A Precise Information Flow Measure from Imprecise Probabilities

Sari Haj Hussein¹

¹Department of Computer Science Aalborg University

2012-06-21

- Introduction
- 2 Representing Agent's Uncertainty
- 3 Capturing Belief
- 4 Arithmetic on Beliefs
- 5 Language & Lifted Language
- **6** Inference Scheme
- Experimenting with Inference Scheme
- Measuring Information Flow

- Introduction
- 2 Representing Agent's Uncertainty
- Capturing Belief
- 4 Arithmetic on Beliefs
- 5 Language & Lifted Language
- **6** Inference Scheme
- Experimenting with Inference Scheme
- Measuring Information Flow

Literature

- Clarkson, M.R.; Myers, A.C.; Schneider, F.B.; , "Belief in information flow," Computer Security Foundations, 2005.
 CSFW-18 2005. 18th IEEE Workshop , vol., no., pp. 31- 45, 20-22 June 2005
- Clarkson, M.R., Myers, A.C., Schneider, F.B. Quantifying information flow with beliefs (2009) Journal of Computer Security, 17 (5), pp. 655-701
- Hussein, Sari Haj; , "Refining a Quantitative Information Flow Metric," New Technologies, Mobility and Security (NTMS), 2012 5th International Conference on , vol., no., pp.1-7, 7-10 May 2012
- ...A Precise Information Flow Measure from Imprecise Probabilities

Literature

- Clarkson, M.R.; Myers, A.C.; Schneider, F.B.; , "Belief in information flow," Computer Security Foundations, 2005.
 CSFW-18 2005. 18th IEEE Workshop , vol., no., pp. 31- 45, 20-22 June 2005
- Clarkson, M.R., Myers, A.C., Schneider, F.B. Quantifying information flow with beliefs (2009) Journal of Computer Security, 17 (5), pp. 655-701
- Hussein, Sari Haj; , "Refining a Quantitative Information Flow Metric," New Technologies, Mobility and Security (NTMS), 2012 5th International Conference on , vol., no., pp.1-7, 7-10 May 2012
- ...A Precise Information Flow Measure from Imprecise Probabilities

Field

- Quantitative Information Flow (QIF) analysis
- Decide the number of bits that might be revealed from a program's secret input during the execution of that program

Qualitative...

Sabelfeld

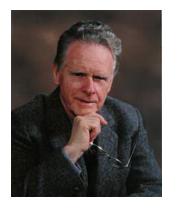
Problem

- The QIF metric by Clarkson et al
- It uses Bayesian inference
- It captures the improvement in the attacker's belief as she interacts with a program's execution
- Thereby it quantifies the flow

Contributions

- The paper presents a justified generalization of the analysis method done by Clarkson et al
- It highlights the weaknesses in the original work
- It shows that they are eliminated by way of the generalization
- The generalization is based on one of the theories of imprecise probabilities, namely the theory of evidence

Contributions



Dempster

Shafer

- Introduction
- Representing Agent's Uncertainty
- Capturing Belief
- 4 Arithmetic on Beliefs
- 5 Language & Lifted Language
- **1** Inference Scheme
- 7 Experimenting with Inference Scheme
- Measuring Information Flow

Frame of Discernment (Sample Space)

- A set of possible worlds that an agent considers possible
- $W = \{\text{password}, 123456, \text{qwerty}, \text{abc123}, \text{letmein}, 696969\}$

Closed-world Assumptions (Shafer's Model)

- ullet Exclusiveness: At most one of the worlds in ${\mathcal W}$ is the true world
- Exhaustiveness: \mathcal{W} contains all the possible worlds

Frame of Discernment (Sample Space)

- A set of possible worlds that an agent considers possible
- $W = \{\text{password}, 123456, \text{qwerty}, \text{abc123}, \text{letmein}, 696969}\}$

Closed-world Assumptions (Shafer's Model)

- ullet Exclusiveness: At most one of the worlds in ${\mathcal W}$ is the true world
- ullet Exhaustiveness: ${\cal W}$ contains all the possible worlds

Frame of Discernment (Sample Space)

- A set of possible worlds that an agent considers possible
- $W = \{password, 123456, qwerty, abc123, letmein, 696969\}$

Closed-world Assumptions (Shafer's Model)

- ullet Exclusiveness: At most one of the worlds in ${\mathcal W}$ is the true world
- ullet Exhaustiveness: ${\cal W}$ contains all the possible worlds

Dezert

Smarandache

Example

•
$$\mathcal{PWC}$$
: if $p = g$ then $a := 1$ else $a := 0$ $p \in \{A, B, C\}$
• $r = \{p, g, a\}, h = \{p\}, l = \{g, a\}$
• $\mathcal{W}_h = \prod_{X \in \{p\}} \mathcal{W}_X = \mathcal{W}_p = \{A, B, C\}$
• $\mathcal{W}_l = \prod_{X \in \{g, a\}} \mathcal{W}_X = \mathcal{W}_g.\mathcal{W}_a = \{A, B, C\}.\{0, 1\}$
• $\{(A, 0), (A, 1), (B, 0), (B, 1), (C, 0), (C, 1)\}$
• $\mathcal{W}_{h \cup l} = \prod_{X \in \{p, g, a\}} \mathcal{W}_X = \mathcal{W}_p.\mathcal{W}_g.\mathcal{W}_a = \{A, B, C\}.$
• • $\mathcal{W}_h \cup l = \mathcal{W}_h \cup \mathcal{W}_g.\mathcal{W}_g.\mathcal{W}_h = \{A, B, C\}.$

Example

•
$$\mathcal{PWC}$$
: if $p = g$ then $a := 1$ else $a := 0$ $p \in \{A, B, C\}$

•
$$r = \{p, g, a\}, h = \{p\}, l = \{g, a\}$$

•
$$W_h = \prod_{X \in \{p\}} W_X = W_p = \{A, B, C\}$$

$$\mathcal{W}_I = \prod_{X \in \{g,a\}} \mathcal{W}_X = \mathcal{W}_g \cdot \mathcal{W}_a = \{A, B, C\} \cdot \{0,1\}$$

$$= \{ (A,0), (A,1), (B,0), (B,1), (C,0), (C,1) \}$$

$$\mathcal{W}_{h\cup I} = \prod_{X\in\{p,g,a\}} \mathcal{W}_X = \mathcal{W}_p.\mathcal{W}_g.\mathcal{W}_a = \{A,B,C\}.$$

$$\begin{array}{l}
\bullet & X \in \{p,g,a\} \\
&= \{A,B,C\}.\{0,1\} = \{(A,A,0),...\}
\end{array}$$

Belief Functions

- Frame of Discernment is too coarse
- Comparing the likelihood of worlds is not possible
- Belief functions is a numeric representation of uncertainty that enables full ordering of worlds

Belief Functions vs. Probability Measures

• The finite additivity property

$$Pro(X_1 \cup ... \cup X_n) = Pro(X_1) + ... + Pro(X_n)$$

- You are forced to work with singleton sets
- No overlapping sets

$$Pro({A, B}) = 0.2, Pro({B, C}) = 0.3$$

No nested sets

$$Pro({A, B}) = 0.2, Pro({A, B, C}) = 0.3$$

Belief Functions vs. Probability Measures

Ignorance is difficult to represent

$$Pro({A}) = 0.2, Pro({A, B}) = 0.0$$

Contradiction is difficult to represent

$$Pro({A}) = 0.2, Pro({B}) = 0.3, Pro({}) = 0.5$$

- Modeling collaboration is not possible
- Add the computational problem...

- Introduction
- Representing Agent's Uncertainty
- Capturing Belief
- 4 Arithmetic on Beliefs
- 5 Language & Lifted Language
- **6** Inference Scheme
- Experimenting with Inference Scheme
- 8 Measuring Information Flow

Mass Function

Mass Function

- $m: \mathcal{P}(\mathcal{W}_s) \rightarrow [0,1]$
- $m(\emptyset) = 0$, $\sum_{A \in \mathcal{P}(\mathcal{W}_s)} m(A) = 1$
- m(A) the degree of belief that the true world is in A

Relief Function

- $Bel: \mathcal{P}(\mathcal{W}_s) \rightarrow [0,1]$
- $Bel(A) = \sum_{B \subseteq A} m(B)$

Mass Function

Mass Function

- $m: \mathcal{P}(\mathcal{W}_s) \rightarrow [0,1]$
- $m(\emptyset) = 0$, $\sum_{A \in \mathcal{P}(\mathcal{W}_s)} m(A) = 1$
- m(A) the degree of belief that the true world is in A

Belief Function

- Bel : $\mathcal{P}(\mathcal{W}_s) \rightarrow [0,1]$
- $Bel(A) = \sum_{B \subseteq A} m(B)$

- Introduction
- 2 Representing Agent's Uncertainty
- Capturing Belief
- 4 Arithmetic on Beliefs
- 5 Language & Lifted Language
- **6** Inference Scheme
- Experimenting with Inference Scheme
- Measuring Information Flow

Belief Combination

Belief Combination

- Combining two pieces of evidence m₁ and m₂ from two independent sources
- $(m_1 \otimes m_2)(A) = k \cdot \sum_{B \cap C = A} m_1(B) \cdot m_2(C)$
- $(m_1 \otimes m_2)(\emptyset) = 0$, $k^{-1} = \sum_{B \cap C \neq \emptyset} m_1(B) . m_2(C)$
- $(m_1 \otimes m_2)(A) = k \cdot \sum_{B \bowtie C = A} m_1(B) \cdot m_2(C)$
- $(m_1 \otimes m_2)(\emptyset) = 0$, $k^{-1} = \sum_{B \bowtie C \neq \emptyset} m_1(B).m_2(C)$

Belief Conditioning

Belief Conditioning

- Current agent's belief is captured using m
- A new piece of evidence that the true world is in B
- Agent can do a knowledge update...

•
$$m_B(A) = \begin{cases} k \cdot \sum_{C \cap B = A} m(C) & \text{for } A \neq \emptyset \\ 0 & \text{for } A = \emptyset \end{cases}$$

• $k^{-1} = \sum_{C \cap B \neq \emptyset} m(C)$

•
$$k^{-1} = \sum_{C \cap B \neq \emptyset} m(C)$$

Belief Divergence

- We need to measure the divergence between 2 mass functions in an information-theoretic manner
- There is no out-of-the-box information-theoretic divergence in the theory of evidence
- Divergence measures, that are based on geometrical interpretations of mass functions, do not work
- We should derive a suitable divergence measure. How?
 - Start with a divergence measure in probability theory
 - Re-write this divergence in terms of information-theoretic functionals
 - Generalize these functionals into the theory of evidence

Belief Divergence

- Kullback-Leibler $\mathit{KL}(p_1,p_2) = \sum\limits_{x \in \mathcal{X}} p_1(x) \log \frac{p_1(x)}{p_2(x)}$
- ullet Jensen-Shannon $JS(p_1,p_2)=2S(rac{p_1+p_2}{2})-S(p_1)-S(p_2)$

Generalized Jensen-Shannon Divergence

- $GJS(m_1, m_2) = 2GS(\frac{m_1 + m_2}{2}) GS(m_1) GS(m_2)$
- GS(m) = AU(Bel) GH(m)

Belief Divergence

- Kullback-Leibler $\mathit{KL}(p_1,p_2) = \sum\limits_{x \in \mathcal{X}} p_1(x) \log \frac{p_1(x)}{p_2(x)}$
- ullet Jensen-Shannon $JS(extit{p}_1, extit{p}_2) = 2S(rac{p_1+p_2}{2}) S(extit{p}_1) S(extit{p}_2)$

Generalized Jensen-Shannon Divergence

- $GJS(m_1, m_2) = 2GS(\frac{m_1 + m_2}{2}) GS(m_1) GS(m_2)$
- GS(m) = AU(Bel) GH(m)

- Introduction
- 2 Representing Agent's Uncertainty
- Capturing Belief
- 4 Arithmetic on Beliefs
- 5 Language & Lifted Language
- 6 Inference Scheme
- Experimenting with Inference Scheme
- Measuring Information Flow

- Imperative while-language
- Lift the syntax and semantics of it
- We are able to write program source code in terms of mass functions

- Introduction
- 2 Representing Agent's Uncertainty
- Capturing Belief
- 4 Arithmetic on Beliefs
- 5 Language & Lifted Language
- 6 Inference Scheme
- Experimenting with Inference Scheme
- 8 Measuring Information Flow

- Start from an attacker's model
- Show how an attacker updates her knowledge from interacting with a program execution
- The arithmetic toolbox on beliefs and the execution rules of commands in the lifted language are extensively used here

- Introduction
- Representing Agent's Uncertainty
- Capturing Belief
- 4 Arithmetic on Beliefs
- 5 Language & Lifted Language
- **6** Inference Scheme
- Experimenting with Inference Scheme
- Measuring Information Flow

 $\bullet \ \mathcal{PWC}: \ \text{if} \ p=g \ \text{then} \ a:=1 \ \text{else} \ a:=0 \quad p \in \{\textit{A},\textit{B},\textit{C}\}$

$\mathcal{P}(\mathcal{W}_h)$	m_{pre}	$m_{post}^{'}$	$m_{post}^{\prime\prime}$
$\{A\}$.98	1	0
$\{A\}$ $\{B,C\}$.02	0	1

 $\bullet \ \mathcal{PWC}: \ \text{if} \ p=g \ \text{then} \ a:=1 \ \text{else} \ a:=0 \quad p \in \{\textit{A},\textit{B},\textit{C}\}$

$\mathcal{P}(\mathcal{W}_h)$	m_{pre}	$m_{post}^{'}$	$m_{post}^{\prime\prime}$
$\{A,B\}$.98	0	0
$\{A, B, C\}$.02	0	0
$\{A\}$	0	1	0
$\{B\}$	0	0	.98
$\{B,C\}$	0	0	.02

- Introduction
- 2 Representing Agent's Uncertainty
- Capturing Belief
- 4 Arithmetic on Beliefs
- 5 Language & Lifted Language
- **1** Inference Scheme
- Experimenting with Inference Scheme
- Measuring Information Flow

Measuring Information Flow

 When beliefs are involved then flow is the improvement in the accuracy of an attacker's belief

Our Flow Measure

- ullet The accuracy of the attacker's prebelief is $GJS(m_{pre},\dot{m}_h)$
- ullet The accuracy of the attacker's postbelief is $\mathit{GJS}(m_{post},\dot{m}_h)$

$$Q = GJS(m_{pre}, m_h) - GJS(m_{post}, m_h)$$

$$= 2GS(\frac{m_{pre} + \dot{m}_h}{2}) - 2GS(\frac{m_{post} + \dot{m}_h}{2})$$

$$- GS(m_{pre}) + GS(m_{post})$$

Measuring Information Flow

 When beliefs are involved then flow is the improvement in the accuracy of an attacker's belief

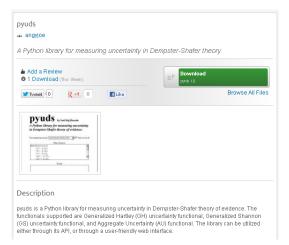
Our Flow Measure

- The accuracy of the attacker's prebelief is $GJS(m_{pre}, \dot{m}_h)$
- ullet The accuracy of the attacker's postbelief is $GJS(m_{post},\dot{m}_h)$

$$Q = GJS(m_{pre}, \dot{m}_h) - GJS(m_{post}, \dot{m}_h)$$

$$= 2GS(\frac{m_{pre} + \dot{m}_h}{2}) - 2GS(\frac{m_{post} + \dot{m}_h}{2}) - GS(m_{pre}) + GS(m_{post})$$

Sample flow calculations for the experiments



- ullet The measure has the bounds $arrho_{\mathcal{Q}} = [-\eta, \eta]$
- The space of the exhaustive search can be easily determined

Reflection and Future Work

- Probability theory has its base in set theory, but imprecise probabilities do not!
- The application of imprecise probabilities in fields other than QIF could be rewarding
- Subjective logic by Jøsang is good at trust modeling but does not work in QIF
- Set of stronger properties related to KL and JS whose proofs could be rewarding
- Could be interesting to do simulation using larger frames of passwords
- Could be interesting to look at guesswork in this setting

Pouly

Thank You!