Universes

Pierre-Yves Gaillard

Abstract. The book **Categories and Sheaves** by Kashiwara and Schapira starts with a few statements which are not proved, a reference being given instead. We spell out the proofs in a short and self-contained way.

Feeling the proofs are easier to read if they are printed on a single page, I left this page almost blank. Please, go to the next page.

This is version 1. To make sure you have the last version, please go to: $\label{eq:http://www.iecn.u-nancy.fr/~gaillapy/DIVERS/Universes/$

A **universe** is a set \mathcal{U} satisfying

(i)
$$\emptyset \in \mathcal{U}$$
,
(ii) $u \in U \in \mathcal{U} \implies u \in \mathcal{U}$,
(iii) $U \in \mathcal{U} \implies \{U\} \in \mathcal{U}$,
(iv) $U \in \mathcal{U} \implies \mathcal{P}(U) \in \mathcal{U}$,
(v) $I \in \mathcal{U}$ and $U_i \in \mathcal{U}$ for all $i \implies \bigcup_{i \in I} U_i \in \mathcal{U}$,
(vi) $\mathbb{N} \in \mathcal{U}$.

We want to prove:

(vii)
$$U \in \mathcal{U} \implies \bigcup_{u \in U} u \in \mathcal{U}$$
,
(viii) $U, V \in \mathcal{U} \implies U \times V \in \mathcal{U}$,
(ix) $U \subset V \in \mathcal{U} \implies U \in \mathcal{U}$,
(x) $I \in \mathcal{U}$ and $U_i \in \mathcal{U}$ for all $i \implies \prod_{i \in I} U_i \in \mathcal{U}$.

[We have kept Kashiwara and Schapira's numbering of Conditions (i) to (x).]

Obviously, (ii) and (v) imply (vii), whereas (iv) and (ii) imply (ix). Axioms (iii), (vi), and (v) imply

(a)
$$U, V \in \mathcal{U} \implies \{U, V\} \in \mathcal{U},$$

and thus

(b)
$$U, V \in \mathcal{U} \implies (U, V) := \{\{U\}, \{U, V\}\} \in \mathcal{U}.$$

Proof of (viii). If $u \in U$ and $v \in V$, then $\{(u, v)\} \in \mathcal{U}$ by (ii), (b), and (iii). Now (v) yields

$$U \times V = \bigcup_{u \in U} \bigcup_{v \in V} \{(u, v)\} \in \mathcal{U}. \square$$

Assume $U, V \in \mathcal{U}$, and let V^U be the set of all maps from U to V. As $V^U \in \mathcal{P}(U \times V)$, Statements (viii), (iv), and (ii) give

(c)
$$U, V \in \mathcal{U} \implies V^U \in \mathcal{U}.$$

Proof of (x). As

$$\prod_{i \in I} U_i \in \mathcal{P}\left(\left(\bigcup_{i \in I} U_i\right)^I\right),\$$

(x) follows from (v), (c), and (iv). \Box