Introduction	Problem	Problem Parameters	The MODQ Framework	Thank You

Effective Density Queries on Continuously Moving Objects By Christian S. Jensen, Dan Lin, Beng Chin Ooi, Rui Zhang

Sari Haj Hussein¹

¹Department of Computer Science Aalborg University

2012-04-19

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Problem	Problem Parameters	The MODQ Framework	Thank You

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Counter Maintenance
- Filtering Phase of Query Processing
- Refinement Phase of Query Processing

Introduction	Problem	Problem Parameters	The MODQ Framework	Thank You
What &	Why			

- What? \rightsquigarrow The paper studies density queries
- Why? → In traffic management systems, they can be used to identify regions of traffic jams

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Problem Description

Density

Density of R at t is the number of objects in R at t divided by the area of R

Dense Region

R is dense at *t* if its density is higher than a threshold ρ

Effective Density Query

Report all dense regions at t hat satisfy:

- Answer meaningfulness: any reported region is constrained to a certain shape and an area range (square, circle, etc)
- On-redundancy: reported regions do not overlap
- On answer loss: any dense region in the query input appears in the results (incorporating evidence)

Problem Description

Density

Density of R at t is the number of objects in R at t divided by the area of R

Dense Region

R is dense at t if its density is higher than a threshold ρ

Effective Density Query

Report all dense regions at t that satisfy:

- Answer meaningfulness: any reported region is constrained to a certain shape and an area range (square, circle, etc)
- On-redundancy: reported regions do not overlap
- On answer loss: any dense region in the query input appears in the results (incorporating evidence)

Thank You

Problem Description

Density

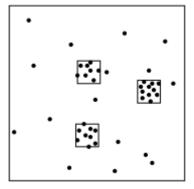
Density of R at t is the number of objects in R at t divided by the area of R

Dense Region

R is dense at t if its density is higher than a threshold ρ

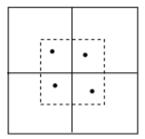
Effective Density Query

Report all dense regions at t that satisfy:


- Answer meaningfulness: any reported region is constrained to a certain shape and an area range (square, circle, etc)
- Non-redundancy: reported regions do not overlap
- No answer loss: any dense region in the query input appears in the results (incorporating evidence)

roblem Parameters

The MODQ Framework


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We want something like this...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

But we do not want this!

Problem Parameters

Problem Parameters

 \bullet Linear model for the position of a moving object \leadsto

$$ar{x}(t) = ar{x} + ar{v}(t - t_{upd})$$

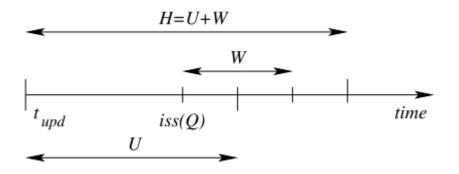
- $t \rightsquigarrow$ current time
- $t_{up} \rightsquigarrow$ latest update time
- $\bar{x}(t) \rightsquigarrow$ object position at t
- $\bar{x} \rightsquigarrow$ object position at t_{upd}
- $\bar{v} \rightsquigarrow$ object velocity at t_{upd}
- Object position at $t \rightsquigarrow (\bar{x}, \bar{v}, t_{upd})$

Problem Parameters Continued

Problem Parameters Continued

- U → maximum update time → maximum duration in-between 2 updates of a moving object position
- $t_q \rightsquigarrow$ query time (execution time)
- $t_{issue} \rightsquigarrow$ query issue time
- $W \rightsquigarrow$ query reach into the future starting from t_{issue}
- *H* = *U* + *W* → query horizon → query reach into the future starting from t_{upd}
- $[t_q, t_q + H] \rightsquigarrow$ query time window

Introduction


Problem

Problem Parameters

The MODQ Framework

Thank You

Problem Parameters Illustrated

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Introduction	Problem	Problem Parameters	The MODQ Framework	Thank You
Summarv				

- Moving objects are maintained in some index structure
- Data space is partitioned into small cells of equal sizes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Dense regions are squares of certain sizes
- They can intersect with the cell partitioning
- Steps involved:
 - Counter maintenance
 - Piltering phase of query processing
 - 8 Refinement phase of query processing

Introduction	Problem	Problem Parameters	The MODQ Framework	Thank You
Counter Maintenance				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

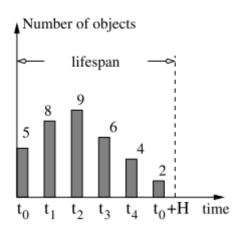
1 Introduction

2 Problem

3 Problem Parameters

4 The MODQ Framework

- Counter Maintenance
- Filtering Phase of Query Processing
- Refinement Phase of Query Processing


Introduction	Problem	Problem Parameters	The MODQ Framework	Thank You
Counter Maintenar	nce			
Counter	Maintenar	nce		

- A counter of the number of objects in each cell at all times in $[t_q, t_q + H]$
- Update counters as objects move between cells
 - An object is inserted into a cell \Rightarrow increase the corresponding counter & update the index
 - An object is deleted from a cell \Rightarrow decrease the corresponding counter & update the index

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Large number of cells ~> counter maintenance becomes a problem

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

Problem

Problem Parameters

The MODQ Framework

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Counter Maintenance

Compressing the Histogram

- Compression is done using **Discrete Cosine Transform (DCT)**
- DCT is commonly used in loosy compression e.g., MP3, JPEG, etc.

Counter Maintenance

Compressing the Histogram

Discrete Cosine Transform (DCT)

•
$$G(k) = c(k) \sum_{t=0}^{H-1} s(t) \cos \frac{\pi(2t+1)k}{2H}$$

•
$$c(0) = \sqrt{1/H}, c(k) = \sqrt{2/H}, k = 0, 1, ..., (H-1)$$

- s(t) is a signal and G(k) is the transformed signal
- We store only 10 20% of G(k) and there lies the compression
- s(t) is eventually a variable that changes over time
- In our scenario, s(t) is the number of objects in each cell

Inverse Discrete Cosine Transform (IDCT)

•
$$s(t) = \sum_{k=0}^{H-1} c(k) G(k) \cos \frac{\pi (2t+1)k}{2H}$$

• $t = 0, 1, \dots, (H-1)$

Counter Maintenance

Compressing the Histogram

Discrete Cosine Transform (DCT)

•
$$G(k) = c(k) \sum_{t=0}^{H-1} s(t) \cos \frac{\pi(2t+1)k}{2H}$$

•
$$c(0) = \sqrt{1/H}, c(k) = \sqrt{2/H}, k = 0, 1, ..., (H-1)$$

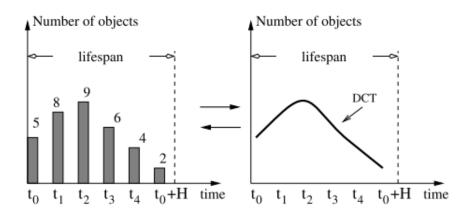
- s(t) is a signal and G(k) is the transformed signal
- We store only 10 20% of G(k) and there lies the compression
- s(t) is eventually a variable that changes over time
- In our scenario, s(t) is the number of objects in each cell

Inverse Discrete Cosine Transform (IDCT)

•
$$s(t) = \sum_{k=0}^{H-1} c(k) G(k) \cos \frac{\pi (2t+1)k}{2H}$$

• $t = 0, 1, \dots, (H-1)$

Introduction


Problem

Problem Parameters

The MODQ Framework

Counter Maintenance

Compressing the Histogram

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Introduction Problem Problem Parameters The MODQ Framework OCOOCOCOCCOCC Counter Maintenance Compressing the Histogram

- Storing only 10 20% of $G(k) \Rightarrow$ information loss \Rightarrow restored s'(t) differ from original s(t)
- s'(t) overestimates s(t) → false positive query results suggesting that a cell is dense when it is not → increase query processing cost!
- s'(t) underestimates s(t) → false negative query results suggesting that a cell is not dense when it is → answer loss!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Storing only 10 20% of $G(k) \Rightarrow$ information loss \Rightarrow restored s'(t) differ from original s(t)
- s'(t) overestimates s(t) → false positive query results suggesting that a cell is dense when it is not → increase query processing cost!
- s'(t) underestimates s(t) → false negative query results suggesting that a cell is not dense when it is → answer loss!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Storing only 10 20% of $G(k) \Rightarrow$ information loss \Rightarrow restored s'(t) differ from original s(t)
- s'(t) overestimates s(t) → false positive query results suggesting that a cell is dense when it is not → increase query processing cost!
- s'(t) underestimates s(t) → false negative query results suggesting that a cell is not dense when it is → answer loss!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction

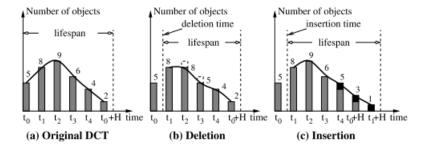
Problem

Problem Parameters

The MODQ Framework

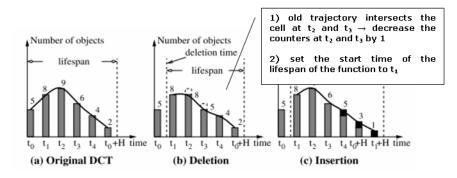
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Counter Maintenance


Compressing the Histogram

- The error bound $E_b = s(t) s'(t)$ (formula does not show)
- Before reducing G(k), compute and store a term in E_b
- Adding this E_b to s'(t) guarantees the absence of false negatives!

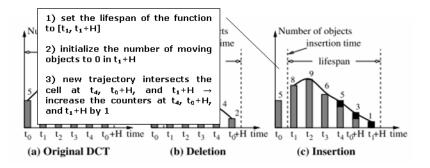
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @


Counter Maintenance

Maintaining the Histogram

Counter Maintenance

Maintaining the Histogram


▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Problem Parameters

The MODQ Framework

Counter Maintenance

Maintaining the Histogram

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

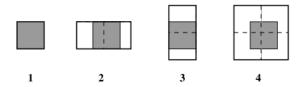
Introduction	Problem	Problem Parameters	The MODQ Framework	Thank You
Filtering Phase of Que	ry Processing			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Introduction

2 Problem

3 Problem Parameters


The MODQ Framework
Counter Maintenance

• Filtering Phase of Query Processing

• Refinement Phase of Query Processing

- Aim \rightsquigarrow identify areas that may contain answers to the density query
- Input \rightsquigarrow query spatial window R, threshold ρ , query time t_q
 - the minimum number of objects that should occupy a dense square $N_{min} = R.\rho$
- Output \rightsquigarrow dense regions of size 1 4 times larger than R

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction	Problem	Problem Parameters	The MODQ Framework	Thank You
Filtering Phase of	Query Processing			
Filtoring	Dhaco			

Filtering Phase

ĸ

- For each cell C, compute N_c
- If $N_c \ge N_{min}$, add C to the answer
- If $N_c < N_{min}$, look at the 4-cell square 4C having C at the top-left corner
- If $N_{4c} \ge N_{min}$, look at each 1C area in 4C
- If $N_{1c} \geq N_{min}$, add 1C to the answer
- Look at each 2C and 3C areas in 4C
- If $N_{2c} \ge N_{min}$ or $N_{3c} \ge N_{min}$, pass 2C or 3C to the refinement phase
- If an answer is returned, modify the histogram

Introduction	Problem	Problem Parameters	The MODQ Framework	Thank You
Refinement Phase o	f Query Processing			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

2 Problem

3 Problem Parameters

The MODQ Framework

• Counter Maintenance

- Filtering Phase of Query Processing
- Refinement Phase of Query Processing

Introduction	Problem	Problem Parameters	The MODQ Framework	Thank You
Refinement Phase	of Query Processing			
Refineme	ant Phase			

Refinement Phase

- Retrieve objects in the candidate areas 2C or 3C by issuing a spatial window query on the index
- If we have 2C
 - Sort object positions according to their x coordinates
 - $N_{\sqrt{R}} \rightsquigarrow$ the number of objects every \sqrt{R}
 - If $N_{\sqrt{R}} \ge N_{min}$, report 2C as an answer to the filtering phase

• The same applies if we have 3*C*, although the sorting is done according to the *y* coordinates

Introduction	Problem	Problem Parameters	The MODQ Framework	Thank You

Thank You!

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ