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Article 15:
Formulating the theories of gravity/intrinsic gravity and

motion/intrinsic motion and their union at the second stage of
evolutions of spacetime/intrinsic spacetime and
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An analytical approach to the theory of gravitational relativity (TGR) and combined
theory of gravitational relativity and special theory of relativity (TGR+SR) on the flat
spacetime of TGR in a gravitational field of arbitrary strength, is developedto com-
plement the graphical approach developed in the first part of this paper. The analyt-
ical approach to TGR bears an interesting analogy to the analytical approach to SR
developed by Albert Einstein. Relations for (or transformations of) mass, force, en-
ergy, gravitational potential, gravitational field (or acceleration), gravitational velocity,
frequency and other parameters, are derived on flat spacetime in thecontext of TGR.
These are relations that incorporate the effect of gravitational relativity into the clas-
sical and special-relativistic values of parameters at every point on flat spacetime in a
gravitational field of arbitrary strength. Local Lorentz invariance (LLI) is validated on
the flat spacetime of TGR. The weak equivalence principle (WEP) is shown to be valid
in the context of TGR as long as it is valid in classical gravitation. The modified(or
gravitational-relativistic) form of the Newtonian gravitational force law on flat space-
time in the context of TGR is derived. The non-trivial relationships amongthe various
mass concepts in physics namely, the inertial mass, the passive gravitational mass, the
active gravitational mass and the rest mass, which the derived mass relation in the con-
text of TGR implies, are highlighted and the elusive rest mass and classical radius of
a gravitational field source are calculated from the observed (or inertial)mass and the
observed radius of the field source. The exterior Schwarzschild line element in the gen-
eral theory of relativity is shown to pertain to the measurable sub-space of TGR (which
is a fictitious curved spacetime with sub-Riemannian metric tensor), whereas the total
space of TGR is the observed flat spacetime with constant Lorentzian metric tensor.

1 Theory of gravitational relativity by analytical approac h

The global spacetime/intrinsic spacetime geometry of Fig. 11 of [1] in the absence
of relative gravity at the first stage of evolutions of spacetime/intrinsic spacetime
and parameters/intrinsic parameters in a gravitational field does not existin na-
ture, while the global spacetime/intrinsic spacetime geometry of combined first and
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second stages of evolutions of spacetime/intrinsic spacetime and parameters/intrin-
sic parameters in a gravitational field of Fig. 7 and its complementary geometry of
Fig. 8, along with their inverses Figs. 9 and 10 of [2], made fuller by incorporat-
ing the constantly flat absolute-absolute intrinsic-intrinsic spacetime (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t )
in Fig.9 of [3] and reproduced as Fig. 1 and its complementarydiagram of Fig. 2
of [4], are the global spacetime/intrinsic spacetime geometries that exist in every
gravitational field.

Never the less it is theoretically valid that the flat four-dimensional proper space-
time (Σ′, ct′) containing proper parameters and its underlying flat two-dimensional
proper intrinsic spacetime (φρ′, φcφt′) containing proper intrinsic parameters in
Fig. 11 of [1], in the absence of relative gravity at the first stage of evolutions
of spacetime/intrinsic spacetime and parameters/intrinsic parameters in a gravita-
tional field, effectively transform into the flat four-dimensional relativistic space-
time (Σ, ct) containing gravitational-relativistic parameters and its underlying flat
two-dimensional relativistic intrinsic spacetime (φρ, φcφt) containing gravitational-
relativistic intrinsic parameters in Figs. 1 and 2 of [4], ina relative gravitational
field, at the second stage of evolutions of spacetime/intrinsic spacetime and parame-
ters/intrinsic parameters in a gravitational field.

Now let the center of the assumed spherical rest massM0 of a gravitational
field source be located at a point O and let the rest massm0 of a test particle be
located along a radial direction at radial distancer′ from the center ofM0 in the
proper Euclidean 3-spaceΣ′ of the flat four-dimensional proper spacetime (Σ′, ct′),
which evolves at the first stage of evolutions of spacetime/intrinsic spacetime and
parameters/intrinsic parameters in a gravitational field. This situation cannot endure,
since the first and second stages of evolutions of spacetime/intrinsic spacetime and
parameters/intrinsic parameters commence simultaneously and propagate together
at the speed of light away from the location of the gravitational field source, as
explained in sub-section 1.1 of [2] and section 3 of [3].

The rest massM0 of the gravitational field source in the proper Euclidean 3-
spaceΣ′ at position O and the rest massm0 of the test particle inΣ′ at radial dis-
tancer′ from the center ofM0 will, as soon as they are formed at the first stage
of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic parameters,
transform into the gravitational-relativistic massM of the gravitational field source
at position O in the relativistic Euclidean 3-spaceΣ and the gravitational-relativistic
massm of the test particle at radial distancer from the center ofM in Σ respectively
in the context of TGR at the second stage.
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Every other proper (or classical) parameter (with prime label), such as proper
gravitational potentialΦ′(r′), proper gravitational field~g ′(r′), proper energyE′,
proper inertial and gravitational forces~F′i and ~F′g, proper frequencyν0, etc, that
evolved in the proper Euclidean 3-spaceΣ′ at the neighborhood of the rest massM0

of the gravitational field source at the first stage of evolutions of spacetime/intrinsic
spacetime and parameters/intrinsic parameters, will likewise, as soon as they are
formed, transform into the respective gravitational-relativistic parameters namely,
gravitational-relativistic gravitational potentialΦ(r), gravitational-relativistic grav-
itational field~g(r), gravitational-relativistic energyE, gravitational-relativistic iner-
tial and gravitational forces~Fi and ~Fg, gravitational-relativistic frequencyν, etc, in
the relativistic Euclidean 3-spaceΣ in the context of TGR at the second stage.

It is the gravitational-relativistic massesm andM of test particles and gravita-
tional field sources and gravitational-relativistic physical parameters and physical
constants in the relativistic Euclidean 3-spaceΣ of TGR that are observed in every
gravitational field, assuming the absence of special relativity. In a situation where
special relativity is also present, then the effect of special relativity must be incor-
porated into the gravitational-relativistic parameters giving gravitational-relativistic
cum special-relativistic parameters in the context of combined TGR and SR.

It then follows that the entire universe is a flat four-dimensional relativistic
spacetime domain (Σ, ct) of TGR, containing gravitational-relativistic massesm
and M in the context of TGR and gravitational-relativistic cum special-relativistic
massesm and M in the context of TGR+SR, of particles and bodies and other
gravitational-relativistic and gravitational cum special-relativistic parameters and its
underlying flat two-dimensional relativistic intrinsic spacetime (φρ, φcφt) of φTGR,
containing gravitational-relativistic intrinsic massesφm and φM of particles and
bodies and gravitational-relativistic cum special-relativistic intrinsic massesφm and
φM of particles and bodies and other gravitational-relativistic and gravitational-
relativistic cum special-relativistic intrinsic parameters. The flatness of the universal
four-dimensional spacetime and consequently of the universal 3-space area priori
in the present theory.

Although spacetime is flat within a gravitational field, gravitational velocity
~Vg(r) and gravitational potentialΦ(r) vary with radial distancer from the center
of the massM of the gravitational field source in the Euclidean 3-spaceΣ. It is
therefore mandatory to restrict the formulations of the gravitational-relativistic non-
gravitational laws and gravitational-relativistic classical theory of gravity (CG) to
the interiors of local Lorentz frames on flat spacetime (Σ, ct) in every gravitational
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field.

Certainly there are transformations of elementary coordinate intervalsdx′0, dx′1,
dx′2 anddx′3 of the flat proper metric spacetime (Σ′, ct′) into the elementary coor-
dinate intervalsdx0, dx1, dx2 anddx3 of the flat relativistic metric spacetime (Σ, ct)
at every point in spacetime at the neighborhood of every gravitational field source,
in addition to transformations of proper parameters in (Σ′, ct′) into gravitational-
relativistic parameters in (Σ, ct) in the context of TGR. The accomplishment of an
analytical approach TGR must therefore start with the derivations of elementary
metric spacetime coordinate interval transformation. Although this has been ac-
complished by the graphical approach in the first part of thispaper [4], it shall be
re-done analytically in this second part for completeness.

1.1 Gravitational local Lorentz transformation and gravitational local Lorentz
invariance in the context of TGR

Let us consider a proper (or primed) local Lorentz frame on the flat proper spacetime
(Σ′, ct′) (within which gravitational velocity~V ′g(r

′) is constant), which is located
at radial distancer′ from the center of the assumed spherical rest massM0 of a
gravitational field source in the proper Euclidean 3-spaceΣ′. (We shall restrict to
spherically symmetric gravitational fields until the Maxwellian theory of gravity
(MTG) is developed in later papers and non-spherically symmetric gravitational
field sources shall be considered.)

Let us prescribe elementary metric spacetime coordinate intervalscdt′, dr′, r′dθ′

andr′ sinθ′dϕ′ within the primed local Lorentz frame. Whether a particle is located
within this proper local Lorentz frame or not, the primed metric coordinate inter-
vals will, by virtue of the presence of gravitational speedV ′g(r

′) within the local
Lorentz frame, transform into relativistic (or unprimed) metric coordinate intervals
cdt , dr , rdθ andr sinθdϕ, within the unprimed local Lorentz frame on the flat rela-
tivistic spacetime (Σ, ct), at the corresponding radial distancer from the center of the
gravitational-relativistic massM of the gravitational field source in the relativistic
Euclidean 3-spaceΣ.

Thus there is a transformation of the proper (or primed) elementary metric coor-
dinate intervalscdt′ , dr′ , r′dθ′ andr′ sinθ′dϕ′) into relativistic (or unprimed) met-
ric coordinate intervalscdt , dr , rdθ andr sinθdϕ) of the formdx′ → dx = L gdx,
in the context of the theory of gravitational relativity (TGR) at every point within
every local Lorentz frame on flat spacetime in every gravitational field. We shall
now determine the matrixL g of this transformation.
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It is appropriate to recall the further discussion on the concept of gravitational
velocity ~V ′g(r

′) in sub-section 1.2 of the first part of this paper [4]. In a nutshell,

1. The gravitational (or static) velocity~V ′g(r
′) serves the role in TGR that dy-

namical velocity~v serves in SR. Thus~V ′g(r
′) effects TGR on the flat relativis-

tic specetime (Σ, ct) (that evolves in the context od TGR), just as~v effects SR
on (Σ, ct) within local Lorentz frames in every gravitational field;

2. The gravitational velocity is invariant, that is,~Vg(r) = ~V ′g(r
′) in the context

of TGR, just as the dynamical velocity~v is invariant, that is~v = ~v (between
particle’s and observer’s frames) in the context of SR;

3. The gravitational velocity~V ′g(r
′) points radially towards the centroid of every

gravitational field source, spherically-symmetric or not,corresponding to the
fact that the dynamical velocity~v of relative motion of every pair of frames
and their coordinates along which relative motion occurs, to be taken as ˜x ′

and x̃ or x̃ and x̃) always by convention, are naturally collinear (i.e.~v, x̃′ and
x̃ are naturally collinear) and not by assumption or prescription;

4. The maximum over all gravitational velocities that can beestablished at a
point in space by a gravitational field source or a combination of gravitational
field sources, or which can be acquired in space by particles and bodies, in-
cluding massless gravitons, iscg = 3 × 108 m/s, corresponding to the maxi-
mum over all dynamical velocities of 3×108 m/s, which particles and bodies,
including massless photons, can attain in motion.

Now just as the speedcγ (of electromagnetic waves) is a constant in all local
Lorentz frames on the flat spacetime (Σ, ct) in a gravitational field, so is the speed
cg (of gravitational waves) a constant in all local Lorentz frames on the flat space-
time (Σ, ct) in a gravitational field. We shall make this subject more humorous and
the formal analogy between TGR and SR more striking by starting the analytical
approach to TGR with the following statements of two principles of the theory of
gravitational relativity

1. Natural laws (gravitational and non-gravitational) areinvariant with local
Lorentz frame.

2. The speed of gravitational waves is a constant,cg = 3× 108 m s−1, in all local
Lorentz frames.

These are the counterparts in TGR of the two principles of thespecial theory of
relativity, which Albert Einstein started with in derivingthe Lorentz transformation
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(LT) and its inverse in his 1905 special relativity paper [5,1923]. The validity of the
first statement shall be demonstrated in a paper shortly in this volume.

One important aspect of the close analogy between SR and TGR,which follows
from the two principles of TGR above, is that there exists a Lorentz-like transfor-
mation of elementary coordinate intervalscdt′ , dr′ , r′dθ′ andr′ sinθ′dϕ′ within a
proper (or primed) local Lorentz frame on the flat proper spacetime (Σ′, ct′) into
the elementary unprimed coordinate intervalscdt , dr , rdθ andr sinθdϕ within the
corresponding relativistic (or unprimed) local Lorentz frame on the flat relativis-
tic spacetime (Σ, ct) and its inverse, in terms of gravitational speedV ′g(r

′), at every
point in spacetime within every local Lorentz frame in a gravitational field of arbi-
trary strength, in the context of TGR. This corresponds to Lorentz transformation
and its inverse in terms of dynamical speedv in the context of SR.

Thus the desired transformation and its inverse in the context of TGR, at an
arbitrary radial distancer′ from the center of the assumed spherical rest massM0 of
the gravitational field source in the proper Euclidean 3-spaceΣ′, which correspond
to radial distancer from the center of the gravitational-relativistic massM of the
gravitational field source in the relativistic Euclidean 3-spaceΣ of TGR, should be
linear in the elementary coordinate intervals, like the theLorentz transformation and
its inverse in SR. In other words, the elementary coordinateinterval transformation
at every point in spacetime within every local Lorentz framein the context of TGR
should take on the following form,

dt′ = Adt − Bdr ; dr′ = Cdr − Ddt ;

r′dθ′ = rdθ and r′ sinθ′dϕ′ = r sinθdϕ















(1)

and its inverse,

dt = Adt′ + Bdr′ ; dr = Cdr′ + Ddt′ ;

rdθ = r′dθ′ and r sinθdϕ = r′ sinθ′dϕ′















(2)

whereA, B, C andD are functions of the gravitational speedV ′g(r
′).

By using the general forms of coordinate interval transformation (1) and its in-
verse (2) along with the analogy between the roles of the gravitational speed in
TGR and dynamical speed in SR, we must simply replace the dynamical speedv
by gravitational speedV ′g(r

′) and the speed of lightc ≡ cγ by the speed of gravi-
tational wavescg in the Lorentz transformation (the Lorentz boost) in SR to obtain
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the explicit forms of systems (1) and (2) respectively as follows

dt′ = γg(r′)













dt −
V ′g(r

′)

c2
g

dr













;

dr′ = γg(r′)(dr − V ′g(r
′)dt);

r′dθ′ = rdθ; r′ sinθ′dϕ′ = r sinθdϕ







































(3)

and

dt = γg(r′)













dt′ +
V ′g(r

′)

c2
g

dr′












;

dr = γg(r′)(dr′ + V ′g(r
′)dt′);

rdθ = r′dθ′; r sinθdϕ = r′ sinθ′dϕ′







































(4)

where
γg(r

′) = (1− V ′g(r
′)2/c2

g)
−1/2 (5)

Also by using the established relation,V ′g(r
′)2 = 2GM0a/r′, known since [2],

systems (3) and (4) can be put in the following alternative forms

dt′ = γg(r′)

















dt −

√

2GM0a
r′c2

g

dr

















;

dr′ = γg(r′)















dr −

√

2GM0a
r′

dt















;

r′dθ′ = r sinθdϕ; r′ sinθ′dϕ = r sinθdϕ























































(6)

and

dt = γg(r′)

















dt′ +

√

2GM0a
r′c2

g

dr′

















;

dr = γg(r′)















dr′ +

√

2GM0a
r′

dt′














;

rdθ = r′ sinθ′dϕ′; r sinθdϕ = r′ sinθ′dϕ′























































(7)

where

γg(r
′) =













1−
2GM0a

r′c2
g













−1/2

(8)

Although this second part of this article shall be made independent of the first
part on graphical approach as much as possible, it should be recalled that the co-
ordinate transformation (3) and its inverse (4) or their explicit forms (6) and (7) in
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the context of TGR, have been derived graphicallyvia the graphical approach to the
intrinsic theory of gravitational relativity (φTGR) in part one of this paper [4], and
referred to as gravitational local Lorentz transformation(GLLT) and its inverse in
that paper, as shall also be done in this second part.

System (3) or (4) or the alternative form (6) or (7) leads to gravitational local
Lorentz invariance (GLLI)

c2dt2 − dr2 − r2(dθ2 + sin2 θdϕ2) = c2dt′2 − dr′2 − r′2(dθ′2 + sin2 θ′dϕ′2) (9)

The elementary metric coordinate intervalscdt′ , dr′ , r′dθ′ andr′ sinθ′dϕ′ can
be taken about every point in spacetime within the proper (orprimed) local Lorentz
frame on the flat proper spacetime (Σ′, ct′) and the elementary metric coordinate
intervalscdt , dr , rdθ and r sinθdϕ can be taken about every point in spacetime
within the corresponding relativistic (or unprimed) localLorentz frame on the flat
relativistic spacetime (Σ, ct) in the GLLT of system (3) and its inverse (4) or their
alternative forms (6) and (7). Consequently the GLLI (9) is valid at every point
in spacetime within every local Lorentz frame in a gravitational field of arbitrary
strength. This guarantees that the metric four-dimensional relativistic spacetime
(Σ, ct) that evolves in the context of the gravitational theory of relativity (TGR),
is flat (with constant Lorentzian metric tensor) in all finiteneighborhood of every
gravitational field source and by extension, in the entire universe.

The analytical approach to the derivation of the GLLT and itsinverse in TGR
done in this sub-section, corresponds to the analytical approach to the derivation of
the Lorentz transformation (LT) and its inverse in SR, developed by Albert Einstein
in 1905 [5, ibid.], as mentioned earlier. There is also the graphical approach to the
derivation of the GLLT and its inversevia the graphical approach to the derivation of
φGLLT and its inverse in the context ofφTGR, which corresponds to the graphical
approach to the derivation of local Lorentz invariance transformation (LLT) and its
inverse in a gravitational field in SRvia the graphical approach to the derivation of
φLLT and its inverse in the context ofφSR, both of which have been presented in
the first part of this paper [4].

A comparison of the graphical and the analytical approachesto the derivations
of the GLLT and its inverse in TGR and the LLT and its inverse inSR, shows that
the graphical approaches are greatly superior to and by far more complete that the
analytical approaches. This is so because the common four-world backgrounds of
GLLT and its inverse and LLT and its inverse revealed by the graphical approaches
are completely obliterated in the analytical approaches. The entireφTGR andφSR
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on flat two-dimensional intrinsic spacetime underlying theflat four-dimensional
spacetime in a gravitational field, encompassed by the graphical approaches, are
likewise obliterated in the analytical approaches.

Also the concept of 3-observers in the Euclidean 3-space and1-observers in the
time dimension, who jointly derive the GLLT and its inverse in TGR and the LLT
and its inverse in SR, revealed by the graphical approaches,are unknown in the an-
alytical approaches. Evidently the knowledge of physics afforded by the analytical
approaches is superficial.

It may be recalled that only the general theory of relativity(GR) on a pre-
scribed curved four-dimensional spacetime in a gravitational field and the special
theory of relativity (SR) on flat four-dimensional spacetime, both developed by
Albert Einstein [5, 1923], existed until now. The analytical approaches to these
existing theories have no bearing with the four-world picture and the existence of
two-dimensional intrinsic spacetime (φρ, φcφt) that underlies the four-dimensional
spacetime and the the intrinsic theories of relativity on the intrinsic spacetime, now
discovered in the present theory. The graphical approachesto SR by H. Minkowski
namely, the Minkowski diagrams within the existing one-world picture, which has
been critiqued and concluded to be not suitable for relativity in [6], have no bearing
with these newly discovered items either. On the other hand,there is no graphical
approach to GR as far as I can find.

1.1.1 Gravitational length contraction and gravitational time dilation formulae
implied by GLLT and its inverse

It is nature that establishes gravitational local Lorentz transformation (GLLT) (3)
and its inverse (4) or their alternative forms (6) and (7) andthe gravitational local
Lorentz invariance (GLLI) (9) at every point in spacetime ina gravitational field.
Some of the terms of the GLLT and its inverse will not appear inthe coordinate
transformation and its inverse that man can establish through measurement by lab-
oratory rod and clock. First of all, we must collect the transformations derived by
3-observers in the relativistic Euclidean 3-spaceΣ (courtesy the graphical approach
in [4]) in systems (3) and (4) to have as follows

dr′ = γg(r
′)

(

dr − V ′g(r
′)dt

)

; r′dθ′ = rdθ; r′ sinθ′dϕ′ = r sinθdϕ; (10a)

dt = γg(r
′)

(

dt′ + (V ′g(r
′)/c2

g

)

dr′); (10b)

(w.r.t. 3-observer inΣ).
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Now when the observer inΣ picks his laboratory rod to measure the interval of
space traversed by the event, he will be able to measure the termγg(r′)dr at the right-
hand side of the first equation of system (10a), while the term−γg(r′)V ′g(r

′)dt will
be non-measurable with his rod. He will be able to measure theterms at the right-
hand sides of the second and third equations of system (10a) with his laboratory
rod and protractor. Likewise when a 3-observer inΣ′ picks his laboratory clock to
measure the time interval of the event, he will be able to measure the termγg(r′)dt′

at the right-hand side of Eq. (10b), while the termγg(r′)(V ′g(r
′)/c2

g)dr′ will be non-
measurable by his clock.

Thus from the point of view of what can be measured with laboratory rod and
clock by man, system (10a) and Eq. (10b) reduce as follows

dr = γg(r
′)dr′ ; rdθ = r′dθ′ ; r sinθdϕ = r′ sinθ′dϕ′ (11a)

dt = γg(r
′)dt′ (11b)

or

dr = (1−
2GM0a

r′c2
g

)1/2dr′; rdθ = r′dθ′ ; r sinθdϕ = r′ sinθ′dϕ′ (12a)

dt = (1−
2GM0a

r′c2
g

)−1/2dt′ (12b)

1.1.2 The exterior Schwarzschild line element in the general theory of relativity
pertains to the measurable sub-space of the space of the theory of gravita-
tional relativity

If the gravitational time dilation and gravitational length contraction formulae ex-
pressed by systems (12a) and Eq. (12b), which man can discover through mea-
surements of the intervals of space and times of non-special-relativistic events in
gravitational fields by atomic clock and laboratory rod, is all the information that is
available to man, then man would have established the following from the invariance
of geodesic

ds′2 = c2dt′2 − dr′2 − r′2(dθ′2 + sinθ′2dϕ′2)

= (1−
2GM0a

r′c2
g

)c2dt 2 − (1−
2GM0a

r′c2
g

)−1dr2 − r2(dθ2 + sin2 θdϕ2)

= ds2
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Hence man would have written the following line element in empty space at the
exterior of a spherically symmetric gravitational field source

ds2 = (1−
2GM0a

r′c2
g

)c2dt 2 − (1−
2GM0a

r′c2
g

)−1dr2 − r2(dθ2 + sin2 θdϕ2) (13a)

However the active gravitational massM0a should be replaced by the rest massM0

in the context of GR from the known equivalence of active gravitational mass and
rest mass in GR [7,8]. The gravitational speedcg of gravitational waves should also
be replaced by the only known speed of lightc in GR, thereby converting the line
element (13b) to the following equivalent form in terms of the familiar rest mass
and the familiar speed of signalc in GR

ds2 = (1−
2GM0

r′c2
)c2dt 2 − (1−

2GM0

r′c2
)−1dr2 − r2(dθ2 + sin2 θdϕ2) (13b)

Finally the invariance of gravitational potential,−GM0/r′ = −GM/r, of mass,M =
M0, and of other parameters in the context of GR, known to be implied by the
principle of equivalence, would have been used to put the line element (13b) in its
following final equivalent form in terms of inertial mass of the gravitational field
source

ds2 = (1−
2GM
rc2

)c2dt 2 − (1−
2GM
rc2

)−1dr 2 − r2(dθ2 + sin2 θdϕ2) (14)

Indeed the gravitational local Lorentz transformation (GLLT) (6) and its inverse
(7) and gravitational Lorentz invariance (GLLI) (9) they imply have been unknown
in physics until now. System (12a) and Eq. (12b) that have been discovered through
measurements of the intervals of space and times of non-special-relativistic events
in spherically symmetric gravitational fields by man has indeed been deemed to
imply the metric tensor of Eq. (14) in a gravitational field inthe general theory of
relativity [9]. However this is apart from the fact that the Schwarzschild’s solution
to Einstein’s free space field equations at the exterior of a spherical gravitational
field source yields the line element (14) directly.

What can be concluded from the foregoing is that the exterior Schwarzschild
line element in GR pertains to the measurable sub-space (a curved four-dimensional
spacetime with sub-Riemannian metric tensor), which supports gravitational length
contraction and gravitational time dilation, of the space of the theory of gravita-
tional relativity (TGR) namely, the flat four-dimensional spacetime with constant
Lorentzian metric tensor. Despite this conclusion however, there is nothing so far
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in the present theory to rule out the general theory of relativity (GR) as a possible
geometrical model of gravity on an hypothetical curved spacetime in a gravitational
field. Our focus in the present theory shall not be on debasingor repudiating the
GR, but on formulating a fundamental (or natural) and complete theory of gravity.

As a final remark in this sub-section, the gravitational local Lorentz transforma-
tion (GLLT) of system (3) and its inverse of system (4) (or systems (6) and (7)) have
important application consequences in TGR, quite apart from establishing gravi-
tational local Lorentz invariance (GLLI) from them above. They are as valuable
in TGR as Lorentz transformation (LT) and its inverse in SR. For instance, gravita-
tional length contraction and gravitational time dilationformulae have been deduced
from them above.

The transformations of physical parameters and physical constants in the context
of TGR shall likewise be derived with the aid of the GLLT and its inverse in the
next sub-section. The GLLT and its inverse are the relevant transformations for
deriving the superposition at a point in space of the resultant gravitational field of
several gravitational field sources that are scattered in space about that point, as
shall be done elsewhere with further development.The GLLT and its inverse shall
find application in the transformations of the classical andspecial-relativistic non-
gravitational laws, as well as classical gravitational law, in the context of TGR in a
paper shortly in this volume.

1.2 Transformations of physical parameters in the context of the gravitational
theory of relativity

The transformations of physical parameters in the context of TGR shall be derived
with the aid of the gravitational local Lorentz transformation (GLLT) within local
Lorentz frames in a gravitational field of system (3) or (6) and its inverse of system
(4) or (7), in addition to the derivation of gravitational time dilation and gravitational
length contraction formulae from them earlier. The resultsof TGR shall be derived
with the aid of the GLLT and its inverse, in analogy to the derivation of the results
of SR with the aid of the LT and its inverse in SR.
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1.2.1 Transformations of mass, linear momentum, kinetic energy, force, angular
momentum and torque in the context of TGR

Let us divide the second equation into the first equation of the inverse GLLT of
system (4) to have as follows

dr
dt
=
γg(r′)(dr′ + V ′g(r

′)dt′)

γg(r′)(dt′ +
V ′g(r

′)

c2
g

dr′)

or

dr
dt
=

dr′

dt′
+ V ′g(r

′)

1+
V ′g(r

′)

c2
g

dr′

dt′

(15)

We shall consider a test particle in motion within the proper(or primed) local
Lorentz frame on the flat proper spacetime (Σ′, ct′) and takedr′/dt′ as the dynamical
speedv′r of the rest massm0 of the particle within the proper local Lorentz frame,
while dr/dt is the resultant of the dynamical speedv′r and gravitational speedV ′g(r

′)
in the proper local Lorentz frame with respect to observers in the relativistic (or
unprimed) local Lorentz frame on the flat relativistic spacetime (Σ, ct) of TGR. Then
Eq. (15) becomes the following

vr =
v′r + V ′g(r

′)

1+
V ′g(r

′)v′r
c2
g

(16)

Now the gravitational speedV ′g(r
′) is an absolute speed from the point of view

of dynamics, since it is not made manifest in actual translation of a particle that
acquires it and since it is the same relative to all observersor frames of reference.
The dynamical speedv′r must likewise be an absolute speed for the composition of
V ′g(r

′) andv′r to be possible. The speedv′r must be the non-detectable absolute speed
of the rest massm0 of the particle relative to its frame.

Let us put the discussion in the foregoing paragraph in perspective. Let us tem-
porarily write the intrinsic form in two-dimensional intrinsic spacetime of Eq. (16)
as follows

φvr =
φv′r + φV ′g(φr′)

1+
φV ′g(φr′)φv′r

φc2
g

(17)
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Again the intrinsic dynamical speedφv′r must be an absolute intrinsic speed for the
composition ofφV ′g(φr′) andφv′r to be possible.

Graphically, let us consider the lower half of the first quadrant in Fig. 1 of [4].
The intrinsic rest massφm0 of the test particle lying along the curved proper intrin-
sic spaceφρ′, acquires the proper intrinsic gravitational speedφV ′g(φr′) established
at its location by the intrinsic rest massφM0 of the gravitational field source at the
origin of the curvedφρ′. It (i.e. φm0) also acquires the absolute intrinsic gravita-
tional speedφV̂g(φr̂) that is invariantly projected into its location along the curved
φρ′ by φV̂g(φr̂) along the curved absolute intrinsic spaceφρ̂ and possesses the ab-
solute intrinsic dynamical speedφV̂d that is also invariantly projected into its loca-
tion along the curvedφρ′ by the absolute intrinsic rest massφm̂0 of the test particle
in absolute intrinsic motion along the curved absolute intrinsic spaceφρ̂. The three
intrinsic speedsφV ′g(φr′) , φV̂g(φr̂) andφV̂d at the location ofφm0 along the curved
φρ′ (whichφm0 acquires), are indicated in Fig. 1 of [4].

Let us re-denote the absolute intrinsic dynamical speedφV̂d along the curvedφρ′

at the location ofφm0 within the proper (or primed) intrinsic local Lorentz frameon
the curved proper intrinsic spacetime (φρ′, φcφt′) in Fig. 1 of [3] byφV ′d. It is the
proper intrinsic gravitational speedφV ′g(φr′) and the absolute intrinsic dynamical
speedφV ′d acquired by the intrinsic rest massφm0 at its location along the curved
φρ′ that can be composed according to the formula of Eq. (17), yielding the resultant
absolute intrinsic speedφV ′d ≡ φV̂d relative to the relativistic (or unprimed) intrinsic
local Lorentz frame on the flat relativistic intrinsic spacetime (φρ, φcφt) in Fig. 1
of [4]. In other words, we must replaceφv′r by φV ′d andφvr by φVd in Eq. (17) to
have

φV̂d =
φV ′d + φV ′g(φr′)

1+
φV ′g(φr′)φV ′d

φc2
g

(18)

Since Eq. (18) contains only absolute intrinsic speeds fromthe point of view of
intrinsic dynamics (or from the point of view of intrinsic special theory of relativity),
it is a valid expression. The outward manifestation in spacetime of Eq. (18), which
must be obtained by simply removing the symbolφ, is the following

Vd =
V ′d + V ′g(r

′)

1+
V ′g(r

′)V ′d
c2
g

(19)

This equation is valid for all values ofV ′d ≤ cγ and all values ofV ′g(r
′) ≤ cg.
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Since relative motion in the context of primed special theory of relativity (SR′)
on flat proper spacetime (Σ′, ct′), on which Eq. (19) has effectively been written, is
absent, let us multiply through Eq. (19) by the rest massm0 of the test particle to
have

m0Vd =
m0(V ′d + V ′g(r

′))

1+
V ′g(r

′)V ′d
c2
g

(20)

Let us now consider the rest mass of the test particle to be in accelerated absolute
motion from an initial absolute speedV ′di to a final absolute speedV ′d f within its
local Lorentz frame within which gravitational speed is constant atV ′g(r

′), which is
located at radial distancer′ from the center of the rest massM0 of the gravitational
field source in the proper Euclidean 3-spaceΣ′. This corresponds to allowing the
absolute intrinsic speedφV̂d of the absolute intrinsic rest massφm̂0 of the particle
along the curved absolute intrinsic spaceφρ̂ to vary fromφV̂di to φV̂d f in Fig. 1
of [4]. Then Eq. (20) can be written separately forV ′di andV ′d f and the following
expression for relative momentum of the test particle obtained from the difference
of the resulting equations

p = m0(Vd f − Vdi)

= m0







































V ′d f + V ′g(r
′)

1+
V ′g(r

′)V ′d f

c2
g

−
V ′di + V ′g(r

′)

1+
V ′g(r

′)V ′di

c2
g







































or

p =

m0















1−
V ′g(r

′)2

c2
g















(V ′d f − V ′di)

1+
V ′g(r

′)

cg

V ′d f

cg
+

V ′g(r
′)

cg

V ′di

cg
+

V ′g(r
′)2

c2
g

V ′d f

cg

V ′di

cg

(21)

Now the difference of two non-detectable absolute dynamical speeds of the rest
massm0 in the proper Euclidean 3-spaceΣ′ is a detectable relative dynamical speed.
Thus let replaceV ′d f − V ′di by a relative dynamical speedv in Eq. (19) to have

p =

m0















1−
V ′g(r

′)2

c2
g















v

1+
V ′g(r

′)

cg

V ′d f

cg
+

V ′g(r
′)

cg

V ′di

cg
+

V ′g(r
′)2

c2
g

V ′d f

cg

V ′di

cg

(22)
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The speedv is a speed of relative motion, hence the momentump is a momen-
tum of relative motion in Eq. (22). Thus Eq. (22) is an expression in the context
of relative motion. Then the absolute dynamical speedsV ′d f andVdi of whatever
magnitudes in the denominator in Eq. (22) must be allowed to vanish, which is so
since any magnitude of each of these absolute dynamical speeds is equivalent to
zero magnitude of relative dynamical speed of relative motion. The gravitational
speedV ′g(r

′) in the denominator in Eq. (22) must also be allowed to vanishsince
V ′g(r

′) is an absolute speed in the context of relative motion, since any magnitude of
V ′g(r

′) is equivalent to zero magnitude of relative dynamical speed.
On the other hand, the factor (1− V ′g(r

′)2/c2
g) in the numerator in Eq. (20) must

be retained. This is so because 1− V ′g(r
′)2/c2

g = (1/c2
g)(c

2
g − V ′g(r

′)2) is a measur-
able or observable quantity in space, sincec2

g −V ′g(r
′)2 is a measurable difference of

gravitational potential, as follows from the relation of gravitational speed to gravi-
tational potential (Φ′(r′) = − 1

2V ′g(r
′)2) in sub-section 2.1 of [2]. Therefore− 1

2c2
g is

also a gravitational potentialΦ0 (corresponding to a fieldg0), which is localized at
a point of zero extension at the center of the gravitational field source.

Equation (20) simplifies as follows by virtue of the foregoing two paragraphs

~p = m0















1−
V ′g(r

′)2

c2
g















~v (23)

The vector sign has been introduced on~v and ~p since there are 3-vectors in the
Euclidean 3-space. The primed (or Newtonian) momentum~p ′ = m0~v is measured
in the proper (or primed) local Lorentz frame on flat proper spacetime (Σ′, ct′) (in
Fig. 11 of [1]), while the gravitational-relativistic (or unprimed) momentum~p, given
by the right-hand side of Eq. (23), is measured in the relativistic (or unprimed) local
Lorentz frame on flat relativistic spacetime (Σ, ct) in Fig. 1 of [4]. In other words,
~p is the gravitational-relativistic momentum on the flat relativistic spacetime in the
context of TGR, while~p ′ = m0~v is the momentum of primed classical mechanics
(CM′) (assuming~v is a low velocity) on the flat proper spacetime (Σ ′, ct′).

In order to further elucidate the foregoing discussion, letus write the intrinsic
form in two-dimensional intrinsic spacetime of Eq. (13) as follows

φp = φm0















1−
φV ′g(φr′)2

φc2
g















φv (24)

whereφm0φv = φp′ is the intrinsic momentum within the proper intrinsic local
Lorentz frame on curved proper intrinsic spacetime (φρ′, φcφt′) andφp given by
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Eq. (24) is the gravitational-relativistic intrinsic momentum projected into the cor-
responding relativistic (or unprimed) intrinsic local Lorentz frame on the flat rela-
tivistic intrinsic spacetime (φρ, φcφt) in Fig. 1 of [4].

The expression (23) for momentum in the context of TGR looks different from
the usual Newtonian form because of the appearance of the factor (1− V ′g(r

′)2/c3
g).

However according to the second principle of the theory of gravitational relativity
stated earlier, non-gravitational laws and expressions must retain their usual classi-
cal and special-relativistic forms in the context of TGR, except that the proper (or
classical) and special-relativistic physical parametersthat appear in the usual forms
of the laws and expressions must be replaced by their gravitational-relativistic forms
in the context of TGR.

Let us then convert the expression (23) to its usual form in classical mechanics
by introducing a new massm of the particle in the context of TGR through the
following relation,

m = γg(r
′)−2m0 = m0(1−

V ′g(r
′)2

c2
g

) (25)

or

m = γg(r
′)−2m0 = m0(1−

2GM0a
r′c2

g

) (26)

Eq. (24) then takes its usual Newtonian form in terms of the new massm as follows

~p = m~v (27)

While the rest massm0 of the test particle is observed in the proper Euclidean
3-spaceΣ′ of the flat proper spacetime (Σ′, ct′) in Fig. 11 of [1] at the first stage of
evolutions of spacetime/intrinsic spacetime and parameters/intrinsic parameters in a
gravitational field, although that diagram does not exist inreality, the massm given
by Eq. (25) or (26) is observed in the relativistic Euclidean3-spaceΣ of the flat rela-
tivistic spacetime (Σ, ct) of Fig. 1 of [4], which evolves at combined first and second
stages of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic para-
meters in a gravitational field. Eqs. (25) or (26) has been derived by the graphical
approach in the first part of this paper [4] and the massm has been referred to as the
gravitational-relativistic mass.

The corresponding intrinsic mass relationφm0 = φm̂0 × (1 − 2GφM̂0a/φr̂φĉ2
g)

in the context of the theory of absolute intrinsic gravity (φAG), on the curved ‘2-
dimensional’ absolute intrinsic metric spacetime (φρ̂, φĉφt̂ ), with absolute intrinsic
sub-Riemannian metric tensorφĝik, in Fig. 3 of [1], which corresponds to the mass
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relationm0 = m̂0(1 − 2GM̂0a/r̂ĉ2
g) in the context of the theory of absolute gravity

(AG) on the flat proper spacetime (Σ ′, ct′) in Fig. 3 of [1], has also been derived from
the absolute intrinsic geodesic line on the curved (φρ̂, φĉφt̂ ), by an absolute intrinsic
tensorial approach in sub-sub-section 2.1.2 of [1]. We havetherefore derived the
same mass relation by three different approaches so far.

The transformation of the classical linear momentum in the context of TGR that
follows from Eq. (23) is

~p = (1−
2GM0a

r′c2
g

)m0~v

= (1−
2GM0a

r′c2
g

)~p ′ (28)

The transformation of classical kinetic energy that follows from Eq. (28) is

EK = (1−
2GM0a

r′c2
g

)(
1
2

m0v
2)

= (1−
2GM0a

r′c2
g

)E′K (29)

Let us differentiate both sides of Eq. (28) with respect to unprimed time t of the
flat relativistic spacetime (Σ, ct) of TGR. Knowing that the factor (1− 2GM0a/r′c2

g)
is time-independent we have

d~p
dt
= (1−

2GM0a
r′c2

g

)
d~p ′

dt
(30)

Eq. (30) is not in its final form. In order to obtain its final form, we must obtain
the transformation of the differential operatord/dt into d/dt′ in the context of TGR
in d~p ′/dt at the right-hand side, so that primed momentum~p ′ and primed time
coordinate intervaldt′ in the proper (or primmed) local Lorentz frame on flat proper
spacetime (Σ′, ct′) appear at the right-hand side.

As established under the Appendix, the following trivial transformations of ele-
mentary coordinate interval and coordinates within local Lorentz frames in a grav-
itational field and the implied trivial transformations of differential operators must
be used in deriving the transformations of non-gravitational laws in the context of
TGR.

dt = dt′; dx = dx′; dy = dy′; dz = dz′ (31)

701A. Joseph. Formulating gravity and motion at second stage of evolutions of spacetime . . . II.



Vol. 1(3B) : Article 15 THE FUNDAMENTAL THEORY ... (M) Mar, 2012

or
t = t′; x = x′; y = y′; z = z′ (32)

and
∂

∂t
=

∂

∂t′
;
∂2

∂t2
=

∂2

∂t′2
; ~∇ = ~∇′; ∇2 = ∇′2; etc (33)

It must be remembered that the elementary coordinate intervals and coordinates in
systems (31) and (32) are limited in extensions to the interior of local Lorentz frames
in an external gravitational field.

The final form of Eq. (30) must be obtained by replacingd/dt by d/dt′ at the
right-hand side of that equation by virtue of the operator transformations of system
(33) to have

d~p
dt
= (1−

2GM0a
r′c2

g

)
d~p ′

dt′

or
~F = (1−

2GM0a
r′c2

g

) ~F′ (34)

This is the transformation of inertial force in the context of TGR.
Let us obtain the vector product of the unprimed coordinate 3-vector~q = x î +

y ĵ+ z k̂ within the unprimed local Lorentz frame on flat relativisticspacetime (Σ, ct)
and the momenta~p and~p ′ in Eq. (28) as follows

~q × ~p = (1−
2GM0a

r′c2
g

)~q × ~p ′

or
~L = (1−

2GM0a
r′c2

g

)~q × ~p ′ (35)

In order to obtain the final form in Eq. (35), we must obtain thetransformation of~q
into ~q ′ at the right-hand side, which from system (32), is given trivially as~q = ~q ′.
Hence the final form of Eq. (35) must be obtained by replacing~q by ~q ′ as follows

~L = (1−
2GM0a

r′c2
g

)~q ′ × ~p ′

or
~L = (1−

2GM0a
r′c2

g

)~L′ (36)

This is the transformation of angular momentum in the context of TGR.
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Let us differentiate Eq. (36) with respect to the unprimed timet of the unprimed
local Lorentz frame on the flat four-dimensional relativistic spacetime (Σ, ct) as fol-
lows

d~L
dt
= (1−

2GM0a
r′c2

g

)
d~L′

dt
(37)

We must then replaced/dt by d/dt′ at the right-hand side of (37) by virtue of system
(33) to have

d~L
dt
= (1−

2GM0a
r′c2

g

)
d~L′

dt′

or

~τ = (1−
2GM0a

r′c2
g

)~τ ′ (38)

This is the transformation of torque in the context of TGR.

1.2.2 Invariance of active gravitational mass (or gravitational charge) in the con-
text of TGR

The immaterial negative active gravitational mass (or gravitational charge)−M0a
of a body, which is imperceptibly contained within the rest mass of a body, is the
source of gravitational velocity, Newtonian gravitational potential and Newtonian
gravitational field of the body in the context of the present theory, as has been in-
troduced since [1]. However the origin and the negative signof the gravitational
charge, as well as the model of how it is contained within the rest mass and the
mechanism by which it establishes gravitational speed, gravitational potential and
gravitational field at every point in space in all finite neighborhood of the body are
yet to be explained.

The immaterial gravitational charge is absolute-absolute. It is invariant in the
context of TGR. This is expressed as follows

−Ma = −M0a (39)

where−M0a is the proper (or classical) gravitational charge within the rest massM0

in the proper Euclidean 3-spaceΣ′ and−Ma is the gravitational-relativistic gravita-
tional charge within the gravitational-relativistic massM in the relativistic Euclid-
ean 3-spaceΣ of TGR. The invariance (39) is another property of the gravitational
charge to be explained elsewhere with further development.Recall that the invari-
ance (39) has been discussed more fully in sub-section 3.1 of[3] and summarized
in Table I of that paper.
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The absolute-absolute active gravitational mass (or gravitational charge) is also
invariant in the context of SR. Its correspondence in electromagnetism namely, the
electric charge, is likewise absolute-absolute and is invariant in the context of TGR
and SR.

1.2.3 Transformations of gravitational and inertial accelerations and dynamical
and gravitational velocity in the context of TGR

The force~F′ in Eq. (34) can be any non-gravitational force acting on the rest mass
of the particle in the proper local Lorentz frame on flat proper spacetime (Σ′, ct′).
Also if we let ~F′ = m0~a ′ and apply the equivalence of inertial acceleration and
gravitational acceleration,~a ′ = ~g ′, then ~F′ can be replaced by gravitational force
~F′ = m0~g

′ in Eq. (34).
It also follows from the end of the last paragraph that~F′ in Eq. (34) can be a test

gravitational force~F′gt acting on the rest massm0 of the test particle from another
test particle or object of rest massm0t nearby in the external gravitational field of the
source with rest massM0. The force~F′ in Eq. (34) can also be the gravitational force
~F′g on the rest massm0 of the test particle from the external gravitational field source
of rest massM0. Thus Eq. (34) can be written as transformations of gravitational
forces as follows

~Fg = (1−
2GM0a

r′c2
g

) ~F′g (40)

and
~Fgt = (1−

2GM0a
r′c2

g

) ~Fgt
′ (41)

or

m~g = (1−
2GM0a

r′c2
g

)m0~g
′ (42)

and

m~gt = (1−
2GM0a

r′c2
g

)m0~gt
′ (43)

Then by using the mass relation (26) in Eqs. (42) and (43) we have

~g = ~g ′ (44)

and

~gt = ~g
′
t (45)
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These are the transformations in the context of TGR of the gravitational field (or
acceleration) due to the source of the external gravitational field and due to a test
gravitational field source located in the external gravitational field respectively.

The transformations of linear momentum and inertial force in the context of
TGR derived earlier are the following

~p = m~v = (1− 2GM0a/r
′c2
g)m0~v

and
~F = m~a = (1− 2GM0a/r

′c2
g)m0~a

By using the mass relation (26) in these expressions we obtain the transformations
of dynamical velocity and inertial acceleration in the context of TGR as follows

~v = ~v ′ and ~a = ~a ′ (46)

Interestingly there is also the invariance of gravitational velocity in the context
of TGR, as has been claimed without proof since [2]. We are still not at the point of
providing the proof of the invariance of the gravitational velocity in the context of
TGR at this point either, but shall simply re-write it as follows

~Vg(r) = ~V ′g(r
′) (47)

1.2.4 Transformations of gravitational potential in the context of TGR

Since the gravitational potential is time-independent anda function of the radial
coordinate only in static spherically-symmetric gravitational fields being considered
at present, let us express the derivative of the relativistic gravitational potentialΦ(r)
in the relativistic Euclidean 3-spaceΣ with respect to the radial coordinater as
follows

dΦ(r)
dr

=
dΦ(r)

dr′
dr′

dr
(48)

Since this is an expression in the Newtonian law of gravity, its simplification must
be done with the aid of the gravitational local Lorentz transformation (GLLT) and
its inverse (and not with the aid of the trivial coordinate transformation of system
(31), which will be appropriate if Eq. (48) is an expression in a non-gravitational
law).

From the GLLT (3) we have

dr′

dr
= γg(r

′) (49)
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By using this in Eq. (48) we have

dΦ(r)
dr

= γg(r
′)

dΦ(r)
dr′

(50)

Let us re-write the invariance of gravitational acceleration (or field) in the con-
text of TGR of Eq. (44) as follows

−
dΦ(r)

dr
= −

dΦ′(r′)
dr′

(51)

This equation is valid since the vector equation (44) implies the scalar equation
g = g′. The following ensues from Eqs. (50) and (51)

γg(r
′)

dΦ(r)
dr′

=
dΦ′(r′)

dr′
(52)

or
dΦ(r) = γg(r

′)−1dΦ′(r′)

Hence

Φ(r′) = γg(r
′)−1Φ′(r′)

= Φ′(r′)(1−
2GM0a

r′c2
g

)1/2 (53)

or

Φ(r′) = −
GM0a

r′
(1−

2GM0a
r′c2

g

)1/2 (54)

Eq. (53) expresses the transformation of the Newtonian gravitational potential
in the context of TGR (or Eq. (54) gives the Newtonian gravitational potential ex-
pression in the context of TGR). The relativistic (or unprimed) gravitational poten-
tial function in the relativistic Euclidean 3-spaceΣ turns out to be a function of the
proper (or primed) radial coordinater′ of the proper Euclidean 3-spaceΣ′ in the final
expression (53) or (54). Hence the gravitational-relativistic (or unprimed) gravita-
tional potential function inΣ has been written asΦ(r′) and notΦ(r). The classical
(or primed) gravitational potential function in the properEuclidean 3-spaceΣ′ being
denoted byΦ′(r′).

The forms of Eq. (53) or (54) on two-dimensional intrinsic spacetime in the
context ofφTGR is the following

φΦ(φr′) = φΦ′(φr′)(1−
2GφM0a
φr′φc2

g

)1/2 (55)
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or

φΦ(φr′) = −
GφM0a
φr′

(1−
2GφM0a
φr′φc2

g

)1/2 (56)

The proper (or primed) intrinsic gravitational potentialφΦ′(φr′) established
along the curved proper intrinsic spaceφρ′ by the intrinsic rest massφM0 of the
gravitational field source at the origin of the curvedφρ′, at ‘distance’φr′ along
the curvedφρ′ from the base ofφM0 in Fig. 1 of [4], ‘projects’ the relativistic
(or unprimed) intrinsic gravitational potentialφΦ(φr′) into the relativistic intrin-
sic spaceφρ along the horizontal, which appears to originate from the base of the
gravitational-relativistic intrinsic massφM in φρ of the gravitational field source, at
‘distance’φr alongφρ from the base ofφM in the figure.

The intrinsic gravitational-relativistic massφM of the gravitational field source
in the straight line relativistic intrinsic spaceφρ along the horizontal in Fig. 1 of [4]
is intrinsic inertial mass or intrinsic passive gravitational mass, as shall be shown
shortly in his paper. It is not a source of intrinsic gravitational potential or field,
which means thatφΦ(r) = −GφMa/φr andφg(φr) = −GφMa/φr2 that originate
from φM do not exist alongφρ along the horizontal in Fig. 1 of [4]. This has been
well discussed in sub-section 3.1 of [4].

On the other hand, the intrinsic rest massφM0 of the gravitational field source on
the curved proper intrinsic spaceφρ′ is a source of intrinsic gravitational potential
φΦ′(φr′) = −GφM0a/φr′ and intrinsic gravitational fieldφg′(φr′) = −GφM0a/φr′2

along the curvedφρ′ in Fig. 1 of [4]. Consequently only the non-uniform relativistic
intrinsic gravitational potentialφΦ(φr′) given by Eq. (56), projected intoφρ along
the horizontal by the non-uniformφΦ′(φr′) along the curvedφρ′, exist alongφρ in
Fig. 1 of [4].

The gravitational-relativistic massM in the relativistic Euclidean 3-spaceΣ of
the gravitational field source in Fig. 1 of [4], is an inertialmass or a passive grav-
itational mass, as shall be shown shortly in this paper. It isnot a gravitational
field source, which means it does not establish non-uniform gravitational potential
Φ(r) = −GMa/r and non-uniform gravitational field~g = −GMa~r/r3 in the relativis-
tic Euclidean 3-spaceΣ. Consequently it is only the outward manifestation of the
projective relativistic intrinsic gravitational potential φΦ(φr′) of Eq. (56) namely,
the gravitational-relativistic gravitational potentialΦ(r′) of Eq. (54), along with
the invariant gravitational field of Eq. (44), which appear to originate fromM, that
exists inΣ in Fig. 1 of [4].

For the test Newtonian gravitational potential from a spherical test particle of
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rest massm0 t in the external gravitational field, the proper test gravitational potential
function is the following

Φ′t = −
Gm0at

q′
(57)

whereq′ is the distance along a radial direction from the center ofm0t to the test
particle’s rest massm0, where bothm0 andm0t are located at radial distancer′ from
the center ofM0, andq′ does not have to be along a radial direction from the center
of M0. Thus the proper test gravitational field fromm0t is the following

~g ′t = −
dΦ′t
dq′

q̂ ′ = −
Gm0at

q′2
q̂ ′ (58)

whereq̂ ′ is the unit vector along the radial direction from the centerof m0t towards
m0.

The corresponding gravitational-relativistic test gravitational potential function
and gravitational-relativistic test gravitational field in Σ in the context of TGR shall
be written respectively as follows

Φt = −
Gmat

q
(59)

and

~gt = −
Gmat

q2
q̂ (60)

Eq. (43) shall be re-written as follows

−m
dΦt

dq
= −m0

dΦ′t
dq′

(1−
2GM0a

r′c2
g

)

or

−m0(1−
2GM0a

r′c2
g

)
dΦt

dq
= −m0

dΦ′t
dq′

(1−
2GM0a

r′c2
g

)

Hence

−
dΦt

dq
= −

dΦ′t
dq′

(61)

This is Eq. (45) again.
If q′ is along a radial direction from the center ofM0, then as follows from Eq.

(50),dΦt/dq = γg(r′)dΦt/dq′. By using this in Eq. (61) we have

−
dΦt

dq
= −γg(r

′)
dΦt

dq′
= −

dΦ′t
dq′
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Hence

Φt = γg(r
′)−1/2Φ′t = Φ

′
t(1−

2GM0a
r′c2

g

)1/2 (62)

or

Φt = −
Gm0at

q′
(1−

2GM0a
r′c2

g

)1/2; (for q′ alongr′) (63)

On the other hand, forq′ not along the radial direction from the center ofM0, then
d/dq = d/dq′ (as follows from the trivial transformations ofr′dθ′ andr′ sinθ′dϕ′

into rdθ andr sinθdϕ in the GLLT and its inverse), and Eq. (61) becomes the fol-
lowing

−
dΦt

dq′
= −

dΦ′t
dq′

Hence

Φt = Φ
′
t = −

Gm0at

q′
; (for q′ not alongr′) (64)

We have the following from Eq. (62):

−
dΦt

dq
= −

dΦ′t
dq

(1−
2GM0a

r′c2
g

)1/2 (65)

But,

d/dq = γ(r
′)d/dq′ = (1− 2GM0a/r

′c2
g)
−1/2d/dq′,

from the GLLT (3), forq′ alongr′. Hence

−
dΦt

dq
= −

dΦ′t
dq′

(1− 2GM0a/r′c2
g)

1/2

(1− 2GM0a/r′c2
g)1/2

= −
dΦ′t
dq′

or

~gt = ~g
′

t ; (for q′ alongr′) (∗)

We also have the following from Eq. (64),

−
dΦt

dq
= −

dΦ′t
dq
= −

dΦ′t
dq′

for q′ not alongr′. Hence

~gt = ~g
′

t ; (for q′ not alongr′) (∗∗)
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If we multiply through (∗) and (∗∗) by m we have:

m~gt = m~g ′t = m0~g
′
t (1−

2GM0a
r′c2

g

)

or
~Fgt = (1−

2GM0a
r′c2

g

) ~F′gt; (for q′ alongr′ or not) (∗ ∗ ∗)

Thus the transformation (43) of a test Newtonian gravitational force on a test
particle due to another test particle in an external gravitational field, and the trans-
formation (45) for the corresponding test Newtonian gravitational acceleration on
the test particle, are valid irrespective of the orientation of the test gravitational
force or acceleration relative to a radial direction from the center of the source of
the external gravitational field. With the relations (26), (29), (34), (36), (38), (39)
(40), (41), (44), (45), (46), (47), (54), (63) and (64), achieved, we shall defer the
transformations of other physical parameters in the context of TGR to another pa-
per.

It is important to answer a question that may arise namely, can the non-trivial
parameter transformations (26), (29), (34), (36), (38), (40), (41), (54) and (63),
derived in the context of TGR above be measured? In order to answer this question,
we must show whether the factorsγg(r′)−2, γg(r′)−1 andγg(r′) that appear in the
relations can be measured or not.

Now, γg(r′)−2 = 1− 2GM0a/r′c2
g. Hence

c2
gγg(r

′)−2 = c2
g − 2GM0a/r

′ (66)

But c2
g = 2GM0a/r′b, wherer′b is the gravitational (or Schwarzschild) radius of the

field source of rest massM0. Eq. (66) can therefore be re-written as follows

c2
gγg(r

′)−2 = 2GM0a/rb − 2GM0a/r
′ (67)

Hence

γg(r
′)−2 =

2
c2
g

(−
GM0a

r′
− (−

GM0a
rb

)) (68)

The factorγg(r′)−2 can be measured since it is a constant times the difference of
gravitational potential as expressed by Eq. (68). Consequently the factorsγg(r′)−1

andγg(r′) can be measured. It then follows that the derived parametertransforma-
tions in terms of these factors in the context of TGR in this section and others to be
derived elsewhere with further development can be measured.
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If the gravitational (or static) time dimensioncgt has not been introduced, and
one has erroneously formulated TGR on the flat spacetime of electromagnetism and
dynamics (or special relativity) (Σ, cγt), wherecγt is usually denoted byct in SR and
GR, thencg must be replaced by,c ≡ cγ, in the derived parameter transformations
in the context of TGR. Then Eq. (66) would become the following

c2
γγg(r

′)−2 = c2
γ − 2GM0a/r

′ (69)

Now the square of the speed of light,c2 ≡ c2
γ, cannot be expressed as gravitational

potential, and the potential at a point−GM0a/r′ cannot be measured. Thus from the
point of view of what can be measured, Eq. (69) reduces as follows

c2
γγg(r

′)−2 = c2
γ or γg(r

′)−2 = 1 (70)

Thus if TGR has been formulated on the flat spacetime of SR withthe dynamical
time dimension,cγt ≡ ct, then the factors,γg(r′)−2 = (1−2GM0a/r′c2

γ), γg(r
′)−1 and

γg(r′) are all equal to 1, as expressed by Eq. (70). This means that the non-trivial
parameter transformations (26), (29), (34), (36), (38), (40), (41), (54) and (63),
derived on the flat spacetime of SR (or in the Minkowski’s space, (Σ, ct) ≡ (Σ, cγt),
with the gravitational (or static) speedcg of gravitational waves replaced by the
dynamical speedcγ of electromagnetic waves in those relations, do not exist or
are hypothetical and cannot be measured or observed. This shows explicitly that a
relativistic theory of gravity formulated on the flat spacetime of special relativity (or
in the Minkowski’s space), (Σ, ct) ≡ (Σ, cγt), which is the only flat spacetime known
until now, is impossible, or do not exist and cannot be observed. This fact had also
been arrived at but not as robustly as done here at different points since [2].

The transformations of various quantities in the context ofTGR derived analyt-
ically in this sub-section, some of which have been derived graphically in [4], shall
be considered adequate for this sub-section. More parameter transformations in the
context of TGR shall be derived in other papers with further development.

2 Incorporating the special theory of relativity into the theory of gravitational
relativity

The gravitational-relativistic massm of the test particle, given by Eq. (26), evolved
on the flat four-dimensional relativistic spacetme (Σ, ct) (in Fig. 1 of [4]) in the
context of TGR, at the second stage of evolutions of spacetime/intrinsic spacetime
and parameters/intrinsic parameters in a gravitational field. It is the gravitational-
relativistic masses of particles and objects that undergo relative motions within local
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Lorentz frames on the flat relativistic spacetime of TGR (Σ, ct) in the context of SR
in every gravitational field in the universe.

2.1 Validating local Lorentz invariance (of SR) on flat four-dimensional space-
time prescribed by TGR in a gravitational field

The special theory of relativity (SR) in gravitational fields in the universe at present
involves the motion of the gravitational-relativistic masses of particles and objects
relative to observers within local Lorentz frames on the flatrelativistic spacetime
(Σ, ct) of TGR, as mentioned above. There is local Lorentz transformation and its
inverse of the affine coordinates (cγ t̃ , x̃ , ỹ , z̃) of the particle’s frame into the affine

coordinates (cγ t̃ , x̃ , ỹ , z̃) of the observer’s frame within a local Lorentz frame on the
flat relativistic spacetimeΣ, ct), which are referred to as local Lorentz transformation
(LLT) and its inverse because of the restriction to the interiors of local Lorentz
frames, which are given respectively as follows (as derivedby Albert Einstein in [,
ibid.]

einstein and as has been re-derived by the graphical approach in part one of this
paper [4].

t̃ = γd(v)(t̃ −
v

c2
γ

x̃); x̃ = γd(v)(x̃ − vx̃); ỹ = ỹ and z̃ = z̃ (71)

and
t̃ = γd(v)(t̃ +

v

c2
γ

x̃); x̃ = γd(v)(x̃ + vx̃); ỹ = ỹ and z̃ = z̃ (72)

where
γd(v) = (1− v2/c2

γ)
−1/2 (73)

andv is the dynamical speed of of the gravitational-relativistic massm of the particle
relative to the observer.

The relative motion of the particle, taken to be along the ˜x− and x̃− axes of
the particle’s and observer’s frames respectively by convention in systems (71) and
(72), which are collinear by the mandate of nature and not by man’s assumption or
prescription, as discussed in sub-section 4.2 of [4], can bealong any direction in the
Euclidean 3-spaceΣ within the local Lorentz frame of the motion of the particle.

The transformations (71) and (72) are local Lorentz transformation (LLT) and
its inverse within a local Lorentz frame at radial distancer from the center of the
assumed spherical gravitational field source of gravitational-relativistic massM in
the relativistic Euclidean 3-spaceΣ of TGR, within which gravitational speedV ′g(r

′)
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and gravitational potentialΦ′(r′) are constant and, hence, within which a test parti-
cle can move at a uniform dynamical velocity relative to the observer. System (72)
or (73) yields the following invariance

c2t̃ 2 − x̃2 − ỹ2 − z̃2 = c2t̃ 2 − x̃2 − ỹ2 − z̃2 (74)

This Lorentz invariance in SR, which is limited to the interior of a local Lorentz
frame in an external gravitational field, is usually referred to as local Lorentz invari-
ance (LLI). The LLI has remained a postulate albeit with abundant experimental
justification in general relativity [10, 1985],

prestage.
The special-relativistic time dilation and special-relativistic length contraction

formulae, which follow from systems (71) and (72) are the following

t̃ = (1− v2/c2
γ)
−1/2t̃ ; x̃ = (1− v2/c2

γ)
1/2x̃ ; ỹ = ỹ ; andz̃ = z̃ (75)

But there are also gravitational time dilation and gravitational length contraction for-
mulae of systems (12b) and (12a) in the context of TRG, which when incorporated
into system (75) gives the following

t̃ = (1− 2GM0a/r
′c2
g)
−1/2(1− v2/c2

γ)
−1/2t̃ ′; (76a)

x̃ = (1− 2GM0a/r
′c2
g)

1/2(1− v2/c2
γ)

1/2x̃ ′; ỹ = ỹ ′; and z̃ = z̃ ′ (76b)

These are time dilation and length contraction formulae in the context of combined
special theory of relativity and theory of gravitational relativity (SR+TGR).

However while the time dilation formulae (76a) is valid for arbitrary orientation
of the direction of motion of the particle relative to a radial direction from the cen-
ter of the gravitational field source within the local Lorentz frame in which relative
motion occurs, the length contraction formula of system (76b) is valid when the
collinear x̃− and x̃− axes of the observer’s frame and the particle’s frame respec-
tively, along which motion of the particle occurs, are alonga radial direction from
the center of the gravitational field source within the localLorentz frame.

In a situation where thẽx− andx̃− axes of the observer’s frame and the particle’s
frame, along which the motion of the particle occurs, lie perpendicular to a radial
direction from the center of the gravitational field source,but thez̃−axis lies along
the radial direction from the center of the field source within the local Lorentz frame
of motion of the particle, then Eq. (76a) must be retained while system (76b) must
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modified, thereby converting (76a) and (76b) to the following

t̃ = (1− 2GM0a/r
′c2
g)
−1/2(1− v2/c2

γ)
−1/2t̃ ′ (77a)

x̃ = (1− v2/c2
γ)

1/2x̃ ′; ỹ = ỹ ′ andz̃ = (1− 2GM0a/r
′c2
g)

1/2z̃ ′ (77b)

It follows from the validity of local Lorentz invariance (LLI), expressed by
Eq. (74) on flat spacetime (Σ, ct) of TGR in every gravitational field and the in-
variance of differential operators in the context of TGR discussed earlier,that non-
gravitational natural laws should take on their usual classical and special-relativistic
instantaneous differential forms on the flat spacetime of TGR in every gravitational
field, (and not their covariant tensor forms adopted in the covariant tensor approach
on the prescribed curved spacetime in context of the generaltheory of relativity).
However the gravitational-relativistic values of physical quantities and constants in
the context of TGR must be substituted into the laws. The principle of equivalence
requires that the effect of such substitutions, (or the effect of gravity), should cancel
out in all laws, as shall be investigated in a paper later in this volume.

It is clear from the derivation of Eq. (74) that local Lorentzinvariance (LLI)
would be impossible in a gravitational field without the gravitational local Lorentz
transformation (GLLT) and its inverse (3) and (4) (or (6) and(7)) and the gravita-
tional local Lorentz invariance (GLLI) (9) they imply in every local Lorentz frame
in a gravitational field in the context of TGR. That is, in the absence of the flat rel-
ativistic spacetime (Σ, ct) established in a gravitational field in the context of TGR
on which SR operates in a gravitational field.

The actual physics underlying the GLLT and its inverse of equations (3) and (4)
or (6) and (7) and the GLLI of Eq. (9) they imply are the diagrams in the two-world
picture of Figs.5 and 6 and their inverses of Figs. 7 and 8 of the first part of this pa-
per [4], in the context of intrinsic two-dimensional theoryof gravitational relativity
(φTGR). Intrinsic gravitational local Lorentz transformation (φGLLT and its inverse
on the two-dimensional intrinsic spacetime (φρ, φcφt) were derived from those di-
agrams. Then the GLLT and its inverse on the flat four-dimensional spacetime in
the context of TGR were written directly fromφGLLT and its inverse in the con-
text of φTGR, since TGR is mere outward manifestation on flat four-dimensional
spacetime ofφTGR on flat two-dimensional intrinsic spacetime. This is theactual
physics.

The re-derivation of GLLT on flat four-dimensional relativistic spacetime (Σ, ct)
of TGR analytically in this paper requires us to start by stating two unproven princi-
ples of the theory of gravitational relativity, just as Einstein started the derivation of
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Lorentz transformation (LT) analytically by starting fromtwo principles of special
relativity. This shows that the analytical approaches to the derivation of GLLT in
TGR and LT in SR do not get down to the foundation of physics underlying GLLT
and LT. They are incomplete and non-fundamental. This is thegeneral characteristic
of the hypothetico-deductive theories.

Now the diagrams in the two-world picture of Figs 5 and 6 ofφTGR in the first
part of this paper [4], take identical forms as the diagrams of Figs. 9 and 10 ofφSR
in that paper. Then as explained in [12], the spacetime/intrinsic spacetime diagrams
in the two-world picture of SR/φSR, from which the LT/φLT and its inverse were
re-derived in [6], which should now be replaced by Figs. 9 and10 of [4] and their
inverses, are immutable for as long as there is perfect symmetry of state among the
four universes encompassed by the two-world picture identified in [12] – [13]. It
equally follows that the spacetime/intrinsic spacetime diagrams in the two-world
picture of TGR/φTGR, from which the GLLT/φGLLT and its inverse were derived
are immutable. Hence the GLLT and its inverse, and the GLLI they imply in TGR
are immutable for as long as there is a perfect symmetry of state among the four
universes encompassed by the two-world picture. It followsfrom this, (and the fact
that the validity of LLI depends the validity of on GLLI), that LLI is immutable
for as long as there is perfect symmetry of state among the four universes in the
two-world picture.

2.2 Mass and energy relations in combined gravitational theory of relativity and
special theory of relativity

It is the gravitational-relativistic massm in the context of TGR of Eq. (26) on the
flat relativistic spacetime (Σ, ct) of TGR that moves relative to the observer in spe-
cial relativity in an external gravitational field. Thus we must simply replace the
rest massm0 on the flat proper spacetime (Σ′ct′), which usually appears in the
primed special theory of relativity on the flat (Σ′ct′) until now, by the gravitational-
relativistic massm of equation (26) in the expression for gravitational-relativistic
cum special-relativistic mass in in an external gravitational field to have as follows

m = γd(v)m =
m

√

1− v2/c2
γ

(78)

Then along with equation (26), equation (78) becomes the following

m =
m0(1− 2GM0a/r′c2

g)
√

1− v2/c2
γ

(79)

715A. Joseph. Formulating gravity and motion at second stage of evolutions of spacetime . . . II.



Vol. 1(3B) : Article 15 THE FUNDAMENTAL THEORY ... (M) Mar, 2012

The gravitational-relativistic cum special-relativistic total energyE in a gravita-
tional field in the context of combined TGR and SR is given at radial distancer in
the relativistic Euclidean 3-spaceΣ of TGR from the center of the gravitational field
source as follows

E = mc2
γγd(v)

= m0c2
γγg(r

′)−2γd(v)

= m0c2
γ(1− 2GM0a/r

′c2
g)(1− v

2/c2
γ)
−1/2

or

E = (1−
2GM0a

r′c2
g

)E ′ (80)

whereE ′ is the usual special-relativistic total energy, which is valid on flat proper
spacetime (Σ′, ct′) in the absence of relative gravitational field at the first stage of
evolutions of spacetime/intrinsic spacetime and parameters/intrinsic parameters in
an external gravitational field.

The gravitational-relativistic cum special-relativistic kinetic energyT in a grav-
itational field in the context of combined TGR and SR is likewise given as follows

T = γd(v)mc2
γ − mc2

γ

= m0c2
γ(1−

2GM0a
r′c2

g

)(γd(v) − 1)

= m0c2
γ(1−

2GM0a
r′c2

γ

)[(1 −
v2

c2
γ

)−1/2 − 1] (81)

T = (1−
2GM0a

r′c2
g

)T ′ (82)

whereT ′ is the usual special-relativistic kinetic energy, which isvalid on flat proper
spacetime (Σ′, ct′) in the absence of relative gravitational field at the first stage of
evolutions of spacetime/intrinsic spacetime and parameters/intrinsic parameters in
an external gravitational field.

An author [14, 1982], derived the following mass-energy relation in a spheri-
cally symmetric gravitational field in the context of the general theory of relativity

E∗ = m∗c2 = mc2(1−
2GM
rc2

) (83)

Interestingly, relation (83), withc2 canceled, is of the form of the mass relation
(26) derived in the context of TGR. The derivation of Eq. (83)on curved four-
dimensional spacetime with the aid of the line element in GR,corresponds to the
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derivation of the intrinsic mass relation,φm0 = φm̂0(1 − 2GφM̂0a/φr̂φĉ2
g), on the

curved ‘two-dimensional’ absolute intrinsic spacetime (φρ̂, φt̂) with the aid of the
absolute intrinsic line element in the context of the metrictheory of absolute intrinsic
gravityφMAG in sub-section 2.1 of [1].

The principle of equivalence of Albert Einstein requires that the massm of the
test particle is constant with position in a gravitational field and therefore precludes
relation (83) in GR. No clear meaning could be given the relation (83) in GR. On
the other hand, the validity of Einstein’s principle of equivalence shall be estab-
lished in the context of TGR in this and another paper, and this shall be despite
the existence of the mass relation (26) and other parameter relations in the context
of TGR derived in this paper and those to be derived in later papers. The hier-
archy of spacetimes/intrinsic spacetimes containing hierarchy of masses/intrinsic
masses and parameters/intrinsic parameters and the associated hierarchy of space-
time/intrinsic spacetime geometries in the present theory, givephysical meaning to
parameter/intrinsic parameter relations in the present theory.

3 Modification of Newton’s gravitational force law in the context of the theory
of gravitational relativity

As mentioned in the first paragraph of section 1 of this secondpart of this paper,
the theory of relativistic gravity and the commonly used terminology “relativity and
gravitation”, in the absence of the special theory of relativity, refers to the theory
of gravitational relativity (TGR) and the classical (or Newton’s) theory of gravity
with relativistic correction in the context of TGR, also referred to as the unprimed
classical theory of gravity and given the acronym CG.

The usual classical (or Newton’s) theory of gravity, also referred to as the primed
classical theory of gravity and given the acronym CG′ in the present theory, in sub-
section 3.3 of [3] and sub-section 1.1 of [4], operates on theflat proper spacetime
(Σ′, ct′) of Fig. 3 of [1] or Fig. 1 of [3], which evolves at the first stage of evo-
lutions of spacetime/intrinsic spacetime and parameters/intrinsic parameters in a
gravitational field. Although Fig. 1 of [3] at the first stage of evolutions of space-
time/intrinsic spacetime and parameters/intrinsic parameters in a gravitational field
does not exist in nature, as discussed in section 3 of [3], it is nevertheless valid the-
oretically that CG′ on flat (Σ′, ct′) in that geometry transforms into CG on the flat
(Σ, ct) in the geometry of Fig. 9 of [3] or Fig. 1 of [4].

However what happens in reality, as well discussed in section 3 of [3] and
sub-section 1.1 of [4], is that the primed intrinsic classical (or Newton’s) theory
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of gravity (φCG′) within a proper (or primed) intrinsic local Lorentz frame on the
curved proper intrinsic spacetime (φρ′, φcφt′), projects unprimed intrinsic classical
(or Newton’s) theory of gravity (φCG) into the corresponding relativistic (or un-
primed) intrinsic local Lorentz frame on flat relativistic intrinsic spacetime (φρ, φcφt)
in the context ofφTGR, which is then made manifest outwardly in unprimed classi-
cal (or Newton’s) theory of gravity (CG) on flat four-dimensional relativistic space-
time (Σ, ct) in the context of TGR in Fig. 9 of [3] or Fig. 1 of [4].

Having derived the gravitational local Lorentz transformation (GLLT) and its in-
verse in the context of TGR by the graphical approachvia graphical approach to the
intrinsic gravitational local Lorentz transformation (φGLLT) and its inverse in the
context ofφTGR and having established the gravitational local Lorentzinvariance
(GLLI), along with gravitational time dilation and gravitational length contraction
formulae in the context of TGR in the first part of this paper [4] and having re-
derived these analytically along with the transformationsof several other physical
parameters in the context of TGR in this second part of this paper, the TGR on
flat relativistic spacetime (Σ, ct) andφTGR on flat relativistic intrinsic spacetime
(φρ, φcφt) underlying (Σ, ct), shall be deemed to have been accomplished to a good
extent. Further development of the TGR/φTGR, which entails the transformations
of other physical parameters/intrinsic parameters and physical constants/intrinsic
constants in the context of TGR/φTGR, shall be done in other papers.

What is left for us to do now in order to accomplish the theory ofrelativis-
tic gravity (or the theory of relativity and gravitation without reference to the spe-
cial theory of relativity) in the context of the present evolving theory, is to develop
the gravitational-relativistic (or unprimed) classical (or Newton’s) theory of grav-
ity (CG) on the flat relativistic spacetime (Σ, ct) of TGR and the gravitational (or
unprimed) intrinsic classical (or Newton’s) theory of gravity (φCG) on the flat rel-
ativistic intrinsic spacetime (φρ, φcφt) underlying (Σ, ct) in a gravitational field of
arbitrary strength. This is the topic of this section.

Now the gravitational-relativistic massm of the test particle that evolves in the
relativistic Euclidean 3-spaceΣ in the context of TGR, given by Eq. (26), interacts
with the gravitational-relativistic gravitational potential Φ(r′) that evolves in the
relativistic Euclidean 3-spaceΣ in the context of TGR, given by Eq. (54), yielding
the gravitational-relativistic gravitational potentialenergyU(r′) in the relativistic
Euclidean 3-spaceΣ (or on the flat relativistic spacetime (Σ, ct)) in the context of
TGR as follows

U(r′) = m(r′)Φ(r′)
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= m0(1−
2GM0a

r′c2
g

)(−
GM0a

r′
)(1−

2GM0a
r′c2

g

)1/2

= −
GM0am0

r′
(1−

2GM0a
r′c2

g

)3/2 (84)

Then by dividing through Eq. (84) by the rest massm0 of the test particle, the
effective gravitational potential function ‘seen’ by the testparticle in the relativistic
Euclidean 3-spaceΣ in the context of TGR is the following

Φeff(r
′) = −

GM0a
r′

(1−
2GM0a

r′c2
g

)3/2 (85)

The effective gravitational-relativistic gravitational potential Φeff(r′) in Σ in the con-
text of TGR is a function of the primed radial coordinater′ directly. Hence the ef-
fective gravitational acceleration suffered by the test particle in the context of TGR
is given from definition as follows

~geff(r
′) = −

dΦeff(r′)
dr′

r̂

= −
GM0a

r′2
(1−

2GM0a
r′c2

g

)3/2r̂ +
3G2M2

0a
r′3c2

g

(1−
2GM0a

r′c2
g

)1/2r̂ (86)

or

~geff(r
′) = ~g ′(1−

2GM0a
r′c2

g

)3/2 − 3~g ′
|~g ′ |r′

c2
g

(1−
2GM0a

r′c2
g

)1/2 (87)

where ˆr in Eq. (86) is the unit vector radially away from the center ofthe assumed
spherical gravitational-relativistic massM of the gravitational field source in the
relativistic Euclidean 3-spaceΣ in the context of TGR, since~geff(r′) is a vector inΣ.

Equation (86) or (87) gives the unprimed (or gravitational-relativistic) gravita-
tional acceleration in the relativistic Euclidean 3-spaceΣ in a gravitational field of
arbitrary strength, which the test particle suffers towards the center of the gravitational-
relativistic massM of the gravitational field source inΣ in the context of TGR.
Eq. (86) or (87) is valid for a spherically symmetric gravitational field source only.
the modified form in a non-spherically-symmetric gravitational field shall be derived
elsewhere with further development.

By multiplying through Eqs. (86) and (87) by the rest massm0 of the test particle
(and not its gravitational-relativistic massm), as follows from the division of the
gravitational-relativistic gravitational potential energy of Eq. (84) bym0 to obtain
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the effective gravitational potential function of Eq. (85)), we obtain the unprimed
(or gravitational-relativistic) gravitational force suffered by the test particle towards
the center of the gravitational field source inΣ in the context of TGR as follows

~Feff(r
′) = −

GM0am0

r′2
(1−

2GM0a
r′c2

g

)3/2r̂ +
3G2M2

0am0

r′3c2
g

(1−
2GM0a

r′c2
g

)1/2r̂ (88)

or

~Feff(r
′) = m0~g

′(1−
2GM0a

r′c2
g

)3/2 − 3m0~g
′ |~g
′|r′

c2
g

(1−
2GM0a

r′c2
g

)1/2 (89)

The equivalence of inertial acceleration and gravitational acceleration hold on
the flat relativistic spacetime (Σ, ct) in the context of TGR as well, that isd2~x/dt2 ≡
~geff(r′). Thus the equation of motion within a local Lorentz frame ofthe test particle
that suffers the effective gravitational acceleration (86) or (87) in the relativistic
Euclidean 3-spaceΣ in the context of TGR is the following

d2~x
dt2

= −
GM0a

r′2
(1−

2GM0a
r′c2

g

)3/2r̂ +
3G2M2

0a
r′3c2

g

(1−
2GM0a

r′c2
g

)1/2r̂ (90)

or

d2~x
dt2

= ~g ′(1−
2GM0a

r′c2
g

)3/2 − 3~g ′
|~g ′|r′

c2
g

(1−
2GM0a

r′c2
g

)1/2 (91)

This equation describes the motion of the observed gravitational-relativistic mass
m of the test particle on the flat relativistic spacetime (Σ, ct) in a gravitational field,
under the sole influence of gravitational attraction towards the center of the assumed
spherical gravitational-relativistic massM of the gravitational field source inΣ.

Eq. (85), Eq. (86) or (87), Eq. (88) or (89) and Eq. (90) or (91)are expressions in
the context of the gravitational-relativistic (or unprimed) classical theory of gravity
(CG) on the flat relativistic spacetime (Σ, ct) of TGR at the second stage of evolu-
tions of spacetime/intrinsic spacetime and parameters/intrinsic parameters in every
gravitational field. They are the modified (or gravitational-relativistic) forms on the
flat relativistic spacetime (Σ, ct) in the context of TGR of the respective equations
(or expressions) in the context of the primed classical theory of gravity (CG′) on the
flat proper spacetime (Σ′, ct′) at the first stage of evolutions of spacetime/intrinsic
spacetime and parameters/intrinsic parameters in a gravitational field.
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3.1 The Newtonian limit and post-Newtonian approximation to the gravita-
tional-relativistic form of the Newtonian gravitational force law

Eqs. (85) – (91) are valid on the flat relativistic spacetime (Σ, ct) of TGR in a grav-
itational field of arbitrary strength. They simplify respectively as follows by letting
2GM0a/r′c2

g = V ′g(r
′)2/c2

g = 0,

Φeff(r
′) = Φ′(r′) = −GM0a/r

′ (92)

~geff(r
′) = ~g ′(r′) = −GM0a~r

′/r′3 (93)
~Feff(r

′) = ~F′(r′) = −GM0am0~r
′/r′3 and (94)

d2~x ′

dt′2
= ~g ′ (95)

Eqs. (92) – (95) are the essential equations of the primed classical (or New-
tonian) theory of relative gravity (CG′), where relative gravity means that the grav-
itational potentialΦ′(r′) and gravitational acceleration~g ′(r′) are relative gravita-
tional parameters, that is, they vary in magnitude with radial distancer from the
center of the gravitational-relativistic massM of the gravitational field source inΣ
(corresponding to radial distancer′ from the center of the rest massM0 of the grav-
itational field source in the elusive proper Euclidean 3-spaceΣ′). Hence Eqs. (92)
– (95) are the Newtonian limits to Eqs. (86) – (91) of CG. They can be applied
without significant loss of accuracy in very weak gravitational fields, such as the
gravitational fields of the planets.

Now V ′g(r
′)/cg = 0 corresponds toφV ′g(φr′)/φcg = sinφψg(φr′) = 0. Hence

φψg(φr′) = 0. The intrinsic angleφψg(φr′) is the inclination of the curved proper
intrinsic spaceφρ′ to its projective straight line relativistic intrinsic spaceφρ along
the horizontal, at ‘distance’φr′ along the the curvedφρ′ from the base of the intrin-
sic rest massφM0 of the gravitational field source at the origin of the curvedφρ′ in
Figs. 1 and 2 of [4]. The intrinsic angleφψg(φr′) is likewise the inclination of the
curved proper intrinsic time dimensionφcφt′ to its projective straight line relativis-
tic intrinsic time dimensionφcφt along the vertical, at equal ‘distance’φr′ along the
curvedφcφt′ from the base of the intrinsic rest massφE′/φc2 of the gravitational
field source at the origin of the curvedφcφt′ in Figs. 1 and 2 of [4].

The vanishing ofφψg(φr′) at every ‘distance’φr′ along the curvedφρ′ and
curvedφcφt′ implies that the curvedφρ′ becomes a straight line intrinsic dimen-
sion along the horizontal and the curvedφcφt′ becomes a straight line intrinsic di-
mension along the vertical. They thereby constitute two-dimensional flat proper
intrinsic spacetime (φρ′, φcφt′) underlying four-dimensional flat proper spacetime
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(Σ′, ct′). In other words, the conditionφVg(φr′)/φcg = sinφψg(φr′) = 0, converts
the geometries of Figs. 1 and 2 of combined first and second stages of evolutions of
spacetime/intrinsic spacetime and parameters/intrinsic parameters in a gravitational
field or arbitrary strength to the geometry of Fig. 5 of [2] in two-world or Fig. 3
of [1] in partial one-world representation, at the first stage of evolutions of space-
time/intrinsic spacetime and parameters/intrinsic parameters in every gravitational
field.

It follows from the foregoing two paragraphs that Eqs. (92) –(95) of CG′,
obtained with the conditionVg(r′)/cg = 0 on CG, corresponding toφVg(φr′) =
sinφψg(φr′) = 0 on φCG′, pertain to the flat proper spacetime (Σ′, ct′) in Fig. 3
of [1], at the first stage of evolutions of spacetime/intrinsic spacetime and parame-
ters/intrinsic parameters in every gravitational field.

However the condition 2GM0a/r′c2
g = 0, which reduces Eqs. (85) – (91) to

Eqs. (92) – (95), impliesM0a = 0, henceM0 = 0. Thus this condition implies we
must letM0a = 0 in Eqs. (92) – (95), from which it follows that those equations are
impossible (or do not exist). In other words, CG′ is impossible (or does not exist)
on the flat proper spacetime (Σ′, ct′) to which Eqs. (85) – (91) pertain. It must also
be recalled that the flat proper spacetime (Σ ′, ct′) that evolves at the first stage of
evolutions of spacetime/intrinsic spacetime and parameters/intrinsic parameters in
every gravitational field, is devoid of relative gravity. Hence CG′ (Eqs. (92) – (95))
does not exist on the flat proper spacetime (Σ ′, ct′) indeed. Only the primed New-
tonian theory of absolute gravity (NAG′) and combined primed Newtonian theory of
absolute gravity and primed Newtonian theory of absolute motion (NAG′+NAM ′),
involving absolute gravitational parametersΦ̂(r̂) and ĝ(r̂) and absolute dynamical
parameterŝVd andâ, exist on the flat proper spacetime (Σ ′, ct′) at the first stage of
evolutions of spacetime/intrinsic spacetime and parameters/intrinsic parameters in
every gravitational field.

Never the less Eqs. (92) – (95) of CG′ can be applied without significant loss of
accuracy in very weak gravitational fields on the flat proper spacetime (Σ′, ct′), as
approximate theory to CG with the exact equations (85) – (91)on the flat relativistic
spacetime (Σ, ct). In this wise, the flat proper spacetime (Σ′, ct′) shall be referred
to as the space of the primed classical theory of relative gravity CG′, although CG′

does not exist in (Σ′, ct′) in a strict sense.

On the other hand, let us consider the weak gravitational field limit for which
2GM0a/r′c2

g = V ′g(r
′)2/c2

g ≈ 0 or in the limit as 2GM0a/r′c2
g → 0. This condition

implies M0a ≈ 0, henceM0 ≈ 0, that is, gravitational field sources of small but
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non-zero rest masses. By applying the limit 2GM0a/r′c2
g → 0 on Eqs. (85) – (91)

we have the following

Φeff(r
′) ≈ −

GM0a
r′

(1−
3GM0a

r′c2
g

) (96)

~geff(r
′) ≈ −

GM0a
r′2

r̂ +
6G2M2

0a
r′3c2

g

r̂ (97)

~Feff(r
′) ≈ −

GM0am0

r′2
r̂ +

6G2M2
0am0

r′3c2
g

r̂ (98)

d2~x
dt2

≈ −
GM0a

r′2
r̂ +

6G2M2
0a

r′3c2
g

r̂ (99)

The weak field limit approximations (96) – (99) shall be referred to as the post-
Newtonian approximations to the exact equations (86) – (91)of CG on the flat rel-
ativistic spacetime (Σ, ct). The post-Newtonian approximation (Eqs. (96) – (99))
is a more accurate approximation to CG than the Newtonian limit (or CG′) (with
Eqs. (92 – (95)) in weak gravitational fields. SinceV ′g(r

′)/cg is small but non-
zero, correspondingφV ′g(φr′)/φcg = sinφψg(φr′) is small but non-zero, the post-
Newtonian approximation pertains to the flat relativistic spacetime (Σ, ct) like CG.

The invariance of gravitational acceleration (or field) (44) in the context of TGR
is valid in empty space at the exterior of a gravitational field source, when the inter-
action of a test particle with the external gravitational field is not in consideration.
On the other hand, it is the effective gravitational acceleration (86) or (87) that a test
particle suffers towards the center of the assumed spherical external gravitational
field source in the context of TGR (and not the direct invariant gravitational field
~g = ~g ′ originating from the gravitational field source).

The closest to deriving a modification of the Newtonian gravitational potential
function in general relativity, as far as I can find, arises inthe study of the trajectory
on curved spacetime of a planet in orbit round the sun by the geodesic approach in
GR, where it has been deduced by formal analogy with the classical orbit, see, for
example, page 206 of [15], that the approximate effective Newtonian gravitational
potential function responsible for the observed perturbation of the classical orbit is
the following

f (r) ≈ −
GM

r
(1+

v2l
c2

) = −
GM

r
(1+

2GM
rc2

) (100)

where,vl = rdϕ/dt = (2GM/r)1/2, is the so-called lateral velocity of the planet. The
notation in GR has been preserved in (100). We shall not go into a discussion of
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the discrepancy betweenΦeff(r′) in Eq. (85) andf (r) in Eq. (100). It is however
safe to say that Eq. (100) has been derived from an inexact calculation in the quoted
reference, unlike the derivation of the exact relation (85)in this paper. It is just
important to note that the need for the modification of the Newtonian gravitational
potential has been known in general relativity, although nophysical meaning could
be given to f (r) in GR, as stated on page 206 of [15]. There is no spacetime to
contain this derived function, just as said for the derived mass-energy expression of
Eq. (83) in GR.

As another aspect of the modification of the classical (or Newton’s) law of grav-
ity in the context of TGR, let us consider a particle of rest massm0, which is moving
at a low (non-relativistic) velocity~v through radial distancer from the center of the
assumed spherical gravitational-relativistic massM of a gravitational field source on
the flat relativistic spacetime (Σ, ct) relative to an observer. The relativistic kinetic
energy in the context of TGR of the particle has been related to its classical kinetic
energy by Eq. (29), which shall be rewritten here as follows

EK =
1
2

mv2 =
1
2

m0v
2(1−

2GM0a
r′c2

g

) (101)

Now let the gravitational-relativistic massm of the test particle above propagate
at non-relativistic velocity radially from radial distance r1 to radial distancer from
the center of the gravitational-relativistic massM of the gravitational field source on
the flat relativistic spacetime (Σ, ct) of TGR, which correspond to radial distances
r′1 andr′ respectively from the center of the rest massM0 of the field source on the
flat proper spacetime (Σ′, ct′). The difference in kinetic energy of the particle as it
moves fromr1 to r in (Σ, ct) is given in the context of TGR as follows

∆EK =
1
2

m0v
2(1−

2GM0a
r′c2

g

) −
1
2

m0v
2
1(1−

2GM0a
r′1c2

g

) (102)

where~v1 is its velocity while passing throughr1. On the other hand, the change in
gravitational potential energy (84) in the context of TGR, as the particle moves from
r1 to r is the following

∆U = −
GM0am0

r′
(1−

2GM0a
r′c2

g

)3/2 +
GM0am0

r′1
(1−

2GM0a
r′1c2

g

)3/2 (103)

Conservation of energy allows us to write,∆U = ∆EK . Hence

1
2

m0v
2(1−

2GM0a
r′c2

g

) −
1
2

m0v
2
1(1−

2GM0a
r′1c2

g

) = −
GM0am0

r′
(1−

2GM0a
r′c2

g

)3/2+
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+
GM0am0

r′1
(1−

2GM0a
r′1c2

g

)3/2

Therefore,

v2 = v21(1−
2GM0a

r′1c2
g

)(1−
2GM0a

r′c2
g

)−1

= −
2GM0a

r′
(1−

2GM0a
r′c2

g

)1/2 +
2GM0a

r′1
(1−

2GM0a
r′1c2

g

)3/2(1−
2GM0a

r′c2
g

)−1

(104)

This expression is valid in a gravitational field of arbitrary strength. Its post-Newto-
nian approximation on flat relativistic spacetime (Σ, ct) given in the limit as
2GM0a/r′c2

g → 0 can be written. In the pure Newtonian limit on the flat proper
spacetime (Σ′, ct′), the factor (1− 2GM0a/r′c2

g) = (1− 2GM0a/r′1c2
g) = 1, Eq. (104)

simplifies as the familiar relation in classical mechanics,v2 = v21−2∆Φ′ = v21+2gH.
Finally let us consider a test particle of rest massm0, which undergoes gravi-

tational fall from rest at infinity to speedv at radial distancer from the center of
the assumed spherical gravitational-relativistic massM in the relativistic Euclid-
ean 3-spaceΣ of TGR, of the only source of external gravitational field. Atin-
finity, (r = ∞), it possesses zero gravitational potential energy and zero kinetic
energy, and upon falling to radial distancer from the center ofM, it possesses
gravitational-relativistic gravitational potential energy m0Φeff(r′) in the context of
TGR, and gravitational-relativistic kinetic energy1

2mv2 in the context of TGR, (as-
sumingv is non-relativistic thereby precluding the presence of SR). Then from the
fact that the decrease in gravitational potential energy isequal to the increase in
kinetic energy of the test particle, we have the following

1
2

mv2 − 0 = 0− m0Φeff(r
′)

or
1
2

m0v
2(1−

2GM0a
r′c2

g

) =
GM0am0

r′
(1−

2GM0a
r′c2

g

)3/2

Hence

v2 =
2GM0a

r′
(1−

2GM0b

r′c2
g

)1/2 (105)

The dynamical velocityv given by Eq. (105) is the escape velocity of the test
particle, usually denoted byvesc. Thus the escape velocity with gravitational-
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relativistic correction (in the context of TGR) is the following

vesc=

√

2GM0a
r′

(1−
2GM0a

r′c2
g

)1/4 (106)

Obviously the observed (or unprimed) classical theory of gravity CG on the flat
relativistic spacetime (Σ, ct) of TGR is the the fictitious primed classical theory of
gravity (CG′) on flat proper spacetime (Σ′, ct′) with relativistic correction in the
context of TGR, just as the observed (or unprimed) classicaldynamics is the primed
classical dynamics with relativistic correction in the context of SR. The existence
of CG′ on flat proper spacetime (Σ′, ct′) is described as fictitious because CG′ is
impossible (or does not exist) on (Σ′, ct′) in reality, as explained above.

Local Lorentz invariance (LLI) obtains naturally on the flatrelativistic spacetime
(Σ, ct) of TGR in an external gravitational field, as demonstrated in sub-sub-section
3.3.1 earlier. This coupled with the fact that the gravitational velocity~Vg(r′) of any
magnitude of TGR is equivalent to zero dynamical speedv of SR, the transformation
of non-gravitational dynamical natural laws in the contextof TGR, should retain the
usual instantaneous differential classical and special-relativistic forms of the laws,
(and not their covariant tensor forms), on the flat (Σ, ct) in a gravitational field of
arbitrary strength. However the gravitational-relativistic values in the context of
TGR of physical quantities and constants that appear in the natural laws, usually as
differential coefficients, must be substituted. Whether the effect of the substitutions
(or of gravity) will cancel in all natural laws so that the strong equivalence principle
(SEP) is strictly valid or not shall be investigated in detail in a paper shortly in this
volume.

Also since the effective gravitational acceleration~geff of Eq. (96) or (97) in the
context of CG, which a test particle suffers towards the center of a gravitational field
source, does not depend on the property of the test particle,the validity of the weak
equivalence principle (WEP), usually considered to be confirmed by the Ëotvös-
Dicke experiment and others in the context of primed classical gravity (CG′), see,
for example, page 251 of [16, 1972] and page 15 of [17, 1972], holds good in the
context of the gravitational-relativistic (or unprimed) classical gravitation (CG), for
as long as it is valid in the context of CG′. There is a high prospect for theoretical
confirmation of the principle of equivalence of Albert Einstein (EEP) in the contexts
of TRG. We only need to demonstrate the validity of SEP theoretically in the context
of TGR in addition to the theoretical confirmations of LLI andWEP already shown.
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4 Mass concepts in the context of the theory of gravitational relativity

Let us consider a spherically symmetric gravitational fieldsource of rest massM0

and classical radiusR0 in the proper Euclidean 3-spaceΣ′ of the flat proper space-
time (Σ′, ct′) in Fig. 3 or Fig. 11 of [1], at the first stage of evolutions of space-
time/intrinsic spacetime and parameters/intrinsic parameters within the gravitational
field of the body, which shall be assumed to be isolated from the gravitational field of
every other source. The rest massM0 of this body will interact with its own gravita-
tional field to become the gravitational-relativistic massM in the relativistic Euclid-
ean 3-spaceΣ of the flat relativistic spacetime (Σ, ct) in Fig. 1 of [4] at the second
stage of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic para-
meters within its gravitational field, in the context of the the theory of gravitational
relativity (TGR). Likewise the radiusR0 of M0 will be identically contracted along
all radial directions from the center ofM0 to become the gravitational-relativistic ra-
diusR of M in Σ. Thus the spherical symmetry of the field source will be preserved
in Σ.

The mass relation (26) in the context of TGR must be written with the test par-
ticle’s rest massm0 replaced by the rest massM0 of the isolated gravitational field
source and the proper radial distancer′ from the center ofM0 to the location of the
restm0 in Σ′ replaced by the classical radiusR0 of the field source in the present
case to have as follows

M = M0(1−
2GM0a

R0c2
g

) (107)

This is the mass relation in the context of TGR for a gravitational field source of rest
massM0 and classical radiusR0 (of M0), which is isolated from the gravitational
field of every other source.

If the body is then brought near another gravitational field source, it is the
gravitational-relativistic massM in the context of TGR, due to its own gravita-
tional field that will interact with the external gravitational field. Hence by def-
inition [8, 16, 17], the gravitational-relativistic massM given by Eq. (107) is the
passive gravitational mass. It shall therefore be re-denoted Mp in Eq. (107) to have

Mp = M0(1−
2GM0a

R0c2
g

) (108)

If a mechanical (or inertial) force is impressed on the body isolated from the
gravitational field due to any other body, it is also its gravitational-relativistic mass
M that will move in response. Hence the gravitational-relativistic mass is also the
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inertial mass to be denoted byMi of the body. Again let us re-denoteM by Mi in
Eq. (107) to have

Mi = M0(1−
2GM0a

R0c2
g

) (109)

The equivalence of the passive gravitational mass and the inertial mass of a body in
the context of TGR follows from Eqs. (108) and (109). That is,

Mp = Mi (110)

Relation (110) is usually known as equality of gravitational mass and inertial mass
and written asmg = mi in classical mechanics. Thus the equivalence of gravitational
mass and inertial mass in classical mechanics, becomes the equivalence of passive
gravitational mass and inertial mass in the context of TGR.

On the other hand, Eqs. (108) and (109) imply non-equivalence of rest mass and
passive gravitational mass and non-equivalence of rest mass and inertial mass in the
context of TGR,

Mp = Mi , M0 (111)

The known equivalence of inertial mass and rest massmi = m0 in classical mechan-
ics and general theory of relativity is invalid in the context of TGR.

We have finally identified the gravitational-relativistic massM or m of a body or
particle formed in the relativistic Euclidean 3-spaceΣ in the context of TGR, at the
second stage of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic
parameters in every gravitational field as the passive gravitational mass and inertial
mass of the body or particle.

As first introduced in sub-sub-section 2.1.5 of [1], the entity M0a in Eq. (102)
is non-observable and non-detectable to observers inΣ. It is an absolute-absolute
immaterial entity with unit of mass, which is imperceptiblyhidden within the rest
massM0 in the proper Euclidean 3-spaceΣ′. As suggested in sub-sub-section 2.1.5
of [1], M0a is a negative entity (i.e. we must write−M0a), and it is the source of the
attractive gravitational speedV ′g(r

′) = −(2GM0a/r′)1/2, attractive proper (or classi-
cal) gravitational potentialΦ′(r′) = −GM0a/r′ and attractive proper (or classical)
gravitational field~g ′ = −GM0a~r ′/r′3. The attractive nature of these gravitational
parameters arise by virtue of the negative sign of the immaterial −M0a.

The gravitational speedV ′g(r
′) due to the non-detectable immaterial gravitational

charge−M0a within the rest massM0 in the proper Euclidean 3-spaceΣ′ then in-
teracts withM0 thereby converting the restM0 in Σ′ to the passive gravitational
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massMp, which is also the inertial massMi of the body in the relativistic Euclidean
3-spaceΣ in the context of TGR, as expressed by Eq. (108) and Eq. (109).

The negative absolute-absolute immaterial entity−M0a with the unit of mass,
which is imperceptibly hidden within the rest massM0 in Σ′, being the source of the
classical (or Newtonian) gravitational potential and fieldobserved to originate from
M0, is the active gravitational mass of the body. This is so since the source of the
classical gravitational potential and field of a body is the active gravitational mass
of the body by definition [8, 16, 17]. The active gravitational mass−M0a has also
been referred to as the gravitational charge since its incorporation into the present
theory in sub-sub-section 2.1.5 of [1].

The equivalence of the rest mass and the active gravitational mass,M0 = M0a is
known in classical mechanics [8]. Consequently the classical gravitational potential
and field are usually written in terms of the rest mass asΦ′(r′) = −GM0/r′ and
~g ′ = −GM0~r ′/r′3. The classical gravitational potential and field originating from
the material rest massM0 are identical in magnitude to those originating from the
immaterial active gravitational mass (or gravitational charge) — in a spherically
symmetric gravitational field. That is,

Φ′(r′) = −GM0/r
′ = −GM0a/r

′ (112a)

~g ′(r′) = −GM0~r
′/r′3 = −GM0a~r

′/r′3 (112b)

Since the gravitational field is massless, its source must also be massless. This
thereby makes the the immaterial active gravitational mass(or massless gravita-
tional charge)−M0a the source of gravitational potential and field. In analogy,the
massless electric charge is the source of the massless electrostatic field in electro-
magnetism, and the sign of electric charge determines the sign (attractive or repul-
sive) of electrostatic field.

For the gravitational potential and gravitational field that originate from the
rest mass to be identical to the gravitational potential andgravitational field that
originate from the active gravitational mass (or gravitational charge) according to
Eqs. (112a) and (112b), it must be that the immaterial negative active gravitational
mass (or gravitational charge)−M0a is equal in magnitude to the rest mass. In other
words, there is equivalence (in magnitude but not in nature)of the positive material
rest mass and negative immaterial active gravitational mass (or gravitational charge)
in the context of TGR, expressed as follows

M0 = | − M0a| (113)
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Further more the fact that the gravitational potential and gravitational field that
originate from the rest mass to be identical to the gravitational potential and gravita-
tional field that originate from the active gravitational mass (or gravitational charge)
according to Eqs. (112a) and (112b), implies that the negative immaterial active
gravitational mass in its own domain (yet to be identified) iseffectively wholly em-
bedded in the material rest mass (or wholly occupies the restmass)M0 in the proper
Euclidean 3-spaceΣ′. That is,−M0a has the same shape and same volume as the
rest massM0 in Σ′ as the rest massM0 (although−M0a does not exist inΣ ′ but in
a different space that is embedded inΣ ′ yet to be isolated). Consequently the den-
sity ̺′ of the rest massM0 and the density−̺′a of the active gravitational mass (or
gravitational charge)−M0a that occupies the whole ofM0 are equal in magnitude.
The model of the containment of−M0a in M0 that follows from this discussion is
illustrated for a non-spherical gravitational field sourceas Fig. 1.

(r )
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g

(
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r

r
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Figure 1: Model of the containment of the gravitational charge in the rest mass of
a gravitational field source that is consistent with the identical shapes and densities
of the gravitational charge in its space (to be identified) and the rest mass in the
physical proper Euclidean 3-space.

Fig. 1a is consistent with the fact that the active gravitational mass (or gravita-
tional charge)−M0a, in its space (to be identified), has the same shape and density
as the rest massM0 in the proper physical Euclidean 3-spaceΣ ′. It therefore gives
rise to identical gravitational potential and field (spherically symmetric or not), as
the rest mass would. On the other hand fact that the gravitational velocity~Vg(r′) that
the gravitational charge also gives rise to is purely radialin all gravitational fields
(see sub-section 2.1 of [2]), is not consistent with the model of the containment of
−M0a in M0 Fig. 1. It requires further development of the present theory beyond the
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current level to explain.
The negative active gravitational mass (or negative gravitational charge) can-

not annihilate the rest mass containing it in Fig. 1, becausethe active gravitational
charge does not exist in the spaceΣ′ of the rest mass, but in a different space of
its own. ConsequentlyM0 and−M0a do not touch. The non-spherically symmetric
gravitational field~g ′(r′, θ′, ϕ′) originating from the non-spherical rest mass will be
identical to the gravitational field originating from the active gravitational mass of
the same magnitude and shape as the rest mass in Fig. 1. According to the present
theory, the Newton’s law of gravity in the differential form must be written in terms
of the negative density−̺′a of gravitational charge as

~∇′ · ~g ′ = 4πG(−̺′a) = −4πG̺′a (114)

Or in integral form as

∫∫

~g ′ · d ~A′ = 4πG(−M0a) = −4πGM0a (115)

where~∇′ is differential operator in the proper Euclidean 3-spaceΣ′ in which Eqs.
(114) and (115) are written.

The origin of the immaterial active gravitational mass (or gravitational charge)
and its negative sign, as well as the correct model of its containment within the rest
mass, considered to be as illustrated in Fig. 1 for now, and the mechanism by which
−M0a contained withinM0 establishes gravitational speedV ′g(r

′), gravitational po-
tentialΦ′(r′, θ′, ϕ′) and gravitational field~g ′(r′, θ′, ϕ′) at every point in space in all
finite neighborhood ofM0, shall be investigated elsewhere with further develop-
ment.

Now a spherical test particle of rest massm0 and classical radiusr0p, which is
isolated from the gravitational field of every other source possesses passive gravi-
tational massmp, which is the same as its inertial massmi determined by its own
gravitational field solely, which is given as follows

mp = mi = m0(1−
2Gm0a

r0c2
g

) (116)

If the test particle is now located at radial distancer from the center of the passive
gravitational massMp, (or inertial massMi), of a body in the relativistic Euclidean
3-spaceΣ of TGR, corresponding to radial distancer′ from the center of the rest
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massM0 in the proper Euclidean 3-spaceΣ′ of the massive body, then Eq. (116)
must be modified as follows

m = mp(1−
2GM0a

r′c2
g

) = m0(1−
2Gm0a

r0c2
g

)(1−
2GM0a

r′c2
g

) (117)

or

m = mi(1−
2GM0a

r′c2
g

) = m0(1−
2Gm0a

r0c2
g

)(1−
2GM0a

r′c2
g

) (118)

The massm in Eq. (117) or (118) is the passive gravitational mass or theinertial
mass of the test particle in the external gravitational fieldof the massive body of rest
massM0, where the effect of the gravitational field of the test particle has been taken
into consideration. It is inherently assumed that other gravitational field sources are
absent in Eq. (117) or (118), otherwise their effect must be taken into account.

The inertial mass or passive gravitational mass of a particle or body determined
by the gravitational field of the particle or body solely, shall be denoted bymi (or Mi)
andmp (or Mp) as done in Eq. (116), while the inertial mass or passive gravitational
mass of a particle or body in the external gravitational fieldof other gravitational
field sources shall be denoted bym (or M) as done in Eq. (117) or (118) henceforth.
In other words, we shall retain the notationm or M for the gravitational-relativistic
mass in the relativistic Euclidean 3-spaceΣ of TGR, now confirmed to be the inertial
mass or passive gravitational mass.

The passive gravitational massmp, which is the same as the inertial massmi, is
the mass observed in the physical 3-space. On the other hand,the rest massm0 and
the active gravitational mass−m0a hidden within the rest mass, of a particle or body
cannot be observed. As Eq. (115) shows, the gravitational field of the particle or
body, (no matter how weak), causes its rest mass to evolve into its inertial or passive
gravitational mass, even in the absence of external gravitational field, in the context
of TGR.

Finally, let us make connection to the so-called “dressed mass” and “undressed
mass” of a particle. Let us expand Eq. (118) to have the following

m = m0 −
2Gm0am0

r0c2
g

−
2GM0am0

r′2c2
g

+
4G2M0am0am0

r′r0c4
g

(119)

The inertial massm is the observed mass of the particle. It shall also be referred
to (humorously) as the “dressed mass”, while the rest massm0 at the right-hand
side shall be referred to as the “undressed mass” (or “naked mass”) and the other
terms at the right-hand side as the “dressing”. These are “dressed mass”, “undresses
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mass” and “dressing” of a test particle at rest relative to the observer in the external
gravitational field of a spherical body of rest massM0.

4.1 Calculating the rest mass and classical radius of a gravitational field source

The proper (or primed) parameters on the flat proper spacetime (Σ′, ct′) that evolved
at the first stage of evolutions of spacetime/intrinsic spacetime and parameters/intrin-

sic parameters in a gravitational field, have transformed into the observable (or
measurable) gravitational-relativistic parameters on the flat relativistic spacetime
(Σ, ct) in the context of TGR, at the second stage of evolutions of spacetime/intrinsic
spacetime and parameters/intrinsic parameters in a gravitational field. Consequently
the proper (or primed) parameters do not exist to be observedor measured by 3-
observers in the relativistic Euclidean 3-spaceΣ. They are elusive with respect to
these observers.

One usefulness of the parameter relations in the context of TGR is that the proper
durations of timedt′ and proper intervals of spacedr′, r′dθ′ andr′ sinθ′dϕ′ involved
in events and proper physical parametersQ′ on the flat proper spacetime (Σ′, ct′),
can be calculated from the corresponding measured relativistic (or unprimed) dura-
tions of timedt and relativistic (or unprimed) intervals of spacedr, rdθ andr sinθdϕ
of the events and the gravitational-relativistic (or unprimed) physical parametersQ
on the flat relativistic spacetime (Σ, ct) of TGR.

It is important to calculate the elusive proper (or classical) values of various
physical parameters on the elusive flat proper spacetime (Σ′, ct′) from their ob-
served and measurable gravitational-relativistic valueson the flat relativistic space-
time (Σ, ct) of TGR. This is so because the classical values of physical parameters so
calculated become useful data in physics. In order to do this, we must evaluate the
factorsγg(r′)−2 = (1 − 2GMoa/r′c2

g), γg(r
′)−1 andγg(r′) that appear in coordinate

interval and parameter transformations in the context of TGR.

Now in order to evaluateγg(r′)−2 = (1− 2GM0a/r′c2
g), we must have the value

of the elusive gravitational chargeM0a or the value of the rest massM0, sinceM0

and M0a are equal in magnitude, as well as the value of the elusive proper radial
distancer′ from the center of the rest massM0 to the location of the rest massm0 of
the test particle in the elusive proper Euclidean 3-spaceΣ′. Given that the rest mass
M0 can be calculated, thenr′ can be obtained by integrating the gravitational length
contraction formula, as done in Eqs. (120) and (121).

Given the calculated value ofM0, thenrs can be evaluated from Eq. (121). And
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∫

dr =

∫

(1−
2GM0a

r′c2
g

)1/2dr′

r = −
1
2

√

r′ − rs

r′
r′

[

−2
√

r′2 − r′rs + rs ln

(

−
1
2

rs + r′ +
√

r′2 − r′rs

)]

√

(r′ − rs)r′

(120)

where the integration has been obtained with the Mapplesoft’s Mapple 11 software
and

rs = 2GM0a/c
2
g ≡ 2GM0/c

2
g , (121)

is the Schwarzschild (or gravitational) radius of the gravitational field source.

given the measured value ofr (radial distance from the center of the inertial mass
M of the gravitational field source to the location of the inertial massm of the test
particle inΣ) and the calculated value ofrs, thenr′ can be evaluated from Eq. (120).
The first thing to do then is to calculate the rest massM0 of the gravitational field
source.

Let us now calculate the rest mass and classical radius of a gravitational field
source. Let us consider a spherically-symmetric gravitational field source of rest
massM0 and classical radiusR0 (of M0) on the flat proper spacetime (Σ′, ct′), which
is isolated from the gravitational field of every other source. The rest mass of the
field source will interact with its own gravitational field tobecome the inertial mass
M in the flat relativistic spacetime (Σ, ct) of TGR. Likewise the classical radiusR0

of M0 will suffer gravitational contraction to become the gravitational-relativistic
radiusR of M in Σ in the context of TGR, along all radial directions from the center
of M0.

Two equations are required to calculateM0 andR0. The first is the mass relation
(107) and the second is given by integrating the gravitational length contraction
formula at the interior of the gravitational field source. Now the gravitational length
contraction formula at the interior of a spherical solid non-black-hole body of rest
massM0 and radiusR0 with assumed uniform mass-density, which shall be derived
elsewhere with further development is the following

dr = γg(r
′)−1dr′ = (1−

2GM0a
R0c2

g

r′2

R2
0

)1/2;
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r′ ≤ R0; R0 > 2GM0a/c
2
g = rs (122)

Whereas the first equation of system (12a) is valid for positions exterior to the grav-
itational field source (i.e. forr′ > R0).

By integrating Eq. (122) from the center to the surface of thespherical body and
replacingM0a by M0 we have

∫ R

0
dr =

∫ R0

0
(1−

2GM0

R3
0c2
gr′2

)1/2dr′

or

R =
R0

2













































cos

















sin−1

√

2GM0

R0c2
g

















+

sin−1

√

2GM0

R0c2
g

√

2GM0

R0c2
g













































;

R0 > 2GM0/c
2
g (123)

Eq. (107) must likewise be re-written withM0a replaced byM0 as follows

M = M0(1−
2GM0

R0c2
g

); R0 > 2GM0/c
2
g (124)

Eqs. (123) and (124) must be solved simultaneously forM0 andR0, with the
observed numerical values ofM and R substituted. The numerical value ofM0

obtained must be substituted into Eq. (120) and (121) in order to evaluater′, given
the observed (or measured) value ofr. The value ofγg(r′) can then be evaluated
from the calculated values ofM0 andr′.

Eqs. (123) and (124) and Eqs. (120) and (121) apply for all gravitational field
sources, safe black holes. It can be shown from Eqs. (123) and(124) thatM = M0

andR = R0 in the Newtonian limit 2GM0/R0c2
g = 0. The approximationM ≈ M0

andR ≈ R0 can be made for sources of weak gravitational fields, such as the earth,
the other planets and the Sun, but not for a source of strong gravitational field, such
as a neutron star or a white dwarf.

5 Summary and conclusion

Every result in the contexts of TGR and combined TGR and SR on the flat four-
dimensional relativistic spacetime (Σ, ct), has its corresponding result in the con-
texts of the intrinsic theory of gravitational relativity (φTGR) and combined intrin-
sic theory of gravitational relativity and intrinsic special theory of gravity (φTGR+
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φSR) on the flat two-dimensional relativistic intrinsic spacetime (φρ, φcφt) underly-
ing (Σ, ct). The entire TGR and combined TGR and SR on (Σ, ct) can be derived by
the graphical approach in the two-world picturevia φSG andφSG+φSR, as demon-
strated for some results in part one of this paper [4].

The intrinsic gravitational local Lorentz transformation(φGLLT), the intrinsic
gravitational local Lorentz invariance (φGLLI) and the intrinsic mass relation in
the context ofφTGR, as well as intrinsic local Lorentz transformation (φLLT), in-
trinsic Lorentz invariance (φLLI) and intrinsic mass relation in the context of com-
binedφTGR andφSR on the flat two-dimensional relativistic intrinsic spacetime
(φρ, φcφt), which were derived graphically, were converted to the corresponding
results namely, GLLT, GLLI and mass relation in the context of TGR and LLT,
LLI and mass relation in the context of combined TGR and SR on the flat four-
dimensional relativistic spacetime (Σ, ct), by simply removing the symbolφ from
the results ofφTGR andφTGR+φSR on flat (φρ, φcφt) essentially in the first part of
this paper.

The results of TGR and TGR+SR derived by the analytical approach on the
flat four-dimensional relativistic spacetime (Σ, ct) in this paper, can likewise be
converted to the corresponding results ofφTGR andφTGR+φSR on the flat two-
dimensional relativistic intrinsic spacetime (φρ, φcφt), by incorporating the symbol
φ into the results of TGR and TGR+SR. For example, the gravitational potential
relation,

Φ(r′) = (−GM0a/r
′)(1− 2GM0a/r

′c2
g)

1/2,

in TGR becomes,

φΦ(φr′) = (−GφM0a/φr′)(1− 2GφM0a/φr′φc2
g)

1/2,

in the context ofφTGR; the force relation,

~F = ~F′(1− 2GM0a/r
′c2
g)

1/2,

in TGR becomes,
φF = φF′(1− 2GφM0a/φr′φc2

g)
1/2,

in the context ofφTGR; the special-relativistic kinetic energy relation,

T̃ = m0c2
γ(1− 2GM0a/r

′c2
g)

1/2[(1 − v2/c2
γ)
−1/2 − 1],

in the context of combined TGR and SR becomes

φT̃ = φm0φc2
γ(1− 2GφM0a/φr′φc2

g)
1/2 [(1 − φv2/φc2

γ)
−1/2 − 1],
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in the context of combinedφTGR andφSR; etc.
The flat four-dimensional relativistic spacetime (Σ, ct) and the inertial masses

m,M of particles and bodies in it, are the outward (or physical) manifestations
of the flat two-dimensional relativistic intrinsic (φρ, φcφt) and the intrinsic iner-
tial massesφm, φM of particles and bodies in it. Likewise the TGR, SR, TGR+SR,
CG, CM, etc, on (Σ, ct) are the outward (or physical) manifestations ofφTGR,φSR,
φTGR+φSR,φCG,φCM, etc, in the underlying (φρ, φcφt). The following remarks
follow:

1. The flat four-dimensional spacetime (Σ, ct) is impossible without the flat two-
dimensional intrinsic spacetime (φρ, φcφt).

2. The theories of gravity and motion namely, TGR, SR, TGR+SR, CG, CM,
as well as electromagnetism (EM) and other natural laws on the flat four-
dimensional spacetime (Σ, ct), are impossible without the corresponding in-
trinsic theories on the flat two-dimensional intrinsic spacetime (φρ, φcφt).

3. Intrinsic physics, (i.e.φTGR,φSR,φTGR+φSR,φCG,φCM, intrinsic elec-
tromagnetism (φEM) and other intrinsic natural laws in (φρ, φcφt), help to
determine the observed physics, (i.e. TGR, SR, TGR+SR, CG, CM, (EM)
and other natural laws), in spacetime

The results of the graphical approach to the theory of gravitational relativity
(TGR), combined theory of gravitational relativity and special theory of relativity
(TGR+SR) and the other associated theories in the first part of thispaper and of the
analytical approach to the theories in this second part, shall be deemed to be suffi-
cient for these initial papers, while other ramifications ofthe theories shall unfold
with further development.
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Appendix

Transformations of differential coefficients and differential opera-
tors in natural laws on flat spacetime in a gravitational fieldin the
context of the theory of gravitational relativity

The natural laws retain their usual instantaneous differential forms on the flat
relativistic spacetime in a gravitational field in the context of the theory of gravi-
tational relativity (TGR). Thus a classical or special-relativistic natural law (non-
gravitational or gravitational) may take on the following general form on the flat
proper spacetime (Σ′, ct′) in the absence of relative gravity at the first stage of evo-
lutions of spacetime/intrinsic spacetime and parameters/intrinsic parameters in a
gravitational field of arbitrary strength

A′∇′2 ~W ′ + B′~∇′ × ~W ′ = C′
∂ ~W ′

∂t′
+ D′

∂2 ~W ′

∂t′2
(A1)
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The twice differentiable function~W ′(r′, θ′, ϕ′, t′) and the differential coefficients
A′, B′,C′ andD′ are proper (or primed) physical parameters or physical constants
on the flat proper spacetime (Σ′, ct′) (in Fig. 3 or 11 of [1]) in the absence of relative
gravity at the first stage of evolutions of spacetime/intrinsic spacetime and parame-
ters/intrinsic parameters in a gravitational field. The primed differential operators
∇′2, ~∇′, ∂2/∂t′2 and∂/∂t′ are in terms of the coordinates of the flat proper spacetime
(Σ′, ct′).

The transformations of the primed classical or primed special-relativistic natural
law (A1) on flat proper spacetime (Σ′, ct′) in the assumed absence of relative grav-
itational field, at the first stage of evolutions of spacetime/intrinsic spacetime and
parameters/intrinsic parameters in a gravitational field into the unprimed form of the
law on flat relativistic spacetime (Σ, ct) in the context of the theory of gravitational
relativity (TGR) in relative gravitational field, at the second stage of evolutions of
spacetime/intrinsic spacetime and parameters/intrinsic parameters in a gravitational
field, involves two steps described as follows

Step1:

The proper (or primed) function~W ′ and the proper (or primed) differential coeffi-
cientsA′, B′,C′ andD′, which are physical parameters or physical constants on the
flat proper spacetime (Σ′, ct′), are transformed into their gravitational-relativistic(or
unprimed) values~W, A, B,C and D respectively, on the flat relativistic spacetime
(Σ, ct) in a gravitational field in the context of TGR, as done for some physical pa-
rameters in this paper and as shall be done further in the other papers.

Step2:

The primed differential operators∇′2, ~∇′, ∂/∂t′ and∂2/∂t′2 in terms of the coordi-
nates of the flat proper spacetime (Σ′, ct′) are transformed into the respective un-
primed differential operators∇2, ~∇, ∂/∂t and∂2/∂t2 in terms of the coordinates of
the flat relativistic spacetime (Σ, ct) in the context of TGR as described hereunder.

Now the transformations of the proper (or primed) parameters ~W ′, A′, B′,C′ and
D′ to the relativistic (or unprimed) parameters~W, A, B,C andD respectively in the
context of TGR will take the following forms

~W = fW (V ′g(r)) ~W ′ or ~W ′ = f −1
W (V ′g(r)) ~W (A2a)

A = fA(V ′g(r
′))A′ or A′ = f −1

A (V ′g(r
′))A (A2b)

B = fB(V ′g(r
′))B′ or B′ = f −1

B (V ′g(r
′))B (A2c)
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C = fC(V ′g(r
′))C′ or C′ = f −1

C (V ′g(r
′))C (A2d)

D = fD(V ′g(r
′))D′ or D′ = f −1

D (V ′g(r
′))D (A2e)

By using the inverse relations in equations (A2a) – (A2e) to eliminate ~W ′, A′, B′,C′

andD′ in Eq. (A1) we have,

f −1
A (V ′g(r

′))A∇′2( f −1
W (V ′g(r

′)) ~W)

+ f −1
B (V ′g(r

′))B~∇′ × ( f −1
W (V ′g(r

′)) ~W)

= f −1
C (V ′g(r

′))C
∂

∂t′
( f −1

W (V ′g(r
′)) ~W)

+ f −1
D (V ′g(r

′))D
∂2

∂t′2
( f −1

W (V ′g(r
′)) ~W) (A3)

However the inverse functionf −1
W (V ′g(r

′)), as well as the others are constant in
space within every local Lorentz frame, within which the transformations of natural
laws are derived in a gravitational field. They are also time-independent for static
gravitational fields that we shall be concerned with. Hence the inverse function
f −1
W (V ′g(r

′)) can be factored out, thereby simplifying Eq. (A3) as follows

f −1
A (V ′g(r

′))A∇′2 ~W + f −1
B (V ′g(r

′))B~∇′ × ~W

= f −1
C (V ′g(r

′))C
∂

∂t′
~W + f −1

D (V ′g(r
′))D

∂2

∂t′2
~W (A4)

The first step transforms the natural law (gravitational or non-gravitational) of
Eq. (A1) into Eq. (A4).

The transformations of the primed operators∇′2, ~∇′, ∂/∂t′ and∂2/∂t′2, in terms
of the coordinates of the flat proper spacetime (Σ′, ct′) that appear in Eq. (A4), into
the respective unprimed operators in terms of the coordinates of the flat relativistic
spacetime (Σ, ct), in the context of TGR, must then be derived at the second step.
This must be done with the aid of the gravitational local Lorentz transformation
(GLLT) and its inverse of systems (3) and (4), which shall be re-written here as
follows

dt′ = γg(r
′)(dt − (V ′g(r

′)/c2
g)dr);

dr′ = γg(r
′)(dr − V ′g(r

′)dt);

r′dθ′ = rdθ andr′ sinθ′dϕ′ = r sinθdϕ (A5)

dt = γg(r
′)(dt′ + (V ′g(r

′)/c2
g)dr′);
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dr = γg(r
′)(dr′ + V ′g(r

′)dt′);

rdθ = r′dθ′ andr sinθdϕ = r′ sinθ′dϕ′ (A6)

where
γg(r

′) = (1− V ′g(r
′)2/c2

g)
−1/2 = (1− 2GM0a/r

′c2
g)
−1/2 (A7)

I. Transformations of differential operators that are relevant for the transfor-
mations of non-gravitational laws in the context of the theory of gravitational
relativity

The special theory of relativity (SR) and other non-gravitational dynamical laws,
such as the law of propagation of massless electric and magnetic fields (electromag-
netism), law of propagation of massless waves, law of propagation of heat energy
through media, law of propagation of pressure waves throughmedia, etc, involve
dynamical velocities~u of massless waves, massless fields and other massless non-
gravitational parameters within local Lorentz frames on the flat relativistic space-
time (Σ, ct) in every gravitational field relative to observers. They also acquire rel-
ative gravitational velocity~V ′g(r

′) within local Lorentz frames on the flat relativistic
spacetime (Σ, ct) in every gravitational field.

However the relative gravitational velocity is not made manifest in actual trans-
lation in spacetime, hence any magnitude of~V ′g(r

′) is equivalent to zero magnitude
of dynamical velocity. Consequently a massless non-gravitational parameter, al-
though possesses both relative dynamical velocities~u and relative gravitational ve-
locities~V ′g(r

′) on flat spacetime in a gravitational field, it possesses resultant relative

dynamical velocity~u, since~V ′g(r
′) must be set to zero in the composition of~u and

~V ′g(r
′), from the point of view of dynamical relativity.
Now in deriving the transformations of the non-gravitational laws in the context

of the theory of gravitational relativity (TGR), we must employ the gravitational lo-
cal Lorentz transformation (GLLT) and its inverse, while allowing the gravitational
speedV ′g(r

′) to vanish. Consequently the form of the GLLT and its inverseto ap-
ply in deriving the transformations of non-gravitational laws in the context of TGR
(obtained by lettingVg(r′) = 0, henceγg(r′) = 1 in Eqs. (A5) and (A6)), is the
following

dt′ = dt; dr′ = dr′; r′dθ′ = rdθ; r′ sinθ′dϕ′ = r sinθdϕ (A8)

The trivial coordinate interval transformations (A8) imply the following trivial
differential operator transformations

∇′2 = ∇2; ~∇′ = ~∇; ∂/∂t′ = ∂/∂t;
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∂2/∂t′2 = ∂2/∂t2; e.t.c. (A9)

It is the trivial coordinate interval transformations (A8)and the implied trivial dif-
ferential operator transformations (A9) that must be employed in deriving the trans-
formations of the non-gravitational laws in the context of TGR.

If we assume that the natural law (A1) is a non-gravitationallaw and use system
(A9) in Eq. (A4) we have

f −1
A (V ′g(r

′))A∇2 ~W + f −1
B (V ′g(r

′))B~∇ × ~W

= f −1
C (V ′g(r

′))C
∂

∂t
~W + f −1

D (V ′g(r
′))D

∂2

∂t2
~W (A10)

Equation (A10) is the transformation of the assumed non-gravitational law (A1)
in a gravitational field in the context of TGR. The inverse transformation functions
f −1
A (V ′g(r

′)), f −1
B (V ′g(r

′)), f −1
C (V ′g(r

′)) and f −1
D (V ′g(r

′)) may not cancel out in (A10). It
must then be said that the non-gravitational law (A1) is not invariant with transfor-
mation in the context of TGR and that the law depends on position in a gravitational
field as a consequence, (by virtue of the inverse transformation functions that do not
cancel out).

On the other hand, the inverse transformation functionsf −1
A (V ′g(r

′)), f −1
B (V ′g(r

′)),
f −1
C (V ′g(r

′)) and f −1
D (V ′g(r

′)) may cancel out naturally in Eq. (A10), thereby simpli-
fying that equation as follows

A∇2 ~W + B~∇ × ~W = C
∂

∂t
~W + D

∂2

∂t2
~W (A11)

Then the assumed non-gravitational natural law (A1) must besaid to be invariant
with transformation in the context of TGR. It does not dependon position in a
gravitational field as a consequence.

The inverse transformation functionsf −1
A (V ′g(r

′)), f −1
B (V ′g(r

′)), f −1
C (V ′g(r

′)) and
f −1
D (V ′g(r

′)), can be obtained by deriving the transformations of the primed para-

meters A′, B′, C′ and D′ and primed function~W ′ into the unprimed parameters A,
B, C and D and unprimed function~W respectively in the context of TGR or they
can simply be read off from a table containing the transformations of physical para-
meters and physical constants in the context of TGR, which shall be developed to a
large extent in a paper shortly in this volume.
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II. Transformations of di fferential operators that are relevant for the trans-
formations of gravitational laws in the context of the theory of gravitational
relativity

If the natural law (A1) is a gravitational law, then the step from Eq. (A1) to Eq. (A4)
must be carried out. However the transformations of the primed differential oper-
ators∇′2, ~∇′, ∂/∂t′ and∂2/∂t′2 into the unprimed operators∇2, ~∇, ∂/∂t and∂2/∂t2

respectively, for the purpose of transforming gravitational laws in the context of
TGR, are elaborate and grossly different from the trivial transformations of differ-
ential operators of system (A9) to be used in transforming the non-gravitational laws
in the context of TGR.

While the gravitational speedV ′g(r
′) that appears in the GLLT (A5) and its in-

verse (A6) must be set to zero from the point of view of dynamical relativity, thereby
reducing the GLLT and its inverse to the trivial coordinate interval transformations
(A8) and the implied trivial differential operator transformations of system (A9), for
the purpose of deriving the transformations of the non-gravitational laws in the con-
text of TGR, it (the gravitational speed) is a non-zero relative speed in the context of
the gravitational laws (or from the point of view of gravitational relativity). The rel-
ativity of gravitational velocity and the associated relativity of gravity, as has been
discussed at different points in the previous papers, starting from sub-sub-section
2.2.1 of [2], refers to relativity of position, that is, variations ofV ′g(r

′) and the other
gravitational parametersΦ(r′) and~g(r′) with position in a gravitational field.

It follows from the foregoing paragraph that the full GLLT and its inverse must
be employed in deriving the transformations of differential operators to be used
in transforming the gravitational laws in the context of thetheory of gravitational
relativity (TGR). Now let us obtain the total differential of the unprimed twice dif-
ferentiable function~W(r, θ, ϕ, t) that appears in (A4) as follows

d ~W =
∂ ~W
∂t

dt +
∂ ~W
∂r

dr +
∂ ~W
r∂θ

rdθ +
∂ ~W

r sinθ∂ϕ
r sinθdϕ (A13)

Division of (A13) bydt′ gives the following

d ~W
dt′
=
∂ ~W
∂t

dt
dt′
+
∂ ~W
∂r

dr
dt′
+
∂ ~W
r∂θ

rdθ
dt′

+
∂ ~W

r sinθ∂ϕ
r sinθdϕ

dt′
(A14)

Upon evaluatingdt/dt′, dr/dt′, rdθ/dt′ andr sinθdϕ/dt′ with the aid of the inverse
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GLLT of system (A6), Eq. (A14) becomes the following

d ~W
dt′
=
∂ ~W
∂t′
= γg(r

′)
∂ ~W
∂t
+ γg(r

′)
Vg(r′)

c2
g

∂ ~W
∂r

Hence
∂

∂t′
= γg(r

′)
∂

∂t
+ γg(r

′)
Vg(r′)

c2
g

∂

∂r
(A15)

and
∂2

∂t′2
=













γg(r
′)
∂

∂t
+ γg(r

′)
Vg(r′)

c2
g

∂

∂r













2

∂2

∂t′2
= γg(r

′)2 ∂
2

∂t2
+ 2γg(r

′)2 Vg(r′)

c2
g

∂2

∂r∂t

+γg(r
′)2 Vg(r′)2

c4
g

∂2

∂r2
(A16)

Division of (A13) bydr′ gives the following

d ~W
dr′
=
∂ ~W
∂t

dt
dr′
+
∂ ~W
∂r

dr
dr′
+
∂ ~W
r∂θ

rdθ
dr′

+
∂ ~W

r sinθ∂ϕ
r sinθdϕ

dr′
(A17)

Again upon evaluatingdt/dr′ , dr/dr′ , rdθ/dr′ andr sinθdϕ/dr′ with the aid of the
inverse GLLT of system (A6), Eq. (A17) becomes the following

d ~W
dr′
=
∂ ~W
∂r′
= γg(r

′)
Vg(r′)

c2
g

∂ ~W
∂t
+ γg(r

′)
∂ ~W
∂r

Hence
∂

∂r′
= γg(r

′)
∂

∂r
+ γg(r

′)
Vg(r′)

c2
g

∂

∂t
(A18)

and
∂2

∂r′2
=













γg(r
′)
∂

∂r
+ γg(r

′)
Vg(r′)

c2
g

∂

∂t













2

∂2

∂r′2
= γg(r

′)2 ∂
2

∂r2
+ 2γg(r

′)2 Vg(r′)

c2
g

∂2

∂r∂t
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+γg(r
′)2 Vg(r′)2

c4
g

∂2

∂t2
(A19)

Division of Eq. (A13) byr′dθ′ gives the following

d ~W
r′dθ′

=
∂ ~W
∂t

dt
r′dθ′

+
∂ ~W
∂r

dr
r′dθ′

+
∂ ~W
r∂θ

rdθ
r′dθ′

+
∂ ~W

r sinθ∂ϕ
r sinθdϕ

r′dθ′
(A20)

But dt/r′dθ′ = dr/r′dθ′ = r sinθdϕ/r′dθ′ = 0 andrdθ/r′dθ′ = 1 from system (A6).
Hence Eq. (A20) simplifies as follows

d ~W
r′dθ′

=
∂ ~W

r′∂θ′
=
∂ ~W
r∂θ

Hence
∂

r′∂θ′
=

∂

r∂θ
(A21)

and
∂2

r′2∂θ′2
=

∂2

r2∂θ2
(A22)

Finally division of Eq. (A13) byr′ sinθ′dϕ′ gives the following

d ~W
r′ sinθ′dϕ′

=
∂ ~W
∂t

dt
r′ sinθ′dϕ′

+
∂ ~W
∂r

dr
r′ sinθ′dϕ′

+
∂ ~W
r∂θ

rdθ
r′ sinθ′dϕ′

+
∂ ~W

r sinθ∂ϕ
r sinθdϕ

r′ sinθ′dϕ′
(A23)

But,
dt/r′ sinθ′dϕ′ = dr/r′ sinθ′dϕ′ = rdθ/r′ sinθ′dϕ′ = 0 and

r sinθdϕ/r′ sinθ′dϕ′ = 1,

from system (A6). Hence Eq. (A23) simplifies as follows

d ~W
r′ sinθ′dϕ′

=
∂ ~W

r′ sinθ′∂ϕ′
=

∂ ~W
r sinθ∂ϕ

Hence
∂

r′ sinθ′∂ϕ′
=

∂

r sinθ∂ϕ
(A24)
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and
∂2

r′2 sin2 θ′∂ϕ′2
=

∂2

r2 sin2 θ∂ϕ2
(A25)

By collecting equations (A18), (A21) and (A24) we have

~∇′ =
∂

∂r′
r̂ ′ +

∂

r′∂θ′
θ̂′ +

∂

r′ sinθ′∂ϕ′
ϕ̂′

=













γg(r
′)
∂

∂r
+ γg(r

′)
Vg(r′)

c2
g

∂

∂t













r̂ +
∂

r∂θ
θ̂

+
∂

r sinθ∂ϕ
ϕ̂ (A26)

And by collecting equations (A19), (A22) and (A25) we have

∇′2 =
∂2

∂r′2
+

∂2

r′2∂θ′2
+

∂2

r′2 sin2 θ′∂ϕ′2

= γg(r
′)2 ∂

2

∂r2
+ 2γg(r

′)2 Vg(r′)

c2
g

∂2

∂r∂t

+γg(r
′)2 Vg(r′)2

c4
g

∂2

∂t2
+

∂2

r2∂θ2
+

∂2

r2 sin2 θ∂ϕ2
(A27)

Equations (A15), (A16), (A26) and (A27) are the most generalforms of the
differential operator transformations to be used in transforming gravitational laws
in the context of TGR. They shall find useful application in the transformations of
the equations of the Maxwellian theory of gravity (MTG), to be developed elsewhere
with further development.

II. 1. Transformation of the 3-geometry Newton’s law of gravity in the context
of the theory of gravitational relativity

For the transformation of the three-dimensional Newton’s law of gravity in the
context of the TGR, on the other hand, the GLLT must be truncated to a three-
dimensional system by making the time dimension invariant (or absolute). This
gives non-trivial spatial coordinate interval transformations only, which are the lo-
cal coordinate transformations in the context of TGR that are relevant for the 3-
geometry Newton’s law of gravity namely,

dr′ = γg(r
′)dr ; r′dθ′ = rdθ ;
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r′ sinθ′dϕ′ = r sinθdϕ anddt′ = dt (A28)

The transformations of the gradient and Laplacian operators in the context of TGR
implied by system (A28) are the following

~∇′ =
∂

∂r′
r̂ ′ +

∂

r′∂θ′
θ̂′ +

∂

r′ sinθ′∂ϕ′
ϕ̂′

= γg(r
′)−1 ∂

∂r
r̂ +

∂

r∂θ
θ̂ +

∂

r sinθ∂ϕ
ϕ̂ (A29)

and

∇′2 =
∂2

∂r′2
+

∂2

r′2∂θ′2
+

∂2

r′2 sin2 θ′∂ϕ′2

= γg(r
′)−2 ∂

2

∂r2
+

∂2

r2∂θ2
+

∂2

r2 sin2 θ∂ϕ2
(A30)

And the first-order and second-order derivatives with respect to time implied by
system (A28) are

∂

∂t′
=
∂

∂t
and

∂2

∂t′ 2
=
∂2

∂t 2
(A31)

While Eqs. (A29) – (A30) are relevant for the transformation of Newton’s law
of gravity in non-spherically-symmetry gravitational fields, they simplify as follows
in the case of spherically-symmetric gravitational fields

d
dr′
= γg(r

′)−1 d
dr

and
d2

dr′2
= γg(r

′)−2 d2

dr2
(A31)
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