Two new constants μ , θ and a new formula $\pi = \frac{1}{2}$ 2 $\pi = \frac{1}{2}e^{\theta}$

Chen Wenwei

(Room 301, No.48, ShiCen road, BaiYun district, GuangZhou , China Postcode 510430)

Abstract: This paper brings to light a new constant μ hidden by Euler's constant γ . Euler's constant γ is the limit of the difference between harmonic series and lnn. The constant μ is the sum of the series of the remainder terms of the difference between harmonic series, ln*n*, Euler's constant γ and $\frac{1}{2n}$ $\frac{1}{2n}$. Since both constant μ and the Euler's constant γ are relevant to the difference between harmonic series and lnn, we define a new constant $\theta = 1 + \gamma + 2\mu$. This is a singular constant, together with π and e, we found a new perfect formula $\pi = \frac{1}{2}$ 2 $\pi = \frac{1}{2}e^{\theta}$

Key words: γ , Euler's constant; μ , new constant; θ , new constant; π , the ratio of the circumference of a circle to its diameter; e, the natural base of logarithm; Formula $\pi = \frac{1}{2}$ 2 $\pi = \frac{1}{2}e^{\theta}$.

1. The definition of the new constant μ and its formula

The sum of a harmonic series is,^[1]
\n
$$
\sum_{k=1}^{n} \frac{1}{k} = \gamma + \ln n + \frac{1}{2n} - \sum_{k=2}^{\infty} \frac{A_k}{n(n+1)\cdots(n+k-1)}
$$
\nwhere $A_k = \frac{1}{k} \int_0^1 x(1-x)(2-x)\cdots(k-1-x)dx$ (2)

We denote the remainder term as

$$
\varepsilon_n = \sum_{k=2}^{\infty} \frac{A_k}{n(n+1)\cdots(n+k-1)}\tag{3}
$$

1.1 The lemma about remainder term ε_n

Lemma 1: The limit of $n\epsilon_n$ is exist as n tends infinity, that is $\lim_{n\to\infty} n\epsilon_n = 0$

Proof:

The series expression of $n\varepsilon_n$ is:

$$
n\varepsilon_n = \frac{A_2}{n+1} + \sum_{k=3}^{\infty} \frac{A_k}{(n+1)\cdots(n+k-1)}
$$
 (4)

 \sim 1

where, the general term can be expressed as
\n
$$
\frac{A_k}{(n+1)\cdots(n+k-1)} = \frac{\int_0^1 x(1-x)(2-x)\cdots(k-1-x)dx}{(n+1)(n+2)\cdots(n+k-1)k}
$$
\n
$$
= \frac{1}{(n+k-2)(n+k-1)} \int_0^1 \frac{x(1-x)(2-x)\cdots(k-1-x)}{(n+1)\cdots(n+k-3)k}dx
$$

As $n \geq 2$, we have:

$$
\int_0^1 \frac{x(1-x)(2-x)\cdots(k-1-x)}{(n+1)\cdots(n+k-3)k} dx \le \int_0^1 \frac{x(1-x)(2-x)\cdots(k-1-x)}{3\cdot 4\cdots(k-1)k} dx
$$

=
$$
2\int_0^1 \frac{x(1-x)(2-x)\cdots(k-1-x)}{1\cdot 2\cdots(k-1)k} dx < 2
$$

The general term meets: $(n+1)\cdots(n+k-1)$ $(n+k-2)(n+k-1)$ $\frac{A_k}{(n+1)\cdots(n+k-1)} < \frac{2}{(n+k-2)(n+k-1)}$

The series meet:
$$
\sum_{k=3}^{\infty} \frac{A_k}{(n+1)\cdots(n+k-1)} < \sum_{k=3}^{\infty} \frac{2}{(n+k-2)(n+k-1)} = \frac{2}{n+1}
$$

Therefore,
$$
\lim_{n \to \infty} n \varepsilon_n = \lim_{n \to \infty} \frac{A_2}{1 + \lim_{n \to \infty} \sum_{k=1}^{\infty} \frac{A_k}{(k+1)(n+k-1)}} \le \lim_{n \to \infty} \frac{A_2}{1 + \lim_{n \to \infty} \
$$

Therefore, $(n+1)\cdots(n+k-1)$ 3 2 lim $n\varepsilon_n = \lim_{n \to \infty} \frac{A_2}{n+1} + \lim_{n \to \infty} \sum_{k=3}^{\infty} \frac{A_k}{(n+k-2)(n+k-1)} = \frac{A_2}{n+1} + \lim_{n \to \infty} \frac{A_2}{n+1} + \lim_{n \to \infty} \frac{A_2}{n+1} + \lim_{n \to \infty} \frac{A_2}{n+1} = 0$ $\lim_{n \to \infty} n \varepsilon_n = \lim_{n \to \infty} \frac{A_2}{n+1} + \lim_{n \to \infty} \sum_{k=3}^{\infty} \frac{A_k}{(n+1)\cdots(n+k-1)} \leq \lim_{n \to \infty} \frac{A_2}{n+1} + \lim_{n \to \infty} \frac{A_n}{(n+1)\cdots(n+k-1)}$ *n* + 1 $\lim_{n+1} \sum_{n \to \infty}^{\infty} \frac{A_k}{(n+1)\cdots(n+k-1)} \leq \lim_{n \to \infty} \frac{A_2}{n+1} + \lim_{n \to \infty} \frac{A_2}{n+1}$ ε eet. $\sum_{k=3}^{\infty} \overline{(n+1)\cdots(n+k-1)} \leq \sum_{k=3}^{\infty} \overline{(n+k-2)(n+k-1)} = \overline{n+1}$
 $\lim_{n\to\infty} n\varepsilon_n = \lim_{n\to\infty} \frac{A_2}{n+1} + \lim_{n\to\infty} \sum_{k=3}^{\infty} \frac{A_k}{(n+1)\cdots(n+k-1)} \leq \lim_{n\to\infty} \frac{A_2}{n+1} + \lim_{n\to\infty} \frac{2}{n+1} = 0$ $\sum \frac{A_k}{(n+1)...(n+k-1)} \leq \lim_{n \to \infty} \frac{A_2}{n+1} + \lim_{n \to \infty} \frac{2}{n+1} = 0$

Lemma 2: A new expression of the series of the remainder term

$$
\sum_{n=1}^{\infty} \mathcal{E}_n = \sum_{k=1}^{\infty} \frac{A_{k+1}}{k \cdot k!}
$$
 (5)

Proof:

Because both A_k and the general terms in above series are nonnegative, and the order of summing with respect to k or n are exchangeable, using the theorem about sum of the double series^[2], we have,

$$
\sum_{n=1}^{\infty} \mathcal{E}_n = \sum_{n=1}^{\infty} \sum_{k=2}^{\infty} \frac{A_k}{n(n+1)\cdots(n+k-1)}
$$

\n
$$
= A_2 \left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots \right)
$$

\n
$$
+ A_3 \left(\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \frac{1}{3\cdot 4\cdot 5} + \cdots \right)
$$

\n
$$
+ A_4 \left(\frac{1}{1\cdot 2\cdot 3\cdot 4} + \frac{1}{2\cdot 3\cdot 4\cdot 5} + \frac{1}{3\cdot 4\cdot 5\cdot 6} + \cdots \right) + \cdots
$$

\n
$$
= A_2 + \frac{A_3}{2\cdot 2!} + \frac{A_4}{3\cdot 3!} + \frac{A_5}{4\cdot 4!} + \cdots + \frac{A_{k+1}}{k\cdot k!} + \cdots
$$

\n
$$
= \sum_{k=1}^{\infty} \frac{A_{k+1}}{k\cdot k!}
$$

Lemma 3: The series of the remainder terms is convergence Proof:

In lemma 2, the general term of the series of the remainder terms ε_n is

$$
\frac{A_{k+1}}{k \cdot k!} = \frac{1}{k(k+1)k!} \int_0^1 x(1-x)(2-x) \cdots (k-x) dx
$$

$$
= \frac{1}{k(k+1)} \int_0^1 x \frac{(1-x)}{1} \cdot \frac{(2-x)}{2} \cdots \frac{(k-x)}{k} dx
$$

Since $0 \le x \le 1$, we have $0 \le \frac{k-x}{k} \le 1$ $\leq \frac{k-x}{i} \leq 1$, and,

$$
\frac{1}{k!} \int_0^1 x(1-x)(2-x)\cdots(k-x)dx \le 1
$$

Therefore, the general term should meet

$$
\frac{A_{k+1}}{k \cdot k!} \le \frac{1}{k(k+1)} < \frac{1}{k^2}
$$

Since A_k is nonnegative, the convergence theorem tell us the series of the tail terms is convergence

1.2 The definition of a new constant, .

By Lemma 3, the series of the remainder term ε_n , which is the remainder term of harmonic series, must be convergence to a constant, say μ , we have the following definition.

Definition 1. A new constant μ is the sum of the series of the remainder term ε_n , that is

$$
\mu = \sum_{n=1}^{\infty} \varepsilon_n \tag{6}
$$

(1) The first formula to calculate constant μ

The formula (5) of lemma 2 directly leads to: $\mu = \sum_{k=1}^{\Lambda_{k+1}}$ $\frac{1}{1}k \cdot k!$ *k k A* $\mu = \sum_{k=1}^{\infty} \frac{1}{k \cdot k}$ $\sum_{k+1}^{\infty} A_{k+1}$ = $=\sum_{k=1}^{\infty}\frac{A_{k+1}}{k\cdot k!}$ (7)

Where, A_k follows from formula (2)

(2) The second formula to calculate constant μ

The constant μ can also be calculated by the sum and remainder of the harmonic series, see formula (1) and (3) .

$$
\mu = \sum_{n=1}^{\infty} \sum_{k=2}^{\infty} \frac{A_k}{n(n+1)\cdots(n+k-1)}
$$
(8)

Where, A_k follows from formula (2)

(3) The third formula for constant μ

Revise the formula for the sum of the harmonic series, the constant μ can also be calculated

by
$$
\mu = \sum_{n=1}^{\infty} \left(\gamma + \ln n + \frac{1}{2n} - \sum_{k=1}^{n} \frac{1}{k} \right)
$$
(9)

This formula clue us on how the new constant μ and the Euler's constant γ are interrelated.

2. The definition and formula for new constant θ

(1) The formula for Euler's constant γ and its value^[3]

Euler's constant γ is the limit of the difference between harmonic series and lnn. The formula and its value are
 $\gamma = \lim_{n \to \infty} \left(\sum_{n=1}^{n} \frac{1}{n} - \ln n \right) = 0.57$

and its value are
\n
$$
\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) = 0.57721566490153286060651 \cdots \tag{10}
$$

(2) The value of the new constant μ

A computer program, using formula (9) , has found the value of the new constant μ is μ = 0.13033070075390631147707 (11)

(3) The definition of the new constant θ

The formula (9) tells us that both Euler's constant γ and the new constant μ are related to the difference between harmonic series and ln*n*. Combine the formula (9), (10) and (1), we have found the remainder term, ε_n of the harmonic series is a very small number which has proved by the lemma 1. We have also found that the sum of the remainder series is a constant and we define is as a new constant μ . We realize that constant μ is a correlative constant of Euler's constant γ , and so there must be a new constant, say θ , also hides behind γ . Or we can define θ using γ and μ .

Definition 2: New constant θ is defined as

 $\theta = 1 + \gamma + 2\mu = 1.83787706640934548356065...$ (12)

This is a singular constant and will be explained in detail later.

3. A new formula combined by θ , π and θ

3.1 A new approximation to the factorial n!

Theorem 1: A new formula to approximate n!

$$
n! = e^{\frac{1}{2}\theta} n^{n+\frac{1}{2}} e^{-n} e^{\eta_n}
$$
 (13)

Proof: The formula (14) is Abel' formula for the sum

$$
\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n-1} S_k \Delta b_k + S_n b_n \tag{14}
$$

Let

$$
a_k = \frac{1}{k}, \quad b_k = k
$$

We have

$$
S_k = \sum_{m=1}^k a_m = \sum_{m=1}^k \frac{1}{m}, \quad \Delta b_k = b_k - b_{k+1} = -1
$$

Substitute them back to (14), we have

$$
n = (n+1) \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \sum_{m=1}^{k} \frac{1}{m}
$$
 (15)

Summing the sum in formula (1) again (where the remainder is replaced by
$$
\varepsilon_k
$$
), we have\n
$$
\sum_{k=1}^{n} \sum_{m=1}^{k} \frac{1}{m} = \sum_{k=1}^{n} (\gamma + \ln k + \frac{1}{2k} - \varepsilon_k)
$$
\n
$$
= n\gamma + \sum_{k=1}^{n} \ln k + \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \varepsilon_k
$$
\n(16)\n
$$
= n\gamma + \ln(n!) + \frac{1}{2} \left(\gamma + \ln n + \frac{1}{2n} - \varepsilon_n \right) - \sum_{k=1}^{n} \varepsilon_k
$$

Substitute expression (16) to (15), and sort it out, we get
\n
$$
n = (n+1)\mathcal{Y} + \mathbf{1}\mathbf{m} \frac{1}{2n} - \mathcal{E}_n - \mathcal{Y}n - (1)\mathbf{n} - \frac{1}{2}\mathcal{Y} + (-n\frac{1}{2}\mathbf{n} - \mathcal{E}_n + \sum_{k=1}^n \mathcal{E}_k)
$$
\n
$$
= (n+1)\mathcal{Y} + n\mathcal{Y} + \mathbf{1}\mathbf{n} \mathbf{n} \frac{(n+1)}{2n} - n + (\mathcal{E}_n - \mathbf{n}\mathcal{Y} - (n) + \mathbf{n} \frac{1}{2}\mathcal{Y} - \frac{1}{2}\mathbf{n} - \frac{1}{n\mathbf{n}} \mathbf{n} \mathcal{E}_2 + \sum_{k=1}^n \mathcal{E}_k
$$
\n
$$
= \frac{1+\mathcal{Y}}{2} + \frac{1}{4n} + 1 \mathbf{m}^{n+1} - 1(\mathbf{m}) - \mathbf{1}\mathbf{n} \mathbf{n} \mathcal{E}_n - \frac{1}{2}\mathbf{n} + \sum_{k=1}^n \mathcal{E}_k
$$
\n
$$
= \frac{1+\mathcal{Y}}{2} + \mu + 1 \mathbf{m}^{n+1} - 1(\mathbf{m}) - \mathbf{1}\mathbf{n} \mathbf{n} \mathcal{E}_n - \frac{1}{2}\mathbf{n} \mathbf{n} \mathcal{E}_n
$$
\nWhere, $\eta_n = \frac{1}{4n} - n\mathcal{E}_n - \frac{\mathcal{E}_n}{2} - u_n$ (18)

$$
\sum_{k=1}^{n} \varepsilon_k = \mu - u_n \tag{19}
$$

Lemma 3 leads to

 $\lim_{n\to\infty}u_n=0$

Lemma 1 leads to

$$
\lim_{n\to\infty}\eta_n=0
$$

Take both sides of (17) as exponents of e, and reform it, we have the expression (13) Expression (13) is a new formula for n!, which is different with Stirling's formula. **Corollary:** The following limit is hold

$$
\lim_{n \to \infty} \frac{n! e^n}{n^n \sqrt{n}} = e^{\frac{1}{2}\theta} \tag{20}
$$

3. 2 A new formula combining π , e, and θ

Theorem 2: There is a very meaningful relationship between π , e, and the new constant θ

$$
\pi = \frac{1}{2} e^{\theta} \tag{21}
$$

Proof: Stirling's formula holds for all $n^{[3]}$, or:

$$
\lim_{n \to \infty} \frac{n! e^n}{n^n \sqrt{n}} = \sqrt{\mathcal{R}} \tag{22}
$$

Comparing with formula (20), the uniqueness theorem of a limit tell us

$$
\sqrt{2\pi} = e^{\frac{1}{2}\theta} \tag{23}
$$

That is same to formula (21)

4. Discussion about the new constant and the new formula

(1) The inherent relationship between π , e and θ , even they come from different sources

We know, π is the ratio of the circumference of a circle to its diameter. The e is the natural base of logarithm, and e is invariant in the process of differentiating and integrating. Even e and θ , come from different sources, it is found that they are connected together by imaginary number i in

the wonderful formula $e^{\pi i} = -1$.

Here, the research in harmonic series and the remainder series has lead to a constant μ , which is a new constant behind the Euler's constant γ . All π , e and θ are related to lnn, and are combined to a new constant θ . A further research leads to a new approximation for n!, and another wonderful formula $\pi = \frac{1}{2}$ $\pi = \frac{1}{2}e^{\theta}.$

This new formula widens our field of view, and reveals the natural relationship between π and e.

(2) The transform between π and e.

In probability and statistics, many formulas include natural exponential function e^x and $\sqrt{2\pi}$ If we use formula (23) to replace $\sqrt{2\pi}$, the natural exponential function e^x and constant e^{θ} will be combined tightly. For example, The Euler-Poisson integration formula

$$
\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi} \quad \text{will transformed as } \int_{-\infty}^{\infty} e^{-\frac{1}{2}(x^2 + \theta)} dx = 1
$$

The Fourier transformation

$$
F(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\lambda t} dt \quad \text{ will transformed as} \quad F(\lambda) = \int_{-\infty}^{\infty} f(t) e^{-i(\lambda t + \frac{\theta}{2})} dt
$$

Normal distributing function

$$
\phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{t^2}{2}} dt
$$
 will transformed as $\phi(x) = \int_{-\infty}^{x} e^{-(\frac{t^2}{2} + \theta)} dt$

(3) The transform between γ and μ

Professor Xi, Zixing , Fudan University, Shanghai China, reads my paper and thinks that the Euler's constant can be used for approximating Gamma function. However, there are no enough exquisite way to calculate γ . It is easier to calculate μ instead of γ . Therefore, he suggest starting from μ to calculate constant γ . To this end, he has programmed this approximation process and verified his idea, himself. Both his and my results are very close to the true value of the μ . Here I am grateful to professor Xi. I am especially appreciative his suggestion and verifications.

References:

[1] И. М. Leirike etc, Table for functions and Integrations, Higher education publishing company, 1959

[2] Hua Luogeng ,Introduction to the Advanced Mathematics, Science publishing company,1979

[3] The hand book for Mathematics, Dumb millions education publishing company,1979