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Abstract 
 
 
Using Newtonian Physics we can explain some relativistics experiments like mass variation,  
time dilation, Michelson Morley, transverse Doppler effect, relation mass-energy, etc. 
In some explanations the mathematical equations is of initial level using numeric 
calculations and some approches and we have a medium agreement. So, we need to continue 
the development for the complete equations and verify if a better agreement exists. 
So,  Newtonian Physics needs more research before being considered without validity. 
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I.  INTRODUCTION 
 
    Special relativity is the best fundamental theory since 1905 to today. But SR has some 
inconsistencies, see Sec.II and we should continue the researches for a more simpler theory, 
which is what we wanted of the best theory. 
    In this work we will show that with the concepts of the Newtonian physics we can explain 
some relativistics experiments like mass variation, Michelson Morley, time dilation, 
tranverse Doppler effect, mass-energy relation, etc. 
    All the explanations has physical and mathematical interpretation.  
    In some explanations the mathematical equations is of initial level, using numeric 
calculations and some approches and we have a medium agreement. So, we need to continue 
the development for the complete equations and verify if a better agreement exists. 
 
 
II.  RELATIVITY THEORY  
 
    The theory of the relativity is the best theory, unanswerable, and we should continue using 
it. 
But some inconsistencies exist [1-3], see below.   
    1 – From [1] we have: “Using only the descriptions and the results of the 'thought  
experiment' contained in Einstein's seminal 1905 paper, proofs are offered which show that 
the transformation equations of Einstein's special relativity apply only to the joint use in his 
experiment of point sources of light and point reflectors. Further, it is shown that two 
different special relativities could have been invented by Einstein and, because they possess 
differing space and time contraction factors, they cannot co-exist and, therefore, both must 
be discarded”. 
     
    2 -  From [2] we have: “  Last, some recent theoretical findings suggest that the current 
level of precision of the experimental tests of gravity might be naturally (i.e., without fine 
tuning of  parameters) compatible with Einstein being actually only 50% right ! 
  By this we mean that the correct theory of gravity could involve, on the same fundamental 
level as the Einsteinian tensor field , a massless scalar field *

μνg ϕ . 
  Let us first question the traditional paradigm (initiated by Fierz [10] and enshrined by 
Dicke [15], Nordtvedt and Will [2]) according to which special attention should be given to 
tensor-scalar theories respecting the equivalence principle. This class of theories was, in fact, 
introduced in a purely ad hoc way so as to prevent too violent a contradiction with 
experiment. However, it is important to notice that the scalar couplings which arise naturally 
in theories unifying gravity with the other interactions systematically violate the equivalence 
principle”. 
 
    3 – From [3] we have: “Entanglement, like many quantum effects, violates some of our 
deepest intuitions about the world. It may also undermine Einstein’s special theory of 
relativity”. “We term this intuition ‘locality’. Quantum mechanics has upended many an 
intuition, but none deeper than this one. And this particular upending carries with it a threat, 
as yet unresolved, to special relativity – a foundation stone of our 21st-century physics”.      “ 
The greatest worry about nonlocality, aside from its overwhelming intrinsic strangeness, has 
been that it intimates a profound threat to special relativity as we know it. In the past few 
years this old worry – finally allowed inside the house of serious thinking about physics – 
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has become the centerpiece of debates that may finally dismantle, distort, reimagine, solidify 
or seed decay into the very foundations of physics.” 
 
 
III.  NEWTONIAN PHYSICS 
 
    The Newtonian physics can explain relativistics experiments, see Table I. 
    By Table I we see that Newtonian Physics and SR are equivalents for the equations.   
 
Experiment Section Newton SR Exp. 

observ. 
Mass variation V γ0mm =  γ0mm =  - 
Kinetic energy V ( )12

0 −= γcmk  ( )12
0 −= γcmk  - 

Relation mass-energy VI 2
0cmE =  2

0cmE =  - 
Time dilation VII δ = δ γ0t  γδδ 0=t  - 
Transv. Doppler eff. VIII 0ff γ=  γ0ff =  - 
Michelson-Morley IX 012.0=δ  0=δ  008.0=δ  
TABLE 1  Equations of SR and Newtonian Physics 
 
  Where 211 βγ −= , cv=β  and    are respectively velocity, light velocity, 
mass and  rest mass. 

0,,, mmcv

 
 
IV.  THE VELOCITY OF LIGHT AND THE GALILEAN TRANSFORMATIONS 
 
    In the Newtonian Physics we use the Galilean transformations. From the Galilean 
transformations we have: 
a) The velocity of the light is a constant c with respect to the preferred frame, independently 
the direction of propagation, and of the velocity of the emitter. 
b)  An observer in motion with respect to the preferred frame  will measure a different 
velocity of light according to Galilean velocity addition.  
c)  In this paper the preferred frame  is the Cosmic Microwave Background (CMB), and the  
velocity of the earth with respect to the CMB is approximately 390 km/s (0.0013c). 
d) The microwave sky should appear hottest in the direction of motion and coolest in the 
opposite direction. 
e) According to Zeldovich: at every point of the Universe there is an observer in relation to 
which microwave radiation appears to be isotropic. 
 
 
V.  VARIATION OF MASS AND KINETIC ENERGY EXPLAINED BY 
NEWTONIAN              
       PHYSICS 
 
    The variation of mass with the velocity,  
 

 γ0mm =                                                                (5.1) 
and the kinetic energy 
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( )12

0 −= γcmk                                                    (5.2) 
 
can be obtained by Newtonian Physics as it is shown by Lewis [4]. Lewis received 35 
indications to Nobel. 
  From [4] we have: “Recent publication of Einstein and Comstok on the relation of mass to energy 
has embolded me to publish certain views which I have entertained on the subject and a fews years 
ago appeared pure speculative, but which have been so far corrobated by recent advances in 
experimental and theoretical physics….. In the following pages I shall attempt to show that we may 
construct a simples system of mechanics which is consistent with all know experimental facts and 
which rests upon the assumption of the thruth of the threes great conservation laws, namely the law 
of conservation of energy, the law of conservation of mass and the law of conservation of 
momentum”. 
 
VI.  NEWTONIAN PHYSICS AND THE RELATION MASS ENERGY 
  
    The relation  
 

2
0cmE =                                                                  (6.1) 

 
has been part of the heritage of Newtonian physics since its foundations. See, for example:  
a)  Newton (Optics, 1717): “ Are not gross bodies and light convertible into another, and 
may not bodies receive much of their activity from the particles of the light which enter their 
composition? The changes of body into light and light into bodies is very conformatable to 
the course of Nature, which seems delighted with transmutations.” 
b)  Lewis [4]: “ The important equation cEP =  from which comes out, was 
obtained by Maxwell as a consequence of his Electromagnetic Theory and by Boltzmann 
throught the direct application of laws of thermodynamics. Poynting has emphasized it again 
and recently (1903) it has been verified with remarkable precision in the beautiful 
experiment of Nichols and Hull.” 

2
0cmE =

c)  De Pretto (1903) [6]: “ Given then , = 1 Kg and c= 3 x 105 Km/s, anyone 
can see  that the quantity of calories obtained is represented by 10794 followed 9 zeros, that 
is more  than ten thousands billion.”  

2
0cmE = 0m

 
VII.  TIME DILATION 
    The experiments are in agreement with the equation below. 
 

2

0

1 β

δ
δ

−
=

t
t                                                                (7.1) 

 
where, 0tδ  is the life time of the particle at rest, and tδ is the time dilation.  
 

A. Time dilation  explained by Newton theory 
 
  This section is in revision phase. 
  This subject will be explained with larger mathematical details and with less approaches in 
relation to version 1 of this paper, and it will be written a new paper to be published shortly. 
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VIII.  DOPPLER EFFECT 
 
    The experiments are in agreement with the equation below. 
 

θβ
β
cos1

10

rel

relf
f

±

−
=                                                             (8.1) 

 
where, 
 
f   - frequency measured by the observer 

0f  -  frequency of the source at rest in relation to observer. 
θ  - angle between the line observer-source and the direction of the velocity of the  source. 

relv  - velocity of the source in relation to observer    
 
and the transverse Doppler effect ( )090=θ  is: 
 

2
0 1 relff β−=                                                           (8.2) 

 
A. Doppler effect explained by Newton theory 

 
  This section is in revision phase. 
  This subject will be explained with larger mathematical details and with less approaches in 
relation to version 1 of this paper, and it will be written a new paper to be published shortly. 
 
 
IX.  MICHELSON MORLEY EXPLAINED BY NEWTONIAN PHYSICS 
 
    To give a new explanation for the Michelson Morley experiment using Newtonian 
concepts, we  give one equation as a hypothesis for explain the refraction-reflection-
refraction of the light ray that has a trajectory  inside the semitransparent mirror (air-glass 
refraction, internal glass reflection and the glass-air refraction). The Michelson Morley 
laboratory observations (1887) give 008.0=δ , where δ  is the displacement of the 
interference fringes. According to our theoretical  calculations, our result is  012.0=δ . 
 

A. MM introduction 
 
    The Michelson Morley experiment [6] involves one semitransparent (half-silvered) mirror 
(M) where the incident ray (ra) is divided into two. See Fig. 4. 
    The first divided ray follows the trajectory: air-glass refraction (rb), internal glass 
reflection (rc) and glass-air refraction (rd); the second divided ray follows the trajectory: 
glass-air refraction (re). 
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FIG 4   The semitransparent mirror M with velocity v; the incident ray (ra), the refracted-   
                  reflected-refracted ray (rd) and the refracted-refracted ray (re). 
 
    This refracted-reflected-refracted (rd) ray will be analyzed, and we will start with the 
equations below as the hypothesis. 
 

( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
+

±
±

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
Ψ

2
45cos1

1
1

1
1cos

1
1cos

2222

2

2 μρβ
μββ

βρ
β
β sin

sinm
                            (9.1) 

 
where ρ  and  are, respectively, the incident and the refracted-reflected-refracted angle 
with  

Ψ

respect to the normal of the semitransparent mirror M. cv=β , where v  is the velocity of M 
and is the velocity of light. c μ  is the angle of the incident ray with respect  to the velocity 

.    v
    The  mathematical signs  indicate that the mirror is moving towards the incident ray, 
and  indicate that the mirror is moving away. Equation (9.1) is specified for , 
where 

( +± )
)( −m o45=ϕ

ϕ  is the angle of with respect  to the normal of the semitransparent mirror M. v
 

B. The experiment 
 
    The MM experiment uses a light source, a lens, a semitransparent mirror (M), 16 
reflection mirrors and a telescope. The lens is used to define the wave front plane.                 
    Another light source is the sun or stars, which has a practically planar wave front when it 
reaches  the earth. The interchange between sun or star light and the laboratory sources in no 
way alters the results [7-9]. 
    Thus, in this paper, we perform the calculations using sunlight substituting for the light 
source, with the lens, M, two reflection mirrors (M1, M2) and a screen (B) substituting the 
telescope (Fig. 5). 
 

M

M1

M2

Sun
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FIG 5  Michelson-Morley experiment  with two reflection mirrors, sunlight source and a 
screen B. 
 

C. Ray reflection in a moving mirror    
 
    In the Supplement of the MM paper [6], we show the equations of ray reflection in a moving  
mirror. Below we  have an equivalent and more general equation for any angle of the incident 
and  
reflected rays. 
    

1
22

1

1
22

cos1coscos2
)cos1(

ϕβηϕβ

ϕβη
τ

++±

−
=

sin
sin                                                                (9.2) 

 
 
where η  and τ  are, respectively, the angles of incidence and reflection of the rays with respect 
to the  normal of  the mirror. 1ϕ is the angle of the velocity v with respect to the normal of the 
mirror.    
    The sign is negative when the  mirror is moving away from the incident ray and positive 
when the mirror is moving towards it. 

 
D. Position of the sun 

 
    In the calculations below, the position of the sun has an angle  with respect to the 
normal of the interferometer horizontal plane (the xz plane in the Fig. 6 to 11). Four 
positions of the  

Φ

interferometer are analyzed: north, east, south and west. With a specific  and velocity of 
the  

Φ

interferometer, the calculations are simplified for north, east and west because the rays are 
parallel to the horizontal plane of the interferometer. Numeric calculations are shown in Sec. 
IX .   

E. Initial position of the interferometer – north 
 
    Let us consider north the initial position of the interferometer. The velocity  is 
perpendicular to mirror M1. Mirror M3 captures the sunlight. See Fig. 6. 

v

 

x

y

z
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Φ
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r1

x

r2

r1

z

M3
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FIG 6   Interferometer position north – The sunlight is incident on mirror M3. 
 
    The rays 1 and 2 after the reflection from M3 are parallel to the xz plane, and the 
trajectory is shown  in Fig. 7. The mathematical condition for Fig. 7 is . 12 LL >
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FIG 7   Interferometer position north, the trajectory of rays 1 and 2 in the xz plane of the  
interferometer. 
 
    Interferometer position north – ray 2 
 
    From Fig. 7, we see that the distance F  to ( )2tF  is 
 

 254 vtnxx =−+                                                                     (9.3)  
 
    Ray 2 travels the distance 
 

 2222 ctLLL ba =+=                                                                      (9.4) 
 
    From Fig. 7: 

 
24 / dxtg =θ                                                                      (9.5) 

 
( )ndxtg −= 25θ                                                                       (9.6)  

 
( ) ( )( )θθ coscos 22222 nddLLL ba −+=+=                                         (9.7) 

 
    Equaling (9.3) and (9.4) we have (9.8). Replacing (9.5) and (9.6) in (9.8) we find (9.9).        
    Equaling (9.7) and (9.9) gives 
 

θθβ
θβ

sin
sindn
−−

−
=

cos
)(2 2                                                               (9.10) 

    
    Substituting (9.10) in (9.7) we have 
 

θθβ sin
dL

−−
−=

cos
2 2

2                                                           (9.11) 
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    Ray 2 travels the total distance from  to screen B: 0t
 

  
θcos222

"
2

jnLlLL +
+=+=                                                            (9.12) 

 
    Interferometer position north – ray 1  
 
    Ray 1 travels the  distance from  to , and from the Galilean transformation is 0t 1t
 

ββ +
+−

+
−

=
1

)(
1

11
1

knddL                                                                  (9.13) 

 
    Ray 1 travels the total distance from  to the screen B: 0t
 

αcos1
"
1

jnkLL ++
+=                                                               (9.14) 

 
    From Fig. 7, we have 
 

145 αα −=                                                                     (9.15) 
 

21 xkx −=                                                                       (9.16) 
 

( )122 LLx −= β                                                                   (9.17)  
 

( ) ( )jnkxxtg ++−= 13α                                                          (9.18) 
 

( )jntgx += θ3                                                                  (9.19) 
 
    By substituting (16) and (17) into (18) we find 
 

( )
jnk

LLkx
tg

++
−+−

= 123 β
α                                                         (9.20) 

 
    By substituting (9.13) and (9.19) in (9.20) we find : k
 

( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

+
−

−+−+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
−

ββ
βαθ

β
βα

11
1

1
11

2
dndLtgtgjntgk                             (9.21) 

 
    By substituting (9.21) in (9.14) we obtain . "

1L
    Now, by turning the interferometer 90 degrees, we have the next position. 
 

F. Second position of the interferometer - east  
 
   Let us consider east  the second position of the interferometer. The velocity  is 
perpendicular to mirror M2. Mirror M3 captures the sunlight. See Fig. 8. 

v
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FIG 8   Interferometer position east – The sunlight is incident on mirror M3 
 
    The rays 3 and 4 after the reflection from M3 are parallel to the xz  plane, and the 
trajectory is shown  in Fig. 9 and 10.  
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FIG 9 Interferometer position east – The trajectory of ray 3 in the xz plane of the 
interferometer. 
 
Interferometer position east  – ray 3  
 
    The condition for r3 and r4 to reach the same point on screen B is 
 

144 zqmzz ba ++=+                                                                (9.22) 
 
     and n are the same as in the previous Equations (9.10) and (9.11), and we have 3L
 

( )
Φ−Φ−
Φ−−

=
sin
sinmd

q
cos

)(2 3

β
β                                                              (9.23) 

 
( )

Φ−Φ−
−

−=
sin

md
L

cos
2 3

3 β
                                                             (9.24) 
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FIG 10 Interferometer position east – The trajectory of ray 4 in the xz plane of the 
interferometer. 
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FIG 11  Interferometer position east  – Details of the angles for ray 4. 
 
   From the Galilean transformation and Fig. 9 we have 

 

βξ +
++

=
11

3
3 cos

mqj
l                                                                     (9.25) 

 
1131 ξsinlz =                                                                      (9.26) 

 
    Ray 3 travels the total distance from  to screen B: 0t
 

fhlLL +++= 333"                                                              (9.27) 
 
    Interferometer position east – ray 4  
 
    From Fig. 10 and 11 we see that 
 

344 ξsinLz bb =                                                                    (9.28) 
 

244 ξsinLz aa =                                                                    (9.29) 
 
    Calculation of  and : From Fig. 12 we have h f ( ) vacfh =+ , so 
 

( )fha += β                                                                      (9.30) 
 
 where . 21 aaa +=
 

Φ−=−== mtgaaaab 212                                                          (9.31) 

 12



 
mb =1                                                                         (9.32) 

 
( )21 bbhsin +=Φ                                                               (9.33) 

 
    By substituting (9.31) and (9.32) into (9.33) we have  
 

( )Φ−Φ+Φ= tgmsinasinh 1                                                        (9.34) 
 
    From Fig. 12 we have   
 

Φ= cosmf                                                                     (9.35) 
 
    By substituting (9.34) and (9.35) into (9.30)  we have   
 

( )Φ−Φ
Φ+ΦΦ+−Φ

=
sin

sinsinmh
β

β
1cos

)coscos1( 2
                                                  (9.36) 

   

M
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P
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FIG 12   Interferometer position east - Details for ray 3 and ray 4. 
 
    From Fig. 10 and 11 and from the Galilean transformations we find 
 

βξβξ +
+

+
−

=+=
3

34

2

4
44

"
4 coscos

jdd
LLL ba                                                 (9.37) 

 
    The calculations for south and west are similar to those for north and east, respectively. 
 

G. Calculations for the rays to reach in the same point on screen B 
 
    In the experiment, the observations of the displacement of interference fringes are made at 
a fixed point on screen B. 
    For the rays to reach at the same point G on screen B (see Fig. 7, 9 and 10), it is necessary 
that 

 
ddd Δ−= 13                                                                     (9.38) 

 
ddd Δ−= 24                                                                   (9.39) 
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djj Δ+=3                                                                     (9.40) 
 
where,  from Fig. 7 and 10, 
 

baba zzLxxxzzxd 441543446 " −−−++=−−=Δ β                            (9.41) 
 

H. Displacement of the interference fringe 
 
    When we rotate the interferometer 90° from north to east, we have a displacement of the  
interference fringe:  
 

λ
δ

)""()""( 4321 LLLL −−−
=                                               (9.42) 

 
where m is the wavelength of the green light. 7105.5 −= xλ
 

I. Numeric calculations 
 
  Data: 0013.0=β , , o80745329492.0=Φ 91.21=j m, 111 =d m, 9946.102 =d m,  

056705.0=Δd m and  m. 0002332.0=m
 
    Interferometer North position  
 
    From (9.2)(+) and Fig. 6 we have , and . o451 =ϕ o45+Φ=η o451 =Φ

    For the semitransparent mirror M, from Fig. 7 we have , ,  and from  o45=ρ o45=ϕ o0=μ

( ) )(1 −m  . From Fig. 7 we have . From (10), (11) and (12)   
we have  respectively ,  and m. For the semitransparent mirror M and 
r1, from  (2)(+) and Fig. 7 we have ,  and . 
From (21) we  have m and from (14) we have m. 

o1488883318.45=Ψ o45−Ψ=θ

n 2L 899348219.43"
2 =L

o451 ==ηϕ o9255638806.441 =α 145 αα −= o

0284937535.0=k 9101297371.43"
1 =L

 
    Interferometer East position 
 
    From (38), (39) and (40) we have 943295.103 =d m, m and 

m.  
937895.104 =d

966705.213 =j
From (23) and (24) we have  and  respectively. For the semitransparent mirror M, from 

Fig.  11 and  we have , ,  ,  and  

q 3L

))(1( ±+ Φ+= o45ρ Φ−= o90μ o45=ϕ o000376949.45=Ψ
o452 −Ψ=ξ . For the mirror M2, from Fig. 11 and (2)(-) we have , and 

.   

o01 =ϕ
o00037793.03 =ξ

From (37) we have m. 8140123301.43"
4 =L

  For the semitransparent mirror M, from Fig. 9 and (2)(-) we have  ,  ,45 Φ−= oσ o451 =ϕ
o999903044.441 =ξ  and . From (25), (35), (36) and (27) we have , , h  and  111 45 ξξ −= o

3l f

824793854.43"
3 =L m. 
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    Displacement of the interference fringes 
 
     The theoretical displacement of interference fringes when we turn the interferometer 

from the  north to the east position (N.-E.) using (42) is o90
 

0098.0=δ  
 
    The calculations for south and west are similar to those for north and east, respectively.  
    The results of the complete calculations (not demonstrated in this paper) are shown in the 
Table 7. 
 

δ  δ  
β  Φ  dΔ   m  N.-E. E.-S. S.-W. W.-N.  
.0030 .17214542737 .12981000 .00124261000 0.8923 1.1296 1.1350 0.8977 1.0137 
.0013 .07453294928 .05670500 .00023320000 0.0098 0.0130 0.0131 0.0100 0.0115 
.0001 .00572986444 .00438676 .00000137933 0.0006 0.0007 0.0000 0.0001 0.0004 
  
TABLE 7   Theoretical displacements of interference fringes ( )δ  
 
    In Table 7, the values of  ,  and  are the same for the velocities 0.003 c, 0.0013 c 
and  

1d 2d j

0.0001 c. The values of  are different to simplify the calculations. With these values of  Φ Φ  
the  rays are parallel to the xz plane of the interferometer. For rays not parallel to the xz 
plane the calculation is more complicated. 
 
 

J. Experimental fringe displacement observation 
 
    For the Michelson Morley experiment, according to [6]: 
“…; hence the displacement to be expected was 0.4 fringe. The actual displacement was 
certainly less than twentieth part of this, and probably less than the fortieth part”. 
Thus, the fringe displacements measured are  02.0204.02 1 ==δ , 01.0404.02 2 ==δ , 

( ) 015.0201.002.02
_

=+=δ  and  0075.0=δ ; see [1] Fig. 9. This gives the following Table 8. 
 
MM experimental observation [6] δ =0.0075 008.0≅δ
Theoretical, from Table 7 012.0≅δδ =0.0115
 
TABLE 8 Displacements of interference fringes ( )δ : MM experimental observations and 
theoretical calculations. 
 

K. Considerations on the experiment 
 
    The apparatus has a support, and it is possible to turn the interferometer to different 
azimuthal angles while the observation is in progress. 
    The interferometer is affected only by the component of the earth’s total motion that lies 
in the horizontal plane of the interferometer. This plane is perpendicular to the radius of the 
earth at the location of the observatory. A drift perpendicular to the horizontal plane of the 
interferometer would produce no effect. 
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    The rotation of the earth on its axis would cause the horizontal plane of the interferometer 
to move  as around the surface of a cone and thus to take many different space orientations. 
    For example, in Fig. 13 we have the projection of the earth velocity (with respect to the 
CMB) in the horizontal plane of the interferometer, for Cleveland, Ohio, on July 8, 1887, the 
first day of the MM experiment. 
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 FIG 13   Projection of earth’s velocity (with respect to the CMB) on the horizontal plane of 
the interferometer in Cleveland, Ohio, on July 8, 1887, the first day of the MM experiment. 
 
MM interferometer adjustment  
 
    There is a critical angle such that the fringes appears, as described below. From [9]:   
a) “In order to produce a series of straight fringes, suitable for the measurements of the  
displacements, it is necessary that one of the end mirrors be rotated about a vertical axis 
through a very small angle so that the two virtual interfering planes intersect. The width of 
the fringes and the  number of fringes in the field of view are directly dependent upon this 
inclination of the end mirror”. 
b) ”Very careful attention is required always to secure that adjustment of this critical angle 
which causes the arrow-head pointer to appear to the right of the central black fringe when 
the light-path of the telescope arm of the interferometer increases in effective length.” 
c) “When the apparatus   was first assembled on Mount Wilson, the time required for the  
approximate adjustment of the distances between mirrors with the wood rods was about one 
hour, for the centering of the mirrors fifteen minutes, for finding the fringes with white light 
forty-five minutes, or two hours and a half for the entire operation.” 
d) “The telescope is focussed on the surface of mirror 8 where, when the adjustments are 
completed, the interference fringes appear to be located.” 
 

L. MM conclusions 
 
    By hypothesis we give the equation (9.1) to explain (using Newtonian concepts) the 
refracted-reflected-refracted ray that travels inside the semitransparent mirror in the 
Michelson Morley experiment. 
    The Michelson Morley laboratory observation is 008.0=δ , and the theoretical calculation 
in this paper is  012.0=δ . 
 

 16



 
 
 
 
X.  CONCLUSIONS 
 
      Special relativity is the best fundamental theory since 1905 to today. But SR has some 
inconsistencies, see Sec. II and we should continue the researches for a more simpler theory, 
which is what we want of the best theory. 
    Newtonian physics  as shown in this work it can explain relativistics experiments like 
mass variation, time dilation, Michelson Morley, transverse Doppler effect, kinetic energy 
and relation mass-energy. 
    For time dilation we develop the initial equations and use numeric calculations with some 
approaches and we have a medium agreement. So, we need to continue the development for 
the complete equations and verify if a better agreement exists. 
    So, Newtonian Physics needs more research before being considered  without validity. 
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