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Abstract

Scalar and vector fields are coupled in a gauge invariant manner,
such as to form massive vector fields. In this, there is no condensate
or vacuum expectation value. Transverse and longitudinal solutions
are found for the W± and Z0 bosons. They satisfy the nonlinear cubic
wave equation. Total energy and momentum are calculated, and this
determines the mass ratio mW /mZ .
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1. Introduction

In the electroweak theory, as it is currently understood, a uniform condensate
is imposed upon the system of coupled scalar and vector fields. This gives
rise to the linear wave equation for massive bosons. However, there is no
experimental evidence for such a condensate, and it would be desirable to
eliminate it altogether. In the theory presented here, the scalar-vector system
yields the nonlinear cubic wave equation. It does so in a straightforward
way, without resorting to unphysical assumptions. Vector boson solutions
are found which have well-defined mass.

Historically, the U(1) model of scalar electrodynamics was used to create
massive photons [1]. However, it was only with the advent of electroweak
theory that the weak constants, g and g′, were thought to play a similar role.
In this paper, the weak coupling between scalar and vector fields is shown
to generate mass. The coupling terms occur in the standard electroweak
Lagrangian. Transverse and longitudinal solutions are found for the W± and
Z0 bosons. Energy and momentum are shown to be conserved, and the total
energy and momentum are calculated. The mass ratio mW/mZ emerges,
during the course of this calculation.

The paper begins by revisiting (and revising) the U(1) model. Most of
the analysis carries over to the electroweak theory.

2. U(1): equations of motion

The U(1) Lagrangian is [2]

L = L(A) + L(Φ) + L(k) (1)

where

L(A) = −1

4
FµνF

µν (2)

L(Φ) = gµν(DµΦ)∗(DνΦ) (3)

L(k) = − k2

6g2
gµνkµkν (4)

The constant term L(k) does not enter the field equations, but it will con-
tribute to the energy tensor. The U(1) covariant derivatives are
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Fµν = ∂µAν − ∂νAµ (5)

DµΦ = ∂µΦ + igAµΦ (6)

The functional derivatives

∂L

∂(∂µAν)
= −F µν (7)

∂L

∂Aν
= 2g2AνΦ∗Φ + ig{(∂νΦ∗)Φ− Φ∗∂νΦ} (8)

∂L

∂(∂µΦ∗)
= ∂µΦ + igAµΦ (9)

∂L

∂Φ∗
= g2AµA

µΦ− igAµ∂µΦ (10)

yield coupled equations of motion

−∂µF µν = 2g2AνΦ∗Φ + ig{(∂νΦ∗)Φ− Φ∗∂νΦ} (11)

and

∂µ∂
µΦ = g2AµA

µΦ− ig{(∂µAµ)Φ + 2Aµ∂µΦ} (12)

The U(1) gauge invariance allows the transformation

Φ =
1√
2

(φ+ iψ) −→ φ√
2

(13)

where φ(x) is a real function [3]. In this unitary gauge, equations (11) and
(12) are simplified

∂µF
µν + g2Aνφ2 = 0 (14)

∂µ∂
µφ− g2AµAµφ = 0 (15)

(∂µA
µ)φ+ 2Aµ∂µφ = 0 (16)

Since ∂µ∂νF
µν ≡ 0, it follows from (14) that

∂µ(Aµφ2) = 0 (17)
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which agrees with (16). These equations admit traveling solutions, if Aµ is a
polarized vector. In this case,

Aµ(u) = εµf(u) (18)

where the argument u = −kµxµ, and εµ is a real polarization vector.1 Such
vectors satisfy

∂µA
µ(u) = −kµεµ

df(u)

du
= 0 (19)

since kµε
µ = 0. From (16), it must also be true that

Aµ∂µφ = 0 (20)

This condition is satisfied, if φ = φ(u)

Aµ∂µφ = −kµεµf(u)
dφ

du
= 0 (21)

Polarization vectors are space-like, εµε
µ = −1, so that

AµA
µ = −f 2(u) (22)

Therefore, both equations (14) and (15) will be satisfied, if f(u) = φ(u) and

∂µ∂
µφ(u) + g2φ3(u) = 0 (23)

This equation, known as the cubic wave equation, is solved by the elliptic
function cn(u, 1

2
) (appendix A)

φ(u) =
k

g
cn(−kµxµ) (24)

The amplitude of this traveling wave is not arbitrary, but is fixed by the
value of k/g. It will be shown in the following section that k is directly
proportional to the mass.2

1Throughout this paper, u = −kµxµ = (k · x− k0x0) and k2 = kµk
µ = (k0)2 − k2.

2The condition f(u) = φ(u) removes one degree of freedom from the system, leaving
three. They belong to the massive vector field. The scalar field is no longer independent,
since φ(u) = −εµAµ(u).
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3. U(1): energy and momentum

The energy tensor for the vector field is

Tµν(A) = FµηF
η
ν +

1

4
gµνFηρF

ηρ (25)

with energy and momentum densities

T00(A) =
1

2

{
F 2
01 + F 2

02 + F 2
03 + F 2

23 + F 2
31 + F 2

12

}
(26)

T0i(A) = F01Fi1 + F02Fi2 + F03Fi3 (27)

For the real scalar field

Tµν(φ) = ∂µφ ∂νφ+ g2AµAνφ
2 − gµνL(φ) (28)

with energy and momentum densities

T00(φ) =
1

2

{
(∂0φ)2 + (∇φ)2 + g2[(A0)

2 + A2]φ2
}

(29)

T0i(φ) = ∂0φ ∂iφ+ g2A0Ai φ
2 (30)

The constant term L(k) contributes

Tµν(k) = − k2

3g2
(kµkν −

1

2
gµνk

2) (31)

so that

T00(k) = − k2

6g2
(k20 + k2) (32)

T0i(k) = − k2

3g2
k0ki (33)

The following formulas occur repeatedly in the calculations and are placed
here for reference (app. A):

φ2 =
k2

g2
cn2(u) (34)

(dφ
du

)2
=

k2

2g2

{
1− cn4(u)

}
(35)
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3.1 Transverse polarization
For plane waves moving along the x3-axis, kµ = (k0, k3). The linear

polarization vectors are

εµ1 =


0
1
0
0

 εµ2 =


0
0
1
0

 (36)

If the polarization is along x1, then Aµ = εµ1 φ(u) has the single component
A1 = φ(u). In this case, the energy contributions are

T00(A) =
1

2
(∂0A1)

2 +
1

2
(∂3A1)

2 =
k20 + k23

2

(dφ
du

)2
=

k2

2g2
k20 + k23

2

{
1− cn4(u)

}
(37)

T00(φ) =
1

2

{
(∂0φ)2 + (∂3φ)2 + g2A2

1φ
2
}

=
k2

2g2

{k20 + k23
2
{1− cn4(u)}+ (k20 − k23)cn4(u)

}
(38)

T00(k) = − k2

2g2
k20 + k23

3
(39)

Similarly, the momenta are

T03(A) = ∂0A1 ∂3A1 =
k2

2g2
k0k3{1− cn4(u)} (40)

T03(φ) = ∂0φ ∂3φ =
k2

2g2
k0k3{1− cn4(u)} (41)

T03(k) = − k2

2g2
2

3
k0k3 (42)

Sum terms, in order to obtain

T00 =
k2

2g2

{2

3
(k20 + k23)− 2k23 cn4(u)

}
(43)

T03 =
k2

2g2
k0k3

{4

3
− 2 cn4(u)

}
(44)
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These expressions obey the energy conservation law, ∂νT
0ν = 0. It can be

shown that the momentum is conserved as well, ∂νT
3ν = 0.

The calculation of total energy and momentum follows the introduction
of a volume element l3 dV/V. In order to arrive at the correct quantum ex-
pressions, the integrals must be independent of the ratio k2/g2. This factor
is eliminated from (43) and (44) by setting

l3

V
dV =

3π

2K

g2

k2k0V
dV (45)

The integrals are

E =
3π

2K

g2

k2k0V

∫
T 0
0 dV

=
3π

2K

h̄c

2k0V

∫ {2

3
(k20 + k23)− 2k23 cn4(u)

}
dV (46)

cp3 =
3π

2K

g2

k2k0V

∫
T 3
0 dV

=
3π

2K

h̄c

2k0V

∫
k0k

3
{4

3
− 2 cn4(u)

}
dV (47)

The elliptic function cn(u, 1
2
) admits the integral (app. A)∫

cn4(u) du =
u

3
+

2

3
sn(u)cn(u)dn(u) + constant (48)

Over one period, (or any integral number of periods)

1

4K

∫ 4K

0
cn4(u) du =

1

3
(49)

sn(0) = sn(4K) = 0. Therefore, the energy and momentum are given by

E =
π

2K
h̄ck0 = h̄ω (50)

cp3 =
π

2K
h̄ck3 = h̄c

2π

λ
(51)

3.2 Longitudinal polarization
In this case, Aµ(u) = εµ φ(u) is expressed in terms of the zero-helicity

vector
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εµ(0) =
1

k


k3

0
0
k0

 (52)

Aµ has two components (A0, A3) = (k3, k0)k−1φ(u). The contributions to
the energy density are

T00(A) =
1

2
(∂0A3 − ∂3A0)

2 =
k2

2g2
k20 − k23

2

{
1− cn4(u)

}
(53)

T00(φ) =
1

2

{
(∂0φ)2 + (∂3φ)2 + g2(A2

0 + A2
3)φ

2
}

=
k2

2g2
k20 + k23

2

{
1 + cn4(u)

}
(54)

T00(k) = − k2

2g2
k20 + k23

3
(55)

while those for the momentum are

T03(A) = 0 (56)

T03(φ) = ∂0φ ∂3φ+ g2A0A3 φ
2 =

k2

2g2
k0k3

{
1 + cn4(u)

}
(57)

T03(k) = − k2

2g2
2

3
k0k3 (58)

Sum terms to find

T00 =
k2

2g2

{2

3
k20 −

1

3
k23 + k23 cn4(u)

}
(59)

T03 =
k2

2g2
k0k3

{1

3
+ cn4(u)

}
(60)

Here, too, the energy and momentum are conserved, ∂νT
0ν = ∂νT

3ν = 0.
The integrals are
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E =
3π

2K

g2

k2k0V

∫
T 0
0 dV

=
3π

2K

h̄c

2k0V

∫ {2

3
k20 −

1

3
k23 + k23cn4(u)

}
dV

=
π

2K
h̄ck0 = h̄ω (61)

cp3 =
3π

2K

g2

k2k0V

∫
T 3
0 dV

=
3π

2K

h̄c

2k0V

∫
k0k

3
{1

3
+ cn4(u)

}
dV

=
π

2K
h̄ck3 = h̄c

2π

λ
(62)

These calculations establish the equality

E2 − p2 =
( π

2K

)2
k2 (63)

showing that k is directly proportional to the mass

m =
π

2K
k (64)

4. U(1) ⊗ SU(2)L: field equations; energy tensors

The Lagrangian is given by

L = L(W ) + L(B) + L(Φ) + L(k) + L(leptons) (65)

The lepton term contains the electroweak interaction and will be set aside.
The focus is upon the coupling between vector and scalar fields. The covari-
ant derivatives are [4]

Gµν(W ) = ∂µ(W i
νT

i)− ∂ν(W i
µT

i) + gΣijkεijkW
i
µW

j
νT

k (66)

Fµν(B) = ∂µBν − ∂νBµ (67)

DµΦ =
{
∂µ + ig T iW i

µ + ig′
Y

2
Bµ

}
Φ

=
{
∂µ + ig

τ i

2
W i
µ + ig′

1

2
Bµ

}(φ+

φ0

)
(68)
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The final term in Gµν(W ) yields third- and fourth-order vector boson inter-
actions and will also be ignored [5]. This leaves

L(W ) + L(B) = −1

2
Tr Gµν(W )Gµν(W )− 1

4
Fµν(B)F µν(B)

= −1

4

{
Fµν(A)F µν(A) + Fµν(Z)F µν(Z)

+Fµν(W
1)F µν(W 1) + Fµν(W

2)F µν(W 2)
}

(69)

where

W 3
µ =

g′√
g2 + g′2

Aµ +
g√

g2 + g′2
Zµ = sin θAµ + cos θZµ (70)

Bµ =
g√

g2 + g′2
Aµ −

g′√
g2 + g′2

Zµ = cos θAµ − sin θZµ (71)

The charged bosons W±
µ = (W 1

µ ∓ iW 2
µ)/
√

2 are expressed in terms of the
real fields W 1

µ and W 2
µ .

The expansion of

L(Φ) = gµν(DµΦ)†DνΦ) (72)

is carried out in appendix B, where the functional derivatives are also found.
Before writing the equations of motion, the scalar field is transformed to
unitary gauge

Φ =

(
φ+

φ0

)
−→

(
0

φ/
√

2

)
(73)

where φ(x) is real. This greatly simplifies the functional derivatives

∂L

∂(∂µAν)
= −F µν(A)

∂L

∂Aν
= 0 (74)

∂L

∂(∂µZν)
= −F µν(Z)

∂L

∂Zν
=

1

4
(g2 + g′2)Zνφ2 (75)

∂L

∂(∂µWν)
= −F µν(W )

∂L

∂Wν

=
1

4
g2W νφ2 (76)
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where Wν is either W 1
ν or W 2

ν . The equations of motion for the vector fields
are

−∂µF µν(A) = 0 (77)

−∂µF µν(Z) =
1

4
(g2 + g′2)Zνφ2 (78)

−∂µF µν(W ) =
1

4
g2W νφ2 (79)

Since ∂µ∂νF
µν ≡ 0, these equations yield

∂ν(Z
νφ2) = ∂ν(W

νφ2) = 0 (80)

For the scalar field,

∂L

∂(∂µφ0∗)
= ∂µφ0 − i

2

√
g2 + g′2 Zµφ0 (81)

∂L

∂φ0∗ =
i

2

√
g2 + g′2 Zµ∂µφ

0 +
g2

2
W−µW+

µ φ
0 +

1

4
(g2 + g′2)ZµZµφ

0

(82)

∂L

∂(∂µφ+∗)
=

i√
2
gW+µφ0 (83)

∂L

∂φ+∗ = − i√
2
gW+µ∂µφ

0 + (eAµ − g′ sin θZµ)
1√
2
gW+

µ φ
0 (84)

The equations of motion are (φ0 = φ/
√

2)

∂µ∂
µφ− 1

4
g2W 1µW 1

µ φ−
1

4
g2W 2µW 2

µ φ−
1

4
(g2 + g′2)ZµZµ φ = 0 (85)

and

(eAµ − g′ sin θZµ) gW+
µ φ = 0 (86)

where (80) has been used. The vector fields couple individually with φ, so
that (86) will be satisfied.

The energy tensors are much the same as for U(1). Each vector field
Aµ, W

1
µ , W

2
µ , Zµ contributes
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Tµν = FµηF
η
ν +

1

4
gµνFηρF

ηρ (87)

while the scalar Lagrangian

L(φ) =
1

2
gµν

{
∂µφ ∂νφ+

1

4
g2(W 1

µW
1
ν +W 2

µW
2
ν )φ2 +

1

4
(g2 + g′2)ZµZνφ

2
}

(88)

gives

Tµν(φ) = ∂µφ ∂νφ+
1

4
g2(W 1

µW
1
ν +W 2

µW
2
ν )φ2 +

1

4
(g2 + g′2)ZµZνφ

2 − gµνL(φ)

(89)
The constant term Tµν(k) is treated in the following section.

5. The W± and Z0 bosons

The coupling between W± and φ is described by (79, 85)

∂µF
µν(W ) +

1

4
g2W νφ2 = 0 (90)

∂µ∂
µφ− 1

4
g2WµW

µφ = 0 (91)

where ∂µW
µ = W µ∂µφ = 0. These equations are identical to those of U(1),

(14) and (15), with the replacement g −→ g/2. The solutions of the cubic
wave equation (23) are polarized, W µ(u) = εµ φ(u), where

φ(u) =
2kW
g

cn(−kµxµ) (92)

Similarly, the coupling between Z0 and φ is given by

∂µF
µν(Z) +

1

4
(g2 + g′2)Zνφ2 = 0 (93)

∂µ∂
µφ− 1

4
(g2 + g′2)ZµZ

µφ = 0 (94)

The solutions are Zµ(u) = εµ φ(u), where
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φ(u) =
2kZ√
g2 + g′2

cn(−kµxµ) (95)

There are eleven degrees of freedom in the system, belonging to the massless
photon and the three massive bosons. The scalar field is not independent,
i.e., φ(u) = −εµW µ(u) or φ(u) = −εµZµ(u).

The expressions for T00 and T03 are exactly the same as those in U(1),
apart from the new coupling constants. They give rise to factors k2W/g

2

and k2Z/(g
2 + g′2). Before integration can occur, the volume element must

eliminate these two factors. This is possible, if they are equal

k2W
g2

=
k2Z

g2 + g′2
(96)

Only then will the volume element be uniquely defined (compare (45))

l3

V
dV =

3π

8K

g2

k2Wk
0V

dV =
3π

8K

(g2 + g′2)

k2Zk
0V

dV (97)

Integration may now go forward as in U(1).3 The integrals for W± and Z0,
including transverse and longitudinal fields, all assume the form

E =
l3

V

∫
T 0
0 dV = h̄ω (98)

cp3 =
l3

V

∫
T 3
0 dV = h̄c

2π

λ
(99)

6. Concluding remarks

The coupling theory is made tractable with the choice of unitary gauge. It
eliminates the scalar currents, leaving direct nonlinear coupling between the

3Moreover, the constant terms are identical

Tµν(k) = −4

3

k2W
g2

(kµkν −
1

2
gµνk

2)

= −4

3

k2Z
g2 + g′2

(kµkν −
1

2
gµνk

2)
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real scalar and vector fields. The equations of motion yield both transverse
and longitudinal solutions, indicating the presence of mass.

In the U(1) model, scalar-vector coupling generates a single massive vector
field, while in the electroweak theory there are three, the W± and Z0. They
satisfy relation (96), yielding the mass ratio

mW

mZ

=
kW
kZ

=
g√

g2 + g′2
(100)

In linear field theory, it is customary to include the integration vol-
ume V as part of the plane wave expansion. For example, the expression
(h̄c/2k0V )1/2 appears in each boson term. This is possible because the en-
ergy tensor Tµν is second-order in the field. However, the non-linear tensor
(89) contains both second- and fourth-order terms, making such a procedure
untenable. Instead, the volume is introduced as a factor, l3/V , during the
integration of Tµν .

Finally, the constant term in the energy tensor Tµν(k) has been introduced
out of necessity. Without it, the energy and momentum would not satisfy
the relation c2p = E v, as they must; the work would simply be incomplete.

Appendix A. Elliptic functions [6, 7]

The elliptic functions sn(u,m), cn(u,m), and dn(u,m) satisfy

sn2(u,m) + cn2(u,m) = 1 (101)

dn(u,m) =
√

1−m sn2(u,m) (102)

Their derivatives are

d sn(u,m)

du
= cn(u,m)dn(u,m) (103)

d cn(u,m)

du
= −sn(u,m)dn(u,m) (104)

d dn(u,m)

du
= −m sn(u,m)cn(u,m) (105)

In particular,
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d2cn(u,m)

du2
= −cn(u)dn2(u) +m sn2(u)cn(u)

= (2m− 1) cn(u)− 2m cn3(u) (106)

If the parameter m = 1
2
, then

d2cn(u, 1
2
)

du2
= −cn3(u,

1

2
) (107)

The cubic wave equation (23) yields the ordinary differential equation

kµk
µ d

2φ(u)

du2
+ g2φ3(u) = 0 (108)

Substitute φ(u) = a cn(u, 1
2
) to find

−k2a cn3(u,
1

2
) + g2a3cn3(u,

1

2
) = 0 (109)

This equation is satisfied, if a2 = k2/g2. The solution of (108) is

φ(u) =
k

g
cn(u,

1

2
) =

k

g
cn(−kµxµ) (110)

The elliptic functions, with m = 1
2
, satisfy two useful identities. The first

is

(d cn(u)

du

)2
= sn2(u)dn2(u) =

1

2
{1− cn4(u)} (111)

The second identity is

d

du
{sn(u)cn(u)dn(u)} =

1

2
{3 cn4(u)− 1} (112)

and it follows that∫
cn4(u) du =

u

3
+

2

3
sn(u)cn(u)dn(u) + constant (113)

The period of an elliptic function is 4K. (If m = 1
2

, then K
.
= 1.85.)

For motion along the x3-axis,

cn(−kµxµ) = cn(k3x3 − k0x0) = cn 4K
(x3
λ
− t

T

)
(114)
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It follows that

ck0 =
4K

T
=

2K

π
2πf =

2K

π
ω (115)

k3 =
4K

λ
=

2K

π

2π

λ
(116)

and

E = h̄ω =
π

2K
h̄ck0 (117)

cp3 = h̄c
2π

λ
=

π

2K
h̄ck3 (118)

Appendix B. Scalar Lagrangian

B.1 Lagrangian

L(Φ) = gµν(DµΦ)†(DνΦ)

= ∂µφ+∗∂µφ
+ + ∂µφ0∗∂µφ

0

+
{

[eAµ +
1

2
(g cos θ − g′ sin θ)Zµ]2 +

1

2
g2W+µW−

µ

}
φ+∗φ+

+[eAµ − g′ sin θ Zµ]
{ g√

2
W+
µ φ

+∗φ0 +
g√
2
W−
µ φ

0∗φ+
}

+
{1

2
g2W−µW+

µ +
1

4
(g2 + g′2)ZµZµ

}
φ0∗φ0

−i[eAµ +
1

2
(g cos θ − g′ sin θ)Zµ](φ+∗∂µφ

+ − ∂µφ+∗φ+)

− i√
2
gW−µ(φ0∗∂µφ

+ − ∂µφ0∗φ+)− i√
2
gW+µ(φ+∗∂µφ

0 − ∂µφ+∗φ0)

+
i

2

√
g2 + g′2 Zµ(φ0∗∂µφ

0 − ∂µφ0∗φ0) (119)

B.2 Functional derivatives

∂L

∂(∂µφ0∗)
= ∂µφ0 +

i√
2
gW−µφ+ − i

2

√
g2 + g′2Zµφ0 (120)
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∂L

∂φ0∗ = − i√
2
gW−µ∂µφ

+ +
i

2

√
g2 + g′2Zµ∂µφ

0

+[eAµ − g′ sin θ Zµ]
1√
2
gW−

µ φ
+

+
1

2
g2W−µW+

µ φ
0 +

1

4
(g2 + g′2)ZµZµφ

0 (121)

and

∂L

∂(∂µφ+∗)
= ∂µφ+ + i[eAµ +

1

2
(g cos θ − g′ sin θ)Zµ]φ+ +

i√
2
gW+µφ0 (122)

∂L

∂φ+∗ = −i[eAµ +
1

2
(g cos θ − g′ sin θ)Zµ]∂µφ

+ +
1

2
g2W+µW−

µ φ
+

+[eAµ +
1

2
(g cos θ − g′ sin θ)Zµ]2φ+

+[eAµ − g′ sin θ Zµ]
1√
2
gW+

µ φ
0 − i√

2
gW+µ∂µφ

0 (123)
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