
Progress in Clifford Space Gravity

Carlos Castro
Center for Theoretical Studies of Physical Systems

Clark Atlanta University, Atlanta, Georgia. 30314, perelmanc@hotmail.com

July 2012

Abstract

Clifford-space Gravity is revisited and new results are found. The
Clifford space (C-space) generalized gravitational field equations are ob-
tained from a variational principle and which is based on an extension of
the Einstein-Hilbert-Cartan action. One of the main results of this work
is that the C-space connection requires torsion in order to have consis-
tency between the Clifford algebraic structure and the zero nonmetricity
condition ∇KgMN = 0. A discussion on the cosmological constant and
bi-metric theories of gravity follows. We continue by pointing out the re-
lations of Clifford space gravity to Lanczos-Lovelock-Cartan (LLC) higher
curvature gravity with torsion. We finalize by pointing out that C-space
gravity involves higher-spins beyond spin 2 and argue why one could view
the LLC higher curvature actions, and other extended gravitational theo-
ries based on f(R), f(Rµν), ... actions, for polynomial-valued functions, as
effective actions after integrating the C-space gravitational action with
respect to all the poly-coordinates, except the vectorial ones xµ.

1 Introduction

In the past years, the Extended Relativity Theory in C-spaces (Clifford spaces)
and Clifford-Phase spaces were developed [1], [2]. The Extended Relativity
theory in Clifford-spaces (C-spaces) is a natural extension of the ordinary Rela-
tivity theory whose generalized coordinates are Clifford polyvector-valued quan-
tities which incorporate the lines, areas, volumes, and hyper-volumes degrees
of freedom associated with the collective dynamics of particles, strings, mem-
branes, p-branes (closed p-branes) moving in a D-dimensional target spacetime
background. C-space Relativity permits to study the dynamics of all (closed)
p-branes, for different values of p, on a unified footing. Our theory has 2 funda-
mental parameters : the speed of a light c and a length scale which can be set
to be equal to the Planck length. The role of “photons” in C-space is played by
tensionless branes. An extensive review of the Extended Relativity Theory in
Clifford spaces can be found in [1].
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The poly-vector valued coordinates xµ, xµ1µ2 , xµ1µ2µ3 , ... are now linked to
the basis vectors generators γµ, bi-vectors generators γµ ∧ γν , tri-vectors gener-
ators γµ1

∧ γµ2
∧ γµ3

, ... of the Clifford algebra, including the Clifford algebra
unit element (associated to a scalar coordinate). These poly-vector valued coor-
dinates can be interpreted as the quenched-degrees of freedom of an ensemble of
p-loops associated with the dynamics of closed p-branes, for p = 0, 1, 2, ..., D−1,
embedded in a target D-dimensional spacetime background.

The C-space poly-vector-valued momentum is defined as P = dX/dΣ where
X is the Clifford-valued coordinate corresponding to the Cl(1, 3) algebra in
four-dimensions

X = s 1 + xµ γµ + xµν γµ∧γν + xµνρ γµ∧γν∧γρ + xµνρτ γµ∧γν∧γρ∧γτ (1.1)

s is the Clifford scalar component of the poly-vector-valued coordinate and
dΣ is the infinitesimal C-space proper “time” interval which is invariant un-
der Cl(1, 3) transformations which are the Clifford-algebra extensions of the
SO(1, 3) Lorentz transformations [1]. One should emphasize that dΣ, which is
given by the square root of the quadratic interval in C-space

(dΣ)2 = (ds)2 + dxµ dx
µ + dxµν dx

µν + . . . (1.2)

is not equal to the proper time Lorentz-invariant interval dτ in ordinary space-
time (dτ)2 = gµνdx

µdxν = dxµdx
µ. In order to match units in all terms of

eqs-(1.1, 1.2) suitable powers of a length scale (say Planck scale) must be in-
troduced. For convenience purposes it is set to unity. For extensive details of
the generalized Lorentz transformations (poly-rotations) in flat C-spaces and
references we refer to [1].

The main purpose of this work is to revisit Clifford-space Gravity [1], [7]
where new results are found. The outline of this work goes as follows. In
section 2 the geometrical ingredients of curved Clifford Spaces are introduced.
We finalize by pointing out the relations of Clifford space gravity to Lanczos-
Lovelock-Cartan (LLC) higher curvature gravity with torsion.

In section 3 one of the main results of this work is found : the C-space
connection requires torsion in order to have consistency between the Clifford al-
gebraic structure and the zero nonmetricity condition∇KgMN = 0. The metric-
compatible connection must be restricted to satisfy a covariantly-constancy con-
dition; namely, the covariant derivatives of the Clifford algebraic structure func-
tions in curved C-spaces must be zero. A discussion on the cosmological constant
and bi-metric theories of gravity follows.

In section 4 the Clifford space (C-space) generalized gravitational field equa-
tions are obtained from a variational principle and which is based on an exten-
sion of the Einstein-Hilbert-Cartan action. Two approaches to build actions are
described. One of them involves hyper-determinants of hyper-matrices. The
other recurs to regular determinants of square symmetric 2D × 2D matrices in
the associated 2D space corresponding to a Clifford algebra in D-dimensions.
We finalize by pointing out that C-space gravity involves higher-spins beyond
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spin 2 and argue why one could view the LLC higher curvature actions, and
other extended gravitational theories based on f(R), f(R,Rµν), ... actions, for
polynomial-valued functions, as effective actions after integrating the C-space
gravitational action with respect to all the poly-coordinates, except the vectorial
ones xµ. An appendix is included with the relevant formulae and calculations.

2 Geometry of Curved Clifford Space

Let the vector fields γµ, µ = 1, 2, ..., n be a coordinate basis in Vn satisfying the
Clifford algebra relation

γµ · γν ≡
1

2
(γµγν + γνγµ) = gµν (2.1)

where gµν is the metric of Vn. In curved space γµ and gµν cannot be constant but
necessarily depend on position xµ. An arbitrary vector is a linear superposition
[3] a = aµγµ where the components aµ are scalars from the geometric point of
view, whilst γµ are vectors.

Besides the basis γµ we can introduce the reciprocal dual basis γµ satisfying

γµ · γν ≡ 1

2
(γµγν + γνγµ) = gµν (2.2)

where gµν is the covariant metric tensor such that

gµα gαν = δµν , {γµ, γν} = 2δµν , γµ = gµνγν (2.3)

Let us now consider C-space [1], [4]. A basis in C-space is given by

EA = γ, γµ, γµ ∧ γν , γµ ∧ γν ∧ γρ, ... (2.4)

where γ is the unit element of the Clifford algebra that we label as 1 from now
on. In (2.4) when one writes an r-vector basis γµ1

∧ γµ2
∧ ... ∧ γµr we take the

indices in ”lexicographical” order so that µ1 < µ2 < .... < µr. An element of
C-space is a Clifford number, called also Polyvector or Clifford aggregate which
we now write in the form

X = XAEA = s1 + xµγµ + xµνγµ ∧ γν + ... (2.5)

A C-space is parametrized not only by 1-vector coordinates xµ but also by the
2-vector coordinates xµν , 3-vector coordinates xµνα, ..., called also holographic
coordinates, since they describe the holographic projections of 1-loops, 2-loops,
3-loops,..., onto the coordinate planes. By p-loop we mean a closed p-brane; in
particular, a 1-loop is closed string. In order to avoid using the powers of the
Planck scale length parameter Lp in the expansion of the poly-vector X we can
set set to unity to simplify matters.
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In a flat C-space the basis vectors EA, EA are constants. In a curved
C-space this is no longer true. Each EA, EA is a function of the C-space coor-
dinates

XA = s, xµ, xµ1µ2 , ..... xµ1µ2.....µD (2.6)

which include scalar, vector, bivector,..., r-vector,... coordinates in the underly-
ing D-dim base spacetime and whose corresponding C-space is 2D-dimensional
since the Clifford algebra in D-dim is 2D-dimensional.

In curved C-space one introduces the X-dependent basis generators γM , γ
M

defined in terms of the beins EAM , inverse beins EMA and the flat tangent space
generators γA, γ

B as follows γM = EAM (X)γA, γ
M = EMA (X)γA. The curved C-

space metric expression gMN = EAME
B
NηAB also agrees with taking the scalar

part of the Clifford geometric product < γMγN >= gMN .
The covariant derivative of EAM (X), EMA (X) involves the ordinary and spin

connection and is defined as

∇KEAM = ∂KE
A
M − ΓLKM EAL + ωAKB EBM (2.7a)

∇KEMA = ∂KE
M
A + ΓMKL E

L
A − ω B

KA EMB (2.7b)

If the nonmetricity is zero then ∇KEAM = 0, ∇KEMA = 0 in eqs-(2.7). If the
nonmetricity is not zero one must include extra terms in the right hand side of
eqs-(2.7). In this latter case ∇KEAM 6= 0, ∇KEMA 6= 0. To simplify matters we
shall set the nonmetricity QKMN = ∇KgMN = 0, to zero such that

∇KgMN = < (∇KγM ) γN > + < γM (∇KγN ) > =

∂KgMN − ΓLKM gLN − ΓLKN gLM = 0 (2.8)

There are two different choices of connections compatible with the zero non-
metricity conditions in eqs-(2.7, 2.8). One choice [5] requires the covariantly-
constancy condition on the curved and tangent C-space basis generators

∇KγM = ∇K(EAMγA) = EAM∇KγA = 0 (2.9)

since ∇KEAM = 0 when the nonmetricity is zero. From (2.9) one infers

∇KγA = ∂KγA + ωKABγ
B = 0 ⇒ ∂KγA = − ωKABγ

B (2.10a)

and

∇KγM = ∂KγM − ΓLKM γL = 0 ⇒ ∂KγM = ΓLKM γL (2.11a)

∇KγM = ∂Kγ
M + ΓMKL γ

L = 0 ⇒ ∂Kγ
M = − ΓMKL γ

L (2.11b)

Another choice which is also consistent with the vanishing nonmetricity con-
dition in eqs-(2.7, 2.9) is to have truly constant γA [7] such that now one has

∇KγM = ∇K(EAMγA) = EAM ∇KγA = EAM ωKABγ
B (2.12)
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after using ∇KγA = ωKABγ
B due to the fact that ∂KγA = 0 when the tangent

space gamma generators γA are constants. Inserting eq-(2.12) into eq-(2.8) also
yields a zero nonmetricity result as well

∇KgMN = < (∇KγM ) γN > + < γM (∇KγN ) > =

ωKAB ( EAME
B
N + EANE

B
M ) = 0 (2.13)

because the last terms of (2.13) in the parenthesis (multiplying ωKAB) are sym-
metric under the index exchange A↔ B, whereas the spin connection prefactor
ωKAB = −ωKBA is anti-symmetric. A parallel transport of γA requires a (spin)
connection and for this reason it is reasonable to set ∇KγA = ωKABγ

B . Sim-
ilarly one finds that ∇KηAB = 0, after recurring to the definition ηAB =<
γAγB > and due to symmetry property of the constant tangent space metric
ηAB under the exchange of indices, and the anti-symmetry of ωKAB .

One may notice that eq-(2.12) can also be recast as a covariantly-constancy
condition with respect to a new connection by moving the omega terms to the
left-hand side and reabsorbing them into a redefinition of the connection as

Γ̂LKM = ΓLKM + ωKAB EAM EBL ⇒

∇̂KγM = ∂KγM − Γ̂LKM γL = 0 ⇒ ∇̂KgMN = 0 (2.14)

To simplify matters in the rest of this work we will simply choose to work
with the connections appearing in eqs-(2.11) keeping in mind the possibility of
working with the hatted connections (2.14) which are consistent with having
truly constant tangent space generators γA.

If the connection is symmetric in the first two indices ΓKMN = ΓMKN one
can arrive at the torsionless Levi-Civita-like expression. This can be attained
as usual by an index permutation of the zero nonmetricity condition

∂K gMN − ΓKMN − ΓKNM = 0 (2.15a)

∂M gKN − ΓMKN − ΓMNK = 0 (2.15b)

∂N gMK − ΓNMK − ΓNKM = 0 (2.15c)

after subtracting eqs-(2.15b, 2.15c) from eq-(2.15a) one arrives at the Levi-
Civita-like expression for the connection

ΓMNK =
1

2
(∂MgKN + ∂NgMK − ∂KgMN ) (2.16)

due to the symmetry property ΓKMN = ΓMKN in the first two indices.
In general, C-space admits torsion [1] and the connection ΓNKM 6= ΓNMK is

not symmetric. For example, if ΓKMN = ΓKNM is symmetric in the last two
indices, then from eq-(2.8) one can infer that there is a different connection
ΓKMN = 1

2∂KgMN 6= ΓMKN = 1
2∂MgKN which has torsion.
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The torsion is defined as TNKM = ΓNKM − ΓNMK in C-space, assuming the
anholonomy coefficients fNKM are zero, [∂K , ∂M ] = fNKM∂N . If the latter co-
efficients are not zero one must include fNKM into the definition of Torsion as
follows

TNKM = ΓNKM − ΓNMK − fNKM (2.17)

In the case of nonsymmetric connections with torsion, the curvature obeys
the following relations under the exchange of indices

RMNJK = − RNMJK , RMNKJ = − RMNJK , but RMNJK 6= RJKMN

(2.18)
and is defined, when fJMN = 0, in terms of the connection components ΓLKM as
follows

R K
MNJ = ∂M Γ K

NJ − ∂N Γ K
MJ + ΓKML ΓLNJ − ΓKNL ΓLMJ (2.19)

If fKMN 6= 0 one must also include these anholonomy coefficients into the defini-
tion of curvature (2.19) by adding terms of the form −fLMNΓKLJ .

The standard Riemann-Cartan curvature tensor in ordinary spacetime is
contained in C-space as follows

Rµ1µ2ρ1
ρ2 = ∂µ1

Γρ2µ2ρ1 − ∂µ2
Γρ2µ1ρ1 + Γρ2µ1σ Γσµ2ρ1 − Γρ2µ2σ Γσµ1ρ1 ⊂

Rµ1µ2ρ1
ρ2 = ∂µ1

Γρ2µ2ρ1 − ∂µ2
Γρ2µ1ρ1 + Γρ2µ1 M ΓM

µ2ρ1 − Γρ2µ2 M ΓM
µ1ρ1 (2.20)

due to the contractions involving the poly-vector valued indices M in eq-(2.20)
There is also the crucial difference that Rρ2

µ1µ2ρ1(s, xν , xν1ν2 , ...) has now an
additional dependence on all the C-space poly-vector valued coordinates s, xν1ν2 , xν1ν2ν3 , ...
besides the xν coordinates. The curvature in the presence of torsion does not
satisfy the same symmetry relations when there is no torsion, therefore the
Ricci-like tensor is no longer symmetric

RMNJ
N = RMJ , RMJ 6= RJM , R = gMJ RMJ (2.21)

The C-space Ricci-like tensor is

R N
M =

D∑
j=1

R
N [ν1ν2...νj ]

M [ν1ν2...νj ]
+ R N 0

M 0 (2.22)

and the C-space curvature scalar is

R =

D∑
j=1

D∑
k=1

R[µ1µ2...µj ] [ν1ν2...νk]
[µ1µ2...µj ] [ν1ν2...νk] +

D∑
j=1

R[µ1µ2...µj ] 0
[µ1µ2...µj ] 0

(2.23)
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To finalize this section we add some remarks about the physical applications
of C-space gravity to higher curvature theories of gravity [7]. One of the key
properties of Lanczos-Lovelock-Cartan gravity (with torsion) is that the field
equations do not contain higher derivatives of the metric tensor beyond the
second order due to the fact that the action does not contain derivatives of the
curvature, see [8], [12], [11] and references therein.

The n-th order Lanczos-Lovelock-Cartan curvature tensor is defined as

R(n) ρ1ρ2...ρ2n
µ1µ2...µ2n

= δρ1ρ2...ρ2nτ1τ2...τ2n δν1ν2...ν2nµ1µ2...µ2n
R τ1τ2
ν1ν2 R τ3τ4

ν3ν4 . . . R τ2n−1τ2n
ν2n−1ν2n (2.24)

the n-th order Lovelock curvature scalar is

R(n) = δν1ν2...ν2nτ1τ2...τ2n R
τ1τ2

ν1ν2 R τ3τ4
ν3ν4 . . . . R τ2n−1τ2n

ν2n−1ν2n (2.25)

the above curvature tensors are antisymmetric under the exchange of any of the
µ (ρ) indices. The Lanczos-Lovelock-Cartan Lagrangian density is

L =
√
g

[D2 ]∑
n=0

cn Ln, Ln =
1

2n
R(n) (2.26)

where cn are arbitrary coefficients; the first term corresponds to the cosmological
constant. The integer part is [D2 ] = D

2 when D = even, and D−1
2 when D = odd.

The general Lanczos-Lovelock-Cartan (LLC) theory in D spacetime dimensions
is given by the action

S =

∫
dDx

√
|g|

[D2 ]∑
n=0

cn Ln, (2.27)

A simple ansatz relating the LLC higher curvatures to C-space curvatures
is based on the following contractions [7]

cn
2n
R(n) ν1ν2...ν2n
µ1µ2...µ2n

=

D∑
k=1

R ν1ν2...ν2n ρ1ρ2...ρk
µ1µ2...µ2n ρ1ρ2...ρk

+ R ν1ν2...ν2n 0
µ1µ2...µ2n 0 (2.28)

where one must take a slice in C-space which requires to evaluate all the terms in
the right hand side of eqs-(2.28) at the “points” s = xµ1µ2 = . . . = xµ1µ2...µD =
0, for all xµ, since the left hand side of eqs-(2.28) solely depends on the vec-
tor coordinates xµ. The constants cn in (2.28) carry the appropriate dimension
(units) in powers of the Planck scale in order to match the corresponding dimen-
sions (units) in the right hand side. Setting the Planck scale to unity simplifies
the need to adjust the units of every term.

After evaluating the C-space scalar curvature (2.23), setting the values of all
the poly-vector coordinates to zero, except the xµ coordinates, one can relate
it to the LLC Lagrangian, up to the cosmological constant ( the co term ), as
follows
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R [xµ; s = xµ1µ2 = ..... = 0] =

[D2 ]∑
n=1

cn
2n
R(n)(xµ) (2.29)

The curvature tensors and scalar curvature with torsion in Riemann-Cartan
space appearing in the right hand side of (2.29) decompose into the standard
Riemannian piece plus torsion squared terms and derivatives of torsion. For
instance, R = R̂− 1

4TabcT
abc [10], where R̂ is the Riemannian scalar curvature.

3 Clifford Algebraic Structure of Curved C-spaces

In this section we shall study the Clifford Algebraic Structure of Curved C-
spaces. Without loss of generality we can facilitate matters enormously if one
chooses a frame in the tangent C-space such that EAM , E

M
A 6= 0, if the grade of

M equals grade of A; and EAM , E
M
A = 0 if the grade of M is not equal to the

grade of A. Choosing such frame requires fixing some of the generalized Lorentz
symmetries (poly-rotations) in the tangent C-space. Afterwards we will study
the most general case scenario when there is a nontrivial grade mixing such
that all the components of EAM , E

M
A must be taken into account. The simpler

”diagonal gauge” choice EAM , E
M
A 6= 0, if the grade of M equals grade of A,

permits us to begin with

{γµ, γν} = Eµa E
ν
b {γa, γb} = 2 Eµa E

ν
b η

ab = 2 gµν (3.1)

and
[γµ, γν ] = Eµa E

ν
b [γa, γb] = 2 Eµa E

ν
b γ

ab = 2γµν (3.2)

one learns that
gµν = Eµa E

ν
b η

ab (3.3)

and

γµν = E
[µν]
[cd] γ

cd = Eµa E
ν
b γ

ab =
1

2
Eµ[a E

ν
b] γ

ab (3.4)

multiplying both sides of (3.4) by γmn and taking the scalar parts < γcdγmn >=
cδcdmn = cδc[mδ

d
n], where c is a constant of proportionality that decouples from

(3.4), one arrives at the crucial decomposition of

E
[µν]
[cd] δ

cd
mn = E

[µν]
[mn] =

1

2
Eµ[a E

ν
b] δ

ab
mn =

1

2
Eµ[m Eνn] (3.5)

in terms of anti-symmetrized products and where the (anti) symmetrization has
a weight of 1.

The commutator

[γab, γc] = − 2 (ηacγb − ηbcγa) (3.6a)
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yields

[γµν , γρ] = [E
[µν]
[ab] γ

ab, Eρc γ
c] =

−2 E
[µν]
[ab] E

ρ
c (ηacγb − ηbcγa) = − (EµaE

ν
b −E

µ
b E

ν
a ) Eρc (ηacγb − ηbcγa) =

−2 (gµρ γν − gνρ γµ) (3.6b)

hence we learned that the curved space commutator [γµν , γρ] has the same
functional form as the tangent space commutator [γab, γc]. Similarly, after some
straightforward algebra one obtains

[γµν , γρτ ] = − 2 (gµργντ − gνργµτ + .......) (3.7)

which has the same functional form as the commutator [γab, γcd] so the Jacobi
identities are satisfied. For example, after using eqs-(3.2, 3.6,3.7) one still retains
the vanishing condition

[ γµν , [γρ, γτ ] ] + [ γρ, [γτ , γµν ] ] + [ γτ , [γµν , γρ] ] = 0 (3.8)

The form of the (anti) commutators involving the curved space basis generators
γM will be modified considerably from those in the tangent space case if one
did not set EMA = 0 for the mixed grade components. Nevertheless, in this
more complicated case, the (graded) Jacobi identities will still be satisfied. The
”diagonal gauge” conditions EMA 6= 0 if grade A equals grade of M , simplifies
enormously the form of the commutation relations [γM , γN ] of the curved space
basis generators in such a way that they sill retain the same functional form as
the flat tangent space commutators [γA, γB ], and as such, obey automatically
the Jacobi identities. Similar conclusions apply to the anti-commutators.

Strictly speaking one does not have a Lie algebra because the metric gµρ

is no longer constant, hence one does not have structure constants in the right
hand side of [γM , γN ] = fMN

L γL but structure functions fMN
L instead

[γM , γN ] = EMA ENB [γA, γB ] = EMA ENB fABC γC =

EMA ENB fABC ECL γL = fMN
L γL (3.9a)

where the structure functions are defined by

EMA (X) ENB (X) fABC ECL (X) = fMN
L (X) (3.9b)

The flat tangent C-space the metric ηAB was defined by taking the scalar
part of the Clifford geometric product of the tangent space generators ηAB =<
γAγB > and such that the tangent C-space metric ηAB is not zero only when
the grade of A = grade of B. If one chooses a frame such that EMA 6= 0, if
grade of A equals the grade of M , then one arrives at gMN 6= 0, if the grade of
M equals the grade of N . Whereas the mixed grade components of the curved
C-space metric gMN =< γMγN >= EMA E

N
B η

AB are also zero. Consequently, if
one uses now the expression for the connection with torsion given by
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ΓKMN =
1

2
gKL ∂MgLN (3.10)

one will end up with the following non-vanishing values for those connection
components of the form

Γ0
M 0, ΓµM σ, Γ

[µ1µ2]
M [σ1σ2]

, .... Γ
[µ1µ2....µD]
M [σ1σ2......σD] (3.11)

this will simplify enormously the calculations because the derivatives of γM

given by ∂Kγ
M = −ΓMKLγ

L will only involve the contribution of those non-
vanishing connection components (3.11). Namely, those where the grade of L
equals the grade of M .

For example, taking derivatives of eq-(3.2) with respect to xρ and after using
eq-(3.11) gives

Γσρµ g[σν] [αβ] − Γσρν g[σµ] [αβ] = Γρ [µν] [αβ] (3.12)

If one were to use the torsionless Levi-Civita-like connection expression in (2.16),
rather than the connection in eq-(3.10), for Γσρµ,Γ

σ
ρν ,Γρ [µν] [αβ], after taking the

derivatives of eq-(3.2) one will arrive at the same equation (3.12), in addition to
extra equations resulting from the additional terms stemming from the mixed
grade components appearing in ∂Kγ

M = −ΓMKLγ
L.

One can verify that if one uses the Levi-Civita connection (2.12) in eq-(3.12,
while performing the following decomposition of the metric

g[αβ] [µν] = gαµ gβν − gαν gβµ (3.13)

and after setting to zero the mixed-grade components of the metric, it leads to
a differential constraint among the derivatives of the metric of the form

gνβ(∂µgαρ − ∂αgρµ) − gνα(∂µgβρ − ∂βgρµ) +

gµα(∂νgβρ − ∂βgρν) − gµβ(∂νgαρ − ∂αgρν) = 0 (3.14)

One can avoid this differential constraint (3.14) if one does not recur to the
torsionless Levi-Civita-like connection expression (2.16) but instead one uses
the following expression for the connection with torsion in eq-(3.10)

Γσρµ =
1

2
gστ ∂ρgµτ ; Γρ [µν] [αβ] =

1

2
∂ρg[αβ] [µν] (3.15)

In this case, eq-(3.12), after recurring to the decomposition (3.13), reduces then
to a mere identity between the left and right hand sides in such a way that there
are no longer differential constraints imposed among the first derivatives of the
metric, like they occurred in (3.14). Therefore we have found a good reason
why one must choose a connection with torsion of the form given by eqs-(3.10,
3.15). It is dictated to us by the Clifford algebraic structure. The apparent dif-
ferential constraints become mere identities, upon a closer inspection, when the
connection with torsion (3.10, 3.15) is chosen and when the metric components
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are decomposed into its irreducible factors (3.13). We shall provide a few more
examples of why this is true below.

Another example of how an apparent differential constraint turns into a
mere identity is by taking derivatives on both sides of (3.7) with respect to τ ,
for example. After evaluating the commutators one arrives at

−Γ[µν]
τ σ1σ2

(gσ1ργσ2 − gσ2ργσ1) − Γρτ σ(gµσ γν − gνσ γµ) =

(∂τg
µρ) γν − (∂τg

νρ) γµ − gµρ Γντα γ
α + gνρ Γµτα γ

α (3.16)

In the Appendix we shall explicitly show how after contracting the gammas, by
multiplying by γα on both sides of eq-(3.16) and taking the scalar parts, one
arrives at an strict identity, thus avoiding the introduction of spurious differen-
tial constraints involving derivatives of the metric. One may verify as well that
after taking derivatives of the anti-commutators leads to apparent differential
constraints which become mere identities after using the expression for the con-
nection with torsion (3.10), the zero mixed-grade conditions gMN = 0 for the
metric, and when the metric components g[µ1µ2...µk] [ν1ν2...νk] are decomposed
into its irreducible factors as

det


gµ1ν1 . . . . . . gµ1νk

gµ2ν1 . . . . . . gµ2νk

−−−−−−−−−−− −−−−−−−−−−−−−−
gµkν1 . . . . . . gµkνk

 (3.13′)

The calculations are very tedious as one can see in the Appendix. Even more so
when one evaluates the remaining (anti) commutators and takes their deriva-
tives.

To prove this in the most general case for all the (anti) commutators of the
Clifford algebra, without having to recur to the zero mixed-grade conditions for
the metric, beins, inverse beins; without having to decompose the same grade
metric components into their irreducible pieces, and without having to perform
tedious calculations, one begins with the structure constants associated with
the flat tangent space Clifford algebra

γAγB = cABC γC , [γA, γB ] = fABC γC , {γA, γB} = dABC γC (3.17a)

the structure functions associated with the curved space basis generators are

γMγN = c′MN
L γL, [γM , γN ] = f ′MN

L γL, {γM , γN} = d′MN
L γL (3.17b)

where
c′MN
L = EMA ENB ECL cABC (3.18a)

f ′MN
L = EMA ENB ECL fABC (3.18b)

d′MN
L = EMA ENB ECL dABC (3.18c)
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we use primes in the left hand side of eqs-(3.18) to emphasize that in the most
general case, when one does not longer choose the zero mixed-grade conditions
(a ”diagonal” gauge) , the functional form of the (anti) commutators for the
curved basis Clifford generators will not be the same as in the tangent space case.
Denoting by h′MN

L any one of the three structure functions c′MN
L , f ′MN

L , d′MN
L ,

and after taking ordinary derivatives on each single one of the terms in eqs-
(3.18), one can see that one arrives precisely at the covariantly − constancy
condition on the structure functions h′MN

L

∂Kh
′MN
L + ΓMKQ h′QNL + ΓMKQ h′MQ

L − ΓQKL h
′MN
Q = 0 ⇒ ∇K(h′MN

L ) = 0
(3.19)

which is obeyed by a metric compatible connection satisfying

∇KEAM = ∂KE
A
M − ΓLKM EAL + ωAK B EBM = 0,

∇KEMA = ∂KE
M
A + ΓMKL E

L
A − ω B

KA EMB = 0 (3.20)

To show that eq-(3.19) is satisfied it is important to notice once again the
two different choices discussed in section 2 for the connection Γ appearing in
(3.20) and the hatted connections Γ̂ defined by eq-(2.14). When one uses the
Γ’s, one has a covariantly-constancy condition imposed on the tangent space and
curved space basis generators. Thus the covariant derivatives of the structure
”constants” hABC are zero if one wishes to maintain the tangent space Clifford
algebra intact. Also zero are the covariant derivatives of the beins, and inverse
beins in (3.20). Thus one has automatically ∇Kh′MN

L = 0. On the other hand,

if one were to use the Γ̂ connection instead, the covariant derivatives are then

∇̂KhABC = ωAK D hDBC + ωBK D hADC − ω D
KC hABD (3.21)

since the ordinary derivative of a true constant is ∂Kh
AB
C = 0. The covariant

derivatives (with respect to the hatted connections) of the beins and inverse
beins are no longer zero zero, but instead are

∇̂KEAM = − ωAK B EBM , ∇̂KEMA = ω B
KA EMB (3.22)

By recurring to the definitions of the structure functions (3.18), and the action
of the hatted covariant derivatives described by eqs-(3.21, 3.22), one can verify
the covariantly−constancy condition (with respect to the hatted connection Γ̂)
on the structure functions h′MN

L . To see this one regroups the 6 terms obtained
after taking the covariant derivatives of eqs-(3.18) into three pairs. The three
pairs originate from taking covariant derivatives on the beins, inverse beins and
the structure constants in eqs-(3.21, 3.22). The first pair, after raising and
lowering indices, is indeed zero

ωKAD [ EMD ENB ECL hABC + EMA ENB ECL hDBC ] = 0 (3.23)
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because the term inside the bracket is symmetric under the exchange of A↔ D
indices, while the spin connection ωKAD is anti-symmetric. Similar findings
occur to the remaining two pairs. Therefore, ∇̂K(h′MN

L ) = 0 and the covariant-
constancy condition on the structure functions is obeyed for both connections
Γ, Γ̂. Namely, the key point is that the choice of the metric compatible connec-
tions has to be consistent with the Clifford algebraic structure of the curved
C-space.

We continue this section by adding some important remarks about the zero
mixed-grade condition (”diagonal” gauge choice) which simplified the calcula-
tions. Since under (poly) coordinate transformations the metric transforms as

g′JK = gMN
∂XM

∂X ′J
∂XN

∂X ′K
(3.24)

one can realize that if the mixed-grade components are zero in one coordinate
system this does not mean that they are also zero in another coordinate system.
In order to preserve the zero mixed-grade condition on the metric components,
one must restrict the coordinate transformations such that g′JK = 0 if the grade
of J is not equal to the grade of K. This in turn requires that the coordinate
transformations must be restricted to be grade-preserving as well, namely one
must have coordinate transformations of the form

x′µ = x′µ(xν), x′µν = x′µν(xρτ ), s′ = s′(s), ..... (3.25)

so that under the restricted coordinate transformations (3.25) one has that
g′JK 6= 0, if grade of J equals grade of K, when gMN 6= 0, if grade of M equals
grade of N . Therefore, if one wishes to preserve the conditions E′MA 6= 0, if grade
of M equals grade of A, and E′MA = 0 if grade of M is not equal to the grade of A,
one must restrict the poly-coordinate transformations and generalized Lorentz
transformations (poly-rotations affecting the tangent C-space indices A,B,C...
in EAM , E

M
A ) to be grade-preserving. This also applies to the metric when

the mixed-grade components of gMN are zero. Only a restricted set of poly-
coordinate transformations (generalized Lorentz transformations in the tangent
space) will preserve such zero mixed-grade condition on gMN and EAM , E

M
A .

Of course in the most general case we are not confined to perform restricted
poly-coordinate transformations and restricted generalized Lorentz transforma-
tions. Hence one should allow for grade-mixing transformations. In particular,
the connection does not transform homogeneously under poly-coordinate trans-
formations because it is not a (poly) tensor, like the metric. The connection
transforms as

Γ′LMN = ΓPQR (
∂XQ

∂X ′M
) (

∂XR

∂X ′N
) (
∂X ′L

∂XP
) + + (

∂2XP

∂X ′M∂X ′N
) (
∂X ′L

∂XP
) (3.26)

where the last terms are the inhomogeneous pieces.
We have shown explicitly in this section that when the zero mixed-grade

condition was imposed, and when the diagonal metric components were de-
composed into its irreducible components, the Levi-Civita connection was not
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satisfactory because it furnishes spurious differential constraints among the first
derivatives of the metric. Whereas the connection choice with torsion in eq-
(3.10) was satisfactory because it rendered the apparent differential constraints
into mere identities. An important question to ask now is whether or not in
a different coordinate system the Levi-Civita connection might turn out to be
satisfactory.

To answer this question we must again recur to the covariantly-constancy
conditions on both the metric and structure functions ∇Kh′MN

L = 0, ∇KgMN =
0. Such conditions are covariant in C-space, as they should. From the zero
nonmetricity condition one obtains a connection which is determined in terms
of the metric and for this reason we may write it symbolically as Γ[g]. From
the other condition ∇K(h′MN

L ) = 0 we obtain a connection that we may write
as Γ[h′]. Since the covariant derivatives were defined in terms of the same
connection Γ , we must have Γ[g] = Γ[h′]. This last functional equality is very
restrictive as we have seen above when the ”diagonal gauge” choice was taken
: the Levi-Civita connection was not satisfactory, whereas the connection with
torsion given by eq-(3.10) was.

Under coordinate transformations, in the new frame of reference denoted
by a tilde, we will have : Γ̃[g̃] = Γ̃[h̃′]. Since torsion transforms as a tensor
under coordinate transformations, if there is torsion in one coordinate system
one cannot eliminate it in the new coordinate system. Therefore the new Γ̃ must
have torsion (contorsion) components as well, and as such, it cannot coincide
with the torsionless Levi-Civita connection. One of the main results of this
section is that C-space has torsion which is required for the connection in order
to have a consistent system of simultaneous equations∇Kh′MN

L = 0, ∇KgMN =
0.

To summarize, after studying the algebraic conditions imposed by the Clif-
ford algebra in curved C-space we found : (i) in a given coordinate system (gen-
eralized Lorentz frame) the mixed-grade components of the metric gMN , g

MN ,
and beins EAM , inverse beins EMA , can be set to zero in order to considerably
simplify the calculations; namely due to the very large diffeomorphism sym-
metry in C-space, one may choose a frame (”diagonal gauge”) such that the
mixed grade components of the metric, beins, inverse beins are zero. (ii) In
this case, the Clifford algebra associated to the curved space basis generators
assumes the same functional form as it does in the flat tangent space, and obeys
the (graded) Jacobi identities. (iii) The metric, beins, inverse beins, admit a
decomposition into their irreducible pieces ; (iv) only a restricted set of poly-
coordinate transformations (generalized Lorentz transformations in the tangent
space) will preserve such zero mixed-grade condition; (v) the connection has
torsion and is given by eq-(3.10) ΓKMN = 1

2g
KL∂MgLN .

These conditions allowed us to convert the apparent differential constraints
among the first derivatives of the metric, resulting from the Clifford algebraic
structure associated with the curved C-space basis generators, into strict iden-
tities as we have explicitly shown in this section and the appendix.

In the most general case, when the mixed grade components of the met-
ric, beins and inverse beins are not set to zero; and when their diagonal com-
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ponents do not necessarily decompose into antisymmetrized sums of products
of their irreducible pieces, we have found that the metric compatible connec-
tion ∇KgMN = 0 must be consistent with the Clifford algebraic structure if
∇Kh′MN

L = 0. This consistency condition singles out an specific family of
connections (orbits) obtained by performing coordinate transformations of the
fiducial connection with torsion given by eq-(3.10).

An example of the most general case (when the diagonal gauge is not chosen)
is that now the C-space metric component (written in bold font)

gµν = Eµ0 Eν0 η
00 + Eµa E

ν
b η

ab + Eµa1a2 E
ν
b1b2 η

a1a2 b1b2 + .......... (3.27)

is given by a sum of many pieces. The ordinary spacetime metric can naturally
be embedded into the term gµν(1) = EµaE

ν
b η

ab (which has also a dependence on

all of the poly-vector coordinates X) and is just one piece of the C-space metric
element gµν . This is not farfetched, bi-metric theories of gravity, for example,
have been known for a long time since the work of Rosen. The ”zero” term,
corresponding to the scalar-scalar components of the tangent C-space metric
ηAB , is denoted by gµν(0) = Eµ0E

ν
0 η

00 and the others will be denoted by gµν(n)
where n = 1, 2, 3, ....., D. The reason why the diagonal gauge choice of setting
the mixed-grade components of EAM , E

M
A to zero is very physical is because

gµν(X) reduces then to the standard metric gµν(1)(X).

The upshot of breaking gµν into several pieces, is that the quantity

gµρ δντ R
τ
µνρ[g,Γ] = R(0) + R(1) + ........... (3.28)

admits a splitting into several terms. In the case of constant curvature back-
grounds one may relate the ”zero” term R(0) = gµρ(0)Rµρ[g,Γ] with the very large

Planck scale vacuum energy contribution (a very large cosmological constant
in C-space), whereas the second term R(1) = gµρ(1)Rµρ[g,Γ] could be related

to the extremely small observed cosmological constant in ordinary spacetime.
When one chooses the diagonal gauge by setting the mixed-grade components of
EAM , E

M
A to zero, one has gµν = gµν(1) = EµaE

ν
b η

ab and the expression in eq-(3.28)

reduces then to the standard scalar curvature with the inclusion of torsion terms
R[g,Γ] = R̂ + T 2 +∇T . In a pedestrian way one has ”gauged away” the very
large cosmological constant which resided in the term R(0). More work needs
to be done to explore the validity of this possibility.

4 Clifford Space Gravitation

One may construct an Einstein-Hilbert-Cartan like action based on the C-space
curvature scalar. There are two approaches to this process. One approach re-
quires the use of hyper-determinants of hyper-matrices. And the other approach
requires ordinary determinants of square matrices in 2D-dimensions.
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The hyper-determinant of a hyper-matrix [13] can be recast in terms of
discriminants [14]. In this fashion one can define the hyper-determinant of gMN

as products of the hyper-determinants corresponding to the hyper-matrices1

g[µ1µ2] [ν1ν2], . . . , g[µ1µ2...µk] [ν1ν2...νk], for 1 < k < D (4.1)

and construct a suitable measure of integration µm(s, xµ, xµ1µ2 , . . . , xµ1µ2...µD )
in C-space which, in turn, would allow us to build the C-space version of the
Einstein-Hilbert-Cartan action with a cosmological constant

1

2κ2

∫
ds
∏

dxµ
∏

dxµ1µ2 . . . dxµ1µ2...µD µm(s, xµ, xµ1µ2 , . . .) (R− 2Λ)

(4.2)
κ2 is the C-space gravitational coupling constant. In ordinary gravity it is set
to 8πGN , with GN being the Newtonian coupling constant.

The measure must obey the relation

[DX] µm(X) = [DX′] µ′m(X′) (4.3)

under poly-vector valued coordinate transformations in C-space. The C-space
metric transforms as

g′JK = gMN
∂XM

∂X ′J
∂XN

∂X ′K
(4.4)

but now one has that√
hdet g′ 6=

√
hdet g hdet

(
∂XM

∂X ′N

)
(4.5)

due to the multiplicative “anomaly” of the product of hyper-determinants. So
the measure µm does not coincide with the square root of the hyper-determinant.
It is a more complicated function of the hyper-determinant of gAB and obeying
eq-(4.3).2 One could write hdet(X · Y ) = ZAhdet(X)hdet(Y ), where ZA 6= 1
is the multiplicative anomaly and in this fashion eq-(2.30) leads to an implicit
definition of the measure µm(hdetgAB).

The ordinary determinant g = det(gµν) obeys

δ
√
−g = − 1

2

√
−g gµν δgµν (4.6)

1The hyper-determinant of a product of two hyper-matrices is not equal to the product of
their hyper-determinants. However, one is not multiplying two hyper-matrices but decompos-
ing the hyper-matrix gMN into its different blocks.

2There is no known generalization of the Binet-Cauchy formula det(AB) = det(A) det(B)
for 2 arbitrary hypermatrices. However, in the case of particular types of hypermatrices,
some results are known. Let X, Y be two hypermatrices. Suppose that Y is a n× n matrix.
Then, a well-defined hypermatrix product XY is defined in such a way that the hyperdeter-
minant satisfies the rule hdet(X · Y ) = hdet(X)hdet(Y )N/n. There, n is the degree of the
hyperdeterminant and N is a number related to the format of the hypermatrix X.
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which was fundamental in the derivation of Einstein equations from a variation
of the Einstein-Hilbert action. However, when hyper-determinants of the C-
space metric gAB are involved it is no longer true that the relation (4.6) holds
anymore in order to obtain the C-space gravity field equations in the presence
of torsion and a cosmological constant.

Using the relation δRMN = ∇JδΓJMN −∇NδΓJJM , a variation of the action

1

2κ2

∫
ds
∏

dxµ
∏

dxµ1µ2 . . . dxµ1µ2...µD µm(|hdet gMN |) (R−2Λ) + Smatter

(4.7)
with respect to the C-space metric gMN yields the C-space field equations

R(MN) + (R− 2Λ)
δln(µm(|hdet gMN |))

δgMN
= κ2 TMN (4.8)

If, and only if,
δln(µm(|hdet gMN |))

δgMN
= − 1

2
gMN (4.9)

then the field equations (4.8) would coincide with the C-space extension of
Einstein’s equations with a cosmological constant. One should note that the
field equations (4.8) contain torsion since R(MN),R are defined in terms of the
nonsymmetric connection ΓJMN 6= ΓJNM . The field equations (4.8), for example,
are very different from those found in [17] based on a fourth-rank symmetric
metric tensor.

The hyper-determinant of the C-space metric gMN (a hyper matrix) involv-
ing all the components of the same and different grade is defined as

hdet (gMN ) ≡ g00 det(gµν) hdet(gµ1µ2 ν1ν2) hdet(gµ ν1ν2) · · · · · ·

hdet(gµ1...µD−1ν1...νD−1
) gµ1...µDν1...νD (4.10)

where the hyper-determinant of gµν coincides with the ordinary determinant of
gµν . Notice once more that the hyper-determinant of a product of two hyper-
matrices is not equal to the product of their hyper-determinants. However, in
(4.10) one is not multiplying two hyper-matrices gAB , g

′
AB , but decomposing the

hyper-matrix gAB into different blocks. Hyperdeterminants have found physical
applications in the black-hole/qubit correspondence [15].

One can avoid the use of hyperdeterminants by working in a blockwise fash-
ion, when dealing with poly-vector valued indices, rather than dealing with each
one of the indices of their associated hypermatrices individually. The C-space
metric gMN associated with a Clifford algebra in D-dimensions has a one-to-one
correspondence with an ordinary metric gij in 2D-dimensions. In particular, the
metric gij is a square 2D×2D symmetric matrix with 1

22D(2D +1) independent
components. The determinant of the square matrix gij is defined as usual in
terms of epsilon tensors, where the indices range is i, j = 1, 2, 3, ...., 2D.

The poly-vector coordinates X = s, xµ, xµ1µ2 , ...., and their derivatives, have

also a one-to-one correspondence with the coordinates yi = y1, y2, ......, y2
D

, and
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their derivatives, of the associated 2D-dim space. Thus, one has a correspon-
dence of the action (4.2) in C-space with the ordinary Einstein-Cartan action,
with a cosmological constant λ, in 2D-dimensions

1

2κ2

∫
d2
D

y
√
|det gij | ( R− 2λ ) (4.11)

However, having a correspondence between the actions in (4.2) and (4.11)
does not mean that they are physically equivalent, even if one replaces the
measure in eq-(4.2) by

√
|det gij |. The reason being that the Clifford algebraic

structure imposes very strong constraints on the allowed C-space connection and
on the metric components gMN , when the zero grade-mixing condition (gauge)
gMN = 0 is chosen. As we have shown in section 2, the same grade metric
components decompose into their irreducible pieces as described in eqs-(3.13,
3.13’). In order to attain an equivalence in this case one would have to add
to the action (4.11) extra terms involving Lagrange multipliers enforcing the
decomposition conditions (constraints) in eqs-(3.13, 3.13’).

Another way of implementing those conditions (3.13, 3.13’) is by writing the
variation of the action (4.2) as

δS =
δS

δg00
δg00 +

δS

δgµν
δgµν +

δS

δg[µ1µ2] [ν1ν2]

δg[µ1µ2] [ν1ν2]

δgµν
δgµν + .... (4.12)

leading to the C-space gravitational field equations

δS

δg00
= 0,

δS

δgµν
+

δS

δg[µ1µ2] [ν1ν2]

δg[µ1µ2] [ν1ν2]

δgµν
+ ....... = 0 (4.13)

The C-space scalar curvature R after setting all the poly-coordinates to zero,
except xµ, was postulated to be related to the LLC Lagrangian, up to a cosmo-
logical constant, as provided by eq-(2.29). Instead of setting/truncating these
poly-coordinates to zero one could view the LLC action as an effective ac-
tion after integrating the C-space action (4.2) with respect to all the poly-
coordinates, except the vectorial ones xµ. In this case one has

1

16πGN

∫
dDx

√
|g(xµ)| LLLC(xµ) =

1

2κ2

∫
ds dxµν ..... µm(s, xµ, xµ1µ2 , . . .) (R− 2Λ) (4.14)

This possibility warrants further investigation. The plausible relation to ex-
tended gravitational theories based on f(R), f(R,Rµν), . . . actions for polynomial-
valued functions, and which obviate the need for dark matter, warrants also
further investigation [16]. For instance, instead of reproducing the LLC ac-
tion as an effective action in (4.14) one may generate instead actions involving
Lagrangians of the form f(R), f(R,Rµν), . . . with torsion.
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To conclude, one should add that by decomposing the same grade metric
components into their irreducible pieces (3.13, 3.13’) one is introducing higher
spins beyond spin 2. Higher spin theories s = 2, 3, ....,∞ in Anti de Sitter
backgrounds have been extensively studied in the past decades [19]. The higher
spins corresponding to the higher grade metric components gMN will have an
upper bound determined by the dimension D.

The introduction of matter terms for the gravitational action in C-space is

straightforward. Besides ordinary fermions one has spinor-tensors Ψ
[µ1µ2....µn]
α

fields which contribute to the stress energy tensor. Introducing nonmetricity
furnishes higher curvature extensions of metric affine theories of gravity [9].
An immediate question arises, does the Palatini formalism work also in C-
spaces? Namely, does a variation of the action (4.2) with respect to the C-space
connection (δS/δΓJMN ) = 0 yield the same connections as those described by
eq-(3.10) ? This and other remaining questions need to be answered. The
most important is how C-space gravity will improve the quantization program.
Noncommutative Clifford spaces based on noncommuting X poly-coordinates
were considered in [18].

APPENDIX

In the first part of this appendix we will write down the (anti) commuta-
tors involving the flat tangent space Clifford basis generators in D dimensions.
In the second part of this appendix we will verify that eq-(3.16) is an iden-
tity instead of an apparent differential constraint. Similar conclusions follow
for more complicated (anti) commutators involving curved space Clifford basis
generators.

The Clifford geometric product corresponding to the tangent space genera-
tors can be written as

γA γB =
1

2
{γA, γB} +

1

2
[γA, γB ] (A.1)

The commutators [γA, γB ] for pq = odd one has [6]

[ γb1b2...bp , γ
a1a2...aq ] = 2γ

a1a2...aq
b1b2...bp

−

2p!q!

2!(p− 2)!(q − 2)!
δ
[a1a2
[b1b2

γ
a3...aq ]

b3...bp]
+

2p!q!

4!(p− 4)!(q − 4)!
δ
[a1...a4
[b1...b4

γ
a5...aq ]

b5...bp]
− . . .

(A.2)
for pq = even one has

[ γb1b2...bp , γ
a1a2...aq ] = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1
[b1

γ
a2a3...aq ]

b2b3...bp]
−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[a1...a3
[b1...b3

γ
a4...aq ]

b4...bp]
+ . . . (A.3)
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The anti-commutators for pq = even are

{ γb1b2...bp , γa1a2...aq } = 2γ
a1a2...aq
b1b2...bp

−

2p!q!

2!(p− 2)!(q − 2)!
δ
[a1a2
[b1b2

γ
a3...aq ]

b3...bp]
+

2p!q!

4!(p− 4)!(q − 4)!
δ
[a1...a4
[b1...b4

γ
a5...aq ]

b5...bp]
− . . .

(A.4)
and the anti-commutators for pq = odd are

{ γb1b2...bp , γa1a2...aq } = − (−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[a1
[b1

γ
a2a3...aq ]

b2b3...bp]
−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[a1...a3
[b1...b3

γ
a4...aq ]

b4...bp]
+ . . . (A.5)

Eqs-(A.1-A.5) allows to construct explicitly the Clifford geometric product of
the curved C-space basis generators γMγN = EAME

B
NγAγB via the introduction

of the C-space beins.
We turn now to verify that eq-(3.16) is an identity instead of an apparent

differential constraint. Multiplying by γα both sides of (3.16) and taking the
scalar part of the Clifford geometric product yields

−Γ[µν]
τ σ1αg

σ1ρ + Γ[µν]
τ ασ2

gσ2ρ + Γρτ σ(gνσ δµα − gµσ δνα) =

(∂τg
µρ) δνα − (∂τg

νρ) δµα − gµρ Γντα + gνρ Γµτα (A.6)

Given the connection defined as

Γ[µν]
τ σα =

1

2
gµν βγ ∂τ (gβγ σα), Γρτσ =

1

2
gρβ∂τ (gβσ) (A.7)

and the decomposition of the bivector-bivector metric components

gβγ σα = gβσ gγα − gγσ gβα

gµν βγ = gµβ gνγ − gνβ gµγ (A.8)

and moving the derivatives as follows

gνβ (∂τgβσ) = ∂τ (gνβ gβσ) − (∂τg
νβ) gβσ =

∂τ (δνσ) − (∂τg
νβ) gβσ = − (∂τg

νβ) gβσ (A.9)

allow us to verify that eq-(A.6) becomes an identity after recurring to eqs-(A.7-
A.9). For instance, the particular terms in the left hand side of (A.6)

1

2
gσρ gµγ gνβ (∂τgβσ) gγα =

1

2
gσρ δµα g

νβ (∂τgβσ) =

− 1

2
gσρ δµα (∂τg

νβ) gβσ = − 1

2
δρβ δ

µ
α (∂τg

νβ) = − 1

2
δµα (∂τg

νρ) (A.10)
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can be combined with the terms

1

2
gρβ (∂τgβσ) gνσ δµα = − 1

2
(∂τg

ρβ) gβσ g
νσ δµα =

− 1

2
(∂τg

ρβ) δνβ δ
µ
α = − 1

2
(∂τg

ρν) δµα (A.11)

such that after adding the right hand sides of eqs-(A.10, A.11) gives −(∂τg
ρν) δµα

which is precisely the term appearing in the right hand side of (A.6).
The particular term in the left hand side of (A.6)

−1

2
gσρ gµβ gνγ (∂τgγα) gβσ = − 1

2
gσρ gνγ δµσ (∂τgγα) = − gµρ Γντα (A.12)

becomes precisely the same term in the right hand side of eq-(A.6). Repeating
similar calculations with the remaining terms of eq-(A.6), one can show that
indeed eq-(A.6) is an identity rather than a differential constraint among first
derivatives of the metric. It was crucial to recur to the eqs-(A.7-A.9) in order
to attain this finding.
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