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Two new constants ,  and a new formula 
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Abstract: This paper brings to light a new constant  hidden by Euler’s constant . Euler’s 

constant  is the limit of the difference between harmonic series and lnn. The constant  is the sum 

of the series of the remainder terms of the difference between harmonic series, lnn, Euler’s 

constant  and 
n2

1 . Since both constant  and the Euler’s constant  are relevant to the difference 

between harmonic series and lnn, we define a new constant  =1+  + 2. This is a singular 

constant, together with  and e, we found a new perfect formula 
1

2
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Key words: , Euler’s constant; , new constant; , new constant; , the ratio of the 

circumference of a circle to its diameter; e, the natural base of logarithm; Formula 
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1． The definition of the new constant  and its formula      

The sum of a harmonic series is,
[1]                                           
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We denote the remainder term as                                         
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1.1 The lemma about remainder term n                             

Lemma 1：The limit of nn is exist as n tends infinity , that is lim 0n
n

n


                                   

Proof：                                                                 

The series expression of nn  is：                              
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where, the general term can be expressed as                                
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As 2n  , we have：                                                 
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The general term meets: 
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The series meet: 
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Lemma 2: A new expression of the series of the remainder term  

                  1
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Proof:                                                                     

Because both
kA and the general terms in above series are nonnegative, and the order of summing 

with respect to k or n are exchangeable, using the theorem about sum of the double series
[2]

, we 

have,  
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Lemma 3: The series of the remainder terms is convergence    

Proof:                                                                     

In lemma 2, the general term of the series of the remainder terms n is   
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Since 0 1x  ，we have 0 1
k x
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Therefore, the general term should meet                                       
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Since Ak is nonnegative, the convergence theorem tell us the series of the tail terms is convergence                  

1.2 The definition of a new constant, .                                

By Lemma 3, the series of the remainder term
n , which is the remainder term of harmonic series, 

must be convergence to a constant, say , we have the following definition.  

Definition 1. A new constant  is the sum of the series of the remainder term
n , that is    
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（1）The first formula to calculate constant                     

The formula (5) of lemma 2 directly leads to： 1
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Where, Ak follows from formula (2)  

（2）The second formula to calculate constant                    

The constant  can also be calculated by the sum and remainder of the harmonic series, see 

formula (1) and (3).  
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Where, Ak follows from formula (2) 

（3）The third formula for constant                           

     Revise the formula for the sum of the harmonic series, the constant  can also be calculated 

     by        
1 1

1 1
ln

2

n

n k

n
n k

 


 

 
    

 
                  (9) 

    This formula clue us on how the new constant  and the Euler’s constant  are interrelated.  

 

2. The definition and formula for new constant             

（1）The formula for Euler’s constant  and its value
[3]

      

     Euler’s constant  is the limit of the difference between harmonic series and lnn. The 

     formula and its value are 
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（2）The value of the new constant                                      

A computer program, using formula (9), has found the value of the new constant  is 

         0.13033070075390631147707      （11） 

（3）The definition of the new constant  

     The formula (9) tells us that both Euler’s constant  and the new constant  are related to the     

difference between harmonic series and lnn. Combine the formula (9), (10) and (1), we have      

found the remainder term, n of the harmonic series is a very small number which has proved by 

the lemma 1. We have also found that the sum of the remainder series is a constant and we define 

is as a new constant . We realize that constant  is a correlative constant of Euler’s constant , 

and so there must be a new constant, say , also hides behind . Or we can define  using  and .     

    Definition 2: New constant  is defined as                         

1 2 1.83787706640934548356065        （12） 

This is a singular constant and will be explained in detail later.                                     
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3. A new formula combined by ,  and e                                

 3.1 A new approximation to the factorial n!                       

Theorem 1: A new formula to approximate n!                      
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Proof: The formula (14) is Abel’ formula for the sum  
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Summing the sum in formula (1) again (where the remainder is replaced by k), we have  
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Substitute expression (16) to (15), and sort it out, we get            
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Take both sides of (17) as exponents of e, and reform it, we have the expression (13) 

Expression (13) is a new formula for n!, which is different with Stirling’s formula. 

Corollary: The following limit is hold                               
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3.2 A new formula combining , e, and                    

    Theorem 2:  There is a very meaningful relationship between , e, and the new constant   
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 Proof:  Stirling’s formula holds for all n
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4. Discussion about the new constant and the new formula   

  (1) The inherent relationship between , e and , even they come from different sources  

We know,  is the ratio of the circumference of a circle to its diameter. The e is the natural      

base of logarithm, and e is invariant in the process of differentiating and integrating. Even e and , 

come from different sources, it is found that they are connected together by imaginary number i in 

the wonderful formula 1ie   . 

   Here, the research in harmonic series and the remainder series has lead to a constant ，     

which is a new constant behind the Euler’s constant .  All , e and  are related to lnn, and      

are combined to a new constant . A further research leads to a new approximation for n!,      

and another wonderful formula 
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   This new formula widens our field of view, and reveals the natural relationship between       

and e.        

 (2) The transform between  and e. 

In probability and statistics, many formulas include natural exponential function e
x
 and 2  

If we use formula (23) to replace 2 , the natural exponential function e
x
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(3) The transform between  and  

 Professor Xi, Zixing , Fudan University, Shanghai China, reads my paper and thinks that the 

Euler’s constant can be used for approximating Gamma function. However, there are no enough 

exquisite way to calculate . It is easier to calculate  instead of . Therefore, he suggest starting 

from  to calculate constant . To this end, he has programmed this approximation process and 

verified his idea, himself.  Both his and my results are very close to the true value of the . Here 

I am grateful to professor Xi. I am especially appreciative his suggestion and verifications.  
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