarily exist in a future configuration. Aesthetically driven design, visualization

related to perception are opposed to chaotic setups that might result.

Normally in traditional approaches the focus is on rigid patterns. Repeatable

patterns can be identified even in computer networks and grid computing.

Patterns represent an associative way for the evolution and storage of knowledge

in the following aspects:

i) Uniformity for system comprehension

ii) Uniformity for system representation

iii) Provide for different configurations

iv) Provide for a high level of conceptual experimentation

v) Provide for Process/Actor control and modification

vi) Provide for Design and Implementation independence

vii) Extraction of abstract solutions

From a wider perspective, especially if the traditional ‘system’ concept is extended to

include users, actors, players or external entities that act upon the system, the system

configuration is dynamic and exists in relation to time. Very few symbolic notations

properly explain the spatio-temporal relationships of system processes. This happens

when the high level system architectural description is dependent on the type of

service or job being performed by the system. i.e. more dependent on the ‘actor\

model or user.

Many persons/engineers will definitely agree on the impact of effective design of

software and hardware requiring proper handling at the initial stages. Modern systems

are increasingly complex. Special clarity is required to understand and communicate

the details prior to the design stage. Although methods like UML (Unified Modeling

Language), UML-RT, DARTS (Design Approach for Real-Time Systems), HOOD

(Hierarchical Object Oriented Design), JSM (Jackson Structured Method), MASCOT

(Modular Approach for Software Construction Operation and Testing), etc. all help

represent the system, many times better representation is needed for explaining the

system at conceptual levels. Formal models have been used but most are non visual.

This work attempts to show how a Processor Net model also known as the Actor

model can be used to model conceptual system processes.

The Processor Net model is derived from high level Petri nets, it is also known as

the Actor Model [3],[4].

IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011

ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal

http://www.ijces.com/

27

5 Processor Net Patterns

It is possible in the real world to model an actor using a token or a processor or a

system. But here it is preferred to use either a system or a processor because these can

be easily decomposed further and offer better visibility.

P1

S1

ELEMENTARY

ACTOR OR

PROCESS

NON

ELEMENTARY

ACTOR OR

PROCESS

AKA SYSTEM

COMMUNICATION

CHANNEL

STORE

CONNECTION

EDGE

Fig. 1 Actor Model / Processor Net Symbols

5.1 Processor Net Brief Description

The processor-net models used here are based on the actor model presented in

[3].Two types of block entities are defined. i) Elementary actor or processor and ii)

non elementary actor here called a system. I.e. a system is composed of a set of

elementary actors or processors that are not necessary to define or represent at a high

level. Then there are places. Places are represented as circles. Places also known as

channels, are used to store output or input items that are produced or used by the

processors as well as the system. A store is a special place type. A store is denoted as

circle with an X inside. Places or stores can contain tokens in a similar concept to

those in Petri nets.

The directed edges that connect the places, processors and system represent the

flow of the system. The places and processors must exhibit classic high level Petri net

behavior. The system entities might contain entire subnets. So their internal behavior

IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011

ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal

http://www.ijces.com/

28

is not as yet defined. I.e. it is abstracted. Fig. 1 shows the main symbols used for

constructing a processor net model.

5.2 Task Oriented Pattern

This is the simplest and most elementary form of processing that can be identified.

Here a single processor or resource is used to process a single task. The idea is

extremely simple and normally very useful for small systems. At this level we do not

need to show a system but just the processing because this is the actual system itself.

Typical of this behavior is a simple queue serving a person or entity. A vending

machine or a ticket vending machine, a simple web service, etc. are other possible

examples of this.

If multiple resources are required for a task, more input nodes and edges have to

be added to the processor. Fig. 2 shows task oriented behavior. The first model shows

a single input, the other one shows one with two inputs.

Fig. 2 Task Oriented Behavior

5.3 Producer Consumer Pattern

This type of behavior is similar to the publisher/subscriber pattern or the common

producer/consumer problem. In this case, control and synchronization concepts are

not included. Communication is asynchronous. Process P1 can be considered to be

the main actor initiating the process. The consumer can also be considered to be an

actor. Such an approach is used in event driven systems. E.g. Client/Server, Bank

ATM, delivery of E-mails to subscribers or broadcasting SMS messages to mobile

phone users. The model can be enhanced to get notification or reply back, but this is

not always necessary. If this modification is done the behavior becomes synchronous

behavior. Here there are only two actors. These can be changed. Fig. 3 shows

producer consumer behavior.

IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011

ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal

http://www.ijces.com/

29

5.4 Product Centered Pattern

This type of behavior represents different products or entities that have to be mapped

to different processors which possibly represent objects or systems. Here a given

system S1 outputs a set of different products that are treated by a specific processor

from P1..Pn. The outputs are forwarded to another system S2.

The entities are mapped onto different processors because they require completely

different treatment from one another initially. A similar analogy to this could be

messages from a message pool have to reach different clients or servers for processing

and then they can be returned to a similar pool. An industrial example of this would

be the collaboration of machines for completing a set of different tasks. Another real

world example is a customer order that has to be processed by several departments.

E.g. accounts dept., sales dept., logistics dept. etc. Other possibilities of this layout are

computer architectures, system architectures, etc. Fig. 4 shows producer consumer

behavior.

Fig. 3 Producer/Consumer Behavior

IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011

ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal

http://www.ijces.com/

30

Fig. 4 Product Centered Behavior

5.5 Resources Centered Pattern

This type of behavior is the opposite of the product-centered process pattern. Here

different products or entities are mapped onto the same processor or similar identical

processors. There is no product or object differentiation as in the case of the product-

centered approach. The processor can deal with any product or entity that arrives. It is

possible to assume that products are similar in certain cases. The entities for

processing are assumed to arrive from systems S1..Sn and after being processed, go to

Sout1 to Soutn. P1 is the processing resource. If P1 is replaced by a system element

instead it is possible to have multiple processors inside, hence multiprocessing. A

classic example of this behavior is an office that services all types of requests. A

processing system that handles all different orders is an alternative. Many types of

information systems, computer hardware and even computer networks may have

components that exhibit this behavior. Fig. 5 shows resource centered behavior.

IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011

ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal

http://www.ijces.com/

31

Fig. 5 Resources Centered Behavior

Fig. 6 Multi-Agent Oriented Behavior

5.6 Multi Agent Oriented Pattern

Different persons or agents sharing similar resources and carrying out different tasks

simultaneously are typical of this type of process. Agents connect to different

processors or systems that are possibly similar. The idea is based on virtualization.

IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011

ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal

http://www.ijces.com/

32

There are virtual agents or resources and a virtual configuration is possible in a

temporal relationship.

Agents are represented as A1..An and the system elements they connect to are

represented as S1..Sn. An agent A1 connects to system S1, A2 to S2, etc. this ordering

is maintained for this pattern. The virtual systems or processing elements connect to a

common information or undefined data store for common information exchange.

Possible examples are front end banking applications based on virtualization, internet

agent technologies, parallel processing, etc. Obviously the pattern could be modified

to show different types of system configuration.

6 Practical Application of the Patterns

The patterns explained previously can be used for behavioral visualization of different

types of systems. Reverse engineering of existing systems or forward engineering is a

useful source of information in this respect.

 The models can be used for formal specification. I.e. it is possible to specify

schemas for the processors and the system elements using VDM (Vienna

Development Method). Finally, schemas can be produced for the entire pattern.

If more than two patterns are used to model the same system, it is possible to

compare the complexity of the pattern using this simple formula.

Pattern Complexity = number of nodes + number of edges. or Pattern Complexity =

number of nodes + number of edges + tokens. This type of modeling opens up the

possibility for exploring new relationships from a processing perspective, instead of a

more classical approach of starting off from the class diagram.

7 Conclusion

Applying process patterns prior to the design phase may result in a totally different

end product. Patterns have already been successfully applied to the design phase.

The approach of applying process modeling to systems can be called a process

oriented approach. This is suitable for an architectural based design approach because

where there are system complexity and control requirements, there should not be

separation of computation and coordination. Process centered development will mean

that more emphasis is put onto understanding the main process activities and

behavior. Many other traditional approaches usually start off from the system static

components. Modeling of the dynamic behavior is left to the end. Modeling processes

is more of a challenge than modeling static views because behavior is difficult to

understand properly. On the other hand the use of process patterns would enable

easier success, if a proper matching pattern is found. Some of the process patterns

described do not place any requirements on the temporal ordering of events, because

an event can take place at any time especially in more complex structures. Some

models could exhibit cyclical behavior, whilst others are more acyclical. The system

component described may contain various subset information. If this information is

IJCES International Journal of Computer Engineering Science , Volume1 Issue 3, December 2011

ISSN : 2250:3439

https://sites.google.com/site/ijcesjournal

http://www.ijces.com/

33

not available initially, the system component can still be used in an undefined manner.

So the system component is like a black box with different edges that connect it to

other entities.

There is the ability to collect required information from these notations. The

process patterns can be used for constraint identification and understanding the

interaction between different entities.

As this model uses high level Petri net theory it is not just a static representation.

An actual Petri net can be obtained and used for optimization, simulation and

verification. The layout and configuration could be used for finding optimal paths or

sub paths.

Obviously it is possible to discover many other patterns than those described in

this limited work. There could also be occasions where it could be impossible to use a

particular pattern or set of patterns. In this case using the actor model can still prove

useful for presenting a compact model of the main processes. This work has not

included the formal aspects of the actor model which are available elsewhere.

References

1. Dong, J.,Yang, S., Zhang,K.: Visualizing Design Patterns in their Applications and

Compositions, In: IEEE Transactions on Software Engineering, Vol. 33, No. 7, ISSN 0098-

5589, pp. 433--453(2007)

2. Doppke, J.C.,Heimbigner, D., Wolf, A. L.: Software Process Modeling and Execution

within Virtual Environments,In: ACM Transactions on Software Engineering and

Methodology, Vol. 7, No. 1, pp. 1--39 (1998)

3. Van Hee, K.M.: Information Systems Engineering A Formal Approach, University Press

Cambridge, UK (1994)

4. Van Hee, K.M.: Information Systems Architecture A Practical and Mathematical Approach,

Technische Universiteit Eindhoven (2005), http://wwwis.win.tue.nl/~wsinhee/sm1/

5. Kristensen, L.M., Christensen, S., Jensen, K.: The Practioner’s Guide to Coloured Petri Nets,

In: International Journal On Software Tools for Tech. Transfer (STTT), Vol. 2, Springer-

Verlag, pp. 98--132 (1998)

6. Kristensen, L.M., Jorgensen, J.B., Jensen, K.: Application of Coloured Petri Nets in System

Development, In: Lecture Notes in Computer Science, Vol. 3098, Springer-Verlag, pp. 626-

-685, Springer, Heidelberg (2004)

7. Tabeling, P., Gröne,B.: Integrative Architectural Elicitation for Large Scale Computer Based

Systems,/In: Proc. of the 12th IEEE International Symposium and Workshop on

Engineering of Computer Based Systems, ECBS, pp. 51--61 (2005)

8. Gröne,B.: Conceptual Patterns,In: Proc. of 13th IEEE International Symposium and

Workshop on Engineering of Computer Based Systems, ECBS, , pp. 241--246 (2006),

Potsdam, Germany

9. Knöpfel, A. Gröne, B. ,Tabeling, P.: Fundamental Modeling Concepts, Wiley, pp. 1--321,

West Sussex UK (2005)

10. Spiteri Staines, A.: Modeling UML Software Design Patterns Using Fundamental Modeling

Concepts (FMC),In: Proceedings of the 2nd WSEAS European Computing Conference, , pp.

192--197,Malta (2008)

http://wwwis.win.tue.nl/~wsinhee/sm1/

