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Article 15:

Formulating the theories of gravity/intrinsic gravity and
motion/intrinsic motion and their union at the second stage of
evolutions of spacetimg@ntrinsic spacetime and
parametergintrinsic parameters in a gravitational field. Partll.
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Center for The Fundamental Theory, P. O. Box 2575, Akure, CBtdie 340001, Nigeria.
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An analytical approach to the theory of gravitational relativity (TGR) aanhigined
theory of gravitational relativity and special theory of relativity (T&&R) on the flat
spacetime of TGR in a gravitational field of arbitrary strength, is develapembm-
plement the graphical approach developed in the first part of thisrpdje analyt-
ical approach to TGR bears an interesting analogy to the analytical apptosSR
developed by Albert Einstein. Relations for (or transformations of)smnfisce, en-
ergy, gravitational potential, gravitational field (or acceleration), graeital velocity,
frequency and other parameters, are derived on flat spacetime conibext of TGR.
These are relations that incorporate tliiee of gravitational relativity into the clas-
sical and special-relativistic values of parameters at every point bapiteetime in a
gravitational field of arbitrary strength. Local Lorentz invariance (Lislvalidated on
the flat spacetime of TGR. The weak equivalence principle (WEP) isshowe valid
in the context of TGR as long as it is valid in classical gravitation. The modffied
gravitational-relativistic) form of the Newtonian gravitational force law @i fipace-
time in the context of TGR is derived. The non-trivial relationships antbegrarious
mass concepts in physics namely, the inertial mass, the passive grasitatiass, the
active gravitational mass and the rest mass, which the derived niassrrén the con-
text of TGR implies, are highlighted and the elusive rest mass and clbassilhas of
a gravitational field source are calculated from the observed (or inerady and the
observed radius of the field source. The exterior Schwarzschild lingeglein the gen-
eral theory of relativity is shown to pertain to the measurable sub-sga@@m (which
is a fictitious curved spacetime with sub-Riemannian metric tensor), whéredotal
space of TGR is the observed flat spacetime with constant Lorentziait teesor.

1 Theory of gravitational relativity by analytical approach

The global spacetinfimtrinsic spacetime geometry of Fig. 11 of [1] in the absence
of relative gravity at the first stage of evolutions of spanefintrinsic spacetime
and parametefigtrinsic parameters in a gravitational field does not ekisha-
ture, while the global spacetirfietrinsic spacetime geometry of combined first and
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second stages of evolutions of spacefintensic spacetime and paramet@rsin-

sic parameters in a gravitational field of Fig. 7 and its campntary geometry of
Fig. 8, along with their inverses Figs. 9 and 10 of [2], madéefuby incorporat-
ing the constantly flat absolute-absolute intrinsic-imgit spacetimedigp, ¢¢Cost)

in Fig.9 of [3] and reproduced as Fig. 1 and its complemendagram of Fig. 2

of [4], are the global spacetirnietrinsic spacetime geometries that exist in every
gravitational field.

Never the less it is theoretically valid that the flat foumeéinsional proper space-
time ', ct’) containing proper parameters and its underlying flat timessional
proper intrinsic spacetimepg’, #cgt’) containing proper intrinsic parameters in
Fig. 11 of [1], in the absence of relative gravity at the firsige of evolutions
of spacetim@ntrinsic spacetime and paramef@rginsic parameters in a gravita-
tional field, dfectively transform into the flat four-dimensional relagtit space-
time (Z, ct) containing gravitational-relativistic parameters atglunderlying flat
two-dimensional relativistic intrinsic spacetimgp( ¢cgt) containing gravitational-
relativistic intrinsic parameters in Figs. 1 and 2 of [4],drrelative gravitational
field, at the second stage of evolutions of spacefimntrénsic spacetime and parame-
tergintrinsic parameters in a gravitational field.

Now let the center of the assumed spherical rest Més®f a gravitational
field source be located at a point O and let the rest massf a test particle be
located along a radial direction at radial distamtérom the center oMy in the
proper Euclidean 3-spacé# of the flat four-dimensional proper spacetinig, ¢t’),
which evolves at the first stage of evolutions of spacefimrnsic spacetime and
parametepintrinsic parameters in a gravitational field. This sitoatcannot endure,
since the first and second stages of evolutions of spactimesic spacetime and
parameteprintrinsic parameters commence simultaneously and prapdggether
at the speed of light away from the location of the gravitadiofield source, as
explained in sub-section 1.1 of [2] and section 3 of [3].

The rest mas#$/y of the gravitational field source in the proper Euclidean 3-
spaceX’ at position O and the rest massg of the test particle irt’ at radial dis-
tancer’ from the center oMy will, as soon as they are formed at the first stage
of evolutions of spacetinfimtrinsic spacetime and paramef@rginsic parameters,
transform into the gravitational-relativistic malskof the gravitational field source
at position O in the relativistic Euclidean 3-spacand the gravitational-relativistic
masam of the test particle at radial distancé&om the center oM in X respectively
in the context of TGR at the second stage.

685A. Joseph. Formulating gravity and motion at second stage of evidutfepacetime..... Il.



Vol. 1(3B): Article 15 THE FUNDAMENTAL THEORY ... (M) Mar, 202

Every other proper (or classical) parameter (with primeslgtsuch as proper
gravitational potentiatd’(r’), proper gravitational fieldj’(r’), proper energy’,
proper inertial and gravitational forcé§ and F/, proper frequencyy, etc, that
evolved in the proper Euclidean 3-spa&et the neighborhood of the rest mads
of the gravitational field source at the first stage of evohaiof spacetim@trinsic
spacetime and parametg@nsrinsic parameters, will likewise, as soon as they are
formed, transform into the respective gravitationaltieistic parameters namely,
gravitational-relativistic gravitational potentid(r), gravitational-relativistic grav-
itational fieldg(r), gravitational-relativistic energl, gravitational-relativistic iner-
tial and gravitational forceg; and F_'g, gravitational-relativistic frequenoy;, etc, in
the relativistic Euclidean 3-spagein the context of TGR at the second stage.

It is the gravitational-relativistic massesandM of test particles and gravita-
tional field sources and gravitational-relativistic plogdiparameters and physical
constants in the relativistic Euclidean 3-spacef TGR that are observed in every
gravitational field, assuming the absence of special withatiln a situation where
special relativity is also present, then th#eet of special relativity must be incor-
porated into the gravitational-relativistic parametevsngy gravitational-relativistic
cum special-relativistic parameters in the context of cioet TGR and SR.

It then follows that the entire universe is a flat four-dimenal relativistic
spacetime domainX(ct) of TGR, containing gravitational-relativistic masses
and M in the context of TGR and gravitational-relativistic cunesjal-relativistic
massedm and M in the context of TGRSR, of particles and bodies and other
gravitational-relativistic and gravitational cum spégiativistic parameters and its
underlying flat two-dimensional relativistic intrinsicagetime ¢p, ¢cgt) of pTGR,
containing gravitational-relativistic intrinsic massgs and M of particles and
bodies and gravitational-relativistic cum special-riglatic intrinsic massegm and
#M of particles and bodies and other gravitational-reldiiviand gravitational-
relativistic cum special-relativistic intrinsic pararaeg. The flatness of the universal
four-dimensional spacetime and consequently of the usal€-space are priori
in the present theory.

Although spacetime is flat within a gravitational field, gtational velocity
Vg(r) and gravitational potentiab(r) vary with radial distance from the center
of the massM of the gravitational field source in the Euclidean 3-spacedt is
therefore mandatory to restrict the formulations of thevtigional-relativistic non-
gravitational laws and gravitational-relativistic clasd theory of gravity (CG) to
the interiors of local Lorentz frames on flat spacetirBgct) in every gravitational
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field.

Certainly there are transformations of elementary coateimtervalgix’©, dx'*,
dx’? anddx’® of the flat proper metric spacetimg’(ct’) into the elementary coor-
dinate intervalglx®, dxt, dx? anddx® of the flat relativistic metric spacetim&,(ct)
at every point in spacetime at the neighborhood of everyigtianal field source,
in addition to transformations of proper parametersifd’) into gravitational-
relativistic parameters irZ(ct) in the context of TGR. The accomplishment of an
analytical approach TGR must therefore start with the d¢ions of elementary
metric spacetime coordinate interval transformation. héligh this has been ac-
complished by the graphical approach in the first part of plaiger [4], it shall be
re-done analytically in this second part for completeness.

1.1 Gravitational local Lorentz transformation and gradtional local Lorentz
invariance in the context of TGR

Let us consider a proper (or primed) local Lorentz frame efltt proper spacetime
(2, ct’) (within which gravitational velocity@(r’) is constant), which is located
at radial distance’ from the center of the assumed spherical rest méds®f a
gravitational field source in the proper Euclidean 3-speice(We shall restrict to
spherically symmetric gravitational fields until the Maxiian theory of gravity
(MTG) is developed in later papers and non-spherically sginio gravitational
field sources shall be considered.)

Let us prescribe elementary metric spacetime coordinggeviascdt’, dr’, r’d¢”
andr’ sing’dy’ within the primed local Lorentz frame. Whether a particleoisdted
within this proper local Lorentz frame or not, the primed rieetoordinate inter-
vals will, by virtue of the presence of gravitational spe€dr’) within the local
Lorentz frame, transform into relativistic (or unprimedgitmic coordinate intervals
cdt, dr, rdg andr sinddyp, within the unprimed local Lorentz frame on the flat rela-
tivistic spacetimeX, ct), at the corresponding radial distanmdeom the center of the
gravitational-relativistic masM of the gravitational field source in the relativistic
Euclidean 3-spack.

Thus there is a transformation of the proper (or primed) elaary metric coor-
dinate intervaledt’, dr’, r’'d®’ andr’ sin@’dy’) into relativistic (or unprimed) met-
ric coordinate intervalsdt, dr, rdg andr sinfdy) of the formdx” — dx = L,dx,
in the context of the theory of gravitational relativity (Rpat every point within
every local Lorentz frame on flat spacetime in every graatetl field. We shall
now determine the matrik, of this transformation.
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It is appropriate to recall the further discussion on thecemt of gravitational
veIocity\7é(r') in sub-section 1.2 of the first part of this paper [4]. In asial,

1. The gravitational (or static) velocit?(;(r’) serves the role in TGR that dy-
namical velocityi serves in SR. Thu‘é"g’,(r’) effects TGR on the flat relativis-
tic specetimeX, ct) (that evolves in the context od TGR), justigéaffects SR
on (&, ct) within local Lorentz frames in every gravitational field,;

2. The gravitational velocity is invariant, that ﬁg(r) = \7;(r’) in the context
of TGR, just as the dynamical velocityis invariant, that i/ = 7 (between
particle’s and observer’s frames) in the context of SR;

3. The gravitational velocit%(r’) points radially towards the centroid of every
gravitational field source, spherically-symmetric or roatrresponding to the
fact that the dynamical velocity of relative motion of every pair of frames
and their coordinates along which relative motion occurdyée taken ax’™
andXor X and>:<) always by convention, are naturally collinear (ileX and
X are naturally collinear) and not by assumption or presiorpt

4. The maximum over all gravitational velocities that cands¢ablished at a
point in space by a gravitational field source or a combimatiogravitational
field sources, or which can be acquired in space by particiddadies, in-
cluding massless gravitons,ds = 3 x 168 mys, corresponding to the maxi-
mum over all dynamical velocities oh310° ny/s, which particles and bodies,
including massless photons, can attain in motion.

Now just as the speed, (of electromagnetic waves) is a constant in all local
Lorentz frames on the flat spacetin® ¢t) in a gravitational field, so is the speed
¢, (of gravitational waves) a constant in all local Lorentznfies on the flat space-
time (Z, ct) in a gravitational field. We shall make this subject more broas and
the formal analogy between TGR and SR more striking by sigttie analytical
approach to TGR with the following statements of two pritegpof the theory of
gravitational relativity

1. Natural laws (gravitational and non-gravitational) &meariant with local
Lorentz frame.

2. The speed of gravitational waves is a constgnt 3x 168 ms2, in all local
Lorentz frames.

These are the counterparts in TGR of the two principles ofsghexial theory of
relativity, which Albert Einstein started with in derivirige Lorentz transformation
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(LT) and its inverse in his 1905 special relativity paper]823]. The validity of the
first statement shall be demonstrated in a paper shortlysrvtdtume.

One important aspect of the close analogy between SR and Wiigh follows
from the two principles of TGR above, is that there exists eebhte-like transfor-
mation of elementary coordinate intervatit’, dr’, r’d¢’ andr’ sing’dy’ within a
proper (or primed) local Lorentz frame on the flat proper sfiare &', ct’) into
the elementary unprimed coordinate intenals, dr, rdd andr sinddy within the
corresponding relativistic (or unprimed) local Lorentarfre on the flat relativis-
tic spacetimeX, ct) and its inverse, in terms of gravitational speédr’), at every
point in spacetime within every local Lorentz frame in a giational field of arbi-
trary strength, in the context of TGR. This corresponds teehtr transformation
and its inverse in terms of dynamical spedd the context of SR.

Thus the desired transformation and its inverse in the b TGR, at an
arbitrary radial distancg from the center of the assumed spherical rest rivissf
the gravitational field source in the proper Euclidean 3ep4, which correspond
to radial distance from the center of the gravitational-relativistic madsof the
gravitational field source in the relativistic Euclideasfgacex of TGR, should be
linear in the elementary coordinate intervals, like theltbeentz transformation and
its inverse in SR. In other words, the elementary coordiimderval transformation
at every point in spacetime within every local Lorentz framéhe context of TGR
should take on the following form,

ar’ = Adt- Bdr; dr’ = Cdr — Ddt; 1)
r'de = rdd andr’sin@dy’ = rsingdy

and its inverse,
dt = Adt +Bdr;dr=Cdr’ + Ddt’; @
rdd = r’'d¢ andrsinddy = r’sing’dy’

whereA, B, C andD are functions of the gravitational spe¥f{r’).

By using the general forms of coordinate interval transfation (1) and its in-
verse (2) along with the analogy between the roles of theitgtaanal speed in
TGR and dynamical speed in SR, we must simply replace thendigaé speed
by gravitational speel,(r’) and the speed of light = c, by the speed of gravi-
tational waves, in the Lorentz transformation (the Lorentz boost) in SR ttaob
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the explicit forms of systems (1) and (2) respectively akofod

dt = y,(r) [dt - Vg(zr )dr);
" ©)
dr' = y,(r)(dr -V (r")dt);
r'de’ =rdg; r’singd’dy’ = r sinfde
and L
dt = y,(r) [dt’ + izr)dr’);
" @
dr = y,(r)dr +V,(r)dt);
rdd = r’'d¢’; rsingdy =r’sing’dy’
where
Yoll) = Q= V(I (5)

Also by using the established relatidc?i;(r’)2 = 2GMpgpa/r’, known since [2],
systems (3) and (4) can be put in the following alternativenfo

2GMopa
dar = N dt - dr |;
YQ(r )[ r,cg r ]
(6)
dr = yg(r’)(dr - ,/%dt);
r'de’ =rsinddy; r’sing’dy =rsinfdy
and
_ , , 2GMgpa .
dt = y,(r ){dt + r’cj dr ]
GM (7)
dr = yg(r’)[dr’ + 4/ %‘dt');
rdo = r’sin@dy’; rsindde = r’ sing’dy’
where 12
, 2GMoa)
Yolr') = (1— S ) (8)
rez

Although this second part of this article shall be made irteient of the first
part on graphical approach as much as possible, it shoulédadled that the co-
ordinate transformation (3) and its inverse (4) or theirlieiforms (6) and (7) in
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the context of TGR, have been derived graphicuiliythe graphical approach to the
intrinsic theory of gravitational relativity(TGR) in part one of this paper [4], and
referred to as gravitational local Lorentz transformat{@hLT) and its inverse in
that paper, as shall also be done in this second part.

System (3) or (4) or the alternative form (6) or (7) leads tavigational local
Lorentz invariance (GLLI)

c*dt? — dr® — r?(de? + sinf ode?) = Pdt’® — dr'? — r'?(de’” + sir 0'de’®)  (9)

The elementary metric coordinate intervett’ , dr’,r’d¢’ andr’ sing’dy’ can
be taken about every point in spacetime within the propepiioned) local Lorentz
frame on the flat proper spacetim¥ (ct’) and the elementary metric coordinate
intervalscdt, dr, rdd andr sinddy can be taken about every point in spacetime
within the corresponding relativistic (or unprimed) lo¢airentz frame on the flat
relativistic spacetime|, ct) in the GLLT of system (3) and its inverse (4) or their
alternative forms (6) and (7). Consequently the GLLI (9) &id/ at every point
in spacetime within every local Lorentz frame in a gravaadl field of arbitrary
strength. This guarantees that the metric four-dimensimativistic spacetime
(%, ct) that evolves in the context of the gravitational theory elativity (TGR),
is flat (with constant Lorentzian metric tensor) in all finiteighborhood of every
gravitational field source and by extension, in the entiigaene.

The analytical approach to the derivation of the GLLT andriterse in TGR
done in this sub-section, corresponds to the analyticaloga to the derivation of
the Lorentz transformation (LT) and its inverse in SR, depeb by Albert Einstein
in 1905 [5, ibid.], as mentioned earlier. There is also thegpgical approach to the
derivation of the GLLT and its inversga the graphical approach to the derivation of
#GLLT and its inverse in the context ¢iTGR, which corresponds to the graphical
approach to the derivation of local Lorentz invariance $farmation (LLT) and its
inverse in a gravitational field in SRa the graphical approach to the derivation of
¢LLT and its inverse in the context @fSR, both of which have been presented in
the first part of this paper [4].

A comparison of the graphical and the analytical approathése derivations
of the GLLT and its inverse in TGR and the LLT and its invers&R, shows that
the graphical approaches are greatly superior to and by dae complete that the
analytical approaches. This is so because the common fotdWwackgrounds of
GLLT and its inverse and LLT and its inverse revealed by ttapbical approaches
are completely obliterated in the analytical approaché® @ntirep TGR and¢SR
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on flat two-dimensional intrinsic spacetime underlying fta four-dimensional
spacetime in a gravitational field, encompassed by the gralpapproaches, are
likewise obliterated in the analytical approaches.

Also the concept of 3-observers in the Euclidean 3-spacd atibervers in the
time dimension, who jointly derive the GLLT and its inverseTiGR and the LLT
and its inverse in SR, revealed by the graphical approaehesinknown in the an-
alytical approaches. Evidently the knowledge of phystésrded by the analytical
approaches is superficial.

It may be recalled that only the general theory of relati(i@R) on a pre-
scribed curved four-dimensional spacetime in a gravitatidield and the special
theory of relativity (SR) on flat four-dimensional spaceginboth developed by
Albert Einstein [5, 1923], existed until now. The analytiegproaches to these
existing theories have no bearing with the four-world pietand the existence of
two-dimensional intrinsic spacetimed, ¢cét) that underlies the four-dimensional
spacetime and the the intrinsic theories of relativity amititrinsic spacetime, now
discovered in the present theory. The graphical approaoh®R by H. Minkowski
namely, the Minkowski diagrams within the existing one-lqgicture, which has
been critiqued and concluded to be not suitable for retatini[6], have no bearing
with these newly discovered items either. On the other hthade is no graphical
approach to GR as far as | can find.

111 Gravitational length contraction and gravitational time dilation formulae
implied by GLLT and itsinverse

It is nature that establishes gravitational local Lorenténsformation (GLLT) (3)
and its inverse (4) or their alternative forms (6) and (7) #relgravitational local
Lorentz invariance (GLLI) (9) at every point in spacetimeaimgravitational field.
Some of the terms of the GLLT and its inverse will not appeathim coordinate
transformation and its inverse that man can establish ¢firooeasurement by lab-
oratory rod and clock. First of all, we must collect the tfansations derived by
3-observers in the relativistic Euclidean 3-spadeourtesy the graphical approach
in [4]) in systems (3) and (4) to have as follows

dr’
dt

Yo(r') (dr = V;(r')dt); r'de’ = rde; 1’ sin@’dy’ =rsingdy; (10a)
Yo(r) (at’ + (V;(r')/c2) dr); (10b)

(w.r.t. 3-observer irx).
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Now when the observer B picks his laboratory rod to measure the interval of
space traversed by the event, he will be able to measurerthe jé’)dr at the right-
hand side of the first equation of system (10a), while the teyg{r’)V,(r")dt will
be non-measurable with his rod. He will be able to measuréetimes at the right-
hand sides of the second and third equations of system (liffahig laboratory
rod and protractor. Likewise when a 3-observeEimicks his laboratory clock to
measure the time interval of the event, he will be able to mresihe termy,(r’)dt’
at the right-hand side of Eq. (10b), while the teyp@r’)(v_;(r’)/cj)dr’ will be non-
measurable by his clock.

Thus from the point of view of what can be measured with latmoyarod and
clock by man, system (10a) and Eq. (10b) reduce as follows

dr = y,(r')dr’; rdg =r’d¢’; r sinddy = r’ sing’dy’ (11a)
dt = y,(r)dt (11b)
or
ar = (1- ZGIVIO"’l)l/zdr rdd = r’'dd’ ;rsingdy = r’ sind’dy’  (12a)
g
d = (1- Z?Moa) V2gy (12b)

1.1.2 The exterior Schwarzschild line element in the general theory of relativity
pertains to the measurable sub-space of the space of the theory of gravita-
tional relativity

If the gravitational time dilation and gravitational lehgtontraction formulae ex-
pressed by systems (12a) and Eqg. (12b), which man can distaweigh mea-
surements of the intervals of space and times of non-spegaivistic events in
gravitational fields by atomic clock and laboratory rod,ligfze information that is
available to man, then man would have established the folpfvom the invariance
of geodesic

ds? = c%dt? - dr? - r’?(de? + sing?de’?)
= (1- 2G'\"Oa)cZon2 1- 2G|\/'0"3‘) 1dr2 — r2(de? + sir? 6dyg?)

= d¢

g
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Hence man would have written the following line element inpgymspace at the
exterior of a spherically symmetric gravitational field s

d$ = (1- ZGMoa)czdt2 (1- ZG,MZ‘Ja) 1dr? - r2(de? + sirf6de?)  (13a)

However the active gravitational makfg should be replaced by the rest mads
in the context of GR from the known equivalence of active gesonal mass and
rest mass in GR [7,8]. The gravitational spegaf gravitational waves should also
be replaced by the only known speed of lighih GR, thereby converting the line
element (13b) to the following equivalent form in terms oé tamiliar rest mass
and the familiar speed of signain GR

ds? = (1- 2G'V'O)czolt2 (1- 2(?'\20) 1dr2 — r2(de? + sirf6dg?)  (13b)

Finally the invariance of gravitational potentialGMg/r’ = —-GM/r, of massM =
Mo, and of other parameters in the context of GR, known to beiedpby the
principle of equivalence, would have been used to put theediement (13b) in its
following final equivalent form in terms of inertial mass dfet gravitational field
source

ds? = (1- ZG';") cdt? - (1 - ZG';") 1dr? — r2(de? + sirf 6dp?)  (14)

Indeed the gravitational local Lorentz transformation [(B)(6) and its inverse
(7) and gravitational Lorentz invariance (GLLI) (9) theypim have been unknown
in physics until now. System (12a) and Eq. (12b) that have biiscovered through
measurements of the intervals of space and times of nonadpelativistic events
in spherically symmetric gravitational fields by man haseied been deemed to
imply the metric tensor of Eq. (14) in a gravitational fieldtire general theory of
relativity [9]. However this is apart from the fact that theh®varzschild’s solution
to Einstein’s free space field equations at the exterior gftescal gravitational
field source yields the line element (14) directly.

What can be concluded from the foregoing is that the exterobm@rzschild
line element in GR pertains to the measurable sub-spacevadfour-dimensional
spacetime with sub-Riemannian metric tensor), which sapgpavitational length
contraction and gravitational time dilation, of the spafehe theory of gravita-
tional relativity (TGR) namely, the flat four-dimensionglaxetime with constant
Lorentzian metric tensor. Despite this conclusion howetreare is nothing so far
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in the present theory to rule out the general theory of rétat{GR) as a possible
geometrical model of gravity on an hypothetical curved sgiate in a gravitational
field. Our focus in the present theory shall not be on debasingpudiating the
GR, but on formulating a fundamental (or natural) and comegieeory of gravity.

As a final remark in this sub-section, the gravitational le@aentz transforma-
tion (GLLT) of system (3) and its inverse of system (4) (orteyss (6) and (7)) have
important application consequences in TGR, quite aparh festablishing gravi-
tational local Lorentz invariance (GLLI) from them abovehely are as valuable
in TGR as Lorentz transformation (LT) and its inverse in S&. iRstance, gravita-
tional length contraction and gravitational time dilattonrmulae have been deduced
from them above.

The transformations of physical parameters and physiceaitants in the context
of TGR shall likewise be derived with the aid of the GLLT ansl iitverse in the
next sub-section. The GLLT and its inverse are the relevamsformations for
deriving the superposition at a point in space of the restljsavitational field of
several gravitational field sources that are scattered acesgbout that point, as
shall be done elsewhere with further development.The GLid its inverse shall
find application in the transformations of the classical apdcial-relativistic non-
gravitational laws, as well as classical gravitational,lamthe context of TGR in a
paper shortly in this volume.

1.2 Transformations of physical parameters in the contexttbe gravitational
theory of relativity

The transformations of physical parameters in the conteXGR shall be derived
with the aid of the gravitational local Lorentz transforioat(GLLT) within local
Lorentz frames in a gravitational field of system (3) or (6)l &s inverse of system
(4) or (7), in addition to the derivation of gravitationahi dilation and gravitational
length contraction formulae from them earlier. The resoft§GR shall be derived
with the aid of the GLLT and its inverse, in analogy to the datibn of the results
of SR with the aid of the LT and its inverse in SR.
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1.2.1 Transformations of mass, linear momentum, kinetic energy, force, angular
momentum and torque in the context of TGR

Let us divide the second equation into the first equation efitiverse GLLT of
system (4) to have as follows

dr _ Yo(r)(dr” + V (r)dt’)

YA
¥,(r)(dt + #dr’)
9
or d
r, ! ’
dr ~ @ + Vq(r ) 15
@ VO (15)
cz dv

We shall consider a test particle in motion within the profmrprimed) local
Lorentz frame on the flat proper spacetirig €t’) and takedr’ /dt” as the dynamical
speedy; of the rest massy of the particle within the proper local Lorentz frame,
while dr/dt is the resultant of the dynamical spagdnd gravitational speed/(r’)
in the proper local Lorentz frame with respect to observerthe relativistic (or
unprimed) local Lorentz frame on the flat relativistic spane (Z, ct) of TGR. Then
Eqg. (15) becomes the following

o + V()
Ur = =1y (16)
' 1 V, (r)o;
t—=
C

4

Now the gravitational speed/(r’) is an absolute speed from the point of view
of dynamics, since it is not made manifest in actual traimsladf a particle that
acquires it and since it is the same relative to all observefeames of reference.
The dynamical speeg must likewise be an absolute speed for the composition of
V,(r') andy; to be possible. The speedmust be the non-detectable absolute speed
of the rest masey, of the particle relative to its frame.

Let us put the discussion in the foregoing paragraph in petsg. Let us tem-
porarily write the intrinsic form in two-dimensional intisic spacetime of Eq. (16)
as follows

pvp + PVy(er')
AR
¢C;

(17)

vy =
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Again the intrinsic dynamical speed; must be an absolute intrinsic speed for the
composition oV, (¢r’) andgv; to be possible.

Graphically, let us consider the lower half of the first quadrin Fig. 1 of [4].
The intrinsic rest masgm, of the test particle lying along the curved proper intrin-
sic spacepp’, acquires the proper intrinsic gravitational spe&(¢r’) established
at its location by the intrinsic rest mag#l, of the gravitational field source at the
origin of the curvedpp’. It (i.e. ¢mp) also acquires the absolute intrinsic gravita-
tional speed75\7g(¢f) that is invariantly projected into its location along theed
¢p’ by ¢\7_,,(¢f) along the curved absolute intrinsic spageand possesses the ab-
solute intrinsic dynamical spead7d that is also invariantly projected into its loca-
tion along the curvedp’ by the absolute intrinsic rest mag8y, of the test particle
in absolute intrinsic motion along the curved absolutdrisic spacesp. The three
intrinsic speed®V,(¢r'), ¢\7_,,(¢f) and¢Vy at the location ofsmg along the curved
¢p’ (which ¢my acquires), are indicated in Fig. 1 of [4].

Let us re-denote the absolute intrinsic dynamical sga&dalong the curveegyp’
at the location opmy within the proper (or primed) intrinsic local Lorentz fraroe
the curved proper intrinsic spacetimgp(, ¢cet’) in Fig. 1 of [3] by ¢V}. Itis the
proper intrinsic gravitational speetV//(¢r’) and the absolute intrinsic dynamical
speedpV, acquired by the intrinsic rest magay, at its location along the curved
¢p’ that can be composed according to the formula of Eq. (17inigthe resultant
absolute intrinsic speeV/, = #Vq relative to the relativistic (or unprimed) intrinsic
local Lorentz frame on the flat relativistic intrinsic sptae (o, #cot) in Fig. 1
of [4]. In other words, we must replage; by ¢V, andgvr by ¢Vy4 in Eq. (17) to

have , .
R ACY)
‘ AR
14—~ ¢
¢cz
Since Eqg. (18) contains only absolute intrinsic speeds ttwarpoint of view of
intrinsic dynamics (or from the point of view of intrinsicagial theory of relativity),

it is a valid expression. The outward manifestation in spameof Eq. (18), which
must be obtained by simply removing the symbpis the following

(18)

Vi V()
d= —— 7w
V/(r'\V,
1+—“’( Va

2
C.f/

(19)

This equation is valid for all values &f; < ¢, and all values o¥,(r’) < c,.
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Since relative motion in the context of primed special tlyeaftrelativity (SR)
on flat proper spacetim&?, ct’), on which Eq. (19) hastiectively been written, is
absent, let us multiply through Eq. (19) by the rest mmag®f the test particle to

have V4V ()
rTb ’ + ’ rl

Ve,
4 d

2
C(/

(20)

1+

Let us now consider the rest mass of the test particle to beciel@rated absolute
motion from an initial absolute spead; to a final absolute speed;; within its
local Lorentz frame within which gravitational speed is stamt atV; (r’), which is
located at radial distanaé from the center of the rest mab4 of the gravitational
field source in the proper Euclidean 3-spacte This corresponds to allowing the
absolute intrinsic speegVy of the absolute intrinsic rest maggy, of the particle
along the curved absolute intrinsic spageto vary from¢Vg to ¢Vys in Fig. 1
of [4]. Then Eqg. (20) can be written separately ¥ andV;; and the following
expression for relative momentum of the test particle olet@ifrom the dference
of the resulting equations

p Mo(Var — Vai)

Vi + V(1) ~ Vi +V;(r’)
V/(r')V/ V/(r')\V,
Ve, s

c; C

V/(rl)Z
mo[l— - 7 | (Var = V)
Cg
. V,(r') & . V,(r') ﬁ . V;(r’)zﬁﬁ
C, G C, G cZ ¢ G
Now the diference of two non-detectable absolute dynamical speetie oést
massmy in the proper Euclidean 3-spakeis a detectable relative dynamical speed.

Thus let replac&/;; — V; by a relative dynamical speedn Eq. (19) to have

7 (¢")\2
m)(1_Vg(lf) ]v

or

p= (21)

2
9
p e ’ ey ’ ' (v! ’ , (22)
Vi) Ve V) VG V) Ve Vi
+ —+——+ ——
C;, G C, G CC ¢ G
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The speed is a speed of relative motion, hence the momenpuima momen-
tum of relative motion in Eq. (22). Thus Eq. (22) is an expi@ssn the context
of relative motion. Then the absolute dynamical speéfsandVy of whatever
magnitudes in the denominator in Eg. (22) must be allowedatosh, which is so
since any magnitude of each of these absolute dynamicatlspseequivalent to
zero magnitude of relative dynamical speed of relative amtiThe gravitational
speedV,(r’) in the denominator in Eq. (22) must also be allowed to vasiske
V,(r’) is an absolute speed in the context of relative motion esamy magnitude of
V,(r') is equivalent to zero magnitude of relative dynamical spee

On the other hand, the factor élV{’/(r’)Z/cj) in the numerator in Eq. (20) must
be retained. This is so because ¥/(r')?/c = (1/c2)(c; — V,(r')?) is a measur-
able or observable quantity in space, sinﬁe V_;(r’)2 is a measurable flerence of
gravitational potential, as follows from the relation ofgitational speed to gravi-
tational potential @’(r') = —3V/(r’)?) in sub-section 2.1 of [2]. Thereforejc? is
also a gravitational potentidl, (corresponding to a fielgp), which is localized at
a point of zero extension at the center of the gravitatioedd §ource.

Equation (20) simplifies as follows by virtue of the foregpimvo paragraphs

V(')
ﬁ:mo(l— g ]17 (23)

2
C!/

The vector sign has been introduced and  since there are 3-vectors in the
Euclidean 3-space. The primed (or Newtonian) momenfiine my is measured
in the proper (or primed) local Lorentz frame on flat propeacgiime £, ct’) (in
Fig. 11 of [1]), while the gravitational-relativistic (onprimed) momentung, given
by the right-hand side of Eq. (23), is measured in the raiio/(or unprimed) local
Lorentz frame on flat relativistic spacetim®, €t) in Fig. 1 of [4]. In other words,
p is the gravitational-relativistic momentum on the flat twiatic spacetime in the
context of TGR, whilep’ = myv is the momentum of primed classical mechanics
(CM) (assuming’is a low velocity) on the flat proper spacetin® (ct’).

In order to further elucidate the foregoing discussionuketvrite the intrinsic
form in two-dimensional intrinsic spacetime of Eq. (13) akdws

¢Vé(¢f’)z) "

¢—C§ (24)

¢P=¢mo[l—

wheregmogv = ¢p’ is the intrinsic momentum within the proper intrinsic local
Lorentz frame on curved proper intrinsic spacetimg’ (¢cét’) and ¢p given by
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Eq. (24) is the gravitational-relativistic intrinsic montam projected into the cor-
responding relativistic (or unprimed) intrinsic local lemtz frame on the flat rela-
tivistic intrinsic spacetimedp, ¢cgt) in Fig. 1 of [4].

The expression (23) for momentum in the context of TGR lodk&Ent from
the usual Newtonian form because of the appearance of tter fdc- V_;(r’)z/cg).
However according to the second principle of the theory aliational relativity
stated earlier, non-gravitational laws and expressionst metain their usual classi-
cal and special-relativistic forms in the context of TGR¢ept that the proper (or
classical) and special-relativistic physical parametieas appear in the usual forms
of the laws and expressions must be replaced by their gtiavitd-relativistic forms
in the context of TGR.

Let us then convert the expression (23) to its usual formagsital mechanics
by introducing a new mass of the particle in the context of TGR through the
following relation,

o V/(rr)Z
m = yy(r') 2o = my(1 - — ) (25)
9
of 2GM
n— a
m=,(r)*mo = mo(1~ =225) (26)
9

Eq. (24) then takes its usual Newtonian form in terms of the massm as follows
p=ms (27)

While the rest massy, of the test particle is observed in the proper Euclidean
3-spacex’ of the flat proper spacetim&’( ct’) in Fig. 11 of [1] at the first stage of
evolutions of spacetinimtrinsic spacetime and paramet@rginsic parameters in a
gravitational field, although that diagram does not exisemlity, the massn given
by Eqg. (25) or (26) is observed in the relativistic Euclid@aspace of the flat rela-
tivistic spacetimey, ct) of Fig. 1 of [4], which evolves at combined first and second
stages of evolutions of spacetifimgrinsic spacetime and paramefarginsic para-
meters in a gravitational field. Egs. (25) or (26) has beeiveeiy the graphical
approach in the first part of this paper [4] and the nmmasgs been referred to as the
gravitational-relativistic mass.

The corresponding intrinsic mass relatigmy = ¢rig x (1 - 2G¢I\7Ioa/¢?¢é§)
in the context of the theory of absolute intrinsic gravipAG), on the curved ‘2-
dimensional’ absolute intrinsic metric spacetimg,@cst), with absolute intrinsic
sub-Riemannian metric tensedi, in Fig. 3 of [1], which corresponds to the mass
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relationmgy = fiy(1 - ZGI\7I0a/fé§) in the context of the theory of absolute gravity
(AG) on the flat proper spacetimg’( ct’) in Fig. 3 of [1], has also been derived from
the absolute intrinsic geodesic line on the curvgil $&t), by an absolute intrinsic
tensorial approach in sub-sub-section 2.1.2 of [1]. We hheeefore derived the
same mass relation by thredfdrent approaches so far.

The transformation of the classical linear momentum in thr@ext of TGR that
follows from Eq. (23) is

2GMoa
p = (1-—5)md
r'cz
2GMoa, _,
= @-Te (28)

The transformation of classical kinetic energy that fobdinom Eq. (28) is

2GMoa,, 1,
Ex = (1- -
<= TG
2GMoa. _,
= (1= =5 )E (29)
9

Let us diferentiate both sides of Eq. (28) with respect to unprimee tiof the
flat relativistic spacetimeX( ct) of TGR. Knowing that the factor (2 2GMoa/ r’cj)
is time-independent we have

dp

o =

2GMoa
r’cg

dp’
)= (30)

Eq. (30) is not in its final form. In order to obtain its final foy we must obtain
the transformation of the fierential operatod/dt into d/dt” in the context of TGR
in dp’/dt at the right-hand side, so that primed momentgfmand primed time
coordinate intervadit’ in the proper (or primmed) local Lorentz frame on flat proper
spacetimeY/, ct’) appear at the right-hand side.

As established under the Appendix, the following triviartsformations of ele-
mentary coordinate interval and coordinates within loaaddntz frames in a grav-
itational field and the implied trivial transformations dfférential operators must
be used in deriving the transformations of non-gravitaldaws in the context of
TGR.

dt =dt’; dx=dx; dy=dy’; dz=dzZ (31)
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or
t=t; x=X; y=y; z=2 (32)

and
o 0. 9 P

_ _ g _ o 2 _ 2.
prilr i V=V V=V’ etc (33)

o2’
It must be remembered that the elementary coordinate aiteand coordinates in
systems (31) and (32) are limited in extensions to the iotefilocal Lorentz frames
in an external gravitational field.
The final form of Eq. (30) must be obtained by replacdyglt by d/dt’ at the
right-hand side of that equation by virtue of the operatansformations of system
(33) to have

dp _ 0 ZGMoa)dﬁ’
dt r'cg dr
o 2GM
F=(1- r,czoa)'f’ (34)

This is the transformation of inertial force in the contekTGR.

Let us obtain the vector product of the unprimed coordinate®org = xi +
y] + zk within the unprimed local Lorentz frame on flat relativissigacetimeX, ct)
and the momentg@ andg’ in Eq. (28) as follows

2GMpa

G p= (1= =TGR P
of 2GM
C=(@-=g0dxp’ (35)
9

In order to obtain the final form in Eq. (35), we must obtain titamsformation ofj
into g’ at the right-hand side, which from system (32), is givenatly asq = q’.
Hence the final form of Eq. (35) must be obtained by repladibyg G’ as follows

2GMgpa
102
r Cg

C=(- =2 x p’

or
2GMgpa

) (36)
r'es

C=1-

This is the transformation of angular momentum in the careéXGR.
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Let us diferentiate Eq. (36) with respect to the unprimed tiroéthe unprimed
local Lorentz frame on the flat four-dimensional relatidspacetime, ct) as fol-
lows . .

dL 2GMgpa, dL’

— =(1-

dt ( rcz ) dt
We must then replaadydt by d/dt’ at the right-hand side of (37) by virtue of system
(33) to have

37)

dl 2GMoa. dI’
—=(1-
dt ( r’cg )dt'
or 2GM
;N a\ -/
?=(1- r,czo G (38)

This is the transformation of torque in the context of TGR.

1.2.2 Invariance of active gravitational mass (or gravitational charge) in the con-
text of TGR

The immaterial negative active gravitational mass (or iggéienal charge}>Moa
of a body, which is imperceptibly contained within the restas of a body, is the
source of gravitational velocity, Newtonian gravitatibpatential and Newtonian
gravitational field of the body in the context of the presémwtary, as has been in-
troduced since [1]. However the origin and the negative sijthe gravitational
charge, as well as the model of how it is contained within #& mass and the
mechanism by which it establishes gravitational speedjitatéonal potential and
gravitational field at every point in space in all finite ndigihhood of the body are
yet to be explained.

The immaterial gravitational charge is absolute-absollités invariant in the
context of TGR. This is expressed as follows

_Ma = —Moa (39)

where—Mgg is the proper (or classical) gravitational charge withiatest mas#lg
in the proper Euclidean 3-spakEeand—Mg is the gravitational-relativistic gravita-
tional charge within the gravitational-relativistic madsin the relativistic Euclid-
ean 3-spac& of TGR. The invariance (39) is another property of the gedional
charge to be explained elsewhere with further developniRetall that the invari-
ance (39) has been discussed more fully in sub-section 33] ahd summarized
in Table | of that paper.
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The absolute-absolute active gravitational mass (or tgonal charge) is also
invariant in the context of SR. Its correspondence in et@ctignetism namely, the
electric charge, is likewise absolute-absolute and isriam&in the context of TGR
and SR.

1.2.3 Transformations of gravitational and inertial accelerations and dynamical
and gravitational velocity in the context of TGR

The forceF” in Eq. (34) can be any non-gravitational force acting on s mass
of the particle in the proper local Lorentz frame on flat progeacetimeY’, ct’).
Also if we let F” = myd’ and apply the equivalence of inertial acceleration and
gravitational acceleratiord’ = §’, then F’ can be replaced by gravitational force
F’ = mog’ in Eq. (34).

It also follows from the end of the last paragraph tRAain Eqg. (34) can be atest
gravitational forcelf';t acting on the rest masy, of the test particle from another
test particle or object of rest masg; nearby in the external gravitational field of the
source with rest masd. The forceF” in Eq. (34) can also be the gravitational force
F_); on the rest magsy of the test particle from the external gravitational field s®
of rest masdMy. Thus Eq. (34) can be written as transformations of gravitat
forces as follows

2GMoa, =,
Fy= (- ="50F, (40)
g
and 2GM
a\ = /
Fi=(1 j;fﬁ@t (41)
g
or
" 2GMoa,  ,
= (- =2 )mog (42)
9
and GM
- a =/
L= (1= =)Mo (43)

=9 (44)

and
Gt = gt (45)
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These are the transformations in the context of TGR of theitgtéonal field (or
acceleration) due to the source of the external gravitatiield and due to a test
gravitational field source located in the external graiatsl field respectively.

The transformations of linear momentum and inertial forceahie context of
TGR derived earlier are the following

_ - 72 -
p=mi=(1-2GMga/r cg)rrbv

and
F = md = (1 - 2GMoa/r'2)med

By using the mass relation (26) in these expressions werolitaitransformations
of dynamical velocity and inertial acceleration in the exttof TGR as follows

7=7 andd=a’ (46)

Interestingly there is also the invariance of gravitatioredocity in the context
of TGR, as has been claimed without proof since [2]. We aHlensti at the point of
providing the proof of the invariance of the gravitationalocity in the context of
TGR at this point either, but shall simply re-write it as @lls

Vy(r) = V() (47)
1.2.4 Transformations of gravitational potential in the context of TGR

Since the gravitational potential is time-independent arfdnction of the radial
coordinate only in static spherically-symmetric gravaagl fields being considered
at present, let us express the derivative of the relativigtavitational potentiab(r)

in the relativistic Euclidean 3-spacewith respect to the radial coordinateas

follows
dd(r)  dd(r) i

dr dr’ dr
Since this is an expression in the Newtonian law of gravitysimplification must
be done with the aid of the gravitational local Lorentz tfansation (GLLT) and
its inverse (and not with the aid of the trivial coordinatangformation of system
(31), which will be appropriate if Eq. (48) is an expressianmai non-gravitational
law).
From the GLLT (3) we have

(48)

) (49)
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By using this in Eq. (48) we have

do do
20 )0

Let us re-write the invariance of gravitational accelenatfor field) in the con-
text of TGR of Eq. (44) as follows

Ldo@)  da/(r)
da ~ dr

This equation is valid since the vector equation (44) ingpliee scalar equation
g = ¢’. The following ensues from Egs. (50) and (51)

do(r)  do’(r’)

(50)

(51)

or
do(r) = 7,(r') " *dd’ (r')
Hence
o) = 7,0 ()
2GM
= (- (53)
g
or GM 2GM
o(r') = ———B(1 - Z=208y12 (54)

r/

rez

Eq. (53) expresses the transformation of the Newtonianitgtaanal potential
in the context of TGR (or Eq. (54) gives the Newtonian graidtaal potential ex-
pression in the context of TGR). The relativistic (or unpeith gravitational poten-
tial function in the relativistic Euclidean 3-spakdurns out to be a function of the
proper (or primed) radial coordinateof the proper Euclidean 3-spakein the final
expression (53) or (54). Hence the gravitational-relatigi(or unprimed) gravita-
tional potential function irE has been written a®(r’) and notd(r). The classical
(or primed) gravitational potential function in the projgrclidean 3-spac¥ being
denoted byd’(r’).

The forms of Eq. (53) or (54) on two-dimensional intrinsiasgtime in the
context ofp TGR is the following

2G¢ Moa)1/2

pO(0r) = 60 0r)(1- 03

(55)
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or

GopMoa 2G¢pMoa 172
’ (1_ ! hC2 )
¢r ¢r'ecy

The proper (or primed) intrinsic gravitational potentigd’(¢r’) established
along the curved proper intrinsic spage’ by the intrinsic rest masgMg of the
gravitational field source at the origin of the curved, at ‘distance’¢r’ along
the curvedgp’ from the base ofpMy in Fig. 1 of [4], ‘projects’ the relativistic
(or unprimed) intrinsic gravitational potentiakb(¢r’) into the relativistic intrin-
sic spacepp along the horizontal, which appears to originate from theebaf the
gravitational-relativistic intrinsic massM in ¢p of the gravitational field source, at
‘distance’¢r alonggp from the base o$M in the figure.

The intrinsic gravitational-relativistic magevl of the gravitational field source
in the straight line relativistic intrinsic spage along the horizontal in Fig. 1 of [4]
is intrinsic inertial mass or intrinsic passive gravitai mass, as shall be shown
shortly in his paper. It is not a source of intrinsic gravadaal potential or field,
which means thap®d(r) = ~GgMa/¢r and pg(¢r) = —GpMa/4r? that originate
from M do not exist alongp along the horizontal in Fig. 1 of [4]. This has been
well discussed in sub-section 3.1 of [4].

On the other hand, the intrinsic rest ma#48, of the gravitational field source on
the curved proper intrinsic spage’ is a source of intrinsic gravitational potential
dd' (¢r') = ~GpMoa/¢r’ and intrinsic gravitational fielgg’ (¢r') = —GepMoa/¢r’?
along the curvedyp’ in Fig. 1 of [4]. Consequently only the non-uniform relasitic
intrinsic gravitational potentiap®(¢r’) given by Eq. (56), projected intgp along
the horizontal by the non-uniforgd’(¢r’) along the curvedyp’, exist alongpp in
Fig. 1 of [4].

The gravitational-relativistic madd in the relativistic Euclidean 3-spa&eof
the gravitational field source in Fig. 1 of [4], is an inertiahss or a passive grav-
itational mass, as shall be shown shortly in this paper. hdsa gravitational
field source, which means it does not establish non-unifamitational potential
®(r) = -GMg/r and non-uniform gravitational field = —GMar/r? in the relativis-
tic Euclidean 3-spacE. Consequently it is only the outward manifestation of the
projective relativistic intrinsic gravitational poteatip®(¢r’) of Eq. (56) namely,
the gravitational-relativistic gravitational potentid{r’) of Eq. (54), along with
the invariant gravitational field of Eq. (44), which appeaotiginate fromM, that
exists inZ in Fig. 1 of [4].

For the test Newtonian gravitational potential from a splartest particle of

PpO(gr’) = - (56)
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rest massny; in the external gravitational field, the proper test grdidtzal potential
function is the following
Gmoa

q
where(' is the distance along a radial direction from the centemgfto the test
particle’s rest massy, where bothmy andmy; are located at radial distancefrom
the center oMy, andq’ does not have to be along a radial direction from the center
of Mp. Thus the proper test gravitational field frang; is the following

O =

(57)

dof ., Gnoa .,
T
whereq’ is the unit vector along the radial direction from the celwfemy, towards
M.

The corresponding gravitational-relativistic test gtational potential function
and gravitational-relativistic test gravitational fietd3 in the context of TGR shall
be written respectively as follows

(58)

=2/
gv = —

Gma

o =-——— (59)
o
and Gima
gi=— 7 g (60)
Eq. (43) shall be re-written as follows
do, do; 2GMog,
om— = — 1-—
m dq o dg ( rcz )
or 2GMgpa, d® do; 2GM
_ 1_ oa S - t 1_ oa
Mo rrez *dq Mo do ( rea )
Hence . .
t t
ot 61
aq aq (61)

This is Eq. (45) again.
If g is along a radial direction from the centerf, then as follows from Eqg.
(50),dd/dq = y,(r')dd/dg’. By using this in Eq. (61) we have

dd, db,  dd;

- ey Ty
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Hence
=) 0 = 01 - ZR (62
or
®, = —Gr:;at (1- 2?"\C/|20a)1/2; (for ¢ alongr’) (63)
g9

On the other hand, fay’ not along the radial direction from the centerM§, then
d/dq = d/dq’ (as follows from the trivial transformations ofd¢’ andr’ sin¢’dy’
into rdé andr sinddy in the GLLT and its inverse), and Eq. (61) becomes the fol-
lowing

v __dog
doy ~ do
Hence G
D =D =— m,oal; (for g’ not alongr”) (64)

We have the following from Eq. (62):

do; da; 2GMoa,;
Tt 1- /=52 65
dq dq ( rez ) (65)
But,
d/dg = y(')d/dq = (1 - 2GMoa/r’c)?d/dd,
from the GLLT (3), forq’ alongr’. Hence
dd,  dof (1-2GMoa/r'c))"?  day
dg  dq (1-2GMea/r'c)V2  do
or
gt = g¢; (for g alongr’) (%)
We also have the following from Eqg. (64),
Cdo _ dop  doy
dg  dg  do
for g’ not alongr’. Hence
gi = g¢; (for ' not alongr’) (x%)
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If we multiply through &) and é=) by mwe have:

=2 =2/ =2/ 2GM
mgy = Mgy’ = mogt (1 — r/Czoa)
g9
or 2GM
Fo=(1- r/Czoa)lf;t; (for g alongr’ or not) (e %)
9

Thus the transformation (43) of a test Newtonian gravitetidorce on a test
particle due to another test particle in an external grtigital field, and the trans-
formation (45) for the corresponding test Newtonian gegtignal acceleration on
the test particle, are valid irrespective of the orientatad the test gravitational
force or acceleration relative to a radial direction frora ttenter of the source of
the external gravitational field. With the relations (2&9), (34), (36), (38), (39)
(40), (41), (44), (45), (46), (47), (54), (63) and (64), askeid, we shall defer the
transformations of other physical parameters in the car@EXGR to another pa-
per.

It is important to answer a question that may arise namely,tiea non-trivial
parameter transformations (26), (29), (34), (36), (38D),(441), (54) and (63),
derived in the context of TGR above be measured? In orderdwexrthis question,
we must show whether the factoys(r’)=2, y,(r’)™* andy,(r’) that appear in the
relations can be measured or not.

Now, y,(r') 2 = 1 - 2GMoa/r'cz. Hence

Coyy(r') 2 = ¢ — 2GMoa/r’ (66)

Butc§ = 2GMoa/ry,, wherer, is the gravitational (or Schwarzschild) radius of the
field source of rest madd,. Eq. (66) can therefore be re-written as follows

Coyy(r') ™ = 2GMoa/r, — 2GMoa/1’ (67)
Hence > GM GM
n—-2 _ “(_ oa _(_ oa
e N (68)

The factory,(r’)~2 can be measured since it is a constant times tfierdnce of
gravitational potential as expressed by Eq. (68). Consstyuthe factorsy,(r’)—*
andy,(r’) can be measured. It then follows that the derived parantetesforma-
tions in terms of these factors in the context of TGR in thitisa and others to be
derived elsewhere with further development can be measured
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If the gravitational (or static) time dimensiapt has not been introduced, and
one has erroneously formulated TGR on the flat spacetimeofreimagnetism and
dynamics (or special relativity}( c,t), wherec,t is usually denoted bgt in SR and
GR, thenc, must be replaced by, = c,, in the derived parameter transformations
in the context of TGR. Then Eg. (66) would become the follayvin

Cy,(r')? = ¢ — 2GMea/r’ (69)

Now the square of the speed of ligit, = c§ cannot be expressed as gravitational
potential, and the potential at a poirEMgg/r’ cannot be measured. Thus from the
point of view of what can be measured, Eq. (69) reduces asAsll

Cyy(r)?=¢; or () %=1 (70)

Thus if TGR has been formulated on the flat spacetime of SRthitllynamical
time dimensiong,t = ct, then the factorsy,(r') 2 = (1-2GMoa/r’c?), ¥,(r’)* and
v,(r’) are all equal to 1, as expressed by Eq. (70). This meanstaatdn-trivial
parameter transformations (26), (29), (34), (36), (38D),(441), (54) and (63),
derived on the flat spacetime of SR (or in the Minkowski’s §p&E, ct) = (Z, ¢,t),
with the gravitational (or static) speeyj of gravitational waves replaced by the
dynamical speea, of electromagnetic waves in those relations, do not exist or
are hypothetical and cannot be measured or observed. Thigsstxplicitly that a
relativistic theory of gravity formulated on the flat spawet of special relativity (or
in the Minkowski's space) X, ct) = (%, c,t), which is the only flat spacetime known
until now, is impossible, or do not exist and cannot be olesrirhis fact had also
been arrived at but not as robustly as done hereffgrdint points since [2].

The transformations of various quantities in the context@R derived analyt-
ically in this sub-section, some of which have been deriveglically in [4], shall
be considered adequate for this sub-section. More paratnatsformations in the
context of TGR shall be derived in other papers with furthmralopment.

2 Incorporating the special theory of relativity into the theory of gravitational
relativity

The gravitational-relativistic maga of the test particle, given by Eq. (26), evolved
on the flat four-dimensional relativistic spacetn¥® df) (in Fig. 1 of [4]) in the
context of TGR, at the second stage of evolutions of spaeétitrinsic spacetime
and parametefisitrinsic parameters in a gravitational field. It is the gtational-
relativistic masses of particles and objects that undeztgdive motions within local
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Lorentz frames on the flat relativistic spacetime of TARC) in the context of SR
in every gravitational field in the universe.

2.1 \Validating local Lorentz invariance (of SR) on flat foudimensional space-
time prescribed by TGR in a gravitational field

The special theory of relativity (SR) in gravitational fisloh the universe at present
involves the motion of the gravitational-relativistic rsas of particles and objects
relative to observers within local Lorentz frames on the ifidativistic spacetime
(%, ct) of TGR, as mentioned above. There is local Lorentz transébion and its
inverse of theﬁme coordinatesc(t, X, i, 2) of the particle’s frame into thefline
coordinatesd,t, X,, 2) of the observer’s frame within a local Lorentz frame on the
flat relativistic spacetimg, ct), which are referred to as local Lorentz transformation
(LLT) and its inverse because of the restriction to the iotsrof local Lorentz
frames, which are given respectively as follows (as deriwedlbert Einstein in |,
ibid.]

einstein and as has been re-derived by the graphical agpioaart one of this
paper [4].

f= ya(o)( - C—”Zi); %= ya()X—ovX); =7 and 7= 2 (71)
Y
and 3 ) ) y 5
t=y0@)E+ 5% X = ya0)(X+0%); § = and 2=2 (72)
Y
where
ya) = (1 - v?/c2) 2 (73)

andv is the dynamical speed of of the gravitational-relatigistiassn of the particle
relative to the observer.

The relative motion of the particle, taken to be along theand X— axes of
the particle’s and observer’s frames respectively by cotioa in systems (71) and
(72), which are collinear by the mandate of nature and not ag’'srassumption or
prescription, as discussed in sub-section 4.2 of [4], caaldiey any direction in the
Euclidean 3-spack within the local Lorentz frame of the motion of the particle.

The transformations (71) and (72) are local Lorentz trams&ion (LLT) and
its inverse within a local Lorentz frame at radial distandeom the center of the
assumed spherical gravitational field source of gravitatigelativistic mas in
the relativistic Euclidean 3-spa&eof TGR, within which gravitational speed(r’)
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and gravitational potentiab’(r’) are constant and, hence, within which a test parti-
cle can move at a uniform dynamical velocity relative to thserver. System (72)
or (73) yields the following invariance

- PR -7 (74)

This Lorentz invariance in SR, which is limited to the interdf a local Lorentz
frame in an external gravitational field, is usually refdrte as local Lorentz invari-
ance (LLI). The LLI has remained a postulate albeit with atamt experimental
justification in general relativity [10, 1985],

prestage.

The special-relativistic time dilation and special-ri¢igtic length contraction
formulae, which follow from systems (71) and (72) are théofelng

f= (- /) VA X=(1- /YK, j=7; andz=2 (75)

But there are also gravitational time dilation and graidtal length contraction for-
mulae of systems (12b) and (12a) in the context of TRG, whibbBmincorporated
into system (75) gives the following

(1 - 2GMoa/r'c)) Y21 - v?/c2) V3, (76a)
(1 - 2GMoa/r'A)Y2(1 - ?/A)Y?%’; = j'; andz=2  (76b)

XIU 2

These are time dilation and length contraction formulaé@dontext of combined
special theory of relativity and theory of gravitationdbatéity (SR+TGR).

However while the time dilation formulae (76a) is valid fabarary orientation
of the direction of motion of the particle relative to a rddiaection from the cen-
ter of the gravitational field source within the local Lorefame in which relative
motion occurs, the length contraction formula of systenb}76 valid when the
collinearX- and x— axes of the observer's frame and the particle’'s frame respec
tively, along which motion of the particle occurs, are al@adial direction from
the center of the gravitational field source within the Idoadentz frame.

In a situation where thg— andX- axes of the observer’s frame and the particle’s
frame, along which the motion of the particle occurs, liepeedicular to a radial
direction from the center of the gravitational field souroet, theZ=—axis lies along
the radial direction from the center of the field source watthie local Lorentz frame
of motion of the particle, then Eq. (76a) must be retainedevgystem (76b) must
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modified, thereby converting (76a) and (76b) to the follayvin

= (1-2GMea/r'c)) 31 - v?/2) A (772)
(1-v?/2)Y?%’; § =5 andz= (1- 2GMea/r'c2)¥?z  (77b)

XU 2

It follows from the validity of local Lorentz invariance (L), expressed by
Eq. (74) on flat spacetime(ct) of TGR in every gravitational field and the in-
variance of diferential operators in the context of TGR discussed eattiat,non-
gravitational natural laws should take on their usual itaésnd special-relativistic
instantaneous ferential forms on the flat spacetime of TGR in every graotadi
field, (and not their covariant tensor forms adopted in thedant tensor approach
on the prescribed curved spacetime in context of the getiezaly of relativity).
However the gravitational-relativistic values of physigaantities and constants in
the context of TGR must be substituted into the laws. Thecjpia of equivalence
requires that theféect of such substitutions, (or th&ect of gravity), should cancel
outin all laws, as shall be investigated in a paper laterigtblume.

It is clear from the derivation of Eq. (74) that local Lorentwariance (LLI)
would be impossible in a gravitational field without the gtational local Lorentz
transformation (GLLT) and its inverse (3) and (4) (or (6) 4@y and the gravita-
tional local Lorentz invariance (GLLI) (9) they imply in esyelocal Lorentz frame
in a gravitational field in the context of TGR. That is, in tHesance of the flat rel-
ativistic spacetimey, ct) established in a gravitational field in the context of TGR
on which SR operates in a gravitational field.

The actual physics underlying the GLLT and its inverse ofagiqus (3) and (4)
or (6) and (7) and the GLLI of Eqg. (9) they imply are the diagsamthe two-world
picture of Figs.5 and 6 and their inverses of Figs. 7 and 8efitlst part of this pa-
per [4], in the context of intrinsic two-dimensional theafygravitational relativity
(¢TGR). Intrinsic gravitational local Lorentz transformai(@GLLT and its inverse
on the two-dimensional intrinsic spacetimgp(¢cot) were derived from those di-
agrams. Then the GLLT and its inverse on the flat four-dinmrai spacetime in
the context of TGR were written directly froglGLLT and its inverse in the con-
text of pTGR, since TGR is mere outward manifestation on flat fouredigional
spacetime o TGR on flat two-dimensional intrinsic spacetime. This is dlotual
physics.

The re-derivation of GLLT on flat four-dimensional relasitic spacetimeX, ct)
of TGR analytically in this paper requires us to start byistatwo unproven princi-
ples of the theory of gravitational relativity, just as Biis started the derivation of
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Lorentz transformation (LT) analytically by starting framo principles of special
relativity. This shows that the analytical approaches odharivation of GLLT in
TGR and LT in SR do not get down to the foundation of physicsenlythg GLLT
and LT. They are incomplete and non-fundamental. This igémeral characteristic
of the hypothetico-deductive theories.

Now the diagrams in the two-world picture of Figs 5 and &®fGR in the first
part of this paper [4], take identical forms as the diagrafifSgs. 9 and 10 o$SR
in that paper. Then as explained in [12], the spacetimtransic spacetime diagrams
in the two-world picture of SRSR, from which the LI¢LT and its inverse were
re-derived in [6], which should now be replaced by Figs. 9 a@af [4] and their
inverses, are immutable for as long as there is perfect symroestate among the
four universes encompassed by the two-world picture ifledtin [12] — [13]. It
equally follows that the spacetirfigtrinsic spacetime diagrams in the two-world
picture of TGR¢TGR, from which the GLLT¢GLLT and its inverse were derived
are immutable. Hence the GLLT and its inverse, and the GL&y iimply in TGR
are immutable for as long as there is a perfect symmetry ¢ stamong the four
universes encompassed by the two-world picture. It follbm this, (and the fact
that the validity of LLI depends the validity of on GLLI), thaLl is immutable
for as long as there is perfect symmetry of state among theuoiverses in the
two-world picture.

2.2 Mass and energy relations in combined gravitational trg of relativity and
special theory of relativity

It is the gravitational-relativistic mass in the context of TGR of Eq. (26) on the
flat relativistic spacetimeX(, ct) of TGR that moves relative to the observer in spe-
cial relativity in an external gravitational field. Thus weugh simply replace the
rest massry on the flat proper spacetim&’€t’), which usually appears in the
primed special theory of relativity on the fla’¢t’) until now, by the gravitational-
relativistic masam of equation (26) in the expression for gravitational-riglatic
cum special-relativistic mass in in an external gravitadidield to have as follows

M= yalo)m= ——2— (78)
,/1—02/0}2,

Then along with equation (26), equation (78) becomes theviaig
mo(1 — 2GMoa/r'c2)

‘/1—02/032,
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The gravitational-relativistic cum special-relativistotal energyE in a gravita-
tional field in the context of combined TGR and SR is given diakdistance in
the relativistic Euclidean 3-spa&eof TGR from the center of the gravitational field
source as follows

E

mcZya(v)

MoCyy(r') *ya(v)
Moc2(1 — 2GMoa/r'c)(1 - v?/c2)~Y/?

or
2GMoa

rez
whereE’ is the usual special-relativistic total energy, which iidran flat proper
spacetime Y/, ct’) in the absence of relative gravitational field at the firagyst of
evolutions of spacetinfimtrinsic spacetime and paramef@rginsic parameters in
an external gravitational field.

The gravitational-relativistic cum special-relativéskinetic energyT in a grav-
itational field in the context of combined TGR and SR is likesvgiven as follows

T - pme -me
2GMpa

E=(1- E’ (80)

= md- ) - )
9
2
= m(1- 2Ry - Sy 1) 1)
T = (- 2?,'\!205‘)? (82)

9
whereT’ is the usual special-relativistic kinetic energy, whickasid on flat proper
spacetime Y/, ct’) in the absence of relative gravitational field at the firagst of
evolutions of spacetinfimtrinsic spacetime and paramef@rginsic parameters in
an external gravitational field.
An author [14, 1982], derived the following mass-energwtieh in a spheri-
cally symmetric gravitational field in the context of the geal theory of relativity

2GM
=) (83)
Interestingly, relation (83), witk? canceled, is of the form of the mass relation
(26) derived in the context of TGR. The derivation of Eq. (&8) curved four-
dimensional spacetime with the aid of the line element in GRresponds to the

E* =m'c? = me?(1 -

A.Joseph. Formulating gravity and motion at second stage of evolutiepacetime ... 11.716



Mar, 2012 THE FUNDAMENTAL THEORY ... (M) Vol. 1(3B): Articlel5

derivation of the intrinsic mass relatiopimg = ¢fig(1 — 2G¢I\7Ioa/¢f¢c“:§), on the

curved ‘two-dimensional’ absolute intrinsic spacetimg, ¢f) with the aid of the

absolute intrinsic line element in the context of the metréory of absolute intrinsic
gravity pMAG in sub-section 2.1 of [1].

The principle of equivalence of Albert Einstein requireattthe massn of the
test particle is constant with position in a gravitationaldiand therefore precludes
relation (83) in GR. No clear meaning could be given the i@&a(83) in GR. On
the other hand, the validity of Einstein’s principle of eeplence shall be estab-
lished in the context of TGR in this and another paper, ansl shall be despite
the existence of the mass relation (26) and other paramedtgions in the context
of TGR derived in this paper and those to be derived in latpepa The hier-
archy of spacetimdistrinsic spacetimes containing hierarchy of maga&isic
masses and paramet@mnginsic parameters and the associated hierarchy of space
time/intrinsic spacetime geometries in the present theory, giyesical meaning to
parameteintrinsic parameter relations in the present theory.

3 Modification of Newton’s gravitational force law in the context of the theory
of gravitational relativity

As mentioned in the first paragraph of section 1 of this seqmard of this paper,
the theory of relativistic gravity and the commonly usedtigrology “relativity and
gravitation”, in the absence of the special theory of reigti refers to the theory
of gravitational relativity (TGR) and the classical (or New's) theory of gravity
with relativistic correction in the context of TGR, alsoeafed to as the unprimed
classical theory of gravity and given the acronym CG.

The usual classical (or Newton’s) theory of gravity, aldened to as the primed
classical theory of gravity and given the acronym’Q@the present theory, in sub-
section 3.3 of [3] and sub-section 1.1 of [4], operates orfltgoroper spacetime
(2, ct’) of Fig. 3 of [1] or Fig. 1 of [3], which evolves at the first sa@f evo-
lutions of spacetim@trinsic spacetime and paramet@rginsic parameters in a
gravitational field. Although Fig. 1 of [3] at the first stagkeawolutions of space-
time/intrinsic spacetime and paramet@rginsic parameters in a gravitational field
does not exist in nature, as discussed in section 3 of [ nievertheless valid the-
oretically that CGon flat &', ct’) in that geometry transforms into CG on the flat
(Z, ct) in the geometry of Fig. 9 of [3] or Fig. 1 of [4].

However what happens in reality, as well discussed in se@iof [3] and
sub-section 1.1 of [4], is that the primed intrinsic claabifor Newton'’s) theory
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of gravity (#CG') within a proper (or primed) intrinsic local Lorentz frama the
curved proper intrinsic spacetimgd, ¢cot’), projects unprimed intrinsic classical
(or Newton’s) theory of gravityCG) into the corresponding relativistic (or un-
primed) intrinsic local Lorentz frame on flat relativistittiinsic spacetimeffp, ¢ceot)

in the context oBTGR, which is then made manifest outwardly in unprimed ¢lass
cal (or Newton’s) theory of gravity (CG) on flat four-dimeosal relativistic space-
time (&, ct) in the context of TGR in Fig. 9 of [3] or Fig. 1 of [4].

Having derived the gravitational local Lorentz transfotima (GLLT) and its in-
verse in the context of TGR by the graphical appro@ahgraphical approach to the
intrinsic gravitational local Lorentz transformatiopGLLT) and its inverse in the
context ofg TGR and having established the gravitational local Lorémiariance
(GLLI), along with gravitational time dilation and gravitanal length contraction
formulae in the context of TGR in the first part of this papef #d having re-
derived these analytically along with the transformatiofiseveral other physical
parameters in the context of TGR in this second part of thjgepathe TGR on
flat relativistic spacetimeX( ct) and pTGR on flat relativistic intrinsic spacetime
(¢p, pcgt) underlying g, ct), shall be deemed to have been accomplished to a good
extent. Further development of the T@RGR, which entails the transformations
of other physical parametéistrinsic parameters and physical constintsnsic
constants in the context of TGEI GR, shall be done in other papers.

What is left for us to do now in order to accomplish the theoryradativis-
tic gravity (or the theory of relativity and gravitation Wwitut reference to the spe-
cial theory of relativity) in the context of the present exinly theory, is to develop
the gravitational-relativistic (or unprimed) classicat (Newton’s) theory of grav-
ity (CG) on the flat relativistic spacetim&,(ct) of TGR and the gravitational (or
unprimed) intrinsic classical (or Newton'’s) theory of gtg¢CG) on the flat rel-
ativistic intrinsic spacetimegp, ¢cgt) underlying g, ct) in a gravitational field of
arbitrary strength. This is the topic of this section.

Now the gravitational-relativistic masa of the test particle that evolves in the
relativistic Euclidean 3-spacgin the context of TGR, given by Eq. (26), interacts
with the gravitational-relativistic gravitational poted ®(r’) that evolves in the
relativistic Euclidean 3-spacgin the context of TGR, given by Eq. (54), yielding
the gravitational-relativistic gravitational potentiahergyU(r’) in the relativistic
Euclidean 3-spack (or on the flat relativistic spacetim&,(ct)) in the context of
TGR as follows

ur) = mr)d(r)
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3 2GMpa., GMpa 3 ZGMoa)l/z

= 1 - 1
Mo( e =——=X ez
M 2GM
_ G ﬁanb(l_ ?/ 2oa)s/z (84)
&7

Then by dividing through Eqg. (84) by the rest magsof the test particle, the
effective gravitational potential function ‘seen’ by the tpatticle in the relativistic
Euclidean 3-spack in the context of TGR is the following

GMoa 2GMoa
_ (1- .
r’ r/Cg

Dexr(r') = )¥2 (85)
The dtective gravitational-relativistic gravitational potet®e;(r’) in X in the con-
text of TGR is a function of the primed radial coordinatalirectly. Hence the ef-
fective gravitational accelerationfered by the test particle in the context of TGR
is given from definition as follows

- ’ dq)eff(r’)'\

r - r
Gerr (') dr’

GMoa,, 2GMaasn,  36°MZy  2GMoays,
= - r/2 ( - I”Cé ) r+ r/3cg (1_ r,cg ) r (86)
or
- ’ Y ZGMoa a,lé)/'rl 2GM0a
ger(r') = 9(1—r,—2)3/2—39 —(1- == (87)
Cg Cg r Cg

wherer’in Eg. (86) is the unit vector radially away from the centethe assumed
spherical gravitational-relativistic ma$g of the gravitational field source in the
relativistic Euclidean 3-spacgin the context of TGR, sincg(r’) is a vector in.

Equation (86) or (87) gives the unprimed (or gravitatioretivistic) gravita-
tional acceleration in the relativistic Euclidean 3-spada a gravitational field of
arbitrary strength, which the test particldfaus towards the center of the gravitational-
relativistic massM of the gravitational field source iB in the context of TGR.
Eq. (86) or (87) is valid for a spherically symmetric gratiiiaal field source only.
the modified form in a non-spherically-symmetric gravitatl field shall be derived
elsewhere with further development.

By multiplying through Egs. (86) and (87) by the rest mag®f the test particle
(and not its gravitational-relativistic masg), as follows from the division of the
gravitational-relativistic gravitational potential egg of Eq. (84) bymy to obtain
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the dfective gravitational potential function of Eq. (85)), wetain the unprimed
(or gravitational-relativistic) gravitational force fered by the test particle towards
the center of the gravitational field sourceiiin the context of TGR as follows

_GMoarmy 2G|v|oa)3/2f . 3G2M3,mo

( 2GMopa
2 2 2 -
r r'ea r’3cg

1/2¢
) (@8)

'feff(r/) =

a
or

Falr) = meg (L= SRR e - IR 9

The equivalence of inertial acceleration and gravitati@eaeleration hold on
the flat relativistic spacetim&(ct) in the context of TGR as well, that & X/dt? =
Jer(r"). Thus the equation of motion within a local Lorentz frametaf test particle
that sufers the fective gravitational acceleration (86) or (87) in the riglatic
Euclidean 3-spack in the context of TGR is the following

dz)? GMoa ZGMoa 3/2z 362M(2)a 2G|V|oa 1/22
ae - 2 (- rc2 U r3c2 (- rc2 ;T 0)
9 9 9
or
a2 2GMoa. 5 3l . 2GMoa
-~ — Y 1_ e 0a /2_ 219 T 1_ 1/2 91
@ = 00w S (91)

This equation describes the motion of the observed grawitaltrelativistic mass
m of the test particle on the flat relativistic spacetiriecf) in a gravitational field,
under the sole influence of gravitational attraction towsahe center of the assumed
spherical gravitational-relativistic mas4 of the gravitational field source .

Eqg. (85), Eq. (86) or (87), Eq. (88) or (89) and Eq. (90) or (@B expressions in
the context of the gravitational-relativistic (or unprid)elassical theory of gravity
(CG) on the flat relativistic spacetimg, (ct) of TGR at the second stage of evolu-
tions of spacetimfntrinsic spacetime and paramefarginsic parameters in every
gravitational field. They are the modified (or gravitatiocnalativistic) forms on the
flat relativistic spacetimeX( ct) in the context of TGR of the respective equations
(or expressions) in the context of the primed classicalhebgravity (CG) on the
flat proper spacetimez(, ct’) at the first stage of evolutions of spacetim&insic
spacetime and parameténgrinsic parameters in a gravitational field.
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3.1 The Newtonian limit and post-Newtonian approximatiolo the gravita-
tional-relativistic form of the Newtonian gravitationaldrce law

Egs. (85) — (91) are valid on the flat relativistic spacetile{) of TGR in a grav-
itational field of arbitrary strength. They simplify respigely as follows by letting
ZGMoa/r’c§ = V_;(r’)z/cj =0,

DOeg(r') = @'(r") = -GMga/r’ (92)
Jer(t’) = g'(r') = -GMoar’ /1" (93)
Fer(t’) = F'(r') = =GMgamor’/r"® and (94)
2R’ .,
Gz = 9 (95)

Egs. (92) — (95) are the essential equations of the primesbickal (or New-
tonian) theory of relative gravity (C( where relative gravity means that the grav-
itational potential®’(r’) and gravitational acceleratigyy(r’) are relative gravita-
tional parameters, that is, they vary in magnitude withakdistancer from the
center of the gravitational-relativistic mabt of the gravitational field source B
(corresponding to radial distancefrom the center of the rest mab4, of the grav-
itational field source in the elusive proper Euclidean 3esXi). Hence Eqgs. (92)
— (95) are the Newtonian limits to Egs. (86) — (91) of CG. They de applied
without significant loss of accuracy in very weak gravitatibfields, such as the
gravitational fields of the planets.

Now V/(r")/c, = O corresponds t@V/(¢r’)/¢c, = singy,(¢r’) = 0. Hence
dyy(or’) = 0. The intrinsic anglepy,(¢r’) is the inclination of the curved proper
intrinsic spacepp’ to its projective straight line relativistic intrinsic spagp along
the horizontal, at ‘distanceir’ along the the curvedo’ from the base of the intrin-
sic rest masgMg of the gravitational field source at the origin of the curygd in
Figs. 1 and 2 of [4]. The intrinsic anglgy,(¢r’) is likewise the inclination of the
curved proper intrinsic time dimensia@tgt’ to its projective straight line relativis-
tic intrinsic time dimensiocet along the vertical, at equal ‘distangg” along the
curvedgcgt’ from the base of the intrinsic rest magB’/¢c? of the gravitational
field source at the origin of the curvedst’ in Figs. 1 and 2 of [4].

The vanishing ofgy,(¢r’) at every ‘distancegr’ along the curvedsp’ and
curvedgcet’ implies that the curvedp’ becomes a straight line intrinsic dimen-
sion along the horizontal and the curvedst’ becomes a straight line intrinsic di-
mension along the vertical. They thereby constitute twoetisional flat proper
intrinsic spacetimedp’, ¢cgt’) underlying four-dimensional flat proper spacetime
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(X', ct’). In other words, the conditionV,(¢r’)/¢c, = singy,(¢r’) = 0, converts
the geometries of Figs. 1 and 2 of combined first and secogestf evolutions of
spacetimg@ntrinsic spacetime and paramet@rginsic parameters in a gravitational
field or arbitrary strength to the geometry of Fig. 5 of [2] imotworld or Fig. 3
of [1] in partial one-world representation, at the first gtanf evolutions of space-
time/intrinsic spacetime and parametf@rginsic parameters in every gravitational
field.

It follows from the foregoing two paragraphs that Egs. (92095) of CG,
obtained with the conditio,(r’)/c, = 0 on CG, corresponding t@V,(¢r’) =
singy,(¢r') = 0 on¢CG, pertain to the flat proper spacetime,(ct’) in Fig. 3
of [1], at the first stage of evolutions of spacetjintrinsic spacetime and parame-
tergintrinsic parameters in every gravitational field.

However the condition (BMoa/r’cj = 0, which reduces Egs. (85) — (91) to
Egs. (92) — (95), impliedloa = 0, henceMy = 0. Thus this condition implies we
must letMoa = 0 in Egs. (92) — (95), from which it follows that those equati@re
impossible (or do not exist). In other words, Ci& impossible (or does not exist)
on the flat proper spacetim&’(ct’) to which Egs. (85) — (91) pertain. It must also
be recalled that the flat proper spacetirié, ¢t’) that evolves at the first stage of
evolutions of spacetinjimtrinsic spacetime and paramef@rginsic parameters in
every gravitational field, is devoid of relative gravity. e CG (Egs. (92) — (95))
does not exist on the flat proper spacetirBé €t’) indeed. Only the primed New-
tonian theory of absolute gravity (NAand combined primed Newtonian theory of
absolute gravity and primed Newtonian theory of absolutdondNAG’+NAM’),
involving absolute gravitational parametab§’) and g{(f) and absolute dynamical
parameterd/y andd, exist on the flat proper spacetinm® (ct’) at the first stage of
evolutions of spacetinjimtrinsic spacetime and paramef@arginsic parameters in
every gravitational field.

Never the less Egs. (92) — (95) of C&n be applied without significant loss of
accuracy in very weak gravitational fields on the flat progmcetime ¥, ct’), as
approximate theory to CG with the exact equations (85) —@@lhe flat relativistic
spacetime, ct). In this wise, the flat proper spacetim¥ (ct’) shall be referred
to as the space of the primed classical theory of relativeitgr&G’, although CG
does not exist in¥X’, ct’) in a strict sense.

On the other hand, let us consider the weak gravitational fielit for which
2GMoa/r'c = V/(r')?/c2 ~ 0 or in the limit as BMoa/r'c; — 0. This condition
implies Mga ~ 0, henceMg ~ 0, that is, gravitational field sources of small but
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non-zero rest masses. By applying the Iinﬁl\zoa/r’cs — 0 on Egs. (85) — (91)
we have the following

GM 3GM
Per(r) =~ (- —57) (96)
g

Lo, GMgg. 6G*M2, .
Ger(r) ~ - r/zoar+ r/3020ar (97)
g9
, GMoamy,  6G*MZgmo
Far(r) ~ ——oodg 08 05 (98)
r r Cg
2 6G2M?2
d )? - _GMoaf i oaa» (99)

d2 r2 r3c2

The weak field limit approximations (96) — (99) shall be rederto as the post-
Newtonian approximations to the exact equations (86) —¢®0G on the flat rel-
ativistic spacetimeX, ct). The post-Newtonian approximation (Egs. (96) — (99))
is a more accurate approximation to CG than the Newtoniait (itn CG’) (with
Egs. (92 — (95)) in weak gravitational fields. Singg(r’)/c, is small but non-
zero, correspondingV,(¢r’)/¢c, = singy,(¢r’) is small but non-zero, the post-
Newtonian approximation pertains to the flat relativispasetime E, ct) like CG.

The invariance of gravitational acceleration (or field))(#4the context of TGR
is valid in empty space at the exterior of a gravitationabf&burce, when the inter-
action of a test particle with the external gravitationaldfiis not in consideration.
On the other hand, it is thefective gravitational acceleration (86) or (87) that a test
particle sdfers towards the center of the assumed spherical externatagianal
field source in the context of TGR (and not the direct invarguavitational field
g = g’ originating from the gravitational field source).

The closest to deriving a modification of the Newtonian getional potential

function in general relativity, as far as | can find, arisethimstudy of the trajectory
on curved spacetime of a planet in orbit round the sun by theegc approach in
GR, where it has been deduced by formal analogy with theickswbit, see, for
example, page 206 of [15], that the approximatedive Newtonian gravitational
potential function responsible for the observed pertuobadf the classical orbit is
the following ,
Uf GM 2GM
?) B _T(l TS
wherey = rdep/dt = (2GM/r)Y/?, is the so-called lateral velocity of the planet. The
notation in GR has been preserved in (100). We shall not goardiscussion of

f(r) ~ —GTM(l + ) (100)
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the discrepancy betweebg;(r’) in Eqg. (85) andf(r) in Eqg. (100). It is however
safe to say that Eq. (100) has been derived from an inexauilatibn in the quoted
reference, unlike the derivation of the exact relation (B5bhis paper. It is just
important to note that the need for the modification of the tdean gravitational
potential has been known in general relativity, althouglphgsical meaning could

be given tof(r) in GR, as stated on page 206 of [15]. There is no spacetime to
contain this derived function, just as said for the derivexbsaenergy expression of
Eq. (83) in GR.

As another aspect of the modification of the classical (or tdais) law of grav-
ity in the context of TGR, let us consider a particle of ressem,, which is moving
at a low (non-relativistic) velocity through radial distancefrom the center of the
assumed spherical gravitational-relativistic mistssf a gravitational field source on
the flat relativistic spacetime(ct) relative to an observer. The relativistic kinetic
energy in the context of TGR of the particle has been relatets classical kinetic
energy by Eqg. (29), which shall be rewritten here as follows

1 1 2GMpa,
Ex = =mv? = Zmg®(1 -
: 2o ( rea

5 ) (101)

Now let the gravitational-relativistic massof the test particle above propagate
at non-relativistic velocity radially from radial distamc, to radial distance from
the center of the gravitational-relativistic madsof the gravitational field source on
the flat relativistic spacetimez(ct) of TGR, which correspond to radial distances
ri andr’ respectively from the center of the rest ma4sof the field source on the
flat proper spacetime(, ct’). The diference in kinetic energy of the particle as it
moves fronry tor in (Z, ct) is given in the context of TGR as follows

1 ZGMoa 2GM03.
AEx = Zmor?(1 -
K ZmOU ( r’c_g r’lc_g

1
)~ 5Mmovg(1- ) (102)
wherer; is its velocity while passing through. On the other hand, the change in
gravitational potential energy (84) in the context of TGR{tze particle moves from
r, tor is the following

GM 2GM GM 2GM
AU = - oamMo (1 _ Oa)g/z " oalmp (1 _ Oa)3/2 (103)
r’ r'cs r ricz
Conservation of energy allows us to writd) = AEx. Hence
1, 2GMoa, 1 2GMoa GMoamg 2GMoa, 3/,
= 1- - = 1- =- 1- /
5o r'c ) = Mo ric2 ) o r'c2 T

A.Joseph. Formulating gravity and motion at second stage of evolutiepacetime.. .. 11.724



Mar, 2012 THE FUNDAMENTAL THEORY ... (M) Vol. 1(3B): Articlel5

(Ol _ 2oty
r ric2
Therefore,
2GM 2GM
2 o= 2a-2 221 - G, 8-
ryc2 r'c2
_ _ZGMoa(l_ 2(5|\/|0a)1/2 . ZGMoa(l_ 2G|v|0a)3/2(1_ 2G|v|oa)_1
r r’cg rh r’lcg r'cg
(104)

This expression is valid in a gravitational field of arbiyratrength. Its post-Newto-
nian approximation on flat relativistic spacetimg, ¢) given in the limit as
ZGMoa/r’cg — 0 can be written. In the pure Newtonian limit on the flat proper
spacetimeY’, ct’), the factor (1- 2GMoa/r’c2) = (1 - 2GMoa/r;c2) = 1, Eq. (104)
simplifies as the familiar relation in classical mechaniés; v? — 2Ad’ = v2 + 2gH.

Finally let us consider a test particle of rest mags which undergoes gravi-
tational fall from rest at infinity to speedat radial distance from the center of
the assumed spherical gravitational-relativistic mislsén the relativistic Euclid-
ean 3-spac& of TGR, of the only source of external gravitational field. iAt
finity, (r = o0), it possesses zero gravitational potential energy and kieetic
energy, and upon falling to radial distancdrom the center ofM, it possesses
gravitational-relativistic gravitational potential egg my®ez(r’) in the context of
TGR, and gravitational-relativistic kinetic eneréynv2 in the context of TGR, (as-
sumingu is non-relativistic thereby precluding the presence of. 9Rgn from the
fact that the decrease in gravitational potential energggigal to the increase in
kinetic energy of the test particle, we have the following

1
“mv? — 0= 0 — myDeg(r')

2
or 1 2GM GM 2GM
2 oa oamMo 0a,3/2

= 1— = 1-—

erbv ( r’cg ) r ( r'cg )
Hence 2GM 2GM

V= R - ) (105)
rca

The dynamical velocity given by Eq. (105) is the escape velocity of the test
particle, usually denoted byesg Thus the escape velocity with gravitational-
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relativistic correction (in the context of TGR) is the folling

2GM 2GM
Vesc = Oa(l - Oa)1/4

’ ’02
r ng

(106)

Obviously the observed (or unprimed) classical theory efvily CG on the flat
relativistic spacetimeX, ct) of TGR is the the fictitious primed classical theory of
gravity (CG) on flat proper spacetimef, ct’) with relativistic correction in the
context of TGR, just as the observed (or unprimed) clasdigadmics is the primed
classical dynamics with relativistic correction in the text of SR. The existence
of CG on flat proper spacetime(, ct’) is described as fictitious because ‘&
impossible (or does not exist) oB’(ct’) in reality, as explained above.

Local Lorentz invariance (LLI) obtains naturally on the flefativistic spacetime
(%, ct) of TGR in an external gravitational field, as demonstratesiib-sub-section
3.3.1 earlier. This coupled with the fact that the gravita4l velocity\79,(r’) of any
magnitude of TGR is equivalent to zero dynamical speeftSR, the transformation
of non-gravitational dynamical natural laws in the conteXt GR, should retain the
usual instantaneousftirential classical and special-relativistic forms of thesd,
(and not their covariant tensor forms), on the flatet) in a gravitational field of
arbitrary strength. However the gravitational-relatizissalues in the context of
TGR of physical quantities and constants that appear inahaal laws, usually as
differential coéficients, must be substituted. Whether tffeet of the substitutions
(or of gravity) will cancel in all natural laws so that theatg equivalence principle
(SEP) is strictly valid or not shall be investigated in deitaia paper shortly in this
volume.

Also since the ffective gravitational acceleratigiyg of Eq. (96) or (97) in the
context of CG, which a test particlefsers towards the center of a gravitational field
source, does not depend on the property of the test pattide/alidity of the weak
equivalence principle (WEP), usually considered to be cowfit by the Btvos-
Dicke experiment and others in the context of primed clasgjcavity (CG), see,
for example, page 251 of [16, 1972] and page 15 of [17, 197@fshgood in the
context of the gravitational-relativistic (or unprimedassical gravitation (CG), for
as long as it is valid in the context of CGThere is a high prospect for theoretical
confirmation of the principle of equivalence of Albert Eigist (EEP) in the contexts
of TRG. We only need to demonstrate the validity of SEP thizally in the context
of TGR in addition to the theoretical confirmations of LLI aWEP already shown.
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4 Mass concepts in the context of the theory of gravitationalelativity

Let us consider a spherically symmetric gravitational feddirce of rest madslg
and classical radiuRy in the proper Euclidean 3-spagé of the flat proper space-
time &/, ct’) in Fig. 3 or Fig. 11 of [1], at the first stage of evolutions qase-
time/intrinsic spacetime and paramet@rginsic parameters within the gravitational
field of the body, which shall be assumed to be isolated frangtavitational field of
every other source. The rest magg of this body will interact with its own gravita-
tional field to become the gravitational-relativistic m&gdn the relativistic Euclid-
ean 3-space of the flat relativistic spacetime(ct) in Fig. 1 of [4] at the second
stage of evolutions of spacetifirdrinsic spacetime and paramet@rginsic para-
meters within its gravitational field, in the context of tine theory of gravitational
relativity (TGR). Likewise the radiuB, of Mg will be identically contracted along
all radial directions from the center M, to become the gravitational-relativistic ra-
diusRof M in X. Thus the spherical symmetry of the field source will be pres
inX.

The mass relation (26) in the context of TGR must be writtetth wie test par-
ticle’s rest massny replaced by the rest mas4, of the isolated gravitational field
source and the proper radial distamtérom the center oM to the location of the
restimg in X’ replaced by the classical radits of the field source in the present

case to have as follows
2GMoa.

RoC3
This is the mass relation in the context of TGR for a gravitaai field source of rest

massMg and classical radiuB, (of Mp), which is isolated from the gravitational
field of every other source.

If the body is then brought near another gravitational fieddree, it is the
gravitational-relativistic mas$/ in the context of TGR, due to its own gravita-
tional field that will interact with the external gravitatial field. Hence by def-
inition [8, 16, 17], the gravitational-relativistic ma$4 given by Eq. (107) is the
passive gravitational mass. It shall therefore be re-dehidt, in Eq. (107) to have

M = Mo(1 - ) (107)

2GMoa

Mp = Mg(1 -
p 0( ROC(%

) (108)

If a mechanical (or inertial) force is impressed on the bablated from the
gravitational field due to any other body, it is also its gtatidnal-relativistic mass
M that will move in response. Hence the gravitational-reistic mass is also the
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inertial mass to be denoted ; of the body. Again let us re-denoté by M; in

Eq. (107) to have
2GMopa

RoC2
The equivalence of the passive gravitational mass and érgéahmass of a body in
the context of TGR follows from Egs. (108) and (109). That s,

M; = Mo(1 -

) (109)

Mp = M; (110)

Relation (110) is usually known as equality of gravitatiomass and inertial mass
and written asn, = my in classical mechanics. Thus the equivalence of gravitatio
mass and inertial mass in classical mechanics, becomesjtivakence of passive
gravitational mass and inertial mass in the context of TGR.

On the other hand, Egs. (108) and (109) imply non-equivaefcest mass and
passive gravitational mass and non-equivalence of rest arabinertial mass in the
context of TGR,

Mp = M; # Mg (111)

The known equivalence of inertial mass and rest mass my in classical mechan-
ics and general theory of relativity is invalid in the corttek TGR.

We have finally identified the gravitational-relativisti@ssM or mof a body or
particle formed in the relativistic Euclidean 3-spacm the context of TGR, at the
second stage of evolutions of spacetimiinsic spacetime and paramef@rginsic
parameters in every gravitational field as the passive @i@anal mass and inertial
mass of the body or particle.

As first introduced in sub-sub-section 2.1.5 of [1], the tyniilgg in Eq. (102)
is non-observable and non-detectable to observeks il is an absolute-absolute
immaterial entity with unit of mass, which is imperceptiliiidden within the rest
massMp in the proper Euclidean 3-spaké As suggested in sub-sub-section 2.1.5
of [1], Moa is a negative entity (i.e. we must writedMpg), and it is the source of the
attractive gravitational speéd)(r’) = —(2GMoa/r’)"?, attractive proper (or classi-
cal) gravitational potentiad’(r’) = —GMga/r’ and attractive proper (or classical)
gravitational fieldj” = ~GMgar’”’/r’3. The attractive nature of these gravitational
parameters arise by virtue of the negative sign of the imrizteMga.

The gravitational speed,(r’) due to the non-detectable immaterial gravitational
charge—Mgg within the rest mas#/g in the proper Euclidean 3-spagé then in-
teracts withMg thereby converting the redfly in X’ to the passive gravitational
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massMp, which is also the inertial madd; of the body in the relativistic Euclidean
3-space in the context of TGR, as expressed by Eq. (108) and Eq. (109).

The negative absolute-absolute immaterial entityog with the unit of mass,
which is imperceptibly hidden within the rest madg in X', being the source of the
classical (or Newtonian) gravitational potential and fieferved to originate from
Mo, is the active gravitational mass of the body. This is soesihe source of the
classical gravitational potential and field of a body is thdvae gravitational mass
of the body by definition [8, 16, 17]. The active gravitatibnass—Mgg has also
been referred to as the gravitational charge since its jroration into the present
theory in sub-sub-section 2.1.5 of [1].

The equivalence of the rest mass and the active gravitatioass,Mg = Mg is
known in classical mechanics [8]. Consequently the clasgiavitational potential
and field are usually written in terms of the rest mas®gs’) = —-GMg/r’ and
g’ = —GMoP’/r’®. The classical gravitational potential and field origingtfrom
the material rest mad¥ly are identical in magnitude to those originating from the
immaterial active gravitational mass (or gravitationahigge) — in a spherically
symmetric gravitational field. That is,

(1)
g

~GMp/r’ = ~GMga/r’ (112a)
—GMgP’/r"® = —GMoar’ /r"® (112b)

Since the gravitational field is massless, its source msstlad massless. This
thereby makes the the immaterial active gravitational nfassnassless gravita-
tional charge)-Mgg the source of gravitational potential and field. In analdbg,
massless electric charge is the source of the masslesmostatt field in electro-
magnetism, and the sign of electric charge determines gme(attractive or repul-
sive) of electrostatic field.

For the gravitational potential and gravitational fieldttioaiginate from the
rest mass to be identical to the gravitational potential gravitational field that
originate from the active gravitational mass (or gravitaéil charge) according to
Egs. (112a) and (112b), it must be that the immaterial negaiitive gravitational
mass (or gravitational chargeMgg is equal in magnitude to the rest mass. In other
words, there is equivalence (in magnitude but not in natof&)e positive material
rest mass and negative immaterial active gravitationabr@syravitational charge)
in the context of TGR, expressed as follows

Mo = | — Moal (113)
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Further more the fact that the gravitational potential aravigational field that
originate from the rest mass to be identical to the grawiteti potential and gravita-
tional field that originate from the active gravitationalsador gravitational charge)
according to Egs. (112a) and (112b), implies that the negdhmaterial active
gravitational mass in its own domain (yet to be identifiedfisctively wholly em-
bedded in the material rest mass (or wholly occupies thewass)My in the proper
Euclidean 3-spacE’. That is,—Mgg has the same shape and same volume as the
rest masdMy in ¥’ as the rest masdl, (although—Mopg does not exist irx’ but in
a different space that is embeddedihyet to be isolated). Consequently the den-
sity o” of the rest mas#$/, and the density-o3 of the active gravitational mass (or
gravitational charge)} Mg that occupies the whole dfly are equal in magnitude.
The model of the containment efMgg in Mg that follows from this discussion is
illustrated for a non-spherical gravitational field souase-ig. 1.

)
g’(r',e',q)’)
D (0.9)

Figure 1: Model of the containment of the gravitational ¢eain the rest mass of
a gravitational field source that is consistent with the fabeth shapes and densities
of the gravitational charge in its space (to be identified) #re rest mass in the
physical proper Euclidean 3-space.

Fig. 1a is consistent with the fact that the active grawitadl mass (or gravita-
tional charge)-Mgg, in its space (to be identified), has the same shape and ylensit
as the rest magd, in the proper physical Euclidean 3-spate It therefore gives
rise to identical gravitational potential and field (spbaliy symmetric or not), as
the rest mass would. On the other hand fact that the grauiltaiti/elocity\7g(r’) that
the gravitational charge also gives rise to is purely radialll gravitational fields
(see sub-section 2.1 of [2]), is not consistent with the rhoflehe containment of
—Moain Mg Fig. 1. It requires further development of the present théeyond the
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current level to explain.

The negative active gravitational mass (or negative gatigihal charge) can-
not annihilate the rest mass containing it in Fig. 1, becdlusective gravitational
charge does not exist in the spa¥eof the rest mass, but in aftirent space of
its own. Consequentlivlp and—Mgg do not touch. The non-spherically symmetric
gravitational field7’(r’, &, ¢’) originating from the non-spherical rest mass will be
identical to the gravitational field originating from thetige gravitational mass of
the same magnitude and shape as the rest mass in Fig. 1. Aagtwdhe present
theory, the Newton’s law of gravity in theféérential form must be written in terms
of the negative densityoj of gravitational charge as

V' G’ = 4nG(—0y) = —4nGoly (114)

Or in integral form as
f f g’ - dA = 47G(~Mog) = —47GMoa (115)

whereV’ is differential operator in the proper Euclidean 3-spaca which Egs.
(114) and (115) are written.

The origin of the immaterial active gravitational mass (oavitational charge)
and its negative sign, as well as the correct model of itsatpntent within the rest
mass, considered to be as illustrated in Fig. 1 for now, aadrtbéchanism by which
—Moa contained withinMy establishes gravitational spe¥{{r’), gravitational po-
tential®’(r’, ¢, ¢’) and gravitational fieldj’(r’, &, ¢’) at every point in space in all
finite neighborhood oMy, shall be investigated elsewhere with further develop-
ment.

Now a spherical test particle of rest massand classical radiugpp, which is
isolated from the gravitational field of every other sourcsgesses passive gravi-
tational massn,, which is the same as its inertial massdetermined by its own
gravitational field solely, which is given as follows

2Gmpa
rocg

My =m = mo(1- ) (116)

If the test particle is now located at radial distamdeom the center of the passive
gravitational mas#,, (or inertial massvi;), of a body in the relativistic Euclidean
3-spaceX of TGR, corresponding to radial distancefrom the center of the rest
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massMg in the proper Euclidean 3-spa&é of the massive body, then Eq. (116)
must be modified as follows

2GMoa 2Gmoa 2GMoa
- ma(1— = mo(l - 1- 117
m mp( r,Cg ) rrb( rocg )( r,cg ) ( )
or 2GM 2G 2GM
Moa oa
m=m(l- 08y _ my(1 - 1- 118
mi( e ) = mp( Foc2 X e ) (118)

The massnin Eq. (117) or (118) is the passive gravitational mass oirthdial
mass of the test particle in the external gravitational faélthe massive body of rest
massMg, where the ffect of the gravitational field of the test particle has be&ana
into consideration. It is inherently assumed that othevitational field sources are
absentin Eq. (117) or (118), otherwise thefieet must be taken into account.

The inertial mass or passive gravitational mass of a particbody determined
by the gravitational field of the particle or body solely, kba denoted byn (or M;)
andmj, (or Mp) as done in Eq. (116), while the inertial mass or passiveitational
mass of a particle or body in the external gravitational fflbther gravitational
field sources shall be denoted im(or M) as done in Eq. (117) or (118) henceforth.
In other words, we shall retain the notatioror M for the gravitational-relativistic
mass in the relativistic Euclidean 3-spacef TGR, now confirmed to be the inertial
mass or passive gravitational mass.

The passive gravitational mass, which is the same as the inertial massis
the mass observed in the physical 3-space. On the other thenigist masey and
the active gravitational massmyg hidden within the rest mass, of a particle or body
cannot be observed. As Eq. (115) shows, the gravitationdl diethe particle or
body, (no matter how weak), causes its rest mass to evolvésinertial or passive
gravitational mass, even in the absence of external gteit field, in the context
of TGR.

Finally, let us make connection to the so-called “dresseslshand “undressed
mass” of a particle. Let us expand Eg. (118) to have the faligw

_ 2GMmoaimy  2GMoams |, 4G*Moamoamo

m=my
rocg r'ch r'rocy

(119)
The inertial massn is the observed mass of the particle. It shall also be raferre
to (humorously) as the “dressed mass”, while the rest masat the right-hand
side shall be referred to as the “undressed mass” (or “nakest’mand the other

terms at the right-hand side as the “dressing”. These ass&éd mass”, “undresses
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mass” and “dressing” of a test particle at rest relative éodhserver in the external
gravitational field of a spherical body of rest mdds.

4.1 Calculating the rest mass and classical radius of a gtational field source

The proper (or primed) parameters on the flat proper spaediifyct’) that evolved
at the first stage of evolutions of spacetim&insic spacetime and paramef@rsin-

sic parameters in a gravitational field, have transformed the observable (or
measurable) gravitational-relativistic parameters an ftht relativistic spacetime
(%, ct) in the context of TGR, at the second stage of evolutions atspmeintrinsic
spacetime and parameténgrinsic parameters in a gravitational field. Consequentl
the proper (or primed) parameters do not exist to be obseswedeasured by 3-
observers in the relativistic Euclidean 3-spaceThey are elusive with respect to
these observers.

One usefulness of the parameter relations in the contex&& is that the proper
durations of timedt’ and proper intervals of spade’, r’d¢’ andr’ sin¢’dy’ involved
in events and proper physical paramet®son the flat proper spacetim&’(ct’),
can be calculated from the corresponding measured refitiyor unprimed) dura-
tions of timedt and relativistic (or unprimed) intervals of spatdrerdd andr sinddy
of the events and the gravitational-relativistic (or unped) physical paramete€3
on the flat relativistic spacetim&,ct) of TGR.

It is important to calculate the elusive proper (or cladigalues of various
physical parameters on the elusive flat proper spacetiEhet() from their ob-
served and measurable gravitational-relativistic varethe flat relativistic space-
time (Z, ct) of TGR. This is so because the classical values of physaralmpeters so
calculated become useful data in physics. In order to do wWesnust evaluate the
factorsy,(r')? = (1 - 2GMoa/r'c2), ¥,(r')™* andy,(r’) that appear in coordinate
interval and parameter transformations in the context oRTG

Now in order to evaluatg,(r')~? = (1 - 2GMoa/r’cZ), we must have the value
of the elusive gravitational charddog or the value of the rest madsy, sinceMg
and Mgg are equal in magnitude, as well as the value of the elusiveepradial
distance’ from the center of the rest mab, to the location of the rest mass of
the test particle in the elusive proper Euclidean 3-spac6&iven that the rest mass
Mo can be calculated, thehcan be obtained by integrating the gravitational length
contraction formula, as done in Egs. (120) and (121).

Given the calculated value ®fy, thenrs can be evaluated from Eq. (121). And
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2GMoant /s o,
g

fdr
r, _r 1
1 \/Tsr’ [—2\/r'2— rrs+rsin —Ers+ I+ AJr2 - r’_rs)]
r = ——

(120)

where the integration has been obtained with the Mappleddtipple 11 software
and
rs = 2GMoa/C; = 2GMo/c; , (121)

is the Schwarzschild (or gravitational) radius of the gia@ional field source.

given the measured value ofradial distance from the center of the inertial mass
M of the gravitational field source to the location of the if@nnassm of the test
particle inX) and the calculated value of, thenr’ can be evaluated from Eq. (120).
The first thing to do then is to calculate the rest milgsof the gravitational field
source.

Let us now calculate the rest mass and classical radius cd\atagional field
source. Let us consider a spherically-symmetric grawviteti field source of rest
massMy and classical radiu’, (of Mg) on the flat proper spacetimg’(ct’), which
is isolated from the gravitational field of every other s@urd@he rest mass of the
field source will interact with its own gravitational field become the inertial mass
M in the flat relativistic spacetimé&(ct) of TGR. Likewise the classical radil®
of Mg will suffer gravitational contraction to become the gravitatiomdetivistic
radiusR of M in X in the context of TGR, along all radial directions from thees
of Mo.

Two equations are required to calculdg andR,. The first is the mass relation
(107) and the second is given by integrating the gravitatidength contraction
formula at the interior of the gravitational field source viNihe gravitational length
contraction formula at the interior of a spherical solid #mack-hole body of rest
massMg and radiudRy with assumed uniform mass-density, which shall be derived
elsewhere with further development is the following

72
dr = ’yg(r/)—ldrl = (1_ %r_)]_/z;

Roc) Rs
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I’ < Ro; Ro > 2GMoa/C; = (122)

Whereas the first equation of system (12a) is valid for pasitiexterior to the grav-
itational field source (i.e. far > Ry).

By integrating Eq. (122) from the center to the surface ofspigerical body and
replacingMog by Mg we have

R Ro
f dr = f (1——262/'?2)1/2dr’
0 0 RSC_,,Y

. [26Mp
) "\ Re
. 2GM
R = % cos[sm‘l Rocgo + ay

or

2GMq
Roc2
Ro > 2GMo/c; (123)
Eq. (107) must likewise be re-written witflgg replaced byMg as follows
2GMy,
M = Mo(1 — W)’ Ro > 2GMo/c? (124)

Egs. (123) and (124) must be solved simultaneouslyMgrand Ry, with the
observed numerical values & andR substituted. The numerical value bfy
obtained must be substituted into Eg. (120) and (121) inrdalevaluate”’, given
the observed (or measured) valuerofThe value ofy,(r’) can then be evaluated
from the calculated values &g andr’.

Egs. (123) and (124) and Egs. (120) and (121) apply for alligréonal field
sources, safe black holes. It can be shown from Eqgs. (123}1&4#) thatM = Mg
andR = Ry in the Newtonian limit EMO/Rocj = 0. The approximatiotM ~ Mg
andR ~ Ry can be made for sources of weak gravitational fields, sucheasdrth,
the other planets and the Sun, but not for a source of strangtgtional field, such
as a neutron star or a white dwarf.

5 Summary and conclusion

Every result in the contexts of TGR and combined TGR and SRherflat four-
dimensional relativistic spacetim&,(ct), has its corresponding result in the con-
texts of the intrinsic theory of gravitational relativitg {GR) and combined intrin-
sic theory of gravitational relativity and intrinsic spakiheory of gravity §TGR +
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#SR) on the flat two-dimensional relativistic intrinsic sptime @p, ¢cot) underly-
ing (%, ct). The entire TGR and combined TGR and SR Bycf) can be derived by
the graphical approach in the two-world pictwia ¢SG andpSG+¢SR, as demon-
strated for some results in part one of this paper [4].

The intrinsic gravitational local Lorentz transformatiGsGLLT), the intrinsic
gravitational local Lorentz invarianceGLLI) and the intrinsic mass relation in
the context oipTGR, as well as intrinsic local Lorentz transformati@i(T), in-
trinsic Lorentz invarianceglLLI) and intrinsic mass relation in the context of com-
bined pTGR and¢SR on the flat two-dimensional relativistic intrinsic spiéoe
(¢p, pcot), which were derived graphically, were converted to theregponding
results namely, GLLT, GLLI and mass relation in the contekTGR and LLT,
LLI and mass relation in the context of combined TGR and SRhenflat four-
dimensional relativistic spacetim&,(ct), by simply removing the symba} from
the results oh TGR andpTGR+¢SR on flat §p, pcgt) essentially in the first part of
this paper.

The results of TGR and TGRSR derived by the analytical approach on the
flat four-dimensional relativistic spacetimg, €t) in this paper, can likewise be
converted to the corresponding resultspdiGR and¢TGR+#SR on the flat two-
dimensional relativistic intrinsic spacetimgo( ¢cgt), by incorporating the symbol
¢ into the results of TGR and TGFSR. For example, the gravitational potential
relation,

(') = (~GMoa/r')(1 — 2GMoa/r'¢)*2,

in TGR becomes,
$D(9r) = (~GgMoa/¢r')(1 ~ 2G¢Moa/¢r'¢c))" /%,
in the context ofpTGR; the force relation,
F = F/(1- 2GMoa/r'cA)2,

in TGR becomes,
¢F = ¢F'(1~ 2G¢Moa/¢r'¢c;) "2,
in the context ofpTGR; the special-relativistic kinetic energy relation,

T = moc?(1 - 2GMoa/r'cH)"?[(1 - v?*/c2) Y2 - 1],
in the context of combined TGR and SR becomes

¢T = omogcy(1 — 2GPMoa/r’¢cs) 2 [(L — ¢o? /9c2) V2 ~ 1],
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in the context of combinedTGR andgSR; etc.

The flat four-dimensional relativistic spacetini ¢t) and the inertial masses
m, M of particles and bodies in it, are the outward (or physicainifestations
of the flat two-dimensional relativistic intrinsiesg, gcot) and the intrinsic iner-
tial massegm, M of particles and bodies in it. Likewise the TGR, SR, TE&R,
CG, CM, etc, onk, ct) are the outward (or physical) manifestationg®GR, ¢SR,
¢ TGR+¢SR,¢pCG, ¢CM, etc, in the underlyingdp, ¢cgt). The following remarks
follow:

1. The flat four-dimensional spacetini ¢t) is impossible without the flat two-
dimensional intrinsic spacetiméd, ¢cet).

2. The theories of gravity and motion namely, TGR, SR, KSR, CG, CM,
as well as electromagnetism (EM) and other natural laws erfl#t four-
dimensional spacetim&(ct), are impossible without the corresponding in-
trinsic theories on the flat two-dimensional intrinsic sgtme o, ¢cet).

3. Intrinsic physics, (i.e¢TGR, ¢SR,¢TGR+@SR, #CG, #CM, intrinsic elec-
tromagnetism EM) and other intrinsic natural laws i, ¢cét), help to
determine the observed physics, (i.e. TGR, SR, ¥SR, CG, CM, (EM)
and other natural laws), in spacetime

The results of the graphical approach to the theory of gativital relativity
(TGR), combined theory of gravitational relativity and sja¢ theory of relativity
(TGR+SR) and the other associated theories in the first part optper and of the
analytical approach to the theories in this second part| Bealeemed to be $ii+
cient for these initial papers, while other ramificationgtu theories shall unfold
with further development.
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Appendix

Transformations of differential codficients and diferential opera-
tors in natural laws on flat spacetime in a gravitational fieldin the
context of the theory of gravitational relativity

The natural laws retain their usual instantaneodiential forms on the flat
relativistic spacetime in a gravitational field in the coatef the theory of gravi-
tational relativity (TGR). Thus a classical or speciaktalistic natural law (non-
gravitational or gravitational) may take on the followingrgeral form on the flat
proper spacetimex(, ct’) in the absence of relative gravity at the first stage of evo-
lutions of spacetim@trinsic spacetime and paramef@rginsic parameters in a
gravitational field of arbitrary strength
W AW

+D

A/V/ZV‘\’// Brﬁ/ W/ =-C
e av e

(A1)
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The twice diferentiable functioWV/(r’, &, ¢’, ') and the diferential coéficients
A',B’,C’ andD’ are proper (or primed) physical parameters or physicaltaots
on the flat proper spacetimg’(ct’) (in Fig. 3 or 11 of [1]) in the absence of relative
gravity at the first stage of evolutions of spacetiimiginsic spacetime and parame-
tergintrinsic parameters in a gravitational field. The primeffasential operators
V2V, 9%/6t'2 andd/at’ are in terms of the coordinates of the flat proper spacetime
(&, ct).

The transformations of the primed classical or primed speeiativistic natural
law (A1) on flat proper spacetim&’( ct’) in the assumed absence of relative grav-
itational field, at the first stage of evolutions of spacetinténsic spacetime and
parametepintrinsic parameters in a gravitational field into the unped form of the
law on flat relativistic spacetimé&(ct) in the context of the theory of gravitational
relativity (TGR) in relative gravitational field, at the sew stage of evolutions of
spacetimg@ntrinsic spacetime and paramet@rginsic parameters in a gravitational
field, involves two steps described as follows

Step1:

The proper (or primed) functiod and the proper (or primed) fiierential coéi-
cientsA’, B',C’ andD’, which are physical parameters or physical constants on the
flat proper spacetime(, ct’), are transformed into their gravitational-relativigiic
unprimed) valuesl/, A, B,C and D respectively, on the flat relativistic spacetime
(Z, ct) in a gravitational field in the context of TGR, as done for sgohysical pa-
rameters in this paper and as shall be done further in the ptpers.

Step2:

The primed diferential operator§’2, V', 4/at' andd?/4t’2 in terms of the coordi-

nates of the flat proper spacetini¥,(ct’) are transformed into the respective un-

primed diferential operator¥2, V, /at and2/4t? in terms of the coordinates of

the flat relativistic spacetimé&(ct) in the context of TGR as described hereunder.
Now the transformations of the proper (or primed) paransatér A, B, C’ and

D’ to the relativistic (or unprimed) parametafs A, B, C andD respectively in the

context of TGR will take the following forms

W = f(V (W or W' = (Vi ()W (A2a)
A= fa(VI(I)A or A = FLHV(F))A (A2b)
B = fa(V,(r")B or B = fg'(V,(r"))B (A2c)
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C = fe(V,(r))C’ or C' = (V) (r"))C (A2d)
D = fp(V,(r"))D" or D’ = f5*(V,(r"))D (A2¢)

By using the inverse relations in equations (A2a) — (A2e)ituiaateVV, A,B,C
andD’ in Eq. (A1) we have,

A INEURAGND
+ T (VL ()BY x (f(V, (r)W)
G CA )
2
HEH VDD GV V) 3

However the inverse functioﬂ,‘\,l(V;(r’)), as well as the others are constant in
space within every local Lorentz frame, within which thensformations of natural
laws are derived in a gravitational field. They are also tindependent for static
gravitational fields that we shall be concerned with. Hermeibverse function
fv‘vl(v(;(r’)) can be factored out, thereby simplifying Eq. (A3) as falo

= fa' (v, (r)C

AL (VI(F)AV2W + T2V (r")BV x W

62
o2
The first step transforms the natural law (gravitational on-gravitational) of
Eq. (A1) into Eq. (A4).

The transformations of the primed operat8t3, vV, 9/dt’ andd?/ot’2, in terms
of the coordinates of the flat proper spacetitbe ¢t’) that appear in Eq. (A4), into
the respective unprimed operators in terms of the coorelinat the flat relativistic
spacetimeX, ct), in the context of TGR, must then be derived at the secor ste
This must be done with the aid of the gravitational local lmzetransformation
(GLLT) and its inverse of systems (3) and (4), which shall eenritten here as
follows

W (A4)

- 1 (! d - 1 (p!
= feh (v, (r NCm W+ fot (V4 (r'))D

dt’ = 7,(r')(dt - (V)(r')/c2)el);
dr’ = y,(r')(dr — Vy(r")dt);
r'dd’ = rdg andr’ sing’dy’ = r sinddy (A5)
dt = y,(')(dt’ + (Vy(r')/H)er;
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dr =y, (r")(dr’ + V (r)dt’);
rdg = r'd9’ andr sinfdy = r’ sing’dy’ (AB)

where
Yol) = (L= VoY /) = (1 - 26Moa/r' ) 2 (A7)

I.  Transformations of differential operators that are relevant for the transfor-
mations of non-gravitational laws in the context of the theoy of gravitational
relativity

The special theory of relativity (SR) and other non-grdidtaal dynamical laws,

such as the law of propagation of massless electric and rtiadieéds (electromag-
netism), law of propagation of massless waves, law of pragag of heat energy
through media, law of propagation of pressure waves threngtlia, etc, involve
dynamical velocitiesi of massless waves, massless fields and other massless non-
gravitational parameters within local Lorentz frames oa filat relativistic space-

time , ct) in every gravitational field relative to observers. Thegoahcquire rel-

ative gravitational velocilﬁg’,(r’) within local Lorentz frames on the flat relativistic
spacetimel, ct) in every gravitational field.

However the relative gravitational velocity is not made ifest in actual trans-
lation in spacetime, hence any magnitude79¢r’) is equivalent to zero magnitude
of dynamical velocity. Consequently a massless non-grawital parameter, al-
though possesses both relative dynamical veloditiesd relative gravitational ve-
Iocities\7§;(r’) on flat spacetime in a gravitational field, it possessedtaduelative
dynamical velocityd, since\7;,(r’) must be set to zero in the compositiontbénd
\7!;(r’), from the point of view of dynamical relativity.

Now in deriving the transformations of the non-gravitatiblaws in the context
of the theory of gravitational relativity (TGR), we must eloypthe gravitational lo-
cal Lorentz transformation (GLLT) and its inverse, whilewaling the gravitational
speeaV,(r’) to vanish. Consequently the form of the GLLT and its inveisep-
ply in deriving the transformations of non-gravitationahs in the context of TGR
(obtained by lettingv,(r’) = O, hencey,(r’) = 1 in Egs. (A5) and (A6)), is the
following

dt’ = dt; dr’ =dr’; r'dg’ =rdg; r’ sind’dy’ = r sinddy (A8)

The trivial coordinate interval transformations (A8) imphe following trivial
differential operator transformations

V2=V% V =V g/ot =d/ot;
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/0% = 3% /0t%; et.c. (A9)

It is the trivial coordinate interval transformations (A&)d the implied trivial dif-
ferential operator transformations (A9) that must be egaddn deriving the trans-
formations of the non-gravitational laws in the context GR.

If we assume that the natural law (A1) is a non-gravitatidealand use system
(A9) in Eq. (A4) we have

AL (VI )AVAW + f52(V)(r)BY x W

2
= fgl(v;(r'))cgw + f,;l(Vé(r'))D%W (A10)

Equation (A10) is the transformation of the assumed nor#gtional law (Al)
in a gravitational field in the context of TGR. The inversengformation functions
fAH V() f5H Vo), fe1(V, () and f5(V; (1)) may not cancel out in (A10). It
must then be said that the non-gravitational law (Al) is neariant with transfor-
mation in the context of TGR and that the law depends on jpwsitti a gravitational
field as a consequence, (by virtue of the inverse transfésméinctions that do not
cancel out).

On the other hand, the inverse transformation functigrigv/ (r')), fg*(V;(r")).
fe1(V;(r")) and f5*(V;(r")) may cancel out naturally in Eq. (A10), thereby simpli-
fying that equation as follows
3

O+p W (A11)

AV2W + BY x W = C—
ot o2

Then the assumed non-gravitational natural law (Al) musidie to be invariant
with transformation in the context of TGR. It does not depemdposition in a
gravitational field as a consequence.

The inverse transformation functiorfg*(V/(r")), fg*(V,(r")). fs*(V,(r)) and
flgl(V(’/(r’)), can be obtained by deriving the transformations of thimed para-
meters A, B, C’ and D and primed functioW” into the unprimed parameters A,
B, C and D and unprimed functioW respectively in the context of TGR or they
can simply be readfbfrom a table containing the transformations of physicaapar
meters and physical constants in the context of TGR, whiell bk developed to a
large extent in a paper shortly in this volume.
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Il.  Transformations of di fferential operators that are relevant for the trans-
formations of gravitational laws in the context of the theoly of gravitational
relativity

If the natural law (A1) is a gravitational law, then the stegnfi Eq. (A1) to Eq. (A4)
must be carried out. However the transformations of the gdimiifferential oper-
atorsV’2, V', 8/8t’ andd2/at’2 into the unprimed operatofé?, V, d/ot and 82/ot2
respectively, for the purpose of transforming gravitagiolaws in the context of
TGR, are elaborate and grosslhyffdirent from the trivial transformations offtér-
ential operators of system (A9) to be used in transformiegitn-gravitational laws
in the context of TGR.

While the gravitational speed;(r’) that appears in the GLLT (A5) and its in-
verse (A6) must be set to zero from the point of view of dynaaimielativity, thereby
reducing the GLLT and its inverse to the trivial coordinatteival transformations
(A8) and the implied trivial dierential operator transformations of system (A9), for
the purpose of deriving the transformations of the non-gatienal laws in the con-
text of TGR, it (the gravitational speed) is a non-zero reéegpeed in the context of
the gravitational laws (or from the point of view of gravitatal relativity). The rel-
ativity of gravitational velocity and the associated risif of gravity, as has been
discussed at flierent points in the previous papers, starting from subsadtion
2.2.1 of [2], refers to relativity of position, that is, vations ofV,(r") and the other
gravitational parameterB(r’) andg(r’) with position in a gravitational field.

It follows from the foregoing paragraph that the full GLLTdhits inverse must
be employed in deriving the transformations offeliential operators to be used
in transforming the gravitational laws in the context of theory of gravitational
relativity (TGR). Now let us obtain the totalftierential of the unprimed twice dif-
ferentiable function(r, 6, ¢, t) that appears in (A4) as follows

W= W s Wi W sinady (A13)
ot or roe r sinfoy

Division of (A13) bydt’ gives the following

dW oW dt oWdr oWrde
dv ~ et dv  ordv ' roe dv
.\ OW 1 singdy
rsinfdy d’
Upon evaluatingit/dt’, dr/dt’, rdg/dt” andr sindde/dt’” with the aid of the inverse

(A14)
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GLLT of system (A6), Eq. (A14) becomes the following

dw aw_ () ()V(r)(‘)W
dv ~av " YT
Hence v.()
0 N0 A Vy(r') o
o =P = g (A15)
and )
62 ’ 0 ’ Vg(r/) 0
2 - (79(r )a +7,(r) C,S ar
92 o 02 o V(') 62
gvz =V e 2 " e
v, (r )? &2
2
r Al6
Y =G g (A16)
Division of (A13) bydr’ gives the following
dW W dt +avT/ dr +6Wrd9
drr 4t drr - or drr o roe dr’
OW 1 singde
Al7
rsm96¢ dr’ (AL7)

Again upon evaluatingt/dr’, dr/dr’, rdo/dr’ andr sindde/dr’ with the aid of the
inverse GLLT of system (A6), Eq. (A17) becomes the following

dwW oW V,(r') oW L OW
a7 = o~ TG g PG
g
Hence v.()
d N V() o
- 21U )g +74(r) Z at (A18)
and ,
82 Vy(r') o
ar,z (79( )_ + 79( ) Cg a)
62 2 2 ( ) 82
2 279 v
or2 yg(r) 7+ 2() c2 ot
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\V/ (r/)Z 62
n2 "9
Division of Eq. (A13) byr’d¢’ gives the following
dw _ oW dt oW dr oW rd
rde ot rrde - ar rde’  roe r'de
\/—\)/ .
0 r sinfdy (A20)

+rsin96<p r'de
Butdt/r'd¢’ = dr/r'd9’ = rsindde/r’'dd’ = 0 andrdd/r’d¢’ = 1 from system (A6).
Hence Eq. (A20) simplifies as follows
dW oW oW

rde oo rae

Hence 5 5
- = A21
rog  roé (A21)
and 5 5
0 0
12002~ 2062 (A22)
Finally division of Eq. (A13) by’ sing’dy’ gives the following
dwW oW dt +aW dr
r'sing’dg’ ~ ot r'sing’de’  ar r’sing’dy’
oW rdo OW  rsingdy
— A2
+r(99 r’sing’ dy’ - r sindoy r’ sing’ dy’ (A23)
But,
dt/r’ sing’d¢’ = dr/r’ sin@’d¢’ = rdd/r’ sing’d¢’ =0 and
rsinddy/r’ sind’dy’ = 1,
from system (A6). Hence Eq. (A23) simplifies as follows
aw o AW W
r’'sing’dy’ — r'sin@’dg’  rsinbdy
Hence P P
(A24)

r’sing’ oy’ - r sin@dyp
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and ) )
0 0
. = —— (A25)
r2sir 0d¢2 12 sin? 092

By collecting equations (A18), (A21) and (A24) we have

o, 4 - a

V= —f+ + —
ar’ r'oe I’ sing’ oy’ ¢

f

0 Vg(r’)ﬁ .0
or

=(yg(r')—+yg(r') =) * i

0
—— A26
+rsm66<p¢ (A26)

And by collecting equations (A19), (A22) and (A25) we have

62 (92 62
Vi — 4 + —
arlz r/260l2 r;2 S|n2 9'590’2
92 V,(r') 62
n2 n2 9
=y, — +2y,(r") ———
7o) orz " 7o) c2 oot
V,(r)? 82 G 92
— + +
ch Ot2 12062 r2sir? 0oy?
Equations (A15), (A16), (A26) and (A27) are the most genéwains of the
differential operator transformations to be used in transfogngiravitational laws
in the context of TGR. They shall find useful application ie thansformations of
the equations of the Maxwellian theory of gravity (MTG), ®developed elsewhere
with further development.

+y,(r')? (A27)

I.1. Transformation of the 3-geometry Newton’s law of grédy in the context
of the theory of gravitational relativity

For the transformation of the three-dimensional Newtonis bf gravity in the
context of the TGR, on the other hand, the GLLT must be trettad a three-
dimensional system by making the time dimension invariantapsolute). This
gives non-trivial spatial coordinate interval transfotioas only, which are the lo-
cal coordinate transformations in the context of TGR that retevant for the 3-
geometry Newton’s law of gravity namely,

dr’ =y,(r')dr; r'd¢’ =rdo,;
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r’sind’dy’ = r sinddy anddt’ = dt (A28)

The transformations of the gradient and Laplacian opesatothe context of TGR
implied by system (A28) are the following

vV = 0 f/+ 0 0 + 9 4
—oor r'o0 I’ sing’ dy’ ¢
0 0 - 0
n-1 2 ~
=y,(ry " —=f+—860 - A29
7o) or Trae’ " rsmeagow (A29)
and
V2= 6—2 + o + o
S ar2 12002 r2sind g/9gr2
G G G
n-2
= r — + + A30
7o) ar2  r206%  r2sin? 09¢? (A30)

And the first-order and second-order derivatives with respe time implied by
system (A28) are
i = g and 6_2 = 6_2
o ot a2 ot2
While Egs. (A29) — (A30) are relevant for the transformatidriNewton’s law
of gravity in non-spherically-symmetry gravitational @is| they simplify as follows
in the case of spherically-symmetric gravitational fields

(A31)

d o d d? B N2 d?
W—?’g(r) o andﬁ—yg(r) a2 (A31)
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