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Why Baryons May Be Yang-Mills Magnetic Monopoles 

Jay R. Yablon, Schenectady, New York 

 

Abstract: We demonstrate that Yang-Mills Magnetic Monopoles naturally confine their gauge fields, naturally contain 

three colored fermions in a color singlet, and that mesons also in color singlets are the only particles they are allowed to 

emit or absorb.  This makes them worthy of serious consideration as baryons. 

 

Introduction and Summary 

The thesis of this paper is simple: magnetic monopole densities which come into existence in non-Abelian 

Yang-Mills gauge theory are synonymous with baryon densities.  Baryons are Yang-Mills magnetic monopoles!  We 

examine three pillars of support for this: a) Yang-Mills magnetic monopoles naturally confine their gauge fields (section 

1); b) they naturally contain exactly three fermions which we identify with colored quarks in a color-neutral singlet 

(sections 2 and 3); and c) the only particles crossing their surface or observed as decay products are mesons also in color-

neutral singlets (section 4).  Section 5 makes brief concluding remarks about chiral properties of these proposed 

monopole baryons, for further development which may provide touchstones for experimental validation. 

 

1.  Gauge Field Confinement 

First, we demonstrate how Yang-Mills magnetic monopoles naturally confine their gauge fields.  We use the 

language of differential forms, and assume the reader has sufficient familiarity so no tutorial explanations are required. 

In an Abelian (commuting field) gauge theory such as QED, the field strength tensor F is specified in relation to 

the vector potential gauge field (e.g., photon) A according to dAF = .  The magnetic monopole source density P is then 

specified classically (for high-action ( ) ( ) h>>= ∫ ϕϕ LxdS 4  where the Euler Lagrange equation may be applied) by 

the field equation 0=== ddAdFP .  This makes use of the geometric law that the exterior derivative of an exterior 

derivative is zero, 0=dd .  In integral form, this becomes 0===== ∫∫∫∫∫∫∫∫∫∫∫∫∫ dAFddGdFP .  All of the 

foregoing “zeros” are what tell us that there are no magnetic monopoles in an Abelian gauge theory such as QED.  This 

absence of magnetic monopole charges at all attainable experimental energies is well borne out in the 140 or so years 

since James Clerk Maxwell published his 1873 A Treatise on Electricity and Magnetism. 

In a non-Abelian (non-commuting field) Yang-Mills gauge theory such as QCD, the fundamental difference is 

that the field strength tensor F is now specified in relation to the vector potential gauge field  G (e.g., gluon in QCD) 

according to 2iGdGF −= .  In this relationship, [ ] νµ
νµ dxdxGGG ,2 =  expresses the non-commuting nature of the 

gauge fields and the non-linearity of Yang-Mills gauge theory.  Therefore, although 0=ddG  as always because of the 
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exterior geometry, the classical (high-action) magnetic monopole density becomes ( ) 22 idGiGdGddFP −=−== , 

which is non-zero.  In integral form, using Gauss’/ Stokes’ law, this becomes: 

( ) ∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫∫ −=−==−=−== 2222 GiGidGFdGiiGdGddFP , (1.1) 

and from the last two terms in the above, we may also derive the companion equation: 

0=∫∫dG . (1.2) 

Of course, (1.2), albeit with the different field name, is just the relationship 0=∫∫dA  which tells us that there are no 

magnetic monopoles in Abelian gauge theory.  But in light of (1.1), which provides us with a non-zero magnetic 

monopole 02 ≠−= ∫∫∫∫∫ GiP , what can we learn from (1.2), which is the Yang-Mills analogue to the Abelian “no 

magnetic monopole” relationship 0=∫∫dA ? 

 If we perform a local transformation dGFFF −=′→  on the field strength F,  which in expanded form is 

written as ][' µνµνµνµν GFFF ∂−=→ , then we find from (1.1) as a direct and immediate result of the Abelian “no 

monopole” relationship 0=∫∫dG  in (1.2), that: 

( ) ∫∫∫∫∫∫∫∫∫∫∫ =−=′→= FdGFFFP . (1.3) 

This means that the flow of the field strength ∫∫∫∫ −= 2GiF  across a two dimensional surface is invariant under the 

local gauge-like transformation ][' µνµνµνµν GFFF ∂−=→ .  We know in QED that invariance under the similar 

transformation Λ∂+=→ µµµµ AAA '  means the gauge parameter Λ  is not a physical observable.  We know in 

gravitational theory that invariance under }{' νµµνµνµν Λ∂+=→ ggg  likewise means the gauge vector νΛ  is not a 

physical observable.  In this case, the invariance of ∫∫F  under the transformation ][' µνµνµνµν GFFF ∂−=→  tells us the 

gauge field µG  is not an observable over the surface through which the field ∫∫∫∫ −= 2GiF  is flowing.  But µG  is 

simply the gauge field, which in QED, is the gluon field.  So, simply put: the Yang-Mills gauge fields Gµ, including 

gluons in SU(3)C, are not observables across any closed surface surrounding a magnetic monopole density P.  Whatever 

goes on inside the volume represented by ∫∫∫P , the gauge fields remain confined. 

 Taking this a step further, we see that the origins of this gauge field confinement rest in the 140-year old 

mystery as to why there are no magnetic monopoles in Abelian gauge theory.  In differential forms, the statement of this 

is 0=ddG .  In integral form, this becomes 0=∫∫dG , equation (1.2).  Yet it is precisely this same “zero” which 

renders ∫∫∫∫∫∫ =′→ FFF  invariant under ][' µνµνµνµν GFFF ∂−=→  in (1.3).  So the physical observation that 

there are no magnetic monopoles in Abelian gauge theory translates into a symmetry condition in non-Abelian gauge 
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theory that gauge boson flow is not an observable over the surface of a magnetic charge.  Again: In Abelian gauge theory 

there are no magnetic monopoles.  In non-Abelian theory, this absence of Abelian magnetic monopoles translates into 

there being no flow of gauge bosons (e.g., gluons) across any closed surface surrounding a Yang-Mills magnetic 

monopole.  Consequently, the absence of gluon flux, hence color, across surfaces surrounding non-Abelian chromo-

magnetic monopoles is fundamentally equivalent to the absence of magnetic monopoles in Abelian gauge theory.  And, 

because this is turn originates in 0=dd , we see that this confinement is geometrically mandated, imposed by spacetime.  

The very same “zero” which in Abelian gauge theory says that there are no magnetic monopoles, in non-Abelian gauge 

theory says that there is no observable flux of Yang-Mills gauge fields across a closed surface surrounding a Yang-Mills 

magnetic monopole.  We do not find a free gluon in Yang-Mills gauge theory any more than we find an Abelian 

magnetic monopole in electrodynamics, for identical geometric reasons.  

 

2.  Natural Three-Fermion System: Part I 

 While color confinement is necessary prerequisite for Yang-Mills magnetic monopoles to be considered as 

baryon “candidates,” it is not sufficient.  At minimum, we must also show that these monopoles are capable of naturally 

containing three fermions in suitable color eigenstates, because we know that baryons contain three colored quarks. 

 For this purpose, we employ the classical field equations  ( µµµ iGD −∂≡ ): 

( ) µ
νµσ

σ
µνµν

µ
νµ

µ
νµ

µ
µν

µ
ν GDDgGDGDGDFJ ∂−∂=∂−∂=∂=∂= ][  (2.1) 

σµννσµµνσσµν FFFP ∂+∂+∂=  (2.2) 

together with the Yang-Mills field strength tensor: 

[ ] ][, νµµννµνµµννµµν GDGDGDGGiGGF =−=−∂−∂=  (2.3) 

where the group generators iT  are related by the group structure [ ]kj
i

ijk TTiTf ,−= , and where µνµν
i

i FTF ≡  and 

µµ
i

iGTG ≡  are NxN matrices for any given SU(N).  Above, (2.2) and (2.3) respectively are just expanded restatements 

of the classical field relationships dFP =  and 2iGdGF −=  which we used in (1.1). 

 As soon as one substitutes the non-Abelian (2.3) into Maxwell’s equation (2.2), while the terms based on 

µννµ GG ∂−∂  continue to zero out by identity in the usual way (via 0=dd  which as shown in section 1 confines the 

gauge fields), one nonetheless arrives at a residual non-zero magnetic charge: 

[ ] [ ] [ ]( )
[ ] [ ] [ ] [ ] [ ] [ ]( )µνσµσνσµνσνµνσµνµσ

µσνσνµνµσσµν

GGGGGGGGGGGGi

GGGGGGiP

∂+∂+∂+∂+∂+∂−=
∂+∂+∂−=

,,,,,,

,,,
.  (2.4) 

This is a longhand version of idGidGP 22 −=−=  used in (1.1).  Let’s now study this σµνP  closely. 

 To begin, we make use of the commutator relationship [ ]µσµσ GkiG ,=∂  to replace the various µσ G∂   in (2.4).  

Expanding, νσµνσµ GkGGkG −  appears throughout, so these terms drop out.  Re-consolidating yields: 



4 
 

[ ][ ] [ ][ ] [ ][ ]( )νµσµσνσνµσµν kGGkGGkGGP ,,,,,, ++−= .  (2.5) 

Now, we seek an inverse relation σ
σνν JIG ≡  to replace each µG  above with a µJ , which can then be used to 

introduce fermion wavefunctions via ψγψ µµ =J .  Again using [ ]µσµσ GkiG ,=∂ , inverse σνI  is specified in terms of a 

σµ ↔  symmetrized configuration space operator νµσ
σ

µν DDg ∂−∂  in (2.1), with a hand-added Proca mass, by: 

[ ]( ) [ ]( ) ν
µσµσµ

α
α

α
αµσ

σν δ=++−+− }{
2
12 ,, GkikkmGkikkgI . (2.6) 

We also use a νσ ↔  symmetrized [ ]}{2
1 , νσνσσνσν GkCikBkAgI ++≡  to calculate σνI .  In doing so, we keep in 

mind that the σG  is an NxN matrix for the Yang-Mills gauge group SU(N), so anytime σG  appears in a denominator we 

must actually form a Yang-Mills matrix inverse.  So that expressions we develop have a similar “look” to familiar 

expressions from QED, we will use a “quoted denominator” notation 1"/"1 −≡ MM  to designate a Yang-Mills matrix 

inverse.  Thus, "/"1
1 σσ GG =−

, etc.  This inverse is calculated to be: 

[ ]
[ ]

[ ]","

","

,

2

2

}{2
1

α
α

α
α

α
α

α
α

νσνσ
σν

σν Gkimkk

Gkikkm

Gkikk
g

I
+−

−−
+

+−
= , (2.7) 

and can only be formed if we simultaneously impose the covariant gauge condition, in configuration space: 

( )( ) 0}{
2
1

}{2
1 =∂−∂∂∂−∂∂ σµσµ

νσνσ GG . (2.8) 

Note that the often-employed [ ] 0, =∂= σ
σ

σ
σ GGki  is not a gauge condition here; this is replaced by (2.8). 

 Now, inverse (2.7) has many interesting properties which we shall not take the time to explore here.  Special 

cases of interest include [ ] 0, →∂= σνσν GGki ;  0=m ; both 0→∂ σνG  and 0=m ; and on shell 02 =− mkk α
α  for 

0≠m  or 0=α
α kk  for 0=m .  We will also note that when working towards a quantum path integral formulation, 

[ ] σ
σ

σ
σ GGki ∂=,  in (2.7) is replace by a gauge-invariant perturbation ( ) σ

σσ
σσ

σ GGGGV +∂+∂=− .  But our interest at the 

moment is in the low-perturbation limit [ ] 0, →∂= σνσν GGki .  Thus, using (2.7) in inverse relation σ
σνν JIG =  with 

[ ] 0, =σν Gki , all the quoted denominators become ordinary denominators, and we obtain: 

σ

α
α

σν
ν J

mkk

g
G

2−
−= . (2.9) 

We have reduced this using the fact that in momentum space, current conservation ( ) 0=∂ xJ µ
µ  becomes 

( ) 0=kJk µ
µ  (see [1] after I.5(4)).  The above is just like the expressions we encounter for inverses with a Proca mass in 

QED.  It says, not unexpectedly, that in the low-perturbation limit, QCD looks like QED.   

The point of developing this inverse, is to be able to use (2.9) in (2.5) and then deploy fermion wavefunctions 

via ψγψ µµ =J .  Because (2.5) contains six different appearances of νG , there are six independent substitutions of 
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(2.9) into (2.5), and what we must presume to be six independent Proca masses m.  To track this, we will use the first six 

letters of the Greek alphabet ζεδγβα ,,,,,  to carry out the internal index summations and to label each of these six 

Proca masses.  This substitution yields: 



























−−
−



























−−
−



























−−
−= ν

ζζ
ζ

ζ
µζ

εε
ε

ε
εσ

µ

δδ
δ

δ
σδ

γγ
γ

γ
γν

σ

ββ
β

β
νβ

αα
α

α
αµ

σµν k
mkk

Jg

mkk

Jg
k

mkk

Jg

mkk

Jg
k

mkk

Jg

mkk

Jg
P ,,,,,,

2
)(

2
)(

2
)(

2
)(

2
)(

2
)(

. (2.10) 

Here, we see six massive vector boson propagators each coupled with a current vector αJ .  We raise the 

indexes on all the currents and absorb the αµg .  We use µµ
i

i JTJ = , 1...3,2,1 2 −= Ni  to explicitly introduce the SU(N) 

generators.  We factor out the resulting commutators [ ]ji TT , .  And finally, we employ ψγψ µµ
ii TJ =  and the like to 

introduce fermion wavefunctions.  With this, and moving all currents into the same numerator, (2.10) becomes: 

[ ]



























































−−
+





























−−
+





























−−

−=

ν

ζζ
ζ

µσ

εε
ε

µ

δδ
δ

σν

γγ
γ

σ

ββ
β

νµ

αα
α

σµν

ψγψψγψ

ψγψψγψ

ψγψψγψ

k
mkk

TT

mkk

k
mkk

TT

mkk

k
mkk

TT

mkk

TTP

ji

ji

ji

ji

,
1

,
1

,
1

,

2
)(

2
)(

2
)(

2
)(

2
)(

2
)(

. (2.11) 

The above now shows fermion wavefunctions, and is the starting point for the next stage of development. 

 

3.  Natural Three-Fermion System: Part II 

 Now, we make the following sequence of substitutions for ( )2
)(/ ββ

βνµ ψγψψγψ mkkTT ji −  and the other two 

like terms in (2.11) above: 

( ) ( )

( ) 1
)()(

)()(

2
)(

)()()()(

2
)(

2
)(

)()(

)()(

2
)(

2
)(

2

2
)(

2
)(

""
−−/×

+
=

−/+
=

−
+/

+
=

−
+/

+
=

−
=

−
∑

ββ
νµ

ββ

β

ββ

νµ

ββ

β

ββ
β

ν
ββ

µ

ββ

β

ββ
β

νµ

ββ
β

νµ

ββ
β

νµ

ψγγψ
ψγγψ

ψγγψψγγψψγγψψγψψγψ

mpTT
mE

N

mp

TT

mE

N

mpp

TmpT

mE

N

mkk

TmpT

mE

N

mkk

TuuT

mkk

TT

ji
ji

jijijiji

. (3.1) 

Let us now explain each step in the sequence.  In the first step, we use the Dirac spinors ψψ=uu  and sum over spin 

states.  Often, the spin sum is written as mpuu
spins

+/=∑  (see [2], section 5.5). But there is an implied covariant 

normalization mEN +=2  in this expression.  To be explicit, this should really be written ([2], problem solution 5.9): 

( ) ( )mEmpNuu
spins

++/=∑ /2 , (3.2) 

So in the second step, we apply (3.2) in (3.1). 



6 
 

 Next, we take the affirmative step (which as we will shortly discuss requires some accounting for degrees of 

freedom that will render the gauge bosons massless) of identifying the rest mass in the resultant mp +/  with the labeled 

mass )(βm  in the denominator, so we now set )(βmm = .  This )(βm , of course, started out in (2.10) as a gauge boson 

mass in a gauge boson propagator denominator, but by this step we turn it into a fermion rest mass.  And we 

simultaneously promote 
ββ pk →  into the momentum four-vector 

βp  for this fermion with mass.  And, we label 

)(βEE =  and 
)(βNN = .  Finally, we use the well-known relationship: 

( ) 1
)()(

)()(
2

)(

)()(

""

1 −−/=
−/

=
−

+/
ββ

ββββ
β

ββ mp
mpmpp

mp
, (3.3) 

but employ an inverse in recognition of the fact  that whenever an SU(N) matrix (including the mpuu +/=∑ ) needs 

to go into a “denominator,” we must form its inverse.  Thus, applying (3.1) to (2.11) yields: 

[ ]

































































−/+−
+































−/+−
+































−/+−

−=

ν

ζζ

µα

ζζ

ζ

εε
ε

µ

δδ

σν

δδ

δ

γγ
γ

σ

ββ

νµ

ββ

β

αα
α

σµν

ψγγψ

ψγγψ

ψγγψ

k
mp

TT

mE

N

mkk

k
mp

TT

mE

N

mkk

k
mp

TT

mE

N

mkk

TTP

ji

ji

ji

ji

,
""

1

,
""

1

,
""

1

,

)()()()(

2
)(

2
)(

)()()()(

2
)(

2
)(

)()()()(

2
)(

2
)(

. (3.4) 

 But there is one final piece of the puzzle that is required to make this all work properly.  We must balance the 

degrees of freedom used to turn (2.11) into (3.4), and in particular, to turn boson rest masses into fermion rest masses.  In 

(2.10), we started with six vector bosons with presumed Proca masses )()()()()()( ,,,,, ζελγβα mmmmmm .  A massive 

vector boson has three degrees of freedom, so the six bosons in (2.10) brought 3x6=18 degrees of freedom into σµνP .  

But then we took three of those boson masses and turned them into fermion masses.  Massive fermions, however, have 

four degrees of freedom, not three.  So to promote a massive boson mass into a fermion mass, we must transfer one 

degree of freedom over from the boson to the fermion.  So these bosons must drop down to two degrees of freedom 

apiece and thus become massless, i.e., that we must now set these to zero, 0,, )()()( =εγα mmm .  Now, the 18 degrees 

of freedom that initially belonged three apiece to six massive vector bosons have been redistributed: 12 of these now 

belong to the 3 fermions, and only 6 belong to the 3 remaining bosons.  This should seem very familiar, as this is the 

same way in which massless gauge bosons first become massive by swallowing a degree of freedom from a scalar field 

via the Goldstone mechanism.  Here, fermions swallow a degree of freedom from bosons. 
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Looking closely at (3.4), we now also see a path to choosing normalizations for N which simultaneously are 

covariant, retain the original mass dimensionality of +3 for uu , and greatly simplify (3.4).  Specifically, we now choose 

the covariant, mass dimension-preserving normalizations: 

( ) ( ) ( ) ε
ε

ζζζγ
γ

δδδα
α

βββ kkmENkkmENkkmEN )()(
2

)()()(
2

)()()(
2

)( ;; +=+=+= . (3.5) 

Using these together with 0,, )()()( =εγα mmm  in (3.4) yields the vastly simplified: 

[ ]


























−/
+













−/
+













−/
−= ν

ζζ

µα
µ

δδ

σν
σ

ββ

νµ
σµν ψγγψψγγψψγγψ

k
mp

TT
k

mp

TT
k

mp

TT
TTP jijijiji ,

""
,

""
,

""
,

)()()()()()(

. (3.6) 

 Proceeding apace, the commutator [ ]ji TT ,  operates to commute the vertices ( )( )νµ γγ ji TT , and in particular, 

the operation it performs is [ ] ( )( ) [ ]ψγγψψγγψ νµνµ ,, =ji
ji TTTT .  This is the same commutation [ ]νµ GG ,  of free 

indexes νµ,  with which everything started back in (2.5), and even further back, in the underlying field density 

[ ]νµµννµµν GGiGGF ,−∂−∂=  of (2.3) which is the heart of Yang-Mills theory.  So, (3.6) now becomes: 

[ ] [ ] [ ]


























−/
+













−/
+













−/
−= ν

ζζ

µσ
µ

δδ

σν
σ

ββ

νµ
σµν ψγγψψγγψψγγψ

k
mp

k
mp

k
mp

P ,
""

,
,

""

,
,

""

,

)()()()()()(

. (3.7) 

All that now remains in (3.7) is the final commutator with momentum terms such as σk .  Going back to 

[ ]µσµσ GkiG ,=∂  which tells us that commuting a spacetime field with σk  is just a clever way to take its derivatives, we 

can similarly write [ ]µνσµνσ MkiM ,=∂  for a second rank tensor field )( σµν xM .  So, if we also make use of the 

second rank Dirac covariant [ ]νµµν γγσ ,2 =− i , and also relabel BGR →→→ ζδβ ,,  with similar labeling of the 

associated wavefunctions, (3.7) now becomes: 















−/
∂+

−/
∂+

−/
∂−=

""""""
2

BB

BB

GG

GG

RR

RR

mpmpmp
P

ψσψψσψψσψ σµ
ν

νσ
µ

µν
σσµν . (3.8) 

 Now let’s explain what we have done.  We deduce leading to (3.8) that a Yang-Mills magnetic monopole 

density naturally contains three fermion wavefunctions ψ  and related propagators.  But for any SU(N), these ψ  are N-

component column vectors.  So because there are three ψ , we introduce the SU(3)C gauge group of QCD with group 

generators 8...1; == iT ii λ  normalized to ( ) 2
12 =itr λ , and associate each of the three ψ  with a quark in an eigenstate 

of color.  Thus, ( ) 0;001 3

3
18 ===≡≡ λλψ T

R R , ( ) 2
13

32
18 ;010 =−==≡≡ λλψ T

G G  and 

( ) 2
13

32
18 ;100 −=−==≡≡ λλψ T

B B .  This simultaneously forces exclusion so that no two quarks in this 

system have the exact same quantum numbers.  If one then associates each color eigenstate with the spacetime index in 

the related σ∂  operator in (3.8), i.e., R~σ , G~µ  and B~ν , and keeps in mind that σµνP  is antisymmetric in all 
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indexes, then we may express this antisymmetry with wedge products as BGR ∧∧∧∧ ~νµσ  .  So the natural 

antisymmetry of the magnetic monopole σµνP  (compare the top line of (2.4)) leads straight to the required 

antisymmetric color singlet wavefunction configuration [ ] [ ] [ ]GRBRBGBGR ,,, ++  for a baryon (see [2] equation 

[2.70]).  And, because of what we did to get to the fermion masses in (3.4), we are required to keep the SU(3)C gauge 

bosons massless, just as is also required in QCD.  The above (3.8), which also confines its gauge fields as developed in 

section 1, we therefore interpret as a baryon. 

 Finally, by contrasting (3.8) with (2.4), we see that the field commutator [ ]νµ GG ,  at the heart of Yang-Mills 

theory in the field strength [ ]νµµννµµν GGiGGF ,−∂−∂=   of (2.4), has now turned into three Dirac tensors: 

[ ] [ ] [ ]
""

,
2

;
""

,
2

;
""

,
2 BB

BB

GG

GG

RR

RR

mp
GG

i

mp
GG

i

mp
GG

i

−/
=

−/
=

−/
= ψσψψσψψσψ σµ

µσ
νσ

σν
µν

νµ .  (3.9) 

 

4.  Mesons 

 Another hallmark of hadron interaction are mesons, so now let’s look for those.  A meson is a particle / 

antiparticle (conjugate) pair, so let’s start with the well-known Dirac conjugation relationships T
C Cψψ = , 

1−−= CT
C ψψ , ( )TCC νν γγ −= , and ( )TCC µµ γγ −=−1 .  One may deduce from these, that: 

( ) ( ) ( ) ψγγψψγγψψγγψψγγψψγγψ µννµνµνµνµ −=−−−=−−=−= −− TTTTTTTTT
CC CCCC 11 . (4.1) 

Specifically, ψγγψψγγψ µννµ −=CC  simultaneously commutes indexes and reverses sign.   

So using [ ]νµµν γγσ ,2 =− i  plus the well-known identity µνµννµ σγγ ig −=  derived from combining the 

fundamental Dirac relationships [ ]νµµν γγσ ,2
i=  and { }νµµν γγ ,2

1=g , we may decompose one of the numerator terms 

for the antisymmetric Dirac tensors in (3.8) or (3.9) into: 

( ) ( )CC
i

CC

CC
iiii

g ψψψψψσψψσψ

ψγγψψγγψψγγψψγγψψσψ
µνµνµν

νµνµµννµµν

+++=

+=−=

22
1

2222 .  (4.2) 

Because  ψσψ µν  is a tensor and CC ψσψ µν  is a conjugate tensor, the additive combination CC ψσψψσψ µνµν +  may 

be understood as a tensor meson, that is, as a meson particle for which, e.g., 2
312 Pnln J

s =+  with ++= 2PCJ  in which 

the parallel intrinsic spins totaling  1=s  are parallel to the orbital excitation 1=l .  Alternatively, this may be 

2
312 Fnln J

s =+  also with ++= 2PCJ  in which the 1=s  is antiparallel to the stretched orbital excitation 3=l .  

Further, ψψ  is a scalar and 
CCψψ  is a conjugate scalar, so the additive combination 

CC ψψψψ +  may be understood 

as a scalar meson, for which 0
312 Pnln J

s =+  with ++= 0PCJ .  So, by virtue of (4.2) and (3.9), we see that the 
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commutator [ ]νµ GGi ,2
 actually contains a tensor meson plus a scalar meson! (See [3], [4] for a full exposition of 

experimentally-observed mesons and their spin classifications as scalars, vectors, tensors, etc. and axial variants.)  

 In fact, contrasting with ∫∫∫∫∫∫∫ −== 2GiFP  from (1.1) and noting that νµσ
σµν dxdxdxPP = , let us multiply 

both sides of (3.8) by the anticommuting volume element νµσ dxdxdx , take the triple integral, then apply Gauss’ / 

Stokes law to the right hand side and rename indexes.  What we get is: 

∫∫∫∫∫∫∫∫∫∫∫∫ −==










−/
+

−/
+

−/
−== 2

""""""
2 GiFdxdx

mpmpmp
dxdxdxPP

BB

BB

GG

GG

RR

RR
νµ

µνµνµν

νµσ
σµν ψσψψσψψσψ

. (4.3) 

 We showed in (1.3) that invariance of ∫∫F  under a gauge-like transformation ][' µνµνµνµν GFFF ∂−=→  

means that there are no gauge bosons µG  allowed to flow across a closed surface surrounding a Yang-Mills magnetic 

monopole, which means for SU(3)C, its gluons are confined.  So far, so good.  But that tells us what cannot flow.  The 

above (4.3) tells us what can and does flow.  What is allowed to flow across any boundary, are spin 2 tensors ψσψ µν , 

which via (4.2) may be decomposed into tensor mesons and scalar mesons.  Moreover, the Gaussian integration has 

removed the σ∂  operators, and what remains by inspection in (4.3) is the wavefunction color configuration 

BBGGRR ++ , which is precisely the symmetric singlet color combination required for a meson!   

So, (4.3) would seem to say that only colorless tensor and scalar mesons flow across a closed surface 

surrounding a magnetic monopole density P.  However, contrasting (4.3) with (4.2), we find that the scalars drop out, 

( ) 0=+ vCC dxdxg µ
µν ψψψψ , because µνg   is a symmetric tensor while { } 0, =vdxdxµ  are anticommuting so that 

0!2
1 =∧ vdxdxg µ

µν , where we show the wedge product to make this point clear.  So the geometry itself acts as a filter 

(just as it does to confine gluons!) and shuts down the flow of scalar mesons such as 0
1Sn  across the boundary, and 

forces their confinement as well.  All that may cross are spin 2 tensor mesons such as 2
3Pn  or 2

3Fn  both with ++2  (or 

any other 2=J  mesons that may be constructed entirely out of quarks and conjugate quarks, e.g., qqqq  with parallel 

spin alignments 2
5Sn with +−2 ).  Of course, after they have exited the closed surface, these tensor mesons may 

thereafter decay into other tensor or vector or scalar or axial meson by-products, and so be observed, as they are, when 

studying baryons and especially nucleons.  But what (4.3) says is that to actually cross a closed surface surrounding a 

Yang-Mills magnetic monopole density P, whatever is inside the ∫∫∫P  volume must first be excited into a color-neutral 

spin 2 tensor (or axial tensor as we shall discuss momentarily) in order to cross through the surface via ∫∫∫∫ −= 2GiF

, after which the spin 2 meson may decay into other observed mesons of other spins.  “Spin 2 meson” is the “passport” 
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in and out of a magnetic monopole baryon; all other passage is forbidden.  There is no coupling to the geometry in (4.3) 

that allows a spin 1 meson to pass, spin 1 gluons are not permitted to pass for the same reason that there are no magnetic 

monopoles in Abelian gauge theory, and spin 0 mesons are filtered by 0=∧ vdxdxg µ
µν . 

  

5.  Conclusion: Hadronic Chiral Asymmetry and Experimental Validation 

  We conclude with a brief comment about axial mesons, which are also widely observed in hadron physics, most 

notably, the 1=I , π  pseudoscalar mesons with 0
1Sn  and +−0 .  All such axial objects involve 32105 γγγγγ i=  

operating on a wavefunction to produce 
VA ψγψ 5= , where a “vector” (V) wavefunction Vψ  is defined as a 

wavefunction for which the related current density VVJ ψγψ µµ =  transforms as a Lorentz four-vector in spacetime.  

 Based on combining the relationship 32105 γγγγγ i=  with duality based on the work of Reinich [5] later 

elaborated by Wheeler [6] which uses the Levi-Civita formalism (see [7] at pages 87-89), it turns out that there is a whole 

system of “chiral duality” that is an integral, albeit (apparently) heretofore undeveloped feature of the Dirac algebra.  For 

example, given the duality relationship ασ
µνασµν ε AA !2

1* ≡ , one may write 32105 γγγγγ i=  in the alternative form 

5* γσσ µνµν i= .  Then, one may form AVVV i ψσψψσψ µνµν *=  by sandwiching between V wavefunctions.  

Further, it is also well known because the second rank duality operator 1** −=  , that one can form continuous (global) 

rotations using θθθ sin*cos* +=e .  For example: 

AVVVAV

AVVVVV

i

i

ψσψθψσψθψσψ

ψσψθψσψθψσψ
µνµνµν

µνµνµν

cossin

sincos

+→

+→ . (5.1) 

Similar transformations may be developed for first / third and even zeroth / fourth rank duality, with the result that 

tensors mix with axial tensors, vectors with axial vectors, and scalars with pseudoscalars.  And, when 32105 γγγγγ i=  is 

applied to (3.8) as part of a Gordon decomposition (really, recomposition) of a vector current, it turns out that baryon and 

meson physics is endemically, organically non-chiral, which is consistent with what is experimentally observed.  The 

duality angle θ  comes to be associated with the strength of the running strong coupling Sα , which in turn bears well-

studied relationships, [8], [9] to the experimental momentum transfer Q.   

 So, by fully developing the chiral duality of Dirac’s equation and applying this to (3.8), it may well become 

possible to experimentally confirm the thesis that Baryons are Yang-Mills magnetic monopoles:  simply probe nucleons 

at varying energies, study the chiral characteristics of the debris that emerges from those probes, and correlate those 

chiral properties to the probe energies that were applied. 
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