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Abstract

The proposed theory of gravitation is summarized, with a focus on
dynamics. The linearized field equations are applied to gravitational
waves. The theory predicts that longitudinal waves would be detected,
which exert a force in the direction of propagation. It also explains the
failure at LIGO and elsewhere to find transverse gravitational waves.



1. Introduction.

This theory emphasizes the scalar nature of time and energy. The funda-
mental interval of kinematics

ds* = dt* — dr® (1)

is invariant under a Lorentz transformation of the physical displacements
(dt, dr). The Lorentz transformation may take place at any point P, in flat
or curved space-time. The vector dr is first projected onto an orthonormal
3-frame.! The projections, together with the scalar dt, are then transformed
into new values, which are observed in a relatively moving frame. No coor-
dinates are involved with this procedure.

Define the velocity v = dr/dt in order to obtain
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form the invariant

m?ct = E? — *p? (4)

Again, the momentum p may be projected onto an orthonormal 3-frame
and, together with the scalar E, undergo a Lorentz transformation at point
P. From (4), it follows that

dE dp
E—=¢p.- —
ds ©Pp ds (5)

where constant rest mass is assumed. Substitute (3) to find
dE dp
FA ©)

This power formula and the momentum (3) make explicit use of the scalar,
i.e., non-directional nature of energy.

n the frame {ijk}, the projections are i - dr, j - dr, and k - dr.



2. Space, Time, Gravity. [1, 2]

An observer now introduces a coordinate system {z*}, consisting of contin-
uous space variables {z'} and synchronous clock readings {2°}. In terms of
these coordinates, the physical displacements are given by

cdt = eg(z)dx” dr = e;(z)dx’ (7)

where e, = (e, €;) is a scalar, 3-vector basis. Substitution into the kinematic
interval (1) yields

ds® = (epdz’)® —e; - e; dr'dx’
= gudxtdx” (8)
where
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is the scalar, 3-vector metric.
The basis system changes from point to point according to the formula

vueu - e)\Qi\;,y (1())

This separates into scalar and 3-vector parts

Vl,eo = €0Q8V (11)
Ve = €@, (12)

By definition Q?U = Q}, = 0, which leaves 40 components Q*,. The metrical
functions satisfy

a)\g;w = g,uszp/)\ + gl/pQZ)\ (13>

or, in detail,



Mngoo = 2900Q0x (14)
Qgi; = ginQ + ginQio (15)
Ogij = ginQjr + ginQik (16)

The first expression may be inverted immediately

1
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The second may be inverted, if the two terms on the right-hand side are equal
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Finally, ;k is assumed to be symmetric, in which case
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=T =59 (OkGjn + 0jGnk — OnGjk) (19)

The additional conditions leave 28 independent @%,. The Christofel coeffi-
cients

1
Ffj)\ - ig,up (a)\gz/p + al/gp)\ - 3p9ux) (2())

are symmetric in {vA}, while the @, are not. The following formula holds
good

Q=T+ g”pg/\nQpr] (21)
where
Quy = Qo — Q4 (22)
There are 9 independent components Ql[iA]’ namely
o _ 1 o i L
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The observer is free to introduce new coordinates {z*'}. Although the
space-time in question is generally time-dependent, at any point P the new
coordinates will be at rest with respect to the old. Thus, the physical dis-
placements remain unchanged



cdt = egdz’ = €o/d$0/ dr = e;dx’ = ei/dibi, (24)

The new space coordinates are independent of clock rates, % = z*' (x7), and
the new clock rates are independent of space coordinate labels, 2% = 2% (2°).
These transformations determine the covariance of the theory. In particular,
the metric tensor g,, transforms as

9z° 92° dz™ dz"
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Moreover, @, (23) transforms as a tensor
M ox" dz™ 92°
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This gravitational field strength tensor will play a central role in the theory
to follow. Perhaps most importantly, it serves to define the gravitational
energy tensor [1]

T = 5 { Q% Q) + QuQy — gwg (Qhy Qb + QQn)} (27

where @, = Q[ o] and k = ¢'/87G. For a static, Newtonian potential 1

goo =1+ gw (28)
so that Q’[fj/\] is given by
1 A
Qb = 2 i 0 =0 (29)
It follows that
T = (V) (30)
8¢
T = 0 (31)
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which is the Newtonian stress-energy tensor.



3. Dynamics.

The equation of planetary motion

d %
di T = 0 (33)
S

follows from the variation

5/  guutur ds =0 (34)

where u = dz# /ds. Several components 'Yy transform as tensors, suggesting
that real gravitational forces are at work. This may be shown explicitly by
calculating the rate of change of energy and momentum. From (2, 3, 7) it
follows that, in coordinate terms,

0

E = mc’eyu p = mc e;u’ (35)

The four-velocity e, u* changes according to the formula

d(e,ut) dut de, , dut
ds

ds — ds ds Y o Qﬁ)\uyw\} (36)

where de, = e\Q),,dz" is Cartan’s derivative operator.[3] Substitute (21) and
make use of the equation of motion (33) to obtain

d(elﬁuu) v, A
b et gan @, u”u (37)

Separate this formula into scalar and 3-vector parts, then substitute (23) to
find that the planet’s energy and momentum change as follows:

dFE me?

o= el N {_8ngoo u"u’ + Oy Gmn umu”} (38)
dp g mc 0,0 0, n

e {&-goou u’ — Qofin U U } (39)

These formulas are exact. They express the power and force which are exerted
by the gravitational field. They are not independent, since formula (6) is
satisfied. In the Newtonian limit (28), u° =1 and u" = v™/c so that

dE dp
E_—qup-v E——mV@Z) (40)



The conservation law is established, by performing a similar calculation
with the material energy tensor T(”n:) (which may include any field other than
gravity). The four-divergence of T(,,) = e, ®e, T(’:,Z) is given by [4]

V-Tm = eu{\/— L (V= TW ) "’fo)\T(':ﬁZ)}
- oAl LT L QT
The first term is zero by virtue of the equations of motion, leaving
123
V- T(m) = eug)‘nQFyu]T(m) (42>
Once again, material energy and momentum are not conserved, due to the

gravitational interaction. Therefore, introduce the energy tensor T“ () In order
to obtain

0./ GT) + %T@?}
+e g,\nQ v L ” =0 (43)

This is the differential law of energy and momentum conservation. If gravity
is negligible, then T“ ¥ and Qﬁ//\} are zero, and conservation follows from the
equations of motlon alone

V- (T<g>+T(m>) = eu{

-

V- T(m) =ey { a,,(\/ T(/g;)) + F'Z)\T’:jl\)} =0 (44)

1
V=g
4. Gravitational Waves.

The gravitational field equations are derived by variation of the Einstein-
Hilbert and material action

5/ g 9" Ry/—gd's + 6/L(m)\/—g d'z =0 (45)

where

Ry, = 8, — O\, + T, I8, — T3 T, (46)
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There are seven field equations, corresponding to the seven variations dg*” =
(09", 09%)

1 m
(R — ig#,,R) + T =0 (47)
Components Ry and To(im ) do not appear.

In the weak-field approximation, the coordinate system is assumed to be
nearly rectangular, g,, = 1, + hy,, where the h,, are small compared with
unity. Substitute into R, and retain only the linear terms, to find

1
By = 5 {050, by + 0,00\ = 0,01, = 9,001} (48)

In regions far from the source TIS,C”), one expects to find wave solutions of the
equation

1
Ry = SnuR =0 (19)
For motion along the a3-axis, assume a solution of the form h,, = hy, (2°, 2°)
to obtain

1 1

(R()() — 57’]00}%) = 58363(h11 -+ h22) = 0 (50)
1 1

(R33 — 57]33R> = 5808()(}111 -+ h22) =0 (51)

which shows that kY, + h?% = 0. Since R = 0, it follows that

R — ;(aoaohz—agaghoo) 0 (52)
Ry — ;(aoao — 030 hyy = 0 (53)
Ry — ;(aoao — 03y — 0 (54)
Ry — —;(aoaohg—agagh%) ~0 (55)
Ri» — ;(aoao — 030 s = 0 (56)
Ray — ;aoaohgg — 0 (57)
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1
R3 = 58050h31=0 (58)

The single condition k% = h% is suggested by equations (52) and (55). This
leaves three independent components which satisfy the wave equation

hOO = _h33 hll = _h22 h12 = h21 (59)

while h23 = h31 =0.

The presence of the scalar component hgyg is especially significant. Ac-
cording to (23, 27), the momentum density of a gravitational field is given
by

T(Si‘(]) = “(an %+QZOQ8i)

K
= 1 9°° g™ (9,.900009mi + 0: 90000 Gmn ) (60)

This requires the existence of a spatially-dependent component ggo. In the
wave field,

K
Ty = 3 0sh'y Ol (61)

which shows that all of the momentum is carried by the scalar-longitudinal
field. The energy density is

K
T = 5 {QnQno + Qro@io — 20" Q0@ }
= T{@hL) + (@hb)* + (%) + @k} (62)

There is energy in both transverse and longitudinal waves.

The scalar and longitudinal components possess energy and momentum.
Therefore, the solution for hgy and hsz takes the form of a traveling wave,
ar, cos(k3z® —k%2°), where k° = k3. Tt is readily shown that these components
satisfy the energy conservation law (43), which is (to second order)

00 03 __
0T + 95T = 0 (63)

The transverse components hqq, hoo, h12 have no momentum, and the solu-
tion takes the form of a standing wave, ar cos(k*z?) cos(k°z?). In this case,
conservation of energy is given by



<80T(Og°)> -0 (64)

where the temporal average is taken.
The gravitational stress is given by

1
7" = 1 {205,08 — 5m [1°(@ Qo + QioQi) + 2@, 06,] | (69

which is diagonal in the wave field

K
Ty = 18 = 7 |@hY) + (@ehh)?] (66)
K K
T = S(0h%)° + 7 [(@h')* + (o)’ (67)

These stresses are compressive, with the transverse standing wave exerting an
equal pressure in all directions, and the longitudinal traveling wave exerting
pressure along the direction of propagation. The longitudinal components
satisfy the momentum conservation law

BTy + 05T, =0 (68)

while the transverse components satisfy

(0sT3) =0 (69)

where the spatial average is taken.
Finally, the force exerted by the gravitational wave is found by substitut-
ing h,, into the momentum equation (39)

2 1 2

d 2

— —{il (G0, i + dohty %) + g (Goh?

dt 2 c

: v
+13 (aghoo + 80h33 C>} (70)

If the detector is initially at rest, then v = 0, and the acceleration will be
along the direction of propagation

d?a? c?
=50l (71)
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5. Concluding Remarks.

The experiments at LIGO, GEO, and Virgo have found no trace of transverse
gravitational waves. This is explained by equation (70), which shows that the
transverse forces are zero, if the detector is at rest. Detection is completely
dominated by the longitudinal term.

In this theory, the energy and momentum are well-defined for particles
and fields, including the gravitational field itself. The treatment of parti-
cle dynamics resembles that of special relativity. It begins with the Lorentz
transformation, which serves to establish the relativistic expressions for en-
ergy and momentum. A coordinate basis is then introduced, which is free to
vary from point to point in space-time. This non-uniformity is responsible
for the energy, momentum, and stress of the gravitational field. Moreover,
it is physically observed as the force of gravitation. The non-uniformity is
embodied in the field strength tensor nyk], which is the fundamentally new
element in the theory. It appears in the gravitational energy tensor (27), the
gravitational force (37), and the conservation law (43).
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