

Two Uncertain Things

Sari Haj Hussein¹

APSIA Breakfast Talk 1 Interdisciplinary Center for Security, Reliability and Trust University of Luxembourg

2011-07-06

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

KORK EXTERNE PROVIDE

[Build-up](#page-2-0)

- [Sample Space](#page-3-0)
- **•** [Probability Measures](#page-5-0)
- [Belief and Plausibility Measures](#page-10-0)
- 2 [The First Uncertain Thing](#page-23-0)
	- **•** [Assumptions](#page-24-0)
	- [Progress](#page-25-0)

3 [Build-up Again](#page-27-0)

- [Conditioning Belief Measures to Update Knowledge](#page-28-0)
- [Meaningful Measure of Uncertainty with Beliefs](#page-29-0)
- [Generalized Hartley's Measure with Beliefs](#page-30-0)
- [Generalized Shannon's Measure with Beliefs](#page-31-0)
- [Aggregate Uncertainty](#page-32-0)
- 4 [The Second Uncertain Thing](#page-34-0)
	- **•** [Assumptions](#page-35-0)
	- [Progress](#page-36-0)

KORK EXTERNE PROVIDE

1 [Build-up](#page-2-0)

- [Sample Space](#page-3-0)
- **[Probability Measures](#page-5-0)**
- [Belief and Plausibility Measures](#page-10-0)
- [The First Uncertain Thing](#page-23-0)
	- **•** [Assumptions](#page-24-0)
	- [Progress](#page-25-0)

[Build-up Again](#page-27-0)

- **[Conditioning Belief Measures to Update Knowledge](#page-28-0)**
- [Meaningful Measure of Uncertainty with Beliefs](#page-29-0)
- [Generalized Hartley's Measure with Beliefs](#page-30-0)
- [Generalized Shannon's Measure with Beliefs](#page-31-0)
- **[Aggregate Uncertainty](#page-32-0)**
- [The Second Uncertain Thing](#page-34-0)
	- **•** [Assumptions](#page-35-0)
	- [Progress](#page-36-0)

Sample Space (Frame of Discernment)

- A set of possible worlds/states/elementary outcomes $W = \{w_1, ..., w_n\}$
- \bullet An agent considers some subset of W possible and this subset qualitatively measures her uncertainty
- The more worlds an agent considers possible, the more uncertain she is, and the less she knows
- When throwing a dice, the sample space would be $W = \{w_1, w_2, w_3, w_4, w_5, w_6\}$, w_i means the dice lands *i*
- An agent can consider the dice landing on an even number possible, that is the subset $W = \{w_2, w_4, w_6\}$

Sample Space (Frame of Discernment)

- A set of possible worlds/states/elementary outcomes $W = \{w_1, ..., w_n\}$
- \bullet An agent considers some subset of W possible and this subset qualitatively measures her uncertainty
- The more worlds an agent considers possible, the more uncertain she is, and the less she knows
- When throwing a dice, the sample space would be $W = \{w_1, w_2, w_3, w_4, w_5, w_6\}$, w_i means the dice lands *i*
- • An agent can consider the dice landing on an even number possible, that is the subset $W = \{w_2, w_4, w_6\}$

KORKAR KERKER SAGA

- A method for representing uncertainty
- Given a sample space $W = \{w_1, ..., w_n\}$, a probability measure assigns to each world w_i a number (a probability)
- This probability describes the likelihood that the world w_i is the actual world

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Algebra

- An algebra over W is a set F of subsets of W that contains W and is closed under union and complementation
- If A and B are in F, then so are $A \cup B$ and A

 \bullet Given a sample space W , a probability measure is a function μ : $F \rightarrow [0, 1]$ that satisfies the following two properties:

$$
\bullet~~\mu(W)=1
$$

 \bullet Finite additivity: $\mu(A \cup B) = \mu(A) + \mu(B)$ if A and B are disjoint sets in F

KORKAR KERKER ST VOOR

Algebra

- An algebra over W is a set F of subsets of W that contains W and is closed under union and complementation
- If A and B are in F, then so are $A \cup B$ and A

Probability Measure

 \bullet Given a sample space W , a probability measure is a function $\mu : F \to [0, 1]$ that satisfies the following two properties:

$$
\bullet \ \mu(W) = 1
$$

• Finite additivity: $\mu(A \cup B) = \mu(A) + \mu(B)$ if A and B are disjoint sets in F

- When flipping a coin, the sample space would be $W = \{w_H, w_T\}$
- An algebra: $F = \{\{w_H\}, \{w_T\}, \{w_H, w_T\}\}\$
- A probability measure: $\mu : F \rightarrow [0, 1]$

•
$$
\mu({w_H}) = 0.7, \mu({w_T}) = 0.3
$$

\n• $\mu({w_H, w_T}) = \mu({w_H}) + \mu({w_T}) = 1$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- Probability measures are not good at representing uncertainty because of the finite additivity property
- Ignorance is difficult to express an agent has to assign a probability to $\{w_H\}$
- An agent may not have the computational power to compute all the probabilities

Belief Measure

 \bullet Given a sample space W, a belief measure is a function Bel : $2^W \rightarrow [0, 1]$ that satisfies the following three properties:

•
$$
Bel(\emptyset) = 0
$$

$$
\bullet\;\;Bel(W)=1
$$

- **Inclusion-exclusion rule:** $Bel(A_1 \cup A_2 \cup ... \cup A_n) \geq \sum_j Bel(A_j) - \sum_{j < k} Bel(A_j \cap A_k) +$ $\dots + (-1)^{n+1}$ Bel(A₁ ∩ A₂ ∩ ... ∩ A_n) (Ω₁)
- • In (Ω_1) , let $A_1 = A$ and $A_2 = \overline{A}$ for $n = 2$. Then $Bel(A \cup \overline{A}) > Bel(A) + Bel(\overline{A}) - Bel(A \cap \overline{A})$ which gives $Bel(A) + Bel(A) \leq 1$

KORKAR KERKER ST VOOR

Belief Measure

 \bullet Given a sample space W, a belief measure is a function Bel : $2^W \rightarrow [0, 1]$ that satisfies the following three properties:

•
$$
Bel(\emptyset) = 0
$$

$$
\bullet\;\;Bel(W)=1
$$

- **Inclusion-exclusion rule:** $Bel(A_1 \cup A_2 \cup ... \cup A_n) \geq \sum_j Bel(A_j) - \sum_{j < k} Bel(A_j \cap A_k) +$ $\dots + (-1)^{n+1}$ Bel(A₁ ∩ A₂ ∩ ... ∩ A_n) (Ω₁)
- • In (Ω_1) , let $A_1 = A$ and $A_2 = \overline{A}$ for $n = 2$. Then $Bel(A \cup \overline{A}) \ge Bel(A) + Bel(\overline{A}) - Bel(A \cap \overline{A})$ which gives $Bel(A) + Bel(\overline{A}) \leq 1$

KORKAR KERKER SAGA

Plausibility Measure

- \bullet Given a sample space W, a plausibility measure is a function $PI: 2^W \rightarrow [0, 1]$ that satisfies the following three properties:
	- $Pl(\emptyset) = 0$

$$
\bullet \ \mathsf{PI}(W) = 1
$$

Inclusion-exclusion rule: $Pl(A_1 \cap A_2 \cap ... \cap A_n) \leq \sum Pl(A_j) -$

$$
\sum_{j < k} P I(A_j \cup A_k) + \ldots + (-1)^{n+1} Bel(A_1 \cup A_2 \cup \ldots \cup A_n) \quad (\Omega_2)
$$

KORKAR KERKER ST VOOR

• In (Ω_2) , let $A_1 = A$ and $A_2 = \overline{A}$ for $n = 2$. Then $PI(A \cap \overline{A}) \leq PI(A) + PI(\overline{A}) - PI(A \cup \overline{A})$ which gives $Pl(A) + Pl(\overline{A}) > 1$

Plausibility Measure

- \bullet Given a sample space W , a plausibility measure is a function $PI: 2^W \rightarrow [0, 1]$ that satisfies the following three properties:
	- $Pl(\emptyset) = 0$

$$
\bullet \ \mathsf{PI}(W) = 1
$$

Inclusion-exclusion rule: $Pl(A_1 \cap A_2 \cap ... \cap A_n) \leq \sum Pl(A_j) -$

$$
\sum_{j < k} P I(A_j \cup A_k) + \ldots + (-1)^{n+1} Bel(A_1 \cup A_2 \cup \ldots \cup A_n) \quad (\Omega_2)
$$

KORKAR KERKER ST VOOR

• In (Ω_2) , let $A_1 = A$ and $A_2 = \overline{A}$ for $n = 2$. Then $PI(A \cap \overline{A}) \leq PI(A) + PI(\overline{A}) - PI(A \cup \overline{A})$ which gives $Pl(A) + Pl(\overline{A}) > 1$

Basic Belief Assignment (Mass Function) (Möbius Representation)

 \bullet Given a sample space W, a basic belief assignment is a function $m: 2^W \rightarrow [0, 1]$ that satisfies the following two properties:

$$
\begin{array}{ll} \bullet & m(\varnothing) = 0 \\ \bullet & \sum\limits_{A \in 2^W} m(A) = 1 \end{array}
$$

- \bullet m(A) \geq 0
- If $m(A) > 0$ then A is a focal set
- Let $\mathcal F$ be the set of all focal sets induced by m, then $\langle \mathcal F, m \rangle$ is a body of evidence

KORKAR KERKER ST VOOR

• It is clear that a bba resembles a probability distribution

Basic Belief Assignment (Mass Function) (Möbius Representation)

 \bullet Given a sample space W, a basic belief assignment is a function $m: 2^W \rightarrow [0, 1]$ that satisfies the following two properties:

$$
\begin{array}{ll} \bullet & m(\varnothing) = 0 \\ \bullet & \sum\limits_{A \in 2^W} m(A) = 1 \end{array}
$$

- $m(A) > 0$
- If $m(A) > 0$ then A is a focal set
- Let F be the set of all focal sets induced by m, then $\langle F, m \rangle$ is a body of evidence

KORKAR KERKER SAGA

• It is clear that a bba resembles a probability distribution function

Some Formulas

KOKK@KKEKKEK E 1990

- Bel(A) is the total belief that the actual world is in the set A which is obtained by adding degrees of evidence for the set itself, as well as for any of its subsets
- \bullet PI(A) is the total belief that the actual world is in the set A, and also the partial evidence for the set that is associated with any set that overlaps with A
- \bullet m(A) is the degree of belief that the actual world is in the set A, but it does not take into account any additional evidence for the various subsets of A

 \bullet $Q(A)$ is the total belief that can move freely to every point of A

- The interval $[Bel(A), Pl(A)]$ describes the range of possible values of the likelihood of A
- \bullet If W is finite, then there is one-to-one correspondence between belief measures and bbas

Total Ignorance

- When no evidence is available about the actual world
- Capture it using a vacuous bba $m_{vac}: 2^W \rightarrow [0, 1]$ where $m\text{vac}(W) = 1$ and $m\text{vac}(A) = 0$ for all $A \in 2^W \backslash W$
- Capture it using a vacuous belief measure $Bel_{\text{vac}} : 2^W \rightarrow [0, 1]$ where $Bel_{vac}(W) = 1$ and $Bel_{vac}(A) = 0$ for all $A \in 2^W \backslash W$
- • Capture it using a vacuous plausibility measure $Pl_{vac}: 2^W \rightarrow [0, 1]$ where $Pl_{vac}(\emptyset) = 0$ and $Pl_{vac}(A) = 1$ for all $A \neq \emptyset$

KORKAR KERKER ST VOOR

- A bag contains 100 balls; 25 are known to be red, 25 are known to be either red or blue, and 50 are known to be either blue or yellow.
- The sample space $W = \{ red, blue, yellow\}$
- • The bba $m: 2^W \rightarrow [0, 1]$ where $m({red}) = 0.25$, $m({red, blue}) = 0.25, m({blue, yellow}) = 0.5, and$ $m({b|ue}) = m({v|du}) = m({red, yellow}) = m(W) = 0$

- The belief measure $Bel: 2^W \rightarrow [0, 1]$ where $Bel({red}) = 0.25, Bel({red, blue}) = 0.5,$ $Bel({$ [blue, yellow $) = 0.5$, $Bel({\{blue\}}) = Bel({\{yellow\}}) = 0,$ $Bel({red, yellow}) = 0.25$, and $Bel(W) = 1$
- • The plausibility measure $Pl: 2^W \rightarrow [0, 1]$ where $Pl({red}) = 0.5, Pl({blue}) = 0.75, Pl({yellow}) = 0.5,$ $PI({red, blue}) = 1, PI({blue, yellow}) = 0.75,$ $PI({red, yellow}) = 1$, and $PI(W) = 1$

Rule of Combination

- Used to combine evidence obtained from two independent sources
- Assume that the degrees of evidence 1 and 2 are captured using the bbas m_1 and m_2 respectively
- $m_{1,2}(A)=\frac{\sum\limits_{B\cap C=A}m_1(B)m_2(C)}{1-c}$ $\overline{a_{1-c}}$ where $A\neq\varnothing$, $m_{1,2}(\varnothing)=0$, and $c = \sum m_1(B)m_2(C)$ $B \cap C = \emptyset$
- c is the degree of conflict between the two evidence
- The rule is commutative $m_{1,2} = m_{2,1}$
- The rule is associative $m_{1,(2,3)} = m_{(1,2),3}$
- • The neutral element is m_{vac} , that is $m_{1,\text{vac}} = m_{\text{vac}}$, $1 = m_1$

KORK EXTERNE PROVIDE

- [Sample Space](#page-3-0)
- **[Probability Measures](#page-5-0)**
- [Belief and Plausibility Measures](#page-10-0)

2 [The First Uncertain Thing](#page-23-0)

- **•** [Assumptions](#page-24-0)
- [Progress](#page-25-0)

[Build-up Again](#page-27-0)

- **[Conditioning Belief Measures to Update Knowledge](#page-28-0)**
- [Meaningful Measure of Uncertainty with Beliefs](#page-29-0)
- [Generalized Hartley's Measure with Beliefs](#page-30-0)
- [Generalized Shannon's Measure with Beliefs](#page-31-0)
- **[Aggregate Uncertainty](#page-32-0)**
- [The Second Uncertain Thing](#page-34-0)
	- **•** [Assumptions](#page-35-0)
	- [Progress](#page-36-0)

- A computing system has a number of possible states represented by the space W
- \bullet Over a time period t, the actual state of the system is in the set $A \in 2^W$
- \bullet Over the same time period t, an attacker is trying to discover this actual state

- Initially, the attacker has no evidence about the actual state
- $m_{\text{vac}} : 2^W \rightarrow [0, 1]$ where $m(W) = 1$ and $m(A) = 0$ for all $A \in 2^W \backslash W$
- \bullet The attacker obtains evidence from source src_1 that the actual state is in the set $A \in 2^W$

$$
\bullet \ \ m_1: 2^{\mathcal W} \rightarrow [0,1] \ \text{where} \ \ m(A) = \alpha_1 > 0 \ \text{and} \ \ m(\mathcal W) = 1-\alpha_1
$$

 \bullet ...

- \bullet The attacker obtains the last evidence from source src_n that the actual state is in the set $A \in 2^W$
- • $m_n: 2^W \to [0, 1]$ where $m(A) = \alpha_n > 0$ and $m(W) = 1 - \alpha_n$

KORKAR KERKER DRAM

- Assuming that the sources $src_1, ..., src_n$ are independent
- The attacker will combine to get m_1 , $_n(W) = (1 - \alpha_1) \times ... \times (1 - \alpha_n)$ and m_1 , $n(A) = 1 - (1 - \alpha_1) \times ... \times (1 - \alpha_n)$
- The Law of Large Numbers says that m_1 , $n(A)$ will eventually reach 1
- When this happens, the attacker will have full belief that the actual state is in the set $A \in 2^W$, which means that the system is compromised.
- • Poisoning the values of $\alpha_1, ..., \alpha_n$ by minimizing them would delay the satisfaction of the Law of Large Numbers, possibly until a next time period $t^{'}$ by the start of which the system becomes in a different actual state

KORK EXTERNE PROVIDE

- [Sample Space](#page-3-0)
- **[Probability Measures](#page-5-0)**
- [Belief and Plausibility Measures](#page-10-0)
- [The First Uncertain Thing](#page-23-0)
	- **•** [Assumptions](#page-24-0)
	- [Progress](#page-25-0)

3 [Build-up Again](#page-27-0)

- **[Conditioning Belief Measures to Update Knowledge](#page-28-0)**
- [Meaningful Measure of Uncertainty with Beliefs](#page-29-0)
- [Generalized Hartley's Measure with Beliefs](#page-30-0)
- [Generalized Shannon's Measure with Beliefs](#page-31-0)
- **[Aggregate Uncertainty](#page-32-0)**
- [The Second Uncertain Thing](#page-34-0)
	- **•** [Assumptions](#page-35-0)
	- [Progress](#page-36-0)

Conditioning Belief Measures to Update Knowledge

- An agent has an evidence that the actual world is in the set $A \in 2^W$
- Later she obtains another evidence that the actual world is in the set $B \in 2^W$

KORKARYKERKER POLO

• How can she update her knowledge?

•
$$
Bel(B||A) = \frac{Bel(B\cup \overline{A}) - Bel(\overline{A})}{1 - Bel(\overline{A})}
$$

$$
\bullet \ \textit{PI}(B||A) = \frac{\textit{PI}(B \cap A)}{\textit{PI}(A)}
$$

[Meaningful Measure of Uncertainty with Beliefs](#page-29-0)

Meaningful Measure of Uncertainty with Beliefs

A measure M of the uncertainty of Bel is meaningful if it satisfies the following properties:

- \bullet Probability Consistency: If all focal sets are singletons, M should assume Shannon's entropy: $\mathcal{M}(Bel) = -\sum Bel(\{x\})log_2Bel(\{x\})$ x∈W
- 2 Set Consistency: If Bel focuses on a single set $A \subseteq W$, M should assume Hartley's entropy: $\mathcal{M}(Bel) = log_2|A|$
- **3** Expansibility: The range of M is $[0, log_2|W|]$ and M is measured in bits
- \bullet Subadditivity: Let Bel₁, Bel₂, and Bel be bbas on W_1 , W_2 , and $W_1 \times W_2$, then $\mathcal{M}(Bel) \leq \mathcal{M}(Bel_1) + \mathcal{M}(Bel_2)$
- \bullet Additivity: Let Bel₁, Bel₂, and Bel be bbas on W_1 , W_2 , and $W_1 \times W_2$, and assume that Bel₁ and Bel₂ are noninteractive, then $\mathcal{M}(Bel) = \mathcal{M}(Bel_1) + \mathcal{M}(Bel_2)$

Generalized Hartley's Measure (U-uncertainty)

- Given a sample space W and a body of evidence $\langle F, m \rangle$ on this space, the generalized Hartley's measure is given by the formula: $GH(m) = \sum m(A)log_2|A|$ $\Delta \subset \mathcal{F}$
- It has the Expansibility Property $GH(m) \in [0, log_2 |W|]$ and is measured in bits
	- lower bound when all focal sets are singletons
	- upper bound in total ignorance
- It has the Subadditivity Property: $GH(m) \leq GH(m_1) + GH(m_2)$
- • It has the Additivity Property: $GH(m) = GH(m_1) + GH(m_2)$

 000000

00000

 $|B|$ \setminus

[Generalized Shannon's Measure with Beliefs](#page-31-0)

Generalized Shannon's Measure with Beliefs

A number of unsuccessful attempts to generalize Shannon's measure with beliefs.

1 Measure of Dissonance: $E(m) = -\sum_{A \in \mathcal{F}} m(A)log_2Pl(A)$

• Measure of Confusion:
$$
C(m) = -\sum_{A \in \mathcal{F}} m(A) \log_2 Bel(A)
$$

$$
\text{Measure of Discord:} \\ D(m) = -\sum_{A \in \mathcal{F}} m(A) \log_2 \left(1 - \sum_{B \in \mathcal{F}} m(B) \frac{|B-A|}{|B|} \right)
$$

A∈F **4** Measure of Strife: $\sqrt{2}$

$$
ST(m) = -\sum_{A \in \mathcal{F}} m(A) \log_2 \left(1 - \sum_{B \in \mathcal{F}} m(B) \frac{|A - B|}{|A|} \right)
$$

- All of these measures do not have the Subadditivity Property, and are thus meaningless.
- • This frustrated search was replaced with Aggregate **Uncertainty**

Aggregate Uncertainty

•
$$
AU(Bel) = \max_{\mathcal{P}_{Bel}} \left\{-\sum_{x \in W} p_x \log_2 p_x \right\}
$$

 \bullet P_{Bel} is a set of probability distributions that satisfies:

•
$$
p_x \in [0, 1]
$$
 for all $x \in W$ and $\sum_{x \in W} p_x = 1$

•
$$
Bel(A) \leq \sum_{x \in A} p_x
$$
 for all $A \subseteq W$

 \bullet AU is a meaningful measure of uncertainty with beliefs

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Efficient Algorithm

 \textbf{D} Find a nonempty set $A\subseteq W$ such that $\frac{Bel(A)}{|A|}$ is maximal 2 For $x\in A$, let $p_{x}=\frac{Bel(A)}{|A|}$ $|A|$ \bullet For each $B \subseteq W - A$, let $Bel(B) = Bel(B \cup A) - Bel(A)$ \bullet Let $W = W - A$ **•** If $W \neq \emptyset$ and $Bel(W) > 0$, go to 1 **6** If $W \neq \emptyset$ and $Bel(W) = 0$, let $p_x = 0$ for all $x \in W$ \bullet Compute $AU(Bel) = \sum \; p_{\chi} log_2 p_{\chi}$ x∈W

KORK EXTERNE PROVIDE

- [Sample Space](#page-3-0)
- **[Probability Measures](#page-5-0)**
- [Belief and Plausibility Measures](#page-10-0)
- [The First Uncertain Thing](#page-23-0)
	- **•** [Assumptions](#page-24-0)
	- [Progress](#page-25-0)

[Build-up Again](#page-27-0)

- **[Conditioning Belief Measures to Update Knowledge](#page-28-0)**
- [Meaningful Measure of Uncertainty with Beliefs](#page-29-0)
- [Generalized Hartley's Measure with Beliefs](#page-30-0)
- [Generalized Shannon's Measure with Beliefs](#page-31-0)
- **[Aggregate Uncertainty](#page-32-0)**

4 [The Second Uncertain Thing](#page-34-0)

- **•** [Assumptions](#page-35-0)
- • [Progress](#page-36-0)

- A sample space $W = \{x_1, x_2, x_3\}$ of three confidential bank balances
- An attacker would like to learn the highest bank balance by monitoring the execution of the following program: int $i = 1$: bool $f = true$; while (i \leq 3) { if $(x[i] > g)$ { $f = false$ } i++; } cout $<< f <<$ endl;
- • $g \in \{x_1, x_2, x_3\}$ is the attacker's guess and f is a flag that tells whether this guess is correct or not

•
$$
m: 2^W \rightarrow [0, 1]
$$
 where $m(\{x_1, x_2\}) = 0.8$ and $m(\{x_2, x_3\}) = 0.2$

\n- $$
p_{x_1} = p_{x_2} = 0.4
$$
\n- $W - A = \{x_1, x_2, x_3\} - \{x_1, x_2\} = \{x_3\}$
\n- $Bel(\{x_3\}) = Bel(\{x_1, x_2, x_3\}) - Bel(\{x_1, x_2\}) = 1 - 0.4 = 0.6$
\n

Kロト K個 K K ミト K ミト 「 ミー の R (^

•
$$
W = W - A = \{x_1, x_2, x_3\} - \{x_1, x_2\} = \{x_3\}
$$

• Since
$$
W \neq \emptyset
$$
 and $Bel(W) > 0$, we repeat the process

KORK ERKER ADAM ADA

$$
\bullet \ \ p_{x_3}=0.6
$$

- $W A = \{x_3\} \{x_3\} = \{\}$ we stop here!
- \bullet AU(Bel) = -0.4log0.4 - 0.4log0.4 - 0.6log0.6 = $0.528 + 0.528 + 0.442 = 1.498$ bits

- The attacker has a higher degree of belief that the highest bank balance is in the set $\{x_1, x_2\} \rightsquigarrow$ she feeds the program with x_1
- Suppose she gets a *true* flag
- The attacker will update her beliefs and get: $Bel({x_1, x_2}||{x_1}) = 1.0$ and $Bel({x_2, x_3}||{x_1}) = 0.0$
- • $AU(Bel)$ would be 1.5 bits \rightsquigarrow 0.002 increase in uncertainty

KORKAR KERKER SAGA

- The attacker has a higher degree of belief that the highest bank balance is in the set $\{x_1, x_2\} \rightsquigarrow$ she feeds the program with x_1
- Suppose she gets a *flase* flag
- The attacker will update her beliefs and get: $Bel({x_1, x_2}||{x_2, x_3}) = 0.8$ and $Bel({x_2, x_3})||{x_2, x_3}) = 1.0$
- • Again (!!!) $AU(Bel)$ would be 1.5 bits \rightsquigarrow 0.002 increase in uncertainty

KORKAR KERKER SAGA

[Build-up](#page-2-0) [The First Uncertain Thing](#page-23-0) [Build-up Again](#page-27-0) [The Second Uncertain Thing](#page-34-0) [Thank You](#page-40-0)

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q ↓

Thank You!