[Introduction](#page-2-0) [Problem](#page-7-0) [Size-consistent QIF Quantifier](#page-11-0) [Accuracy-based Information Flow Analysis](#page-17-0) [Refining The Divergence](#page-25-0) Refinin

Refining a Quantitative Information Flow Metric

Sari Haj Hussein¹

¹Department of Computer Science Aalborg University

2012-01-13

KORK ERKER ADAM ADA

- [Size-consistent QIF Quantifier](#page-11-0)
- [Accuracy-based Information Flow Analysis](#page-17-0)
- [Refining The Divergence](#page-25-0)
- [Refining The Metric](#page-33-0)

- **[Problem](#page-7-0)**
- 3 [Size-consistent QIF Quantifier](#page-11-0)
- 4 [Accuracy-based Information Flow Analysis](#page-17-0)
- 5 [Refining The Divergence](#page-25-0)
- [Refining The Metric](#page-33-0)

[Introduction](#page-2-0) [Problem](#page-7-0) [Size-consistent QIF Quantifier](#page-11-0) [Accuracy-based Information Flow Analysis](#page-17-0) [Refining The Divergence](#page-25-0) Refinin

Information Flow Analysis

• Information flow analysis aims at keeping track of a program's secret input during the execution of that program.

Information Flow Analysis Techniques

- Qualitative techniques. prohibit flow from a program's secret input to its public output
	- Expensive or rarely satisfied by real programs
	- No distinguishment between acceptable and unacceptable flows

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

 $2Q$

- Conceptual and boring
- Quantitative techniques. establish limits on the number of bits that might be revealed from a program's secret input
	- Mainly based on information theory
	- More tangible

Much work on qualitative, less on quantitative

Information Flow Analysis Techniques

- Qualitative techniques. prohibit flow from a program's secret input to its public output
	- Expensive or rarely satisfied by real programs
	- No distinguishment between acceptable and unacceptable flows

KORKARYKERKER POLO

- Conceptual and boring
- Quantitative techniques. establish limits on the number of bits that might be revealed from a program's secret input
	- Mainly based on information theory
	- More tangible

Much work on qualitative, less on quantitative

Information Flow Analysis Techniques

- Qualitative techniques. prohibit flow from a program's secret input to its public output
	- Expensive or rarely satisfied by real programs
	- No distinguishment between acceptable and unacceptable flows
	- Conceptual and boring
- Quantitative techniques. establish limits on the number of bits that might be revealed from a program's secret input
	- Mainly based on information theory
	- More tangible

Literature Observation

Much work on qualitative, less on quantitative

- 3 [Size-consistent QIF Quantifier](#page-11-0)
- 4 [Accuracy-based Information Flow Analysis](#page-17-0)
- **[Refining The Divergence](#page-25-0)**
- [Refining The Metric](#page-33-0)

Problem Description

- The quantitative metric by Clarkson et al.
- It is the first to address attacker's belief in quantifying information flow
- This metric reports counter-intuitive flow quantities that are inconsistent with the size of a program's secret input.

KORK ERKER ADAM ADA

Problem Impact

• We cannot determine the space of the exhaustive search that should be carried out in order to reveal the residual part of a program's secret input

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Informal Reasoning

- There is a flaw in the design of the metric
- We need to spot the source of that flaw
- Then we need to fix it!

[Problem](#page-7-0)

3 [Size-consistent QIF Quantifier](#page-11-0)

4 [Accuracy-based Information Flow Analysis](#page-17-0)

[Refining The Divergence](#page-25-0)

[Refining The Metric](#page-33-0)

Uncertainty-based Information Flow Analysis

Uncertainty-based Information Flow Analysis Denning

- \bullet U attacker's pre-uncertainty
- \mathcal{U}' attacker's post-uncertainty
- \bullet Flow $=$ reduction in uncertainty
- $R = U U'$
- $R \leq 0$ \Rightarrow increase in uncertainty \Rightarrow absence of flow
- $R > 0 \Rightarrow$ decrease in uncertainty \Rightarrow we have flow
- Notice that R ignores reality by measuring U and U' against each other, instead of against reality

KORKARYKERKER POLO

Plausible Range

• If attacker's belief is captured using a probability distribution, uncertainty is computed using Shannon uncertainty functional

- \bullet X a discrete random variable with alphabet X
- p a probability distribution function on X $\mathcal{S}(\boldsymbol{\mathcal{p}}) = -\sum \, \boldsymbol{\mathcal{p}}(\boldsymbol{\mathcal{x}})$ log $\boldsymbol{\mathcal{p}}(\boldsymbol{\mathcal{x}})$
- The range of S is $[0, \log |\mathcal{X}|] \Rightarrow \rho_{\mathcal{R}} = [-\log |\mathcal{X}|, \log |\mathcal{X}|]$
- This is plausible since $log |\mathcal{X}|$ is the size of a program's secret input

Plausible Range

• If attacker's belief is captured using a probability distribution, uncertainty is computed using Shannon uncertainty functional

Shannon Uncertainty Functional

- X a discrete random variable with alphabet $\mathcal X$
- \bullet p a probability distribution function on X

•
$$
S(p) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)
$$

- The range of S is $[0, \log |\mathcal{X}|] \Rightarrow \rho_{\mathcal{R}} = [-\log |\mathcal{X}|, \log |\mathcal{X}|]$
- This is plausible since $log |\mathcal{X}|$ is the size of a program's secret input

Plausible Range

• If attacker's belief is captured using a probability distribution, uncertainty is computed using Shannon uncertainty functional

Shannon Uncertainty Functional

- X a discrete random variable with alphabet $\mathcal X$
- \bullet p a probability distribution function on X

•
$$
S(p) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)
$$

- The range of S is $[0, \log |\mathcal{X}|] \Rightarrow \rho_{\mathcal{R}} = [-\log |\mathcal{X}|, \log |\mathcal{X}|]$
- This is plausible since $log |\mathcal{X}|$ is the size of a program's secret input

KORKARYKERKER POLO

Size-consistent QIF Quantifier

Size-consistent QIF Quantifier

- QUAN a QIF quantifier
- *η* the size of a program's secret input
- QUAN is size-consistent if $\mathcal{Q}UAN_{\text{max}} \leq \eta$ and $\mathcal{Q}UAN_{\text{min}} \geq -\eta$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

1 [Introduction](#page-2-0)

[Problem](#page-7-0)

- 3 [Size-consistent QIF Quantifier](#page-11-0)
- 4 [Accuracy-based Information Flow Analysis](#page-17-0)
- **[Refining The Divergence](#page-25-0)**
- [Refining The Metric](#page-33-0)

Clarkson Observation

- PWC : if $p = g$ then $a := 1$ else $a := 0$
- Password space is $W_p = \{A, B, C\} \Rightarrow$ password size is $log |W_p| = log 3 = 1.5849$ bits
- The correct password (the reality) is C
- Attacker's prebelief $b_H = [(A: 0.98), (B: 0.01), (C: 0.01)]$
- Attacker (naturally) feeds PWC with $g = A$ and gets $a = 0$
- Attacker's postbelief $b^{'}_H = [(A:0), (B:0.5), (C:0.5)]$
- $R = -0.8386$ bits \Rightarrow absence of flow
- But b_1 \hat{H}_{H} is nearer to reality than $b_{H}\Rightarrow$ attacker has learnt something \Rightarrow we have flow

[Introduction](#page-2-0) [Problem](#page-7-0) [Size-consistent QIF Quantifier](#page-11-0) [Accuracy-based Information Flow Analysis](#page-17-0) [Refining The Divergence](#page-25-0) Refinin

Clarkson Conclusion

Uncertainty-based analysis is inadequate if input distributions represent attacker's beliefs

Accuracy-based Information Flow Analysis

Accuracy-based Information Flow Analysis

- Respect reality by measuring b_H and b_H \hat{H}_H against it, instead of against each other only
- Reality is denoted as σ_H (password is C)
- \bullet Certainty about reality is then σ_H (password is C with a probability of 1)
- Accuracy of $b_H = D(b_H \rightarrow \dot{\sigma}_H)$
- Accuracy of $b'_H = D(b'_H \rightarrow \dot{\sigma}_H)$
- \bullet Flow $=$ improvement in accuracy
- Clarkson metric $Q = D(b_H \rightarrow \dot{v}_H) D(b'_H \rightarrow \dot{v}_H)$

KORKAR KERKER ST VOOR

Clarkson Choice of D

• Clarkson chose Kullback-Leibler divergence

\n- \n
$$
D(b \to b') = \sum_{\sigma \in \mathcal{W}_p} b'(\sigma) \cdot \log \frac{b'(\sigma)}{b(\sigma)}
$$
\n
\n- \n
$$
Q = D(b_H \to \dot{\sigma}_H) - D(b'_H \to \dot{\sigma}_H)
$$
\n
\n- \n
$$
Q = \sum_{\sigma \in \mathcal{W}_p} \dot{\sigma}_H(\sigma) \cdot \log \frac{\dot{\sigma}_H(\sigma)}{b_H(\sigma)} - \sum_{\sigma \in \mathcal{W}_p} \dot{\sigma}_H(\sigma) \cdot \log \frac{\dot{\sigma}_H(\sigma)}{b'_H(\sigma)}
$$
\n
\n

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 $\mathcal{Q} = -\log b_H(\sigma_H) + \log b_H^{'}$ $\eta'_{\mathcal{H}}(\sigma_{\mathcal{H}})$

Puzzling Result

 $\Omega = -\log 0.01 + \log 0.5 = 6.6438 - 1 = 5.6438$ bits

- But the plausible range is $\rho_{\mathcal{R}} = [-\log 3, -\log 3] = [-1.5849, 1.5849]$
- \bullet Q is not a size-consistent QIF quantifier

Clarkson Argument

- \bullet b_H is more erroneous than a uniform belief ascribing $1/3$ probability to each password A , B , and C
- Therefore a larger amount of information is required to correct b_H
- \bullet If b_H is uniform, the attacker would learn a total of log 3 bits

[Introduction](#page-2-0) [Problem](#page-7-0) [Size-consistent QIF Quantifier](#page-11-0) [Accuracy-based Information Flow Analysis](#page-17-0) [Refining The Divergence](#page-25-0) Refinin

Our Arguments

We have shown that Clarkson argument is valid for deterministic programs, but incomplete for probabilistic ones

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

• We have further shown that the range of Q is

 $\rho_{\mathcal{O}} = (-\infty, -\log b_H(\sigma_H))$

1 [Introduction](#page-2-0)

[Problem](#page-7-0)

- 3 [Size-consistent QIF Quantifier](#page-11-0)
- 4 [Accuracy-based Information Flow Analysis](#page-17-0)
- 5 [Refining The Divergence](#page-25-0)
- [Refining The Metric](#page-33-0)

Replacing the Construct

Original Construct

$$
\bullet \ \mathcal{I}_{Dis}(\sigma)=\log \tfrac{b'(\sigma)}{b(\sigma)}
$$

$$
\bullet\ \mathcal{I}^{'}_{Dis}(\sigma)=\log\frac{b^{\prime}(\sigma)}{\frac{b^{\prime}(\sigma)+b(\sigma)}{2}}
$$

KELK KØLK VELKEN EL 1990

$$
\bullet \ \mathcal{I}'_{\text{Dis}}(\sigma) \leq \tfrac{1}{2}\mathcal{I}_{\text{Dis}}(\sigma)
$$

Replacing the Construct

Original Construct

$$
\bullet \ \mathcal{I}_{Dis}(\sigma)=\log \tfrac{b'(\sigma)}{b(\sigma)}
$$

Proposed Construct

$$
\bullet\ \mathcal{I}^{'}_{Dis}(\sigma)=\log\frac{b^{\prime}(\sigma)}{\frac{b^{\prime}(\sigma)+b(\sigma)}{2}}
$$

$$
\bullet \ \mathcal{I}'_{\text{Dis}}(\sigma) \leq \tfrac{1}{2}\mathcal{I}_{\text{Dis}}(\sigma)
$$

Replacing the Construct

Original Construct

•
$$
\mathcal{I}_{Dis}(\sigma) = \log \frac{b'(\sigma)}{b(\sigma)}
$$

Proposed Construct

$$
\bullet\ \mathcal{I}^{'}_{Dis}(\sigma)=\log\textstyle{\frac{b'(\sigma)}{\frac{b'(\sigma)+b(\sigma)}{2}}}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Replacement Effect

$$
\bullet \ \mathcal{I}'_{\text{Dis}}(\sigma) \leq \tfrac{1}{2}\mathcal{I}_{\text{Dis}}(\sigma)
$$

[Introduction](#page-2-0) [Problem](#page-7-0) [Size-consistent QIF Quantifier](#page-11-0) [Accuracy-based Information Flow Analysis](#page-17-0) [Refining The Divergence](#page-25-0) Refinin

Plot

Replacing the Divergence

Original Divergence

- $D(b \rightarrow b') =$ $\sum_{\sigma} b'(\sigma)$. log $\frac{b'(\sigma)}{b(\sigma)}$ $\sigma \in \mathcal{W}_p$ $b(\sigma)$
- Average number of bits that are wasted by encoding events from a distribution b' with a code based on a not-quite-right distribution b
- Information gain

- $D'(b \rightarrow b') =$ $\sum\limits_{j \in \mathcal{W}_\rho} b'(\sigma)$. log $\frac{b'(\sigma)}{\frac{b'(\sigma)+b(\sigma)}{2}}$
- How much information is lost if we describe the two random variables that correspond to b and b' with their average distribution $(b'+b)/2$?

KORKARYKERKER POLO

• Information radius

Replacing the Divergence

Original Divergence

- $D(b \rightarrow b') =$ $\sum_{\sigma} b'(\sigma)$. log $\frac{b'(\sigma)}{b(\sigma)}$ $\sigma \in W_p$ $b(\sigma)$
- Average number of bits that are wasted by encoding events from a distribution b' with a code based on a not-quite-right distribution b
- Information gain

Proposed Divergence

- $D'(b \rightarrow b') =$ ∑ *σ*∈W^p $b'(\sigma)$. log $\frac{b'(\sigma)}{\frac{b'(\sigma)+b(\sigma)}{2}}$
- How much information is lost if we describe the two random variables that correspond to b and b' with their average distribution $(b'+b)/2$?

KORKAR KERKER ST VOOR

• Information radius

Plot

イロメ 不倒 メイミメ イミメー 差し 2990

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

1 [Introduction](#page-2-0)

[Problem](#page-7-0)

- 3 [Size-consistent QIF Quantifier](#page-11-0)
- 4 [Accuracy-based Information Flow Analysis](#page-17-0)
- **[Refining The Divergence](#page-25-0)**
- 6 [Refining The Metric](#page-33-0)

Refining to Normalization

Normalized Metric

\n- \n
$$
Q' = D'(b_H \to \dot{\sigma}_H) - D'(b'_H \to \dot{\sigma}_H)
$$
\n
\n- \n
$$
Q' = \sum_{\sigma \in \mathcal{W}_p} \dot{\sigma}_H(\sigma) \log \frac{\dot{\sigma}_H(\sigma)}{\frac{\dot{\sigma}_H(\sigma) + b_H(\sigma)}{2}} - \sum_{\sigma \in \mathcal{W}_p} \dot{\sigma}_H(\sigma) \log \frac{\dot{\sigma}_H(\sigma)}{\frac{\dot{\sigma}_H(\sigma) + b'_H(\sigma)}{2}}
$$
\n
\n- \n
$$
Q' = \log \frac{2}{1 + b_H(\sigma_H)} - \log \frac{2}{1 + b'_H(\sigma_H)}
$$
\n
\n- \n
$$
Q' = -\log(1 + b_H(\sigma_H)) + \log(1 + b'_H(\sigma_H))
$$
\n
\n

We have shown that the range of \mathcal{Q}' is $\varrho_{\mathcal{Q}'} = [-1,1]$

- This does not make \mathcal{Q}' size-consistent
- Nonetheless, $\rho_{\mathcal{O}'}$ is a plausible normalization (flow percentage) that is invariant with respect to the choice of the measurement unit

Refining to Normalization

Normalized Metric

\n- \n
$$
Q' = D'(b_H \to \dot{\sigma}_H) - D'(b'_H \to \dot{\sigma}_H)
$$
\n
\n- \n
$$
Q' = \sum_{\sigma \in \mathcal{W}_p} \dot{\sigma}_H(\sigma) \log \frac{\dot{\sigma}_H(\sigma)}{\frac{\dot{\sigma}_H(\sigma) + b_H(\sigma)}{2}} - \sum_{\sigma \in \mathcal{W}_p} \dot{\sigma}_H(\sigma) \log \frac{\dot{\sigma}_H(\sigma)}{\frac{\dot{\sigma}_H(\sigma) + b'_H(\sigma)}{2}}
$$
\n
\n- \n
$$
Q' = \log \frac{2}{1 + b_H(\sigma_H)} - \log \frac{2}{1 + b'_H(\sigma_H)}
$$
\n
\n- \n
$$
Q' = -\log(1 + b_H(\sigma_H)) + \log(1 + b'_H(\sigma_H))
$$
\n
\n

- We have shown that the range of \mathcal{Q}' is $\varrho_{\mathcal{Q}'} = [-1,1]$
- This does not make Q' size-consistent
- Nonetheless, $\rho_{\mathcal{O}'}$ is a plausible normalization (flow percentage) that is invariant with respect to the choice of the measurement unit

Refining to Actuality

Actual Metric

- We want bit as the measurement unit
- Let *η* be the size of a program's secret input in bits
- $\mathcal{Q}'' = \eta \boldsymbol{.} \mathcal{Q}' = \eta \boldsymbol{.} [-\log(1 + b_H(\sigma_H)) + \log(1 + b'_H)]$ $\zeta_H(\sigma_H))]$
- We have shown that the range of \mathcal{Q}'' is $\rho_{Q''} = [-\eta, \log(1 + b_H(\sigma_H)), \eta, [1 - \log(1 + b_H(\sigma_H))]]$
- $\log(1+b_H(\sigma_H))\leq 1\Rightarrow \mathcal Q_{max}^{''}\leq \eta$ and $\mathcal Q_{min}^{''}\geq -\eta \Rightarrow \mathcal Q''$ is size-consistent

KORKAR KERKER ST VOOR

Refining to Actuality

Actual Metric

- We want bit as the measurement unit
- Let *η* be the size of a program's secret input in bits
- $\mathcal{Q}'' = \eta \boldsymbol{.} \mathcal{Q}' = \eta \boldsymbol{.} [-\log(1 + b_H(\sigma_H)) + \log(1 + b'_H)]$ $\zeta_H(\sigma_H))]$
- We have shown that the range of \mathcal{Q}'' is $\rho_{Q''} = [-\eta. \log(1 + b_H(\sigma_H)), \eta. [1 - \log(1 + b_H(\sigma_H))]]$
- $\log(1+b_H(\sigma_H))\leq 1\Rightarrow \mathcal{Q}^{''}_{max}\leq \eta$ and $\mathcal{Q}^{''}_{min}\geq -\eta \Rightarrow \mathcal{Q}^{''}$ is size-consistent

[Introduction](#page-2-0) [Problem](#page-7-0) [Size-consistent QIF Quantifier](#page-11-0) [Accuracy-based Information Flow Analysis](#page-17-0) [Refining The Divergence](#page-25-0) Refinin

Plot

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Interpreting the Refined Metric

- What does it mean to leak k bits according to \mathcal{Q}'' ?
- \bullet $Q'' = k$
- η . $[-\log(1+b_H(\sigma_H))+\log(1+b'_H)$ $J_H(\sigma_H))] = k$
- $\frac{\log(1+b_{H}^{'}(\sigma_{H}))}{\log(1+b_{H}(\sigma_{H}))}=\frac{k}{\eta}$
- $\frac{1+b'_H(\sigma_H)}{1+b_H(\sigma_H)}=2^{k/\eta}$
- $b^{'}$ $b'_H(\sigma_H) = 2^{k/\eta} b_H(\sigma_H) + 2^{k/\eta} - 1$
- **•** This corresponds to the increase in the likelihood of the attacker's correct guess

Meaningfulness of the Bounds

- An informing flow equal to the upper bound of \mathcal{Q}'' is sufficient to make a fully uncertain attacker fully certain about the correct high state.
- $b_H(\sigma_H) = 0 \rightarrow \mathcal{Q}_{max}'' = \eta.[1 \log(1 + b_H(\sigma_H))] \rightarrow$ $b^{'}$ $\delta_H'(\sigma_H)=1$
- A misinforming flow equal to the lower bound of Q'' is sufficient to make a fully certain attacker fully uncertain about the correct high state.

$$
\bullet \ \ b_H(\sigma_H) = 1 \to \mathcal Q^{''}_{min} = -\eta.\log(1 + b_H(\sigma_H)) \to b^{'}_H(\sigma_H) = 0
$$

Exhaustive Search Effort

- Assuming a program with a secret input of size *η* bits.
- Assuming an informing flow of k bits to an attacker
- $\mathcal{Q}^{''}_{\textit{max}} = \eta.[1 \log(1 + b_{\textit{H}}(\sigma_{\textit{H}}))]$ tells us that $k \leq \eta$
- The space of the exhaustive search is 2*η*−^k
- $\mathcal{Q}_{max} = -\log b_H(\sigma_H)$ tells us that $k > \eta$ is possible
- The exhaustive search space cannot be established, albeit that the secret input might have been partially revealed to the attacker

[Introduction](#page-2-0) [Problem](#page-7-0) [Size-consistent QIF Quantifier](#page-11-0) [Accuracy-based Information Flow Analysis](#page-17-0) [Refining The Divergence](#page-25-0) Refinin

Summary

- We presented a refinement of a QIF metric that bounds its reported results by a plausible range
- The results reported by the refined metric are easily associated with the exhaustive search effort

KORK ERKER ADAM ADA

We believe that the same can be done with other QIF quantifiers

[Introduction](#page-2-0) [Problem](#page-7-0) [Size-consistent QIF Quantifier](#page-11-0) [Accuracy-based Information Flow Analysis](#page-17-0) [Refining The Divergence](#page-25-0) Refinin

Thank You!

KOKK@KKEKKEK E 1990