luction

_imitations of I-Diversity

t-closeness 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Data Anonymization Techniques

Anastasia Tugaenko, Viktoria Gingina, Kira Matveeva, Mikhail Chupilko, Sari Haj Hussein

The Summer School in Software Engineering and Verification (SSSEV 2011)

2011-07-26

Introduction	Limitations of I-Diversity	t-closeness	Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2 Limitations of I-Diversity

- Skewness Attack
- Similarity Attack

- The t-closeness Privacy Measure
- The t-closeness Principle
- Computing D[P, Q]

Introduction	Limitations of I-Diversity	t-closeness	Summary

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Introduction

2 Limitations of I-Diversity

- Skewness Attack
- Similarity Attack

- The t-closeness Privacy Measure
- The t-closeness Principle
- Computing D[P, Q]

Introduction	Limitations of I-Diversity 0000	t-closeness 00000	Summary

- Organizations typically need to publish microdata e.g., census data or election data
- Data publishing gives useful information to researchers and analyzers
- At the same time, it extends a privacy risk to individuals whose data is being published
- We need strong privacy notions that enable us to confine the disclosure risk while simultaneously maximize the benefits

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Limitations of I-Diversity	t-closeness	Summary

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Introduction

2 Limitations of I-Diversity

- Skewness Attack
- Similarity Attack

- The t-closeness Privacy Measure
- The t-closeness Principle
- Computing D[P, Q]

Introduction	Limitations of I-Diversity	t-closeness	Summary
	0000		
Skewness Attack			

Skewness Attack

- When the overall distribution is skewed, satisfying l-diversity does not prevent attribute disclosure
- Original data → one sensitive attribute → test result for a virus (positive or negative)
- Population of 10 000 records \rightsquigarrow 99% negative, 1% positive
- In one EC \rightsquigarrow positive records = negative records \rightsquigarrow 2-diversity
- Privacy risk → anyone in this EC has 50% possibility of being positive

Introduction	Limitations of I-Diversity	t-closeness	Summary
	000		
Skewness Attack			

Skewness Attack

- When the overall distribution is skewed, satisfying l-diversity does not prevent attribute disclosure
- Original data → one sensitive attribute → test result for a virus (positive or negative)
- Population of 10 000 records \rightsquigarrow 99% negative, 1% positive
- In one EC →→ positive records = negative records →→ 2-diversity
- Privacy risk → anyone in this EC has 50% possibility of being positive

Introduction	Limitations of I-Diversity	t-closeness	Summary
	000		
Skewness Attack			

Skewness Attack

- When the overall distribution is skewed, satisfying l-diversity does not prevent attribute disclosure
- Original data → one sensitive attribute → test result for a virus (positive or negative)
- Population of 10 000 records \rightsquigarrow 99% negative, 1% positive
- In one EC \rightsquigarrow positive records = negative records \rightsquigarrow 2-diversity
- Privacy risk → anyone in this EC has 50% possibility of being positive

Introduction	Limitations of I-Diversity	t-closeness 00000	Summary
Similarity Attack			

Similarity Attack

• When the sensitive attribute values in an EC are distinct but semantically similar, an adversary can learn important information

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction	Limitations of I-Diversity	t-closeness	Summary
	0000		
Circulture Arrest			

	ZIP Code	Age	Salary	Disease
1	47677	29	3K	gastric ulcer
2	47602	22	4K	gastritis
3	47678	27	5K	stomach cancer
4	47905	43	6K	gastritis
5	47909	52	11K	flu
6	47906	47	8K	bronchitis
7	47605	30	7K	bronchitis
8	47673	36	9K	pneumonia
9	47607	32	10K	stomach cancer

Table 3. Original Salary/Disease Table

Introduction	Limitations of I-Diversity	t-closeness	Summary
	0000		
Cincilarity, Attack			

	ZIP Code	Age	Salary	Disease
1	476**	2*	3K	gastric ulcer
2	476**	2*	4K	gastritis
3	476**	2*	5K	stomach cancer
4	4790*	≥ 40	6K	gastritis
5	4790*	≥ 40	11K	flu
6	4790*	≥ 40	8K	bronchitis
7	476**	3*	7K	bronchitis
8	476**	3*	9K	pneumonia
9	476**	3*	10K	stomach cancer

Table 4. A 3-diverse version of Table 3

uction

t-closeness

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Introduction

2 Limitations of I-Diversity

- Skewness Attack
- Similarity Attack

- The t-closeness Privacy Measure
- The t-closeness Principle
- Computing D[P, Q]

Introduction	Limitations of I-Diversity	t-closeness ●○○○○	Summary
The t-closeness Privacy Measure			

The t-closeness Privacy Measure

- Privacy is measured by the information gain of an observer
- Before seeing the released table, the observer has a prior belief about the sensitive attribute value
- After seeing the released table, the observer has a posterior belief about the sensitive attribute value
- Information gain = posterior belief prior belief
- Prior belief is influenced by Q = the distribution of the sensitive attribute value in the whole table
- Posterior belief is influenced by *P* = the distribution of the sensitive attribute value in the EC
- Information gain = D[P, Q]

Introduction	Limitations of I-Diversity 0000	t-closeness ⊙●○○○	Summary
The t-closeness Principle			

The t-closeness Principle

- An EC has t-closeness if $D[P, Q] \leq t$
- A table has t-closeness if all ECs have t-closeness
- ↓ D[P, Q] ~→ ↓ the information gained by the observer ~→ ↓ privacy risk
- ↑ D[P, Q] ~→ ↑ the information gained by the observer ~→ ↑ benefit of published data

Introduction	Limitations of I-Diversity	t-closeness ○○●○○	Summary
Computing $D[P, Q]$			

The Earth Mover Distance (EMD)

• The minimal amount of work needed to transform one distribution to another by moving the distribution mass

•
$$D[P, Q] = WORK(P, Q, F) = \sum_{i=1}^{m} \sum_{j=1}^{m} d_{ij}f_{ij}$$

•
$$P = (p_1, p_2, ..., p_m), Q = (q_1, q_2, ..., q_m)$$

- *d_{ij}* the ground distance between element *i* of *P* and element *j* of *Q*
- $F = [f_{ij}]$ is the flow of mass from element *i* of *P* to element *j* of *Q* that minimizes the overall work

Introduction	Limitations of I-Diversity	t-closeness ○○○●○	Summary
Computing $D[P, Q]$			

	ZIP Code	Age	Salary	Disease
1	476**	2*	3K	gastric ulcer
2	476**	2*	4K	gastritis
3	476**	2*	5K	stomach cancer
4	4790*	≥ 40	6K	gastritis
5	4790*	≥ 40	11K	flu
6	4790*	≥ 40	8K	bronchitis
7	476**	3*	7K	bronchitis
8	476**	3*	9K	pneumonia
9	476**	3*	10K	stomach cancer

Table 4. A 3-diverse version of Table 3

Introduction	Limitations of I-Diversity	t-closeness ○○○○●	Summary
Computing $D[P, Q]$			

$D[P_1, Q]$

- $Q = \{3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k, 11k\}$
- $P_1 = \{3k, 4k, 5k\}$
- If we have an ordered list $\{v_1, v_2 ... v_m\}$ then the ground distance is $\frac{|i-j|}{m-1} = \frac{|i-j|}{8}$

• If we flow
$$\frac{1}{9}$$
 mass from P_1 to Q as follow
 $(5k \rightarrow 11k), (5k \rightarrow 10k), (5k \rightarrow 9k), (4k \rightarrow 8k), (4k \rightarrow 7k), (4k \rightarrow 6k), (3k \rightarrow 5k), (3k \rightarrow 4k)$ then
 $EMD = 1/9 \times (6+5+4+4+3+2+2+1)/8 = 0.375$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Introduction	Limitations of I-Diversity	t-closeness 00000	Summary

- A number of privacy notions for protecting data publishing have been proposed
- Nevertheless, data anonymization is still an active research direction
- The trade-off between utility and privacy should be taken into account
- The search is ongoing for measures that scale and maintain probabilistic nature

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

Limitations of I-Diversity 0000 t-closeness 00000 Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you!