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Abstract: We propose a gauge theory of gravity with heavy gravitons. In this framework, we examine 

whether renormalization effects can cause Newton’s constant to change dramatically with energy, 

perhaps even reducing the scale of quantum gravity to the TeV region. For the Standard Model (SM) 

Higgs boson, with mass 125GeV, we derive the invisible width of Higgs boson decay into heavy 

gravitons and calculate the ratios of partial widths and couplings for the Higgs decays into heavy 

gravitons and W vector bosons.  This proposition may reveal Higgs and graviton properties for new 

physics Beyond Standard Model (BSM). 

 

 

 

PACS number(s): 11.15.-q, 04.60.-m, 14.80.Bn, 12.60.-i 

 

Keywords: Gauge field, Quantum gravity, Standard-model Higgs bosons, Models beyond 

standard model 

 

 

 

1 Introduction 

Various workers have attempted to derive General Relativity from a gauge-like principle, 

involving invariance of physics under transformations of the locally (i.e., in the tangent space 

at each point) acting  Lorentz or Poincare  group. ([1], [2], [3], [4]). 

Gauge theory of gravity is based on the principle of local gauge invariance. Since the model 

requires strict local gravitational gauge symmetry ([4]), gauge theory is a pertubatively 

renormalizable quantum model. In the original model, all gauge gravitons are massless ([5]). 

mailto:elias.koor@gmail.com


2 
 

The massive gravitons were described effectively by Fierz and Pauli ([6]). According to their 

theory, the existence of massive gravitons would violate the local gauge symmetry of the 

Lagrangian ([7]). 

Building on this earlier work, N. Wu proposed a mechanism which introduces massive 

gravitons without violating the local gauge symmetry of the Lagrangian ([4], [8], [9], and 

[10]).  

According to Wu’s theory, the third-order gravitational gauge field 
3
aC 

 is heavy if mass is 

very large. Such a field has no contribution to the long-range gravitational force. Long-range 

gravitational force results exclusively from the contribution of the fourth-order gravitational 

gauge field
4
aC 

and obeys inverse square law.  However, it is possible that heavy graviton 

3
aC 

 field has a contribution to the Standard Model (SM) at high scale of energy [11-14]. 

 

If the mass term of gravitational gauge field is extremely small, however, the third-order 

gravitational gauge field 
3
aC 

will contribute to the middle range gravitational force with 

approximate range 
hc

L
m

  (where h is the Plank constant and c is the speed of light). For 

graviton mass 
72 10 eV  the gravitational force range will be about one meter. 

 

Recent results from cosmological observation, especially from Cosmic Microwave 

Background (CMB) temperature anisotropy, suggest that our Universe is essentially flat and 

that it consists mainly of dark matter and dark energy [15].  A theory about the origin of dark 

matter and dark energy is to regard them as consisting of massive gravitons. There are 

indications that those massive gravitons with mass 
72 10 eV can produce today’s 

acceleration of the Universe ([16], [17]).  

A major achievement has been announced by the European Laboratory for Particle Physics 

(CERN) scientists [52]: it was revealed that data from the Large Hadron Collider (LHC) [53] 

has confirmed the existence of a particle consistent with the Higgs boson, with approximately 

the 5-sigma certainty required to confirm this as a discovery [52]. This is a tentative 

confirmation of the existence of the Higgs boson. 

 

Theories of gravity include vector particles. In particular, such gravi-vectors [18-21] appear in 

flexible brane world models, in which a four dimensional space-time is embedded in a higher 

dimensional space-time, thus breaking the extra dimensional spatial translation symmetries 

[22-26]. A variety of flexible brane world models contain massive, stable gravi-vector fields 

[18, 27-29].  The decay modes of the Higgs boson which contain a pair of such gravi-vectors 

have been studied [29]. 

 

In the traditional gauge treatment of gravity the Lorentz group is localized. The gravitational 

field is, thus, not represented by gauge potential, but by the metric field gμν.  
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Here, we propose an alternative understanding of gravity, resulting from the extension of 

N.Wu’s gauge theory of gravity with heavy gravitons at high scale of energy. In this 

framework, we examine whether renormalization effects can cause Newton’s constant to 

change dramatically with energy, perhaps even reducing the scale of quantum gravity to the 

TeV region. 
 

In this paper we derive the complete set of formulas for the invisible decay widths of the 

Higgs boson in heavy graviton. The formulas are valid both for the (SM) and for any arbitrary 

extension [30].  

 

Furthermore, the bare Newton coupling constant of 3 2(10 )TeV 

,
 which is well within the 

currently allowed range of the proposed heavy graviton mass 100 GeV [31], [32], is 

appropriate for a Higgs boson of 125 GeV [33], [34]. The ratios of partial widths and 

couplings for the on–shell Higgs boson decays to heavy gravitons and vector gauge bosons 

are calculated.   

 

This proposition may reveal Higgs and graviton properties for new physics Beyond Standard 

Model (BSM) [30], [51]. 

 

 

2 Gauge theory of gravity with heavy graviton  

Taking Wu’s gauge model as our starting point ([4], [8], [9], [10], [35-41]), we introduce two 

gravitational gauge fields 
2

( , )a aC C 
 simultaneously. Since 

2
( , )a aC C 

 are vectors in Lie 

algebra ([8], [9], [35-41]), they can be expanded as 

ˆa
aC C P   , 2 2

ˆa
aC C P  .       (1) 

These correspond with two gauge covariant derivatives  

( )D igC x      , 2 2 ( )D iagC x          (2) 

and two different field strengths, given by  

2 2 2

1
[ , ]

1
[ , ]

F D D
ig

F D D
iag

  

  






        (3)

        

The Lagrangian of the system is given by 

0 2 2

2

2 22

1 1

4 4

( )( )
2(1 )

b c b c
bc bc

b b c c
bc v

g F F g F F

m
g C aC C aC

a

   
   


  

   



   

  


    (4)

   

where m is the constant mass parameter.   
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The action of the system is given by 

4
0( )S d xJ C           (5) 

where 

( ) det( ),J C g            (6) 

and 

1 1( ) ( ) .g G G
 

     
        (7)

 

For the definition of G-matrix and its inverse matrix G
-1

−matrix see [41]. In this model, 

space-time is always flat and space-time metric is always Minkowski metric, so gαβ is no 

longer space-time metric [41]. 

 

Equation (4) gives the mass term in gravitational gauge fields. To obtain the eigenstates of 

mass matrix the following rotation is needed  

3 2

4 2

cos sin

sin cos

C C C

C C C

  

  

 

 

 

  

        (8) 

where the angle   is given by 

2

1
cos

1 a

 



,   
2

sin

1

a

a

 



       (9) 

After transformation (8), the Lagrangian of the system is given by 

0 30 30 40 40

2

3 3

1 1

4 4

2

b c b c
bc bc

b cc
bc I

g F F g F F

m
g C C

   
   


 

   



   

  

   (10) 

where 
 
F

a
30μν   F

a
40μν are given by: 

30 3 3

40 4 4

a a a

a a a

F C C

F C C

   

   

   

   

        (11) 

From the above follows that the gauge field 
3
aC 

 have mass cm , whereas the gravitational 

gauge field
4
aC  , is massless. 

Here, gravitational gauge field 
3
aC 

 is heavy. Such a field contributes to the short-range 

gravitational force.  Long-range gravitational force results exclusively from the contribution 
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of the massless gravitational gauge field
4
aC 

and obeys inverse square law.  It is possible that 

the heavy graviton 
3
aC 

 field has a contribution to the Standard Model (SM) at high scale of 

energy [23-25]. 

 

 

3 The propagators of the model 

Using eq. (10), we can deduce propagator of massless gravitational gauge fields and heavy 

gravitational fields ([41]). First, after a partial integration, we change the form of eq. (10), as 

follows 

 

(1) (2)4 4
0 4 4 3 3

1
{ ( ( ) ( ) )},
2

d x d x C O x C C O x C
   

             (12) 

 

where the operators 
(1)

( )O x

  ,

(2)
( )O x


  

are defined by 

(1) 1 1 4 1
( ) 1 .

2 2 2
O x

a

     
        

 
          

 
 ([41])  (13) 

 

(2) 2
2

1 1 4 1
( ) ( ) 1 .

2 2 2
c

c

O x m
a m

 
   

        
  

         
 

   (14) 

 

We denote the propagator of massless gravitational gauge field as 

 

( )FiD x

            (15) 

 

and the propagator of heavy gravitational field as 

 

( )Fi x

             (16) 

 

The propagators (15) and (16) satisfy the following equation: 

 

(1)
( ) ( ) ( ) ( ),FO x D x y x x y

 
     

 
     (17) 

 

(2)
( ) ( ) ( ) ( ),FO x x y x x y

 
              (18) 

 

 

where 
(1)

( )x

  ,

 
(2)

( )x



 
are defined by 

 

 (1) (1)(1)1
( ) ( ) ( ) ,

2
x x x

 
     ([41])      (19) 

 

 (2) (2)(2)1
( ) ( ) ( ) .

2
x x x

 
            (20) 
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In the above definition,
 

(1)(1) ( ), ( )x x
   ([41]) and

(2)(2) ( ), ( )x x
  are defined by

 

(1) ( )x
i

 
  



 
 


,        (21) 

 

(1)
( )x

i

 
  



 
 


,         (22) 

 

(2)
2

( ) ,

c

x
m i

 
  



 
 

          

(23) 

 

(2)

2
( ) ,

c

x
m i

 
  



 
 

 
        (24) 

 

where 

 

2 , 
                   (25) 

 

and cm  the mass of heavy gravitational field. 

 

Fourier transformations to momentum space are as follows: 

 

4

4
( ) ( ) ( ) ,

(2 )

ikx
F F

d k
iD x i D k e
 
 


          (26) 

4

4
( ) ( ) ( ) ,

(2 )

ikx
F F

d k
i x i k e
 
 


            (27) 

 

where ( )FiD k

 and ( )Fi k


   are the corresponding propagators in momentum space.   

 

These Fourier transformations satisfy the following equations, 

 

(1) (1)
( ) ( ) ( ),FO k D k k

 
          (28) 

 

(2) (2)
( ) ( ) ( ),FO k k k

 
            (29) 

 

where the operators 
(1)

( )O k

  ([41])  and 

(2)
( )O k


  are defined by 

 

(1) 21 1 2 1
( ) 1 ,

2 2 2
O k k k k k k

a

    
       

 
     

 
    (30) 

 

(2) 2 2
2

1 1 2 1
( ) ( ) 1

2 2 2
c

c

k k
O k k m k k

a m

 
  

       
 

      
 

   (31) 
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and 
(1)

( ),k



(2)
( )k




 
are defined by 

 

(1) (1)(1)1
( ) ( ( ) ( )),

2
k k k

 
            (32) 

 

(1) (2)(2)1
( ) ( ( ) ( )).

2
k k k

 
           (33) 

 

The operators 
(1)

( )O k

 and

 

(2)
( )O k


  have the following symmetric property: 

 

(1) (1)
( ) ( ),O k O k

 
 

         
(34) 

 

(2) (2)
( ) ( ).O k O k

 
           (35) 

 

In the above relation,
 

(1)(1) ( ), ( )k k
   ([41]) and

(2)(2) ( ), ( )k k
   are defined by 

(1)
2

( )
k k

k
k i

 
  


 


,        (36) 

 

(1)

2
( )

k k
k

k i

 
  


 


,        (37) 

 

(2)
2 2

( ) ,

c

k k
k

k m i

 
  


 

         
(38) 

(2)

2 2
( ) ,

c

k k
k

k m i

 
  


 

 
        (39) 

 

where cm
  

is the  mass of heavy gravitational field. 

 

The solutions to the two propagator equations (28) and (29) give out the propagators in 

momentum space, 

 

 

2

( )
( ) ( ),F

i k
iD k k

k i

 








 


        (40) 

 

2 2 2

( )
( ) ( ) .F

c c

k ki k
i k k

k m i m


 







 
    
    

       (41) 

 

 

Here, space-time is always flat and space-time metric is always Minkowski metric [41], so the 

propagators (40) and (41)  is no longer reflects the space-time  curvature.   
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Unlike Einstein’s general theory of relativity, the cornerstone of this model is the gauge 

principle, not the principle of equivalence [41]. For non-relativistic problems, the proposed 

model can return to Newton’s classical theory of gravity [41]. 

 

 

In order to quantize the suggested gauge field theory of gravity in the path integral 

formulation, we first have to select gauge conditions [35], [39]. To fix the degree of freedom 

of the gauge transformation, we must select two gauge conditions simultaneously: one for the 

heavy gauge field 3C   and another for the massless gauge field 
4

C 
. For instance, if we 

select temporal gauge condition for massless gauge field 4C  , 

 

4 0,C             (42) 

 

there still exists a remainder gauge transformation degree of freedom, because the temporal 

gauge condition is unchanged under the following local gauge transformation: 

 

 1 1
4 4 1/ sin ,C UC U ig U U   

       
(43) 

 

where 

 

0,tU   ( ).U U x         
(44) 

 

In order to make this remainder gauge transformation degree of freedom completely fixed, we 

have to select another gauge condition for gauge field 3C  .  For instance, we can select the 

following gauge condition for gauge field 3 ,C   

 

3 0.C  
          

(45) 

 

If we select two gauge conditions simultaneously, when we quantize the theory in path 

integral formulation there will be two gauge fixing terms in the effective Lagrangian. The 

effective Lagrangian can then be written as: 

 

1 21 1 2 21 1 2 2
1 2

1 1
,

2 2

a a a a
eff f ff f f f M M

a a
        

    

(46) 

 

where 

 

41 1
( ),a af f C   32 2

( ).a af f C 
      

(47) 

 

If we select 

 

2 3
,af C 

 
          

(48) 

 

then the propagator for heavy gauge field 3C   is: 

 

2 2 2 2
1 2( ) ( ) / ( ) ( ) (1 ) / ( ) .c cFi k i k k m i k a k k k a m

 
               

    
(49) 
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If we let k  approach infinity, then 

 

2

1
( ) .F k

k


 

         

(50) 

 

In this case, and according to the power-counting law, the gauge field theory of gravity with 

heavy gravitons suggested in this paper is a kind of renormalizable theory [35], [39]. 

 

 

4 The redefinition of Newton’s coupling constant  
It has become a convention to interpret the Planck scale MP as a fundamental scale of Nature, 

indeed as the scale at which quantum gravitational effects become important. However, 

Newton’s constant
2

plG M   in natural units 1c   is measured in very low-energy 

experiments, and its connection to physics at short distances – in particular, quantum gravity - 

is tenuous. If the strength of gravitational interactions is scale-dependent, the true scale *  at 

which quantum gravity effects are large is one at which 

 

*( )G   ≈ 2
*
            (51) 

 

This condition implies that gravity at length scales 1
*
  will be unsuppressed. Below we will 

show that condition (51) can be satisfied in models with *  as small as a TeV ([42]).  

 

We consider one scalar field coupled to gravity and adopt the following notation: 

 

4
30 30 40 40

2

3 3

1 1
( ){(

128 128

1
) )}

64 2

b c b c
bc bc

b cc
bc

S d xJ C g F F g F F
G G

m
g C C g

G

   
   

 
  

   
 

  


 

   


 (52) 

 

Consider the gravitational potential between two heavy, non-relativistic sources, which arises 

through graviton exchange ([42]). The leading term in the gravitational Lagrangian (52) is  

 

1
30 30 40 40

1 2
3 3

(

)

b c b c
bc bc

b c

G g F F g F F

g C C G q

   
   


  

   









 

,    (53)  

 

where 

 

30 30 40 40

2
3 3

(

) .

b c b c
bc bc

b c

g F F g F F

g C C q

   
   


  

   





 
     (54)

 

 

Here, the terms 

 

40 40
( )b c

bcg F F 
    ,  

30 30 3 3
( )b c b c

bcg F F g C C  
     

      (55)
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corresponding to massless and heavy gravitons, are of orders k
2
  and k

2
 +m

2
 respectively. 

 

We can interpret quantum corrections to either massless or heavy gravitons propagators from 

the loop (similar to those given in reference [42]) as a renormalization of G.  Neglecting the 

index structure, the massless graviton propagator given by equation (40) with one-loop 

correction is 

( )cD k ≈
2 2 2

....,
iG iG iG

k k k
            (56) 

 

where q is the momentum carried by the graviton in this model. The term in the Feynman 

diagram Σ proportional to k
2 

can be interpreted as a renormalization of G, and is easily 

estimated from the Feynman diagram: 

 

  ≈ 
2 4 2 2( ) .......,ik d pD p p


          (57) 

 

where D(p) is the propagator of the particle in the loop. In the case of a scalar field, the loop 

integral is quadratically divergent. By incorporating this into a redefinition of G one obtains 

an equation of the form 

 

21 1
,

ren bar

c
G G

             (58) 

 

where Λ  is the ultraviolet cutoff of the loop and 
21/16c  . renG   is the renormalized 

Newton constant measured in low-energy experiments.  

 

Fermions contribute with the same sign to the running of Newton’s constant, whereas gauge 

bosons contribute with the opposite sign than scalars.  Taking *    (so that the loop cutoff 

coincides with the onset of quantum gravity) gives
2

*( )bareG G    . Then, demanding that 

2
ren PlG M   implies that *  cannot be very different from the Planck scale PlM , unless c is 

very large.  For example, to have * 14TeV   , for example, requires that 
3010c  : it takes 

3010 ordinary scalars or fermions with masses below 1 TeV (which can run in the loop).  This 

observation has already been made by Dvali et al. [43, 44, 45], although in [43] the argument 

is expressed in terms of a consistency condition from black hole evaporation rather than as 

renormalization group behavior [42]. 

 

The functional derivation of equation (58) that follows shows that the sign of the contribution 

of the scalar fields to the running of Newton’s constant is not an artifact of the crude (non-

covariant) regularization procedure we used earlier. Consider the contribution of a scalar field 

minimally coupled to the suggested gravity. We follow the presentation of Larsen and 

Wilczek [46] (see also [47, 48, 42]). The one-loop effective action W is defined through 

 

21
( )

2 1/28 [det( )]
m

We D e m
 


 

 
          (59) 

 

We define the heat kernel 

 

( ) i

i

H Tre e
            (60) 
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where i  are the eigenvalues of 2.m      Then the effective action reads 

 

2

1 1 1 ( )
lndet ln

2 2 2
i

i

H
W d




 





             (61) 

The integral over   is divergent and has to be regulated by an ultraviolet cutoff  2  . The heat 

kernel method can be used to regularize the leading divergence of this integral. This technique 

does not violate general coordinate invariance. One can write 

 

( ) ( , , ),H dxG x x             (62) 

 

where the Green’s function ( , , )G x x   satisfies the differential equation 

 

( , , ) 0;x G x x 


 
   

 
        (63) 

 

( , ,0) ( ).G x x x x            (64) 

 

In flat space one has 
2

0

1 1
( , , ) exp ( ) ,

4 4
G x x x x

 

   
      

   
       (65) 

 

but, in general, one must express the covariant Laplacian in local coordinates and expand for 

small field strengths. The result is similar to that given in [49] 

 

4 4
30 302

2
3/2

40 340 3

1
( ) { ( ) ( )(

6(4 )

) ( )}.
2

c

H d xJ C d xJ C g F F

m
g F F g C C O

   
  

      
    


  



   

 

  

 
    (66) 

 

Plugging this back into (61) and comparing with (52), one obtains the renormalized Newton 

constant 

 

2

1 1 1
,

12ren bareG G 
            (67) 

 

In this, renG , relevant for long-distance measurements, is much smaller than the bare value if 

the scalar field is integrated out ( 0).    

 

Up to this point our results have been in terms of old fashioned renormalization: we give a 

relation between the physical observable renG  and the bare coupling .bareG  A modern 

Wilsonian effective theory would describe modes with momenta | | .k    Modes with | |k   

have been integrated out and their virtual effects already absorbed in effective couplings 

( ).g    

In this language, ( 0)renG G    is appropriate for astrophysical and other long-distance 

measurements of the strength of gravity. 
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A Wilsonian Newton constant ( )G   can be calculated via a modified version of the previous 

method, this time with an infrared cutoff  .  For example, (9) is modified to 
2

2

1 ( )
.

2

H
W d












             (68) 

The resulting Wilsonian running of Newton’s constant for N scalars or Weyl fermions, as 

shown by a similar functional calculation, is 

 
21 1

,
( ) (0) 12G G



 
            (69) 

 
21 1

( ) (0) 12
N

G G



 
            (70) 

 

This is comparable with Larsen and Wilczek [46], who also derive the opposite sign in the 

gauge boson case. [42].   

 

As we approach the scale of strong quantum gravity, we lose control of the model. However, 

it seems implausible that the sign of the beta function for Newton’s constant will reverse, so 

the qualitative prediction of weaker gravity at low energies should still hold. 

 

5 Heavy graviton on–shell decay of the Higgs boson 
In the recent announcement of a major achievement by CERN scientists, it was revealed that 

the data from the LHC [53] has confirmed the existence of a particle consistent with the 

Higgs boson, within the 5-sigma certainty required to confirm this as a discovery [52]. This is 

adequate to tentatively confirm the existence of the Higgs boson. 

 

We propose the on–shell decay of Higgs boson to two heavy gravitons (denoted as H CC ).  

The invisible differential width is given by [50] 

 

1

2 1
2 2

| |1
| | ,

32
cc k

pol H

k
d M d

M
           (71) 

 

where 

 

1 216 ( ) ( ) ( )N cM i G m k k k 
           (72) 

 

is the amplitude for the Higgs decay to two heavy gravitons, 
2

*N bareG G   *( 14 )TeV 
 

the bare Newton coupling constant, defined by equations (67), (70).  

 

The tensor ( )k in the amplitude (72), must be constructed out of  and the independent 

wave numbers 1k   and 2k 1 2( )k k k  . We write 

 

( ) ( ),ck T k    

        (73) 

where 
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2 2
( ) .c

c

k k
T k

k m

 
  

          (74) 

 

are the extra contributions from new physics BSM due to heavy gravitons.

  

We write the amplitude (72) in terms of the extra contributions ( )cT k  as follows  

 

1 216 ( ) ( ) ( )N cM i G m k k k 
    = 1 216 ( ) ( )( ( ))c

N ci G m k k T k 
     

 (75) 

 

We get, therefore, 

2 2 1 2 1 2
2 2

| | ( 16 ) ( ( ))( ( ))c c
N c

pol c c

k k k k
M G m T k T k

m m

  
 

       
  
        
  
  

  

2
1 21 2 1 1 2 2 1 2

4 4 4 4

1 21 2
2 2

1 2 1 2
2 2

( )
[2 2 ( ) 2 ( ) 2 ( ) 2 ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )]

c c c c

c c c c

c c c c

c c

c c

c c

k k k k k k k kk k
T k T k T k T k

m m m m

k k k k
T k T k T k T k T k T k

m m

k k k k
T k T k

m m

    


   


   

  

  

 


     

  


 (76)

 

 

Now, using 

 

 2 2 4 2 2 2 2
1 2

1 1
2 ( , ; ) 4

2 2
c c c cH H Hk k M m M m m M M          (77) 

 

where 

 

2

2
( , ; ) 1 4

x y xy
x y z

z z z


 
    
 

         (78) 

 

and defining 

 

2 2 2 2
1 2 2 1 1 1 2 2

1 2 4 2 2 2 2
( , , , ( )) 4[2 ( ) 2 ( ) 2 ( )c c c c

H

H H H H H

p p p p p p p p
X p p M T p T p T p T p

M M M M M

  


       

2 2 2
11 2 11 2 1 2 2

4 4 2 2
2 ( ) ( ) ( ) ( ) ( )c c c c c

H H H H

p pp p p p p p p
T p T p T p T p T p

M M M M

 
 

 


    

2
21 2 1 2 1 2

2 2 2 2
( ) ( ) ( ) ( )]c c c c

H H H H

p p p p p p p
T p T p T p T p

M M M M

   
 

     , (79) 

 

we can write , 
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4 4
2 2 2 2 2

1 24 4
| | 4( 16 ) ( , ; ) 12 ( , , , ( ))

4

ccH
N c c c HH

pol c H

M m
M G m m m M X k k M T k

m M
 

 
   
 
 

  , (80) 

 

 

It is easy to see that the 4–momenta 1k  and 2k will only appear in the square bracket of 

equation (80) as scalar products, such as 1 2 1,k k P k   and 2.P k   These can all be written in 

terms of particle masses; therefore, there is no angular dependence on .d   

 

Noticing also that 

 

2 2 2
1

1
| | ( , ; )

2
H c c Hk M m m M  ,       (81) 

 

 

we can finally write: 

 

4
3 2 2 2 2 2 2

1 24
( , ; ) ( , ; ) 12 ( , , , ( ))cc

cc N c c c c HH H H
H

m
G M m m M m m M X k k M T k

M
 

 
    
 
   

(82) 

 

The term proportional to X represents the extra contributions from physics BSM and is in 

agreement with the results of K. Hagiwara, R. Szalapski and D. Zeppenfeld [51]. 

  

 

6 A comparison of the on–shell decays H WW  and H CC   

We consider the most general coupling of the Higgs H with W vector gauge boson (denoted 

as HW), where H the Higgs gauge boson and C the heavy graviton. This is
  

( )W
WigM g T 

         (83) 

 

where g
 
is the weak coupling constant and

 
WT  is the  extra contributions from new physics 

BSM.  

 

The differential width of the on-shell H WW  decay is given by [50] 

 

42 3
2 2 2 2 2 2

1 24
( , ; ) ( , ; ) ( , , , )

64

WWH
ww HW W H W W H

H

Mg M
M M M M M M X k k M T

M
 



 
    
 
   (84) 

where 

 

2

2
( , ; ) 1 4

x y xy
x y z

z z z


 
    
 

  ([50])       (85) 

and  

2 2 2 2
1 2 2 1 1 1 2 2

1 2 4 2 2 2 2
( , , , ) 4[2 2 2W W W W

H

H H H H H

p p p p p p p p
X p p M T T T T

M M M M M
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2 2 2
11 2 11 2 1 2 2

4 4 2 2
2 W W W W W

H H H H

p pp p p p p p p
T T T T T

M M M M

 
 

 


  

([50])

 

2
21 2 1 2 1 2

2 2 2 2
]W W W W

H H H H

p p p p p p p
T T T T

M M M M

   
 

        (86) 

 

 

Using equations (82), (84), we derive the ratios of partial widths and couplings for the on–

shell decays H WW  and H CC . 

 

( / )
,

/

c W

c W

  

 
          

(87)

  

2 2

2 2

( ( , ) / ( , ))

( , ) / ( , )

g H C g H W

g H C g H W


.        (88) 

 

Here, the bare Newton coupling constant of 3 2(10 )TeV   is well within the currently 

allowed range of the proposed heavy graviton mass 100 GeV [31], [32] and is appropriate for 

a Higgs boson of 125 GeV.  

 

Using equations (87) and (88), we have calculated the ratios of partial widths and couplings 

for the on–shell decays H WW  and H CC , for  integrating luminosity in the range of 

(30-300) fb
-1

 (Tables 1, 2). 

 

 
Tables.1. Ratios of partial widths for Higgs decay to WW and CC 

Integrating luminosity (fb
-1

) Ratios of partial widths (Γc/Γw) 

30 0.17 

300 0.105 

 

Tables.2 Ratios of couplings for Higgs decay to WW and CC 

Integrating luminosity (fb
-1

) Ratios of couplings (gc/gw)
2 

30 0.21 

300 0.07 

 

 

 

 

7 Conclusions 

We propose an alternative understanding of gravity resulting from the extension of N. Wu’s 

gauge theory of gravity with heavy gravitons at high scale of energy. In this framework, we 

show that renormalization effects can cause Newton’s constant to change dramatically with 

energy, perhaps even reducing the scale of quantum gravity to the TeV region. 
 

We derive the complete set of formulas for the invisible decay widths of the Higgs boson in 

heavy graviton. The formulas are valid both for the SM and for any arbitrary extension.  

 

The bare Newton coupling constant of 3 2(10 )TeV   is well within the currently allowed 

range of the proposed heavy graviton mass 100 GeV and is appropriate for a Higgs boson of 

125 GeV. Using equations (87) and (88), we calculate the ratios of partial widths and 
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couplings for the on–shell decays H WW  and H CC , for  integrating luminosity in the 

range of (30-300) fb
-1

. 

 

This proposition may reveal Higgs and graviton properties for new physic BSM. 
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