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Article 14:

Formulating the theories of gravity/intrinsic gravity and
motion/intrinsic motion and their union at the second stage of

evolutions of spacetime/intrinsic spacetime and
parameters/intrinsic parameters in a gravitational field. Part I.
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E-mail: cfs ib . com OR adekugbe@alum.mit.edu

The theory of gravitational relativity and intrinsic theory of gravitational relativity
(TGR/φTGR), the special theory of relativity and intrinsic special theory of relativity
(SR/φSR), and their union, on flat four-dimensional relativistic spacetime (Σ, ct) and its
underlying flat two-dimensional relativistic intrinsic spacetime (φρ, φcφt), at the second
stage of evolutions of spacetime/intrinisic spacetime and parameters/intrinsic parame-
ters in a gravitational field of arbitrary strength, isolated in the previous papers, are
developed fully in the first two parts of this paper. Mass and other parameter relations
in the context of TGR and the implied modification of Newton’s law of universal grav-
ity in the context of TGR are derived. Local Lorentz invariance is validated on flat
spacetime in the context of TGR. This first part is devoted to the graphicalapproaches
in the four-world picture to these flat spacetime/intrinsic spacetime theories, while an-
alytical approaches shall be developed in the second part to complement the graphical
approaches. The other theories isolated at the second stage of evolutions of space-
time/intrinsic spacetime and parameters/intrinsic parameters in every gravitational field
namely, the metric theory of absolute intrinsic gravity (φMAG) and combined metric
theory of absolute intrinsic gravity and absolute intrinsic motion (φMAG ∪ φMAM), on
curved ‘two-dimensional’ absolute intrinsic spacetime (φρ̂, φĉφt̂ ); their projective theo-
ries into the flat relativistic intrinsic spacetime namely, the Newtonian theory ofabsolute
intrinsic gravity (φNAG) and combined Newtonian theory of absolute intrinsic gravity
and absolute intrinsic motion (φNAG∪ φNAM), as well as the outward manifestations
of these in the flat four-dimensional relativistic spacetime namely, the non-observable
Newtonian theory of absolute gravity (NAG) and combined Newtonian theory of ab-
solute gravity and absolute motion (NAG∪NAM), shall be developed in the third part
of this paper.

∗Author’s surname had been Adekugbe or Adekugbe-Joseph until2011.
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1 Introduction

1.1 On the global spacetime/intrinsic spacetime geometries of theories/intrinsic
theories of gravity, motion and other non-gravitational laws at the second
stage of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic
parameters in a gravitational field

The theory of relativity in spacetime and intrinsic theory of relativity in intrinsic
spacetime, due to the presence of a long-range metric force field, developed in [1]
and adapted to the gravitational field in section 2 of [2], is adirect pre-requisite
to this paper. As has been robustly established in those previous papers, the four-
dimensional spacetime, qualified as relativistic spacetime and denoted by (Σ, ct) in
our notation, containing the relativistic masses (m, ε/c2) of material particles and
bodies and the underlying relativistic intrinsic spacetime (φρ, φcφt) containing the
relativistic intrinsic masses (φm, φε/φc2) of particles and bodies, which evolve at the
second stage of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic
parameters in a gravitational field, are everywhere flat in a gravitational field of
arbitrary strength (or in every gravitational field).

There are, in addition, in every gravitational field, the curved two-dimensional
proper intrinsic spacetime (φρ′, φcφt′) with orthogonal curvilinear intrinsic dimen-
sionφρ′ andφcφt′ and consequently with intrinsic Lorentzian metric tensor at every
point of it, containing the intrinsic rest masses (φm0, φε

′/φc2) of material particles
and bodies, which projects the flat relativistic intrinsic spacetime (φρ, φcφt) under-
neath it. There is also the curved ‘two-dimensional’ absolute intrinsic spacetime
(φρ̂, φĉφt̂ ), an absolute intrinsic Riemannian metric space with absolute intrinsic
sub-Riemannian metric tensorφĝik, containing the absolute intrinsic rest masses
φm̂0 and φM̂0 of particles and bodies. Finally there is the constantly flat‘two-
dimensional’ absolute-absolute intrinsic-intrinsic spacetime (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ), isolated
in [3], containing the absolute-absolute intrinsic-intrinsic rest masses (φφ ˆ̂m0, φφ ˆ̂ε/φφ ˆ̂c)2

of particles and bodies in it, in every gravitational field.

The flat relativistic spacetime (Σ, ct) containing the relativistic masses (m, ε/c2)
or (M, E/c2) of particles and bodies and the hierarchy of intrinsic spacetimes
namely, flat relativistic intrinsic spacetime (φρ, φcφt) underlying (Σ, ct), curved pro-
per intrinsic spacetime (φρ′, φcφt′), curved absolute intrinsic spacetime (φρ̂, φĉφt̂ )
and flat absolute-absolute intrinsic-intrinsic spacetime(φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ) underlying
the flat (φρ, φcφt) and the associated hierarchy of intrinsic masses (φm, φε/φc2),
(φm0, φε

′/φc2), (φm̂0, φε̂/φĉ2) and (φφ ˆ̂m0, φφ ˆ̂ε/φφ ˆ̂c2) respectively, listed above have
been shown to evolve simultaneously at the combined first andsecond stages of
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evolutions of spacetime/intrinsic spacetimes and parameters/intrinsic parameters in
a gravitational field in sub-section 1.1 of [2] and illustrated graphically as the global
spacetime/ intrinsic spacetime geometries of Figs. 7 and 8 and their inverses in
Figs. 9 and 10 of that paper.

Fig. 7 of [2] was re-presented as Fig. 9 of [4], where the flat ‘two-dimensional’
absolute-absolute intrinsic-intrinsic spacetime (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ), isolated in [3] was in-
corporated into the geometry. Thus Fig. 9 of [4] of combined first and second stages
of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic parameters
in a gravitational field and its complementary diagram and their inverses (not drawn)
in [4], constitute the complete set of spacetime/intrinsic spacetime geometries that
support the theories of gravity/intrinsic gravity, motion/intrinsic motion and all other
non-gravitational laws/intrinsic non-gravitational laws in a gravitational field in our
universe and the negative universe.

In order to make this paper as autonomous as possible and alsofor convenience
of reading, Fig. 9 of [4] shall be reproduced as Fig. 1 and its complementary dia-
gram (not drawn) in [4] shall be presented as Fig. 2 of this paper. We only need
to incorporate the flat (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ) and (−φφ ˆ̂ρ∗,−φφ ˆ̂cφφˆ̂t∗) into Figs. 7 and 8
of [2] to accomplish these. However the inverse diagrams obtained by incorpo-
rating (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ), and (−φφ ˆ̂ρ∗,−φφ ˆ̂cφφˆ̂t∗), into Fig. 9 and 10 of [2], shall not be
drawn in order to conserve space.

As finally determined in section 3 of [4], the theories of gravity/intrinsic grav-
ity and theories of combined gravity/intrinsic gravity and motion/intrinsic motion at
the first stage of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic
parameters in a gravitational field must be formulated within intrinsic local Lorentz
frames on the curved ‘2-dimensional’ absolute intrinsic spacetime (φρ̂, φĉφt̂ ) and
curved two-dimensional proper intrinsic spacetime (φρ′, φcφt′) with respect to in-
trinsic 1-observers along the curved proper intrinsic spaceφρ′ and 3-observers in the
relativistic Euclidean 3-spaceΣ in Fig. 1. These areφMAG, φNAG* and φMAG+
φMAM, φNAG*+φNAM* on the curved (φρ̂, φĉφt̂ ) and the primed intrinsic theo-
riesφNAG′ andφNAG′+φNAM ′ within intrinsic Local Lorentz frames on curved
(φρ′, φcφt′).

There is also the primed intrinsic classical (or Newton’s) theory of (relative)
gravity (φCG′) within intrinsic local Lorentz frames on the curved properintrinsic
spacetime (φρ′, φcφt′), with essential equations (115)− (118) of [4], formulated
with respect to intrinsic 1-observers in the curved proper intrinsic spaceφρ′ and
3-observers in the relativistic Euclidean 3-spaceΣ in Fig. 1. The CG′/φCG′ arise
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Figure 1: The global spacetime/intrinsic spacetime diagram of combined first
and second stages of evolutions of spacetime/intrinsic spacetime and parame-
ters/intrinsic parameters in a gravitational field of arbitrary strength that is valid
with respect to 3-observers in the relativistic Euclidean 3-spaces in our universe and
the negative universe.

from the proper intrinsic gravitational speedφV ′g(φr′), proper intrinsic gravitational
potentialφΦ′(φr′) and proper intrinsic gravitational fieldφg′(φr′) established along
the curvedφρ′ andφcφt′ by φM0 andφE′/φc2 of the gravitational field source at the
origins of the curvedφρ′ andφcφt′ respectively.

Apart from φMAG, φNAG*, φMAG+φMAM, φNAG*+ φNAM*, φNAG′,
φNAG′+φNAM ′ andφCG′, there are also primed intrinsic spacial theory of relativ-
ity (φSR′) and other primed intrinsic classical non-gravitational lawsφCNGL′ and
primed intrinsic special-relativistic non-gravitational laws (φCNGL′+φSR′) within
intrinsic local Lorentz frames on curved proper intrinsic spacetime (φρ′, φcφt′), for-
mulated with respect to intrinsic 1-observers along the curved proper intrinsic space
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Figure 2: The complementary diagram to Fig. 1 that is valid with respect to 1-
observers in the relativistic time dimensions in our universe and the negative uni-
verse.

φρ′ and 3-observers in the relativistic Euclidean 3-spaceΣ in Fig. 1. The intrinsic
theories on the curved (φρ̂, φĉφt̂ ) and curved (φρ′, φcφt′) listed in this and the fore-
going two paragraphs have been brought forward to the secondstage of evolutions
of spacetime/intrinsic spacetime and parameters/intrinsic parameters from the first
stage in a gravitational field of arbitrary strength.

The primed intrinsic theoriesφNAG′, φNAG′+φNAM ′, φSR′, φCNGL′, φSR′,
φSR′+φCNGL′ andφCG′ within proper (or primed) intrinsic local Lorentz frames
on curved two-dimensional proper intrinsic space (φρ′, φcφt′), formulated with re-
spect to intrinsic 1-observers along the curved proper intrinsic spaceφρ′ in Fig. 1, at
the first stage of evolutions of spacetime/intinsic spacetime and parameters/intrinsic
parameters in a gravitational field, project the unprimed intrinsic theories namely,
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φNAG, φNAG+φNAM, φSR,φCNGL,φCNGL+φSR andφCG respectively into the
respective unprimed (or relativistic) intrinsic local Lorentz frames on the flat two-
dimensional relativistic intrinsic spacetime (φρ, φcφt) in Fig. 1, at the second stage
of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic parameters
in a gravitational field, which are valid with respect to 3-observers in the relativistic
Euclidean 3-spaceΣ overlying in Fig. 1.

The projective unprimed (or gravitational-relativistic)intrinsic theories on the
flat relativistic intrinsic spacetime (φρ, φcφt) are then made manifest in the respec-
tive unprimed (or gravitational-relativistic) theories namely, NAG, NAG+NAM, SR,
CNGL, CNGL+SR and CG, within unprimed (or relativistic) local Lorentz frames
on flat four-dimensional relativistic spacetime (Σ, ct) with respect to 3-observers in
Σ at the second stage of evolutions of spacetime/intrinsic spacetime and parame-
ters/intrinsic parameters in a gravitational field.

There are also theφMAG, φNAG* and φMAG+φMAM, φNAG*+φNAM* on
the curved ‘two-dimensional’ absolute intrinsic spacetime (φρ̂, φĉφt̂ ) to be formu-
lated with respect to 3-observers in the relativistic Euclidean 3-spaceΣ, as well
as the Newtonian theory of absolute-absolute intrinsic-intrinsic gravityφφNAAG,
the Newtonian theory of absolute-absolute intrinsic-intrinsic motionφφNAAM and
their unionφφNAAG+φφNAAM on the constantly flat absolute-absolute intrinsic-
intrinsic spacetime (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ), to be formulated with respect to 3-observers in
Σ in Fig. 1, at the second stage of evolutions of spacetime]intrinsic spacetime and
parameters/intrinsic parameters in a gravitational field.

The program of this paper in three parts is to formulate the unprimed (or gravita-
tional-relativistic) theories at the second stage of evolutions of spacetime/intrinsic
spacetime and parameters/intrinsic parameters in a gravitational field namely, NAG/
φNAG, NAG/φNAG+NAM /φNAM, SR/φSR, CNGL/φCNGL and CG/φCG on the
flat relativistic spacetime/flat relativistic intrinsic spacetime (Σ, ct)/(φρ, φcφt), as
well asφMAG, φNAG* andφMAG+φMAM, φNAG*+φNAM* on curved (φρ̂, φĉφt̂ )
with respect to 3-observers in the relativistic Euclidean 3-spaceΣ in Fig.1, while
φφNAAG, φφNAAM and φφNAAG+φφNAAM on flat (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ), shall be for-
mulated with respect to 3-observers in the relativistic Euclidean 3-spaceΣ in Fig. 1
in another paper later in this volume.

The unprimed (or gravitational-relativistic) intrinsic classical (or Newton’s) the-
ory of gravity (φCG) within unprimed intrinsic local Lorentz frames on the flat rel-
ativistic intrinsic spacetimeφρ, φcφt) and its outward manifestation (CG) within
unprimed local Lorentz frames on the flat relativistic spacetime (Σ, ct), shall be
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developed along with the unprimed (or gravitational-relativistic) intrinsic special
theory of relativity (φSR) within unprimed intrinsic local Lorentz frames on the
flat relativistic intrinsic spacetime (φρ, φcφt) and its outward manifestation namely,
the unprimed (or gravitational-relativistic) special theory of relativity within un-
primed local Lorentz frames on the flat relativistic spacetime (Σ, ct), with respect to
3-observers inΣ in Fig. 1, in the first two parts of this paper.

The φMAG, φNAG* and φMAG+φMAM, φNAG*+ φNAM* on curved ab-
solute intrinsic spacetime (φρ̂, φĉφt̂ ) and NAG/φNAG, NAG/φNAG+NAM /φNAM
on flat relativistic spacetime/flat relativistic intrinsic spacetime (Σ, ct)/(φρ, φcφt),
shall be formulated with respect to 3-observers inΣ in Fig. 1 in the third part of this
paper, whileφφNAAG, φφNAAM and φφNAAG+φφNAAM on flat (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ),
shall be formulated with respect to 3-observers in the relativistic Euclidean 3-space
Σ in another paper later in this volume, as mentioned above.

The unprimed classical and special-relativistic non-gravitational laws (CNGL
and CNGL+SR) on flat relativistic spacetime (Σ, ct) and the unprimed intrinsic clas-
sical and intrinsic special-relativistic non-gravitational laws (φCNGL andφCNGL+
φSR) on flat relativistic intrinsic spacetime (φρ, φcφt) in Fig. 1, shall be considered
in the process of validating the principle of equivalence onflat relativistic spacetime
(Σ, ct) in a gravitational field of arbitrary strength in another paper following the
third part of this paper.

1.2 Further on the concepts of gravitational velocity, gravitational potential and
gravitational acceleration in spacetime and the respective intrinsic parame-
ters in intrinsic spacetime

The concept of static speed was derived graphically within along-range metric force
field in section 2 of [5], where it was denoted byV ′s. It was particularized to the
gravitational field, given the alternative name of gravitational speed and re-denoted
by V ′g(r

′) in [2]. There indeed exists the concept of gravitational velocity ~V ′g(r
′) in

the Euclidean 3-spaceΣ′, which corresponds to the concept of gravitational acceler-
ation~g ′(r′) in Σ′ in the phenomenon of gravity, where~V ′g(r

′) and~g ′(r′) are related
thus

|~g ′(r′) | = −
GM0a

r′2
=

1
2

d
dr′

[V ′g(r
′)2] (1)

The definition ofV ′g(r
′) that satisfies Eq. (1) is

V ′g(r
′)2 =

2GM0a
r′

(2a)
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or

V ′g(r
′) = −

√

2GM0a
r′

(2b)

where~V ′g(r
′) is the proper gravitational velocity at radial distancer′ from the center

of the assumed spherical rest massM0 of the gravitational field source in the proper
Euclidean 3-spaceΣ′ (in Fig. 2 or 3 of [6]).

The relationship between gravitational speed and gravitational potential also de-
duced and written as Eq. (17) of [2] is the following

Φ′(r′) = −
1
2

V ′g(r
′)2 = −

GM0a
r′

(3)

Except for the replacement of the rest massM0 by the active gravitational mass
(or gravitational charge)M0a, Eqs. (1)− (3) have been deduced and presented as
Eqs. (16a-b)− (18) of [2]. The need to replace the rest mass by the active gravita-
tional mass (or gravitational charge) in the definitions of the proper gravitational
velocity ~V ′g(r

′), proper (or Newtonian) gravitational potentialΦ′(r′) and proper
(or Newtonian) gravitational acceleration (or field)~g ′(r′) was deduced in sub-sub-
section 2.1.5 of [6] and sub-section 2.1 of [4], see the discussion leading to Eq. (55)
of [4].

The negative root is taken in Eq. (2b) in order to make the gravitational speed
(or velocity) attractive like gravitational accelerationand gravitational potential. In-
deed~V ′g(r

′) and~g ′(r′) are collinear vectors, both pointing radially towards thecenter
of the gravitational field source in the case of a spherical gravitational field source.
The definition of the gravitational speed along with its negative sign (or its attractive
nature) of Eq. (2b) was deduced in sub-sub-section 2.1.5 of [6] and sub-section 2.1
of [4] with respect to 3-observers in the relativistic Euclidean 3-spaceΣ in Fig. 1; see
the discussion leading to Eq. (55) of [4]. However there is yet a final more funda-
mental justification for the attractive nature of the gravitational speed (or velocity),
from which the gravitational potential and gravitational acceleration (or field) inherit
their attractive nature, which shall be presented elsewhere with further development,
as mentioned in section 1.2 of [4].

One finds from the relation of gravitational potentialΦ′(r′) and gravitational
acceleration (or field)~g ′(r′) to the gravitational velocity~V ′g(r

′) in (1) and (3), that the
gravitational velocity is the most fundamental of the threegravitational parameters
~V ′g(r

′), Φ′(r′) and~g ′(r′). There could not have been the concepts of gravitational
potential and gravitational acceleration without the concept of gravitational velocity
as Eqs. (1) and (3) show. As a matter of fact, gravitational potential and gravitational
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field inherit their attractive natures from the attractive nature of their gravitational
velocity progenitor as shall be justified shortly. Recall that absolute intrinsic static
speed is a fundamental geometrical parameter isolated in a long range metric force
field in general in section 2 of [5]. The concepts of potentialand field could not
appear at that geometrical foundation.

Now the centrality of the gravitational potential and gravitational field obtains
in a spherically symmetric gravitational field only. The gravitational potential and
gravitational field are functions of all the spherical coordinatesr′, r′θ′ andr′ sinθ′ϕ′

that originate from the centroid of a non-spherical gravitational field source as
Φ′(r′, θ′, ϕ′) and~g ′(r′, θ′, ϕ′). The gravitational field does not point purely radially
towards the centroid of a non-spherical gravitational fieldsource.

On the other hand, gravitational velocity is central in bothspherically-symmetric
and non-spherically-symmetric gravitational fields. Thusgravitational velocity can
be function of the radial coordinate only as~V ′g(r

′) and point radially towards the cen-
ter or centroid of every every gravitational field source (spherical or non-spherical).
Thus we can write as follows for a non-spherically-symmetric gravitational field

~V ′g = ~V ′(r′) = V ′g(r
′)r̂ ′;

~g ′ = ~g ′(r′, θ′, ϕ′)

= g′r(r
′, θ′, ϕ′)r̂′ + g′θ(r

′, θ′, ϕ′)θ̂′;

+g′ϕ(r
′, θ′, ϕ′)ϕ̂′;

Φ′ = Φ′(r′, θ′, ϕ′);

(non− spherical grav. field source)







































































(4)

The centrality in all gravitational fields is a property of the gravitational velocity to
be explained formally elsewhere with further development.

Another important difference among the properties of gravitational potential
Φ′(r′, θ′, ϕ′) and gravitational field~g ′(r′, θ′, ϕ′) in a non-spherically-symmetric
gravitational field (orΦ′(r′) and ~g ′(r′) in a spherically-symmetric gravitational
field) and the gravitational velocity~V ′g(r

′) in a non-spherically-symmetric or spheri-
cally-symmetric gravitational field, is that proper (or classical) gravitational po-
tentialΦ′(r′, θ′, ϕ′) and proper (or classical) gravitational field~g ′(r′, θ′, ϕ′) in the
proper Euclidean 3-spaceΣ′ in the context of the primed classical theory of gravity
(CG′) on flat proper spacetime (Σ′, ct′) at the first stage of evolutions of space-
time/intrinsic spacetime and parameters/intrinsic parameters, transform non-trivia-
lly to relativistic gravitational potentialΦ(r, θ, ϕ) and relativistic gravitational field
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~g(r, θ, ϕ) on flat relativistic Euclidean 3-spaceΣ in the context of the theory of grav-
itational relativity (TGR) on flat relativistic spacetime (Σ, ct) in Fig. 1 at the second
stage of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic para-
meters in a gravitational field as follows

Φ(r, θ, ϕ) = fΦ(V ′g(r
′))Φ′(r′, θ′, ϕ′) (5)

and
~g(r, θ, ϕ) = fg(V

′
g(r
′))~g ′(r′, θ′, ϕ′) (6)

where the functionsfΦ(V ′g(r
′) and fg(V ′g(r

′) shall be determined in the second part
of this paper.

Whereas gravitational velocity is invariant, transformingtrivially in the context
of the relativistic theory of gravity between flat proper spacetime (Σ′, ct′) and flat
relativistic spacetime (Σ, ct) in every gravitational field as follows

~Vg(r) = ~V ′g(r
′) (7)

This invariance was first stated without proof as invarianceof static velocity by
Eq. (79b) of [7] and particularized to the gravitational field (still without proof) as
Eq. (2b) of [2]. The proof of Eq. (7) can still not be given at this point, but elsewhere
with further development, where the peculiar properties ofthe gravitational velocity
namely, its centrality in all gravitational fields and its invariance (7), as well as the
mechanism by which a gravitational field source establishesnon-uniform gravita-
tional velocity~V ′g(r

′) along every radial direction from its centroid, thereby giving
rise to gravitational field and gravitational potential as progenies, shall be unraveled.

As prescribed without proof in sub-sub-section 2.1.5 of [6], the non-observ-
able immaterial negative active gravitational mass (or negative gravitational charge)
−M0a, hidden within the observable positive physical (or material) rest massM0 of a
gravitational field source is the source of the proper gravitational velocity, proper (or
classical) gravitational potential and proper (or classical) gravitational field. Hence
these parameters have been written in terms of the negative gravitational charge
−M0a in Eqs. (1), (2a) or (2b) and (3). Thus the negativity of the gravitational
charge is the origin of the attractive nature of gravitational velocity, gravitational
potential and gravitational field, as being prescribed for now in the present theory.

An important task to be executed elsewhere with further development is funda-
mental explanations of the origin of immaterial active gravitational mass (or gravi-
tational charge) and its negative sign, as well as the model of how−M0a is contained
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in the rest massM0 and the mechanism by which−M0a hidden inM0 establishes
~Vg(r′), Φ′(r′, θ′, ϕ′) and~g ′(r′, θ′, ϕ′) at every point in the proper Euclidean 3-space
Σ′ from the centroid ofM0.

Just as gravitational potentialΦ′(r′, θ′, ϕ′) is a property of space at a position of
coordinates (r′, r′θ′, r′ sinθ′ϕ′) from the centroid of the rest massM0 of the gravita-
tional field source, such that when a test particle arrives atthis position, it acquires
gravitational potentialΦ′(r′, θ′, ϕ′), so is gravitational velocity~V ′g(r

′) a property of
space at at the position of coordinates (r′, r′θ′, r′ sinθ′ϕ′) from the centroid of the
rest massM0 of the gravitational field source, which a test particle acquires upon
arriving there.

Unlike the dynamical velocityv of dynamics (or special relativity), gravitational
velocity− a static velocity− is not made manifest in actual translation in space of
the test particle that acquires it. Thus a test particle at rest relative to an observer
at radial distancer′ from the centroid of the rest massM0 of a gravitational field
source in the proper Euclidean 3-spaceΣ′, possesses yet gravitational velocity~Vg(r′)
relative to this observer and all other observers.

Gravitational velocity is different from escape velocityvesc, which has the same
expression as Eq.(2b) forV ′g(r

′), in the sense thatvescis a dynamical velocity di-
rected radially away from a gravitational field source, which a particle possesses and
escapes the gravitational influence of the field source. Escape velocity, although de-
termined by the gravitational field source, is a property of the particle.

Gravitational velocity~V ′g(r
′) is a more appropriate parameter to incorporate into

the theory of gravitational relativity (TGR) on flat relativistic spacetime (Σ, ct) in
Fig. 1, started in section 2 of [2], than gravitational potential. It has several analogies
to the dynamical velocity~v of dynamics (or special relativity). For instance, the
gravitational speedV ′g(r

′) effects the theory of gravitational relativity (TGR) on flat
four-dimensional relativistic spacetime (Σ, ct), just as dynamical speedv effects the
special relativity (SR) on the flat four-dimensional relativistic spacetime (Σ, ct) in
Fig. 1.

The gravitational velocity~V ′g(r
′) of TGR being a property of space, makes TGR

possible on the flat relativistic spacetime (Σ, ct) in all finite neighborhood of a grav-
itational field source in the absence of a test particle. On the other hand, dynamical
velocity~v of SR, being a property of the particle in motion, makes it mandatory for
a particle to be in motion relative to the observer for SR to bepossible.

The gravitational velocity~V ′g(r
′), (like gravitational potentialΦ′(r′, θ′, ϕ′)), is

invariant with the observer or frame of reference, whereas the dynamical velocity
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varies with the observer or frame of reference. The concept of relativity associated
with gravitational velocity~V ′g(r

′) and the theory of gravitational relativity (TGR)

induced by~V ′g(r
′), in the absence of SR, is merely relativity with position inspace

in a gravitational field and not relativity with observer or frame of reference, as
discussed in sub-sub-section 2.2.1 of [2]. It refers to variation with gravitational
speedV ′g(r

′) of space and time intervals of events and physical parameters, which
implies their variations with position in a gravitational field.

On the other hand, gravitational velocity is an absolute parameter in the context
of dynamics (or SR), since the gravitational velocity at a given position in space is
not made manifest in motion and is the same relative to all observers of frames of
reference. Conversely dynamical velocity~v is absolute in the context of TGR, since
a given dynamical velocity of a particle relative to an observer does not vary with
gravitational velocity or with position in a gravitationalfield. That is, it is invariant
in the context of TGR as shall be demonstrated in the second part of this paper.

It may be recalled that the clarification of the concepts of relative static speed
and relativity associated with relative static speed in a relative metric force field was
done in sub-section 2.3 of [1] and adapted to the clarification of relative gravita-
tional speed and relativity associated with relative gravitational speed in a relative
gravitational field in sub-sub-section 2.2.1 of [2].

Now the largest possible kinematic velocity of particles, including photon, in
spacetime is the velocity of an electromagnetic wave in vacuum, cγ = 3× 108 m/s.
Likewise the largest possible gravitational (or static) velocity that can be established
at a point in spacetime by a gravitational field source or combination of gravitational
field sources is the velocity of gravitational waves,cg = 3×108 m/s. These velocities
of ‘signal’ were first introduced in [8], see Table III and Table IV of that paper.

While the velocity of lightcγ is made manifest in actual translation through
space of electromagnetic waves, the maximum over all gravitational velocitiescg,
(like gravitational velocityVg(r′)), is not made manifest in actual translation through
space of gravitational waves. It isa priori in the present theory that gravitational
waves possess constant gravitational (or static) speed,cg = 3 × 108 m/s, but are at
rest always relative to all observers. This actually implies that gravitational radiation
involving energy transfer in spacetime is impossible or does not exist. The fact that
gravitational effect propagates through space at the speed of light but not as awave,
such that if a body is suddenly introduced or annihilated at apoint in space, the
effect propagates away at the speed of light, has a different explanation, which has
been started in sub-section 1.1 of [2] and will be completed elsewhere with further
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development.
The value of gravitational velocity at the surface (or eventhorizon) of a black

hole iscg. This is so since at the surface (or event horizon) of a black hole of rest
massM0 and radiusrb, the gravitational speed is given from Eq. (2a) as,Vg(rb)/cg =
(2GM0a/rbc2

g)
1/2. But 2GM0a/rbc2

g = 1 for a black hole. HenceVg(rb) = cg. Thus
a particle that falls to the surface (or event horizon) of a black hole acquires the
gravitational (or static) speed,cg = 3× 108 m/s. We shall find in future articles that
this event (of fall of a test particle to the event horizon of ablack hole) is not allowed
for a test particle with non-zero rest mass, just as a particle with non-zero rest mass
cannot attain the speed of light in vacuumcγ in relative motion.

As has been noted in [8] and earlier in this section, we have isolated two dif-
ferent speeds of ‘signals’ namely, the dynamical speed of electromagnetic waves
(or light), usually denoted by c, but which has been re-denoted bycγ since [8], and
the gravitational (or static) speed of gravitational waves, which has been denoted
by cg since [8]. This fact has remained unknown in physics until now. The only
speed of signal known in physics until now is the dynamical speed of lightcγ, usu-
ally denoted byc, which both electromagnetic and gravitational waves are known to
possess.

1.3 Further on the spacetime/intrinsic spacetime geometries of the theory of
gravitational relativity/intrinsic theory of gravitational relativity and special
theory of relativity/intrinsic special theory of relativity in a gravitational field

As introduced in section 2 of [8], the flat four-dimensional metric spacetime (Σ, ct)
is composed of the flat four-dimensional affine spacetime of dynamics and electro-
magnetism (Σd, cγt) and the flat four-dimensional metric spacetime of the theories
of gravity (Σg, cgt). That is,

(Σ, ct) ≡ (Σg, cgt) ∪ (Σd, cγt)

or

(x1, x2, x3, ct) ≡ (x1
g, x

2
g, x

3
g, cgt) ∪ (χ1, χ2, χ3, cγt)

The affine spacetime of dynamics and electromagnetism (Σd, cγt) is inseparably em-
bedded in the metric spacetime of the theories of gravity (Σg, cgt), yielding the met-
ric compound spacetime (Σ, ct).

Likewise the metric compound intrinsic spacetime (φρ, φcφt) is composed of
the affine intrinsic spacetime of intrinsic dynamics and intrinsicelectromagnetism
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denoted by (φχ, φcγφt) in [8] and the metric intrinsic spacetime of the theories of
intrinsic gravity (φρg, φcgφt). That is,

(φρ, φcφt) ≡ (φρg, φcgφt) ∪ (φχ, φcγφt)

Again the affine (φχ, φcγφt) is inseparably embedded in the metric (φρg, φcgφt)
yielding the metric compound intrinsic spacetime (φρ.φcφt).

The massesm and intrinsic massesφm of every particle or body are likewise
composed of the non-ponderable (or affine) dynamical componentmd andφmd and
the ponderable (metric) componentsmg andφmg. That is,

m ≡ mg ∪ md

and
φm ≡ φmg ∪ φmd

Again md is inseparably embedded inmg forming the compound massm and
φmd is inseparably embedded inφmg forming the compound intrinsic massφm in
nature. Thus as the non-ponderable (or affine) dynamical massmd of a particle
moves at a velocity~v in the affine spacetime of dynamics (Σd, cγt) relative to an
observer, it drags its ponderable (or metric) gravitational massmg along, such that
mg moves at equal velocity~v in its spacetime of the theories of gravity (Σg, cgt)
relative to the observer. Consequently the ponderable (or metric) compound massm
is observed to move at velocity~v in the metric compound spacetime (Σ, ct) relative
to the observer.

Now the gravitational velocity~V ′g(r
′) is a relative velocity in the context of

the theory of gravitational relativity (TGR) on flat relativistic spacetime (Σ, ct) in
Fig. 1, started in section 2 of [2] and shall be advanced further in this first part of
this paper; the gravitational-relativistic form of the classical (or Newton’s) theory
of gravity (CG) on flat relativistic spacetime (Σ, ct), shall be developed in the sec-
ond part of this paper and a Maxwellian theory of gravity (MTG) that describes the
‘propagation’ at gravitational velocity~V ′g(r

′) on the flat relativistic spacetime (Σ, ct),
of massless gravitational field~g and another induced massless partner-gravitational
field ~d in the relativistic Euclidean 3-spaceΣ in a gravitational field, to be developed
elsewhere with progress of the present theory. The MTG in themetric spacetime
(Σg, cgt) of the theories of gravity is the gravitational counterpart of electromag-
netism (EM) in the affine spacetime of electromagnetism and dynamics (Σd, cγt).

The gravitational velocity~V ′g(r
′) must be treated as a relative velocity in the

context of the theories of gravity namely, TGR, CG and MTG, onthe flat relativistic
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spacetime (Σ, ct), where, as discussed in the sub-section 2 of [2] and mentioned
in the preceding sub-section, the relativity of~V ′g(r

′) refers to the variation of its
magnitude with position in the gravitational field.

On the other hand, the gravitational velocity is absolute inthe context of the dy-
namical theories namely, the special theory of relativity (SR), the special-relativistic
form of classical (or Newton’s) theory of motion (CM) and dynamics of non-gravita-
tional fields and parameters, that is, electromagnetism (EM) and other non-gravita-
tional laws. In other words, should the dynamical velocity~v of relative motion
be replaced by the gravitational (or static) velocity~V ′g(r

′) in these dynamical laws,

then~V ′g(r
′) must be treated as absolute and the resulting theories as non-observable,

which is so since~V ′g(r
′) is not made manifest in motion and since it is the same

relative to all observers or frames of reference.

Let us temporarily separate the affine proper intrinsic time dimensionφcγφt′

from the metric proper intrinsic gravitational time dimension φcgφt′ and combine
the metric compound proper intrinsic spaceφρ′ with φcγφt′ to have flat proper intrin-
sic spacetime (φρ′, φcγt′) underlying flat proper spacetime (Σ′, cγt′) in the assumed
absence of relative gravity (or assumed absence of relativegravitational velocity
~V ′g(r

′)).

Then let us introduce non-uniform intrinsic gravitationalspeedφV ′g(r
′) along

the straight lineφρ′ along the horizontal and straight lineφcγφt′ along the vertical.
This will causeφρ′ to be curved towards the vertical, whileφcγφt′ will remain not
curved from its vertical position. This is so because the intrinsic gravitational speed
φV ′g(φr′) being absolute in the context of intrinsic dynamics, it is absolute on the
intrinsic dynamical spacetime (φχ′, φcγφt′). Consequently the intrinsic dynamical
time dimensionφcγφt′ is unaffected (or is invariant) with the presence ofφV ′g(φr′).
On the other hand, the presence ofφV ′g(φr′) along the compound proper intrinsic
spaceφρ′ will causeφρ′ to transform non-trivially into the compound relativistic
intrinsic spaceφρ. Graphically the foregoing paragraph and this paragraph mean
that the presence of non-uniformφV ′g(φr′) alongφρ′ along the horizontal and along
φcγφt′ along the vertical, will causeφρ′ to be curved towards the vertical, thereby
projectingφρ along the horizontal, whileφcγφt′ will remain not curved from its
vertical position, as illustrated in Fig. 3(a).

On the other hand, let us hypothetically combine the compound proper intrinsic
spaceφρ′ with the proper intrinsic gravitational time dimensionφcgφt′ to have a flat
(φρ′, φcgφt′) in the assumed absence of relative intrinsic gravitational field (or in
the assumed absence of relative gravitational velocity~V ′g(r

′)). Then let non-uniform
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Figure 3:

intrinsic gravitational speedφV ′g(φr′) be introduced along the straight lineφρ′ along
the horizontal and straight lineφcgφt′ along the vertical of the flat (φρ′, φcgφt′). This
will causeφρ′ to be curved into the first quadrant towards the vertical andφcgφt′ to
be curved into the second quadrant towards the horizontal simultaneously, so that
φρ′ andφcgφt′ constitute orthogonal curvilinear intrinsic dimensions,as illustrated
in Fig. 3(b).

Fig. 3(b) arises becauseφV ′g(φr′) being a relative intrinsic speed in the context
of the theories of intrinsic gravity, it is relative on the intrinsic gravitational space-
time (φρ′g,φcgφt′). Consequently the presence of non-uniformφV ′g(φr) alongφcgφt′

will cause it to transform non-trivially intoφcgφt. Graphically this means that the
presence of non-uniformφV ′g(φr′) alongφcgφt′ along the vertical will causeφcgφt′

to be curved relative to the vertical as in Fig. 3(b).
The curved compound proper intrinsic space− straight line proper intrinsic dy-

namical time dimension (φρ′, φcγφt′) in Fig. 3(a) possesses non-Lorentzian intrinsic
metric tensor of the Gaussian form,

dφs′2 = φc2
γdφt′2 − φg11dφρ′2 (8)

On the other hand, the curved compound proper intrinsic space− curved proper
intrinsic gravitational time dimension (φρ′, φcgφt′) in Fig. 3(b) possesses the intrin-
sic Lorentzian metric

dφs′2 = φc2
gdφt′2 − dφρ′2 (9)

This is so becauseφρ′ andφcgφt′ are orthogonal curvilinear intrinsic dimensions.
However Eq. (9) must be derived from the full diagram in the two-world picture of
Fig. 1 along with its complementary diagram of Fig. 2, as donein section 2 of [2].

The conclusion that can be drawn from all the foregoing is that if the dynamical
time dimensioncγt and the intrinsic time dimensionφcγφt are the only time dimen-
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sion and intrinsic time dimension that exist along the with the metric 3-spaceΣ and
intrinsic metric spaceφρ in nature, then the theories of gravity on flat relativistic
spacetime (Σ, ct) namely, TGR, CG and MTG, will be impossible, since flat rela-
tivistic spacetime (Σ, cγt) with Lorentzian metric tensor does not exist in Fig. 3(a).

On the other hand, if the gravitational time dimensioncgt and intrinsic grav-
itational time dimensionφcgφt are the only time dimension and intrinsic time di-
mension that exist along with the metric 3-spaceΣ and intrinsic metric spaceφρ,
so that Fig. 3(b), which must be drawn in the two-world picture, obtains in every
gravitational field, then TGR, CG and MTG will be possible on the flat relativistic
spacetime (Σ, cgt). However the dynamical theories namely, SR, CM, EM and other
non-gravitational dynamical laws on flat spacetime in a gravitational field will be
impossible on flat spacetime in this case, as shall be discussed shortly.

However the dynamical time dimension and intrinsic dynamical time dimension
(cγt/φcγφt) and the gravitational time dimension and intrinsic gravitational time
dimension (cgt/φcgφt) are not separated in gravitation as done in Figs. 3(a) and
3(b) in nature. What happens in reality is that although it is the proper intrinsic
gravitational time dimensionφcgφt′ that is curved by the presence of non-uniform
relative intrinsic gravitational speedφV ′g(φr′) in a gravitational field, sinceφcγφt′ is
not separated fromφcgφt′, bothφcgφt′ andφcγφt′ are curved, so that the compound
intrinsic time dimensionφcφt′ ≡ φcφt′ ∪ φcγφt′ is curved along with the compound
intrinsic spaceφρ′ ≡ φρ′g ∪ φχ

′ in a gravitational field, as illustrated in Fig. 3(c).
Fig. 3(c) must actually be presented in the full form within the two-world picture as
in Fig. 1.
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The conclusion then is that it is the metric compound two-dimensional proper
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intrinsic spacetime (φρ′, φcφt′) that is curved relative to its projective flat metric
compound two-dimensional relativistic intrinsic spacetime (φρ, φcφt) that underlies
flat metric compound four-dimensional relativistic spacetime (Σ, ct) in a gravita-
tional field in the contexts of the theory of gravitational relativity/intrinsic theory of
gravitational relativity (TGR/φTGR). Consequently the theories of gravity namely,
TGR, CG and MTG operate on flat compound four-dimensional metric spacetime
(Σ, ct) and the theories of intrinsic gravity namely,φTGR,φCG andφMTG operate
on flat compound two-dimensional intrinsic metric spacetime (φρ, φcφt) in every
gravitational field.

Again let us artificially separate the compound one-dimensional symmetry-part-
ner relativistic massφε/φc2 of a particle in the straight line compound relativistic
intrinsic time dimensionφcφt along the vertical into its affine dynamical component
φεd/φc2

γ and metric gravitational componentφεg/φc2
g, whereφεd/φc2

γ is resident in
the the affine relativistic intrinsic dynamical time dimensionφcγφt andφεg/φc2

g is
resident in the metric relativistic intrinsic gravitational time dimensionφcgφt.

The special theory of relativity (SR) and intrinsic specialtheory of relativity
(φSR) are yet absent in the discussion in the preceding paragraph. The term ‘rela-
tivistic’ in relativistic intrinsic massφε/φc2 in relativistic intrinsic time dimension
φcφt and relativistic intrinsic massφm in relativistic intrinsic spaceφρ, refers to
the presence of the theory of gravitational relativity (TGR) that converts the flat
proper spacetime (Σ′, ct′) containing the rest masses (m0, ε

′/c2) and (M0, E′/c2)
of particles and bodies into flat relativistic spacetime (Σ′, ct′) containing the rela-
tivistic masses (m, ε/c2) and (M, E/c2) of particles and bodies (in the absence of
SR) and the presence of the intrinsic theory of gravitational relativity (φTGR) that
converts the flat proper intrinsic spacetime (φρ′, φcφt′) containing the intrinsic rest
masses (φm0, φε

′/φc2) and (φM0, φE′/φc2) of particles and bodies into flat relativis-
tic intrinsic metric spacetime (φρ, φcφt) containing the relativistic intrinsic masses
(φm, φε/φc2) and (φM, φE/φc2) of particles and bodies (in the absence ofφSR).

As done previously, gravitational-relativistic shall often be used to refer to the
presence of TGR, as distinct from special-relativistic that refers to the presence of
SR. The adjective relativistic shall be used to refer to either situation whenever pos-
sibility of confusion can be ruled out. The relativistic massm or M in the relativistic
Euclidean 3-spaceΣ in the context of TGR shall be identified as the inertial mass in
the second part of this paper.

Let us artificially combine the metric gravitational-relativistic intrinsic gravi-
tational massφεg/φc2

g (artificially separated fromφεd/φc2
γ), which is resident in
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the metric relativistic intrinsic gravitational time dimensionφcgφt along the vertical
with the metric compound relativistic intrinsic massφm in the metric compound rel-
ativistic intrinsic spaceφρ along the horizontal. This gives the relativistic intrinsic
mass (φm, φεg/φc2

g) of the particle in flat relativistic intrinsic spacetime (φρ, φcgφt)
in the absence of special relativity and intrinsic special relativity yet.

Let us then introduce special relativity/intrinsic special relativity by considering
the gravitational-relativistic intrinsic mass (φm, φεg/φc2

g) of the particle to perform
intrinsic motion at intrinsic dynamical speedφv on the flat relativistic intrinsic met-
ric spacetime (φρ, φcgφt) relative to an observer. The possession of intrinsic speed
φv relative to the observer of the compound intrinsic massφm contained in an ele-
mentary interval of intrinsic metric spacedφρ, will cause it to be in intrinsic motion
along an affine intrinsic space coordinateφx̃ that is inclined at an intrinsic angle
φψ relative toφρ along the horizontal. This is so because possession of intrinsic
speedφv relative to the observer by the affine dynamical massφmd will causeφmd

to undergo intrinsic motion along the inclined affine intrinsic spaceφx̃ and drag the
metric gravitational intrinsic massφmg along, thereby making the metric compound
intrinsic massφm ≡ φmg ∪ φmd contained in elementary intervaldφρ of intrinsic
metric spaceφρ to move at intrinsic speedφv along the inclined affine intrinsic space
φx̃.

On the other hand, the possession of intrinsic dynamical speedφv relative to an
observer by the metric gravitational massφεg/φc2

g in the metric intrinsic gravita-
tional time dimensionφcgφt along the vertical, will not causeφεg/φc2

g contained in
elementary intervalφcgdφt of the metric intrinsic gravitational time dimensionφcgφt
to be in intrinsic motion along an affine intrinsic coordinateφcγφt̃ that is inclined
anti-clockwise at an intrinsic angleφψ relative toφcgφt along the vertical. Rather
φεg/φc2

g contained in intervalφcgdφt will remain not rotated fromφcgφt along the
vertical, but will move at intrinsic speedφv alongφcgφt along the vertical.

The end of the foregoing paragraph is so because the relativeintrinsic dynamical
speedφv in the context ofφSR (or on the flat affine intrinsic dynamical spacetime
(φχ, φcγφt̃ ) of φSR), is an absolute intrinsic speed on the flat metric intrinsic grav-
itational spacetime (φρg, φcgφt). Hence the possession ofφv relative to an observer
by φεg/φc2

g in φcgφt, will leave bothφεg/φc2
g andφcgφt unchanged (or invariant).

Graphically this means thatφεg/φc2
g contained in intervalφcgdφt of φcgφt, cannot

be in motion along an affine intrinsic coordinate that is rotated anti-clockwise by an
intrinsic angleφψ relative toφcgφt along the vertical. Ratherφεg/φc2

g contained in
φcgdφt will be moving at the intrinsic speedφv in φcgφt along the vertical relative
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to the observer.
Possession of intrinsic dynamical speedφv relative to an observer by the metric

intrinsic gravitational massφmg contained in intervaldφρg of the metric intrinsic
gravitational spaceφρg along the horizontal, will likewise leave bothφmg andφρg
unchanged (or invariant). Graphically this means thatφmg contained indφρg should
not be in motion along an affine intrinsic coordinate that is rotated anti-clockwise
by an intrinsic angleφψ relative toφρg along the horizontal.

However sinceφmd contained indφχ is not separated fromφmg contained in
dφρg, thereby giving rise to the compound intrinsic massφm contained in inter-
val dφρ of compound intrinsic spaceφρ in the artificially prescribed intrinsic mass
(φm, φε/φc2

g) of a particle, the intrinsic motion ofφmd contained indφχ along the
affine intrinsic space coordinateφx̃, which is rotated anti-clockwise by intrinsic an-
gleφψ relative to the horizontal, by virtue of the intrinsic speedφv of φmd relative to
the observer, will dragφmg contained indφρg in intrinsic motion at intrinsic speed
φv along the inclined intrinsic affine space coordinateφx̃.

Whereas since onlyφεg/φc2
g contained inφcgdφt exists inφcgφt along the ver-

tical in the artificially prescribed intrinsic massφm, φεg/φc2
g) of the particle, there

is no rotation ofφεd/φc2
γ contained inφcγdφt̃ to cause the rotation ofφεg/φc2

g con-
tained inφcgdφt from its vertical position. This paragraph and the foregoing two
paragraphs explain the geometry of Fig. 4(a) for the relative intrinsic motion of the
artificially prescribedφm, φεg/φc2

g).

m
m

m
m

/
/

/

/
/ c

c

c

c
c 2

2

2

2
2

ρ
ρ

ψ
ψ

Ø
Ø

ψØ

v
v

v
vv

v
v

v
v

x
x

x
x

m
m

v
v

g

g g

g

g

g

g
g

g

c

c c

c cct

t t

t tt

d d

d

d
d

d
d

c

c
c

t

t
t

d

d
d

(a) (b)

oo

A
A

A
A

0

0

d

x, y z,

d

x, y z,

Figure 4:

On the other hand, let us artificially combine the metric compound intrinsic mass
φm occupying intervaldφρ of the metric compound intrinsic spaceφρ along the
horizontal with the affine equivalent intrinsic dynamical massφεd/φc2

γ occupying
intervalφcγdφt of affine intrinsic dynamical time dimensionφcγφt along the vertical
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(which is artificially separated from the metric intrinsic gravitational massφεg/φc2
g),

in the assumed absence of intrinsic dynamical speedφv relative to an observer (or
of φSR).

Let us then introduce intrinsic special relativity/special relativity by considering
the intrinsic mass (φm, φεd/φc2

γ) of the artificial particle on the artificial flat intrinsic
space (φρ, φcγφt) to possess intrinsic dynamical speedφv relative to the observer.
This will cause the compound intrinsic massφm contained in intervaldφρ of the
metric compound intrinsic spaceφρ to be in intrinsic motion at intrinsic speedφv
along an affine intrinsic space coordinateφx̃ that is inclined at an intrinsic angleφψ
relative toφρ along the horizontal, as in Fig. 4(a).

The possession of intrinsic dynamical speedφv relative to the observer of the
affine symmetry-partner intrinsic dynamical massφεd/φc2

γ occupying intervalφcγdφt
of affine dynamical intrinsic time dimensionφcγφt along the vertical, will likewise
causeφεd/φc2

γ contained in intervalφcγdφt to be intrinsic motion along an affine in-
trinsic time coordinateφcγφt̃ that is inclined anti-clockwise into the second quadrant
at intrinsic angleφψ relative toφcγφt along the vertical. This is so because a relative
intrinsic dynamical speedφv is a relative intrinsic speed on the flat affine intrinsic
dynamical spacetime (φχ, φcγφt). Consequently possession of intrinsic dynamical
speedφv relative to an observer by affine intrinsic dynamical mass (φmd, φεd/c2

γ)
on flat (φχ, φcγφt ), will cause rotation of affine intrinsic frame (φχ̃, φcγφt̃ ) of the

particle relative to affine intrinsic frame (φχ̃, φcγφt̃ ) of the observer.
The foregoing two paragraphs imply that possession of intrinsic dynamical speed

φv of the artificially prescribed intrinsic mass (φm, φεd/φc2
γ) of a particle on the ar-

tificial flat intrinsic spacetime (φρ, φcγt), will give rise to the geometry depicted in
Fig. 4(b). However it is the full form within the two-world picture of Fig. 4(b) and
its complementary diagram that must be drawn, as shall be done later in this paper.

The inclined affine intrinsic space coordinate space− straight line intrinsic met-
ric time dimension along the vertical (φχ̃, φcgφt) in Fig. 4(b) possesses non-Lorent-
zian ‘metric’ tensor of the Gaussian form,

dφs̃2 = φc2
gdφt2 − φg11dφχ̃

2 (10)

On the other hand, the inclined affine intrinsic spacetime (φχ̃, φcγφt̃) in Fig. 4(b)
possesses the intrinsic Lorentzian ‘metric’ tensor

dφs̃2 = φc2
gdφt2 − dφχ̃2 (11)

However Eq. (11) must be derived from the full diagram in the two-world picture
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along with its complementary diagram, as done with Figs. 8(a) and 8(b) of [9] and
as shall be re-visited later in this paper.

The conclusion that can be drawn from the above is that if the gravitational time
dimensioncgt and intrinsic gravitational time dimensionφcgφt are the only time
dimension and intrinsic time dimension that exist along with the metric Euclidean
3-spaceΣ and its underlying straight line intrinsic metric spaceφρ in every gravita-
tional field in nature, then the dynamical theories namely, SR, the special-relativistic
classical (or Newtonian) theory of motion (CM), electromagnetism (EM) and other
non-gravitational dynamical laws, will be impossible on a flat relativistic space-
time (Σ, cgt) in a gravitational field, since a flat relativistic affine intrinsic spacetime
geometry ofφSR and hence a flat affine spacetime geometry of SR do not exist in
Fig. 4(a).

On the other hand, if the affine dynamical time dimensioncγt and affine intrinsic
dynamical time dimensionφcγφt are the only time dimension and intrinsic time di-
mension that exist along with the metric Euclidean 3-spaceΣ and straight line metric
intrinsic intrinsic spaceφρ underlyingΣ in every gravitational field (as known until
now in physics), so that Fig. 4(b), which must be drawn in the two-world picture
along with its complementary diagram exists in every gravitational field, then SR,
CM, EM and other non-gravitational dynamical laws will be possible on a flat rela-
tivistic spacetime (Σ, cγt) in every gravitational field, since Lorentzian affine intrinsic
spacetime geometry and hence Lorentzian spcetime geometryobtain in Fig. 4(a).
However TGR, CG and MTG will be impossible on the flat relativistic spacetime
(Σ, cγt) in this situation.

However the affine dynamical time dimension/affine intrinsic dynamical time di-
mension (cγt/φcγφt) and metric gravitational time dimension/metric intrinsic grav-
itational time dimension (cgt/φcgφt) are not separated in dynamics an gravity in
reality unlike as done in Figs. 4(a) and 4(b). What happens in reality is that al-
though it is the affine symmetry-partner intrinsic dynamical massφεd/φc2γ contained
in interval φcγdφt of affine intrinsic dynamical time dimensionφcγφt, which pos-
sesses intrinsic dynamical speedφv relative to the observer and undergoes intrinsic
motion at intrinsic speedφv along an affine intrinsic time coordinateφcγφt̃ that is
inclined anti-clockwise at an intrinsic angleφψ relative toφcγφt along the vertical,
as illustrated in Fig. 4(b), sinceφεd/φc2

γ andφεg/φc2
g are not separated in nature,

φεd/φc2
γ dragsφεg/φc2

g along. Consequently it is the metric compound symmetry-
partner intrinsic massφε/φc2 ≡ φεg/φc2

g ∪ φεd/φc2
γ that undergoes intrinsic motion

at intrinsic speedφv along the inclined affine intrinsic time coordinateφcγφt̃ in a

625A. Joseph. Formulating gravity and motion at second stage of evolutions of spacetime . . . I.



Vol. 1(3B) : Article 14 THE FUNDAMENTAL THEORY ... (M) Mar, 2012

gravitational field.
Thus the metric compound symmetry-partner intrinsic massφε/φc2 ≡ φεg/φc2

g∪

φεd/φc2
γ occupying intervalφcdφt of the metric compound intrinsic time dimension

φcφt, which is in intrinsic motion at intrinsic dynamical speedφv along an affine in-
trinsic time coordinateφcγφt̃, which is inclined into the second quadrant at intrinsic
angleφψ relative to the metric intrinsic time dimensionφcφt along the vertical, must
be combined with the metric compound intrinsic massφm ≡ φmg ∪ φmd, occupying
intervaldφρ of the metric compound intrinsic spaceφρ, which is in intrinsic motion
at intrinsic dynamical speedφv along an affine intrinsic space coordinateφχ̃ that is
inclined into the first quadrant at equal intrinsic angleφψ relative to the metric com-
pound intrinsic spaceφρ along the horizontal. In other words, the artificial diagram
of Fig. 4(b) must be replaced with the natural diagram of Fig.4(c) for SR/φSR in
every gravitational field.
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However it is the full form in the two-world picture of Fig. 4(c) and its com-
plementary diagram, along with their inverses, that must bedrawn, from which the
intrinsic local Lorentz transformation/local Lorentz transformation (φLLT /LLT) and
their inverses must be derived in every gravitational field,as done in [9] and as shall
be re-visited later in this paper.

Again the conclusion that follows from the natural geometryof Fig. 4(c) for
SR/φSR in a gravitational field, is that the dynamical laws namely, SR, CM, EM
and other non-gravitational dynamical laws, operate on theflat metric compound
gravitational-relativistic spacetime (Σ, ct) (prescribed in the context of the theory of
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gravitational relativity (TGR)) and the intrinsic dynamical theories namely,φSR,
φCM, φEM and other non-gravitational intrinsic dynamical laws, operate on the flat
gravitational-relativistic intrinsic metric spacetime (φρ, φcφt) prescribed byφTGR.

The TGR, the relativistic form (in the context of TGR) of the classical (or New-
tonian) theory of gravity (CG) and the Maxwellian theory of gravity (MTG), involv-
ing relative gravitational velocity~Vg(r′) on the flat metric compound gravitational-
relativistic spacetime (Σ, ct), are the counterparts of SR, the special-relativistic clas-
sical (or Newtonian) theory of motion (CM) and electromagnetism (EM), involving
dynamical velocity~v relative to the observer on the flat relativistic spacetime (Σ, ct)
in a gravitational field. TheφTGR, φCG andφMTG, involving relative intrinsic
gravitational speedφVg(φr′) on the flat metric compound gravitational-relativistic
intrinsic spacetime (φρ, φcφt), are likewise the counterparts ofφSR,φCM andφEM,
involving intrinsic dynamical speedφv relative to the observer on the flat relativistic
spacetime (Σct) in every gravitational field.

2 The theory of gravitational relativity /intrinsic theory of gravitational rela-
tivity by graphical approach

As mentioned towards the end of sub-section 1.1, the first twoparts of this paper
shall be devoted to the development of the theory of gravitational relativity/intrinsic
theory of gravitational relativity (TGR/φTGR); the gravitational-relativistic form
(in the context of TGR/φTGR) of the classical (or Newton’s) law of gravity/intrinsic
classical (or intrinsic Newton’s) law of gravity (CG/φCG) and the gravitational-
relativistic form (in the context of TGR/φTGR) of the special theory of relativity
and intrinsic special theory of relativity (SR/φSR), on the flat relativistic spacetime
(Σ, ct) and its underlying flat relativistic intrinsic spacetime (φρ, φcφt) in Fig. 1.

Now the absolute intrinsic rest mass (φm̂0, φε̂/φĉ2) in absolute intrinsic motion
at absolute dynamical speedφV̂d relative to the curved ‘two-dimensional’ absolute
intrinsic metric spacetime (φρ̂, φĉφt̂ ) within an absolute intrinsic local Lorentz
frame on the curved (φρ̂, φĉφt̂ ), at ‘distance’φr̂ from the base of the absolute in-
trinsic rest mass (φM̂0, φÊ/φĉ2) of the gravitational field source at the origin of
the curved (φρ̂, φĉφt̂ ) in Fig. 1, acquires the absolute intrinsic gravitational speed
φV̂g(φr̂) established at ‘distance’φr̂ along the curvedφρ̂ and φĉφt̂ by φM̂0 and
φÊ/φĉ2 respectively.

The absolute intrinsic dynamical speedφV̂d of the absolute intrinsic rest mass
(φm̂0, φε̂/φĉ2) of the test particle and the absolute intrinsic gravitational speed
φV̂g(φr̂) within the absolute intrinsic local Lorentz frame on the curved (φρ̂, φĉφt̂ )
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at ‘distance’φr̂ along the curvedφρ̂ andφĉφt̂ from the base ofφM̂0 in φρ̂ and the
base ofφÊ/φĉ2 in φĉφt̂, are then projected invariantly into the corresponding proper
intrinsic local Lorentz frame on the curved proper intrinsic spacetime (φρ′, φcφt′),
at ‘distance’φr′ along the curvedφρ′ andφcφt′ from the base ofφM0 in φρ′ and the
base ofφE′/φc2 in φcφt′ in Fig. 1.

Thus the intrinsic rest mass (φm0, φε
′/φc2) of the particle ‘projected’ into the

curved (φρ′, φcφt′) within the proper intrinsic local Lorentz frame on the curved
(φρ′, φcφt′) at ‘distance’φr′ along the curvedφρ′ and curvedφcφt′ from the base
of φM0 on curvedφρ′ and base ofφE′/φc2 on curvedφcφt′, by the absolute in-
trinsic rest mass (φm̂0, φε̂/φĉ2) of the particle in absolute intrinsic motion relative
to the curved (φρ̂, φĉφt̂ ) in Fig. 1, possesses the projective absolute intrinsic speeds
φV̂g(φr̂) andφV̂d. In addition, the intrinsic rest mass (φm0, φε

′/φc2) of the particle
possesses proper intrinsic gravitational speedφV ′g(φr′) established at ‘distance’φr′

along the curvedφρ′ by φM0 at the origin of the curvedφρ′ and at ‘distance’φr′

alongφcφt′ by φE′/φc2 at the origin of the curvedφcφt′ in Fig. 1.

As follows from the foregoing two paragraphs, the intrinsicrest mass (φm0,

φε′/φc2) of the particle possesses the intrinsic speedsφV̂d, φV̂g(φr̂) andφV ′g(φr′)
within the proper intrinsic local Lorentz frame on the global curved proper intrinsic
spacetime (φρ′, φcφt′) at ‘distance’φr′ along the curvedφρ′ from the base ofφM0

in φρ′ and at ‘distance’φr′ along the curvedφcφt′ from the base ofφE′/φc2 in
φcφt′, as indicated in Fig. 1. Given that the intrinsic rest mass (φm0A, φε

′
A/φc2) of

an observer possesses absolute intrinsic dynamical speedφV̂dA within this proper
intrinsic local Lorentz frame on the global curved (φρ′, φcφt′), then the intrinsic rest
mass (φm0, φε

′/φc2) of the particle will be in intrinsic motion at intrinsic dynamical
speedφv = φV̂d − φV̂dA, relative to the intrinsic rest mass (φm0A, φε

′
A/φc2) of the

observer within this proper intrinsic local Lorentz frame on the curved (φρ′, φcφt′).

It follows that primed intrinsic special theory of relativity (φSR′) can be for-
mulated for the intrinsic motion at intrinsic speedφv of the intrinsic rest mass
(φm0, φε

′/φc2) of the particle relative to the intrinsic rest mass (φm0A, φε
′
A/φc2) of

the observer within the proper intrinsic local Lorentz frame on the global curved
(φρ′, φcφt′) at ‘distance’φr′ along the curvedφρ′ from the base ofφM0 in φρ′ in
Fig. 1. It also follows that the primed intrinsic classical (or intrinsic Newton’s) the-
ory of gravity (φCG′) can be formulated in terms of the proper intrinsic gravitational
speedφV ′g(φr′) and the associated proper intrinsic gravitational potential φΦ′(φr′)
and proper intrinsic gravitational accelerationφg′(φr′) within this proper intrinsic
local Lorentz frame on the global curved (φρ′, φcφt′).
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Further more the primed Newtonian theory of absolute intrinsic gravity (φNAG′)
can be formulated in terms of the absolute intrinsic gravitational speedφV̂g(φr̂)
and the associated absolute intrinsic gravitational potential φΦ̂(φr̂) and absolute in-
trinsic gravitational accelerationφĝ(φr̂), which are invariantly projected into the
proper intrinsic local Lorentz frame on the global curved proper intrinsic spacetime
(φρ′, φcφt′) at ‘distance’φr′ along the curvedφρ′ from the base ofφM0 in φρ′ by
φV̂g(φr̂), φΦ̂(φr̂) andφĝ(φr̂) on the curved absolute intrinsic spacetime (φρ̂, φĉφt̂ )
in Fig. 1. Also the primed Newtonian theory of absolute intrinsic motion (φNAM ′)
can be formulated in terms of the absolute intrinsic dynamical speedφV̂d projected
into the proper intrinsic local Lorentz frame on the global curved proper intrinsic
spacetime (φρ′, φcφt′) at distanceφr′ from the base ofφM0 in φρ′, as an intrinsic
speed possessed by the intrinsic rest mass (φm0, φε

′/φc2) of the particle.

Thus the primed intrinsic theoriesφCG′, φSR′, φNAG′+ φNAM ′ exist within the
proper intrinsic local Lorentz frame on the global curved proper intrinsic spacetime
(φρ′, φcφt′) at ‘distance’φr′ from the base ofφM0 in the curvedφρ′ in Fig. 1. Let the
elementary intervalsdφρ′ of the curved proper intrinsic spaceφρ′ and elementary
intervalφcdφt′ of the curved proper intrinsic time dimensionφcφt′ be the dimen-
sions of this proper intrinsic local Lorentz frame on the global curved (φρ′, φcφt′).
Then the intrinsic local Lorentz frame shall be denoted by (dφρ′, φcdφt′). It con-
tains the intrinsic rest mass (φm0, φε

′/φc2) of the particle and harbors the primed
intrinsic theoriesφCG′, φSR′, φNAG′ andφNAM ′.

The primed intrinsic local Lorentz frame (dφρ′, φcdφt′) on the global curved
proper intrinsic spacetime (φρ′, φcφt′), with the intrinsic rest mass (φm0, φε

′/φc2)
of the particle and the primed intrinsic theoriesφCG′, φSR′, φNAG′ andφNAM ′

within it, is then projected as the unprimed intrinsic localLorentz frame (dφρ,
φcdφt) on the global flat relativistic intrinsic spacetime (φρ, φcφt) with the gravita-
tional-relativistic intrinsic mass (φm, φε/φc2) of the particle and the gravitational-
relativistic (or unprimed) intrinsic theoriesφCG,φSR,φNAG andφNAM within it
in Fig. 1.

The projective unprimed intrinsic local Lorentz frame (dφρ, φdcφt) and the grav-
itational-relativistic intrinsic mass (φm, φε/φc2) of the particle and the gravitational-
relativistic intrinsic theoriesφCG, φSR,φNAG andφNAM in it on the global flat
relativistic intrinsic spacetime (φρ, φcφt), are then made manifest in the unprimed
local Lorentz frame, containing the gravitational-relativistic mass (m, ε/c2) of the
particle and harboring the unprimed theories CG, SR, NAG andNAM within it on
the global flat relativistic spacetime (Σ, ct) in Fig. 1.
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The foregoing paragraph is further summarized as the following transforma-
tions:

(dφρ′, φcdφt′)→ (dφρ, φcdφt);

(φm0, φε
′/φc2)→ (φm, φε/φc2);

(φCG′, φSR′, φNAG′, φNAM ′)→ (φCG, φSR, φNAG, φNAM) ,

in the context of the intrinsic theory of gravitational relativity (φTGR), which are
made manifest outwardly in the following transformations:

(dr′, r′dθ′, r′ sinθ′dϕ′, cdt′)→ (dr, rdθ, r sinθdϕ, cdt);

(m0, ε
′/c2)→ (m, ε/c2);

(CG′,SR′,NAG′,NAM ′)→ (CG, SR, NAG, NAM) ,

in the context of the theory of gravitational relativity (TGR).
Now global curved four-dimensional proper spacetime (Σ′, ct′) does not exist

along with global curved two-dimensional proper intrinsicspacetime (φρ′, φcφt′) in
Fig. 1. Thus there is nowhere to place the proper local Lorentz frame in Fig. 1.
It shall therefore be placed on the global flat proper spacetime (Σ′, ct′) in Fig. 11
of [6] at the first stage of evolutions of spacetime/intrinsic spacetime and para-
meters/intrinsic parameters in a gravitational field, which endured for no moment
before evolving to the final Fig. 1 at the second stage.

The program of this first part and the second part of this paperis the following

1. Derivation of intrinsic metric spacetime coordinate interval transformations,
intrinsic mass and other intrinsic parameter transformations in the context of
φTGR and derivation of the gravitational-relativistic intrinsic theoriesφGC
andφSR within intrinsic local Lorentz frames on the global flat relativistic in-
trinsic spacetime (φρ, φcφt), in terms of the gravitational-relativistic intrinsic
parametersφm, φΦ(φr) andφg(φr) obtained; and

2. Derivation of metric spacetime coordinate interval transformations, mass and
other parameter transformations in the context of TGR and derivation of the
gravitational-relativistic theories GC and SR within local Lorentz frames on
the global flat relativistic spacetime (Σ, ct), in terms of the gravitational-relat-
ivistic parametersm, Φ(φr) and~g(φr) obtained.

There are two approaches towards the accomplishment of items 1 and 2 above
namely, a graphical approach to be developed in this first part of this paper and
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an analytical approach, to complement the graphical approach, to be developed in
the second part of this paper.

The rest of this section shall be devoted to the development of TGR/φTGR by the
graphical approach, while the next section shall be devotedto the development of
SR/φSR by the graphical approach on flat spacetime in a gravitational field, upon the
flat spacetime/intrinsic spacetime (Σ, ct)/(φρ, φcφt) and mass/intrinsic mass (m/φm)
that evolve in the context of TGR/φTGR. Actually the TGR/φTGR by the graphical
approach has been accomplished to a large extent in section 2of [2]. We shall be
repeating section 2 of [2], while adding some important details in the rest of this
section.

2.1 Derivation of intrinsic gravitational local Lorentz transformation graphi-
cally and validating intrinsic gravitational local Lorentz invariance in the
context of the intrinsic theory of gravitational relativity

The global spacetime/intrinsic spacetime diagrams of combined first and second
stages of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic para-
meters in a gravitational field of arbitrary strength of Figs. 7 and 8 and their inverses
Figs. 9 and 10 of [2] are required here. Figs. 7 and 8 and [1] have been repro-
duced as Figs. 1 and 2 of this paper, while incorporating the flat absolute-absolute
intrinsic-intrinsic spacetimes (φφ ˆ̂ρ, φφ ˆ̂cφφˆ̂t ) of our universe and (−φφ ˆ̂ρ∗,−φφ ˆ̂cφφˆ̂t∗ )
of the negative universe isolated in [3], which could not appear in Figs. 7 – 10 of [2].
However the inverses of Figs. 1 and 2 of this paper have not been drawn on order to
conserve space.

The local spacetime/intrinsic spacetime diagrams (within a local Lorentz frame)
shown as Figs. 11 and 12 and their inverses as Figs. 13 and 14, drawn from the
global geometries of Figs. 7 and 8 and their inverses of Figs.9 and 10 respectively,
within a gravitational field of arbitrary strength in [2], shall be reproduced as Figs. 5
– 8 here.

The local spacetime/intrinsic spacetime diagram of Fig. 5 is valid with respect
to 3-observers in the relativistic Euclidean 3-spacesΣ and−Σ∗ of our universe and
the negative universe. It has been drawn within a proper (or primed) intrinsic local
Lorentz frame at ‘distanceφr′ along the curved proper intrinsic spaceφρ′ from
the base of the intrinsic rest massφM0 of the gravitational field source located at
the origin of the curved proper intrinsic spaceφρ′ in Fig. 1 of this paper, which
corresponds to unprimed intrinsic local Lorentz frame at ‘distance’φr along the
straight line relativistic intrinsic spaceφρ along the horizontal, from the base of
the gravitational-relativistic intrinsic massφM of the gravitational field source in
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Figure 5:

φρ and unprimed local Lorentz frame at radial distancer from the center of the
gravitational-relativistic massM of the assumed spherical gravitational field source
in Σ. Spherical gravitational field sources shall be assumed until such a time when
the Maxwellian theory of gravity (MTG) shall be developed when non-spherical
gravitational field sources shall be brought in.

The explanation of the derivation of Fig. 5 from Fig. 7 of [2] or from Fig. 1 of this
paper is as done for the derivation of Fig. 6 from Fig. 1 in [1].The partial intrinsic
gravitational local Lorentz transformation derivable with respect to 3-observers in
the relativistic Euclidean 3-spaceΣ in our universe from Fig. 5, which has been
derived in [2], is the following

dφρ′ = dφρ secφψg(φr′) − φcgdφt tanφψg(φr′);

(w.r.t. 3− observers inΣ)

}

(12)

The complementary diagram to Fig. 5, which is valid with respect to 1-observers
in the time dimensionsct and−ct∗ of our universe and the negative universe respec-
tively, is depicted as Fig. 6. Fig. 6 has been drawn within thesame local Lorentz
frame as Fig. 5, from the global geometry of Fig. 8 of [2] or Fig. 2 of this paper,
with the same explanation for drawing Fig. 7 from Fig. 3 in [1].
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Figure 6:

The partial intrinsic gravitational local Lorentz transformation derivable with
respect to 1-observers in the relativistic time dimensionct of our universe from
Fig. 6, which has been derived in [2] is the following

φcdφt′ = φcdφt secφψg(φr′) − dφρ tanφψg(φr′);

(w.r.t. 1− observers inct)

}

(13)

By collecting Eqs. (12) and (13) we obtain the full intrinsicgravitational local
Lorentz transformation (φGLLT) derivable from Figs. 5 and 6 as follows

dφρ′ = dφρ secφψg(φr′) − φcgdφt tanφψg(φr′);

(w.r.t. 3− observers inΣ);

φcdφt′ = φcdφt secφψg(φr′) − dφρ tanφψg(φr′);

(w.r.t. 1− observers inct)







































(14)

There is an inverse to system (14), which must be derived fromthe inverses to
Figs. 5 and 6. The inverse to Fig. 5 is depicted in Fig. 7. Fig. 7has been drawn within
the same local Lorentz frame as Figs. 5 and 6, from the global geometry of Fig. 9
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of [2] or from the undrawn inverse to Fig. 1 of this paper, withsame explanation for
drawing Fig. 8 from Fig. 4 in [1].
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Figure 7: The inverse to the spacetime/intrinsic spacetime geometry to Fig. 5 at
the second stage of evolutions of spacetimes/intrinsic spactimes within symmetry-
partner gravitational fields in the positive and negative universes that is valid with
respect to 1-observers in the relativistic time dimensionsin the two universes.

Fig. 7 is valid with respect to 1-observers in the relativistic time dimensions
ct and−ct∗ of our universe and the negative universe. The explanation of this is
the same as given for the validity of Fig. 8 of [1] and Fig. 9 of [2] with respect to
1-observers inct′ and−ct′∗ in those diagrams.

The partial inverse intrinsic gravitational local Lorentztransformation that is
derivable with respect to 1-observers inct in our universe from Fig. 7, which has
been derived in [2] is the following

dφρ′ = dφρ′ secφψg(φr′) + φcdφt′ tanφψg(φr′);

(w.r.t. 1− observers inct)

}

(15)

The inverse to Fig. 6 is depicted as Fig. 8. Again Fig. 8 has been drawn within
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the same local Lorentz frame as Fig. 5 – Fig. 7, from the globalgeometry of Fig. 10
of [2] or the inverse to Fig. 2 (not drawn) of this paper, with same explanation for
drawing Fig. 9 from Fig. 5 in [1].
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Figure 8: The inverse to the spacetime/intrinsic spacetime geometry to Fig. 6 at
the second stage of evolutions of spacetimes/intrinsic spactimes within symmetry-
partner gravitational fields in the positive and negative universe that is valid with
respect to 3-observers in the relativistic Euclidean 3-spaces in the two universes.

Fig. 8 is valid with respect to 3-observers in the relativistic Euclidean 3-spaces
Σ and−Σ ∗ of our universe and the negative universe. the explanation of this is as
given for the validity of Fig. 9 of [1] or Fig. 10 of [2] with respect to 3-observers in
Σ and−Σ∗ in those diagrams.

The partial intrinsic gravitational local Lorentz transformation that can be de-
rived with respect to 3-observers inΣ in our universe from Fig. 8, which has been
derived in [2] is the following

φcdφt = φcdφt′ secφψg(φr′) + dφρ′ tanφψg(φr′);

(w.r.t. 3− observers inΣ)

}

(16)

By collecting Eqs. (14) and (15) we obtain the full inverse intrinsic gravitational
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local Lorentz transformation (inverseφGLLT), that is, inverse to system (14), as
follows

dφρ = dφρ′ secφψg(φr′) + φcdφt′ tanφψg(φr′);

(w.r.t. 1− observers inct)φcdφt;

= φcdφt′ secφψg(φr′) + dφρ′ tanφψg(φr′);

(w.r.t. 3− observers inΣ)







































(17)

The elementary indefinitely short intervalsdφρ′ andφcdφt′ that appear in Figs. 5
– 8 and in systems (14) and (17), have been taken about ‘distance’ φr′ along the
curvedφρ′ from the base ofφM0 in φρ′ and along the curvedφcφt′ from the base
of φE′/φc2 in φcφt′ in Figs. 7 and 8 of [2] or Figs. 1 and 2 of this paper. They
are the intrinsic dimensions of the proper (or primed) intrinsic local Lorentz frame
(dφρ′, φcdφt′) on the global curved proper intrinsic spacetime (φρ′, φcφt′) at ‘dis-
tance’φr′ along the curvedφρ′ from the base ofφM0 in φρ′ in those figures, as
mentioned earlier. They project elementary intervalsdφρ andφcdφt of relativistic
intrinsic space and relativistic intrinsic time dimensionat ‘distance’φr alongφρ
from the base ofφM in φρ along the horizontal and at ‘distance’φr alongφcφt from
the base ofφE/φc2 in φcφt along the vertical.

The projective elementary intrinsic coordinate intervalsdφρ andφcdφt are the
intrinsic dimensions of the relativistic (or unprimed) intrinsic local Lorentz frame
(dφρ, φcdφt) on flat relativistic intrinsic spacetime (φρ, φcφt) at ‘distance’φr along
φρ from the base ofφM in φρ in Figs. 7 and 8 of [2] or Figs. 1 and 2 of this paper.

As derived in [2], the relative intrinsic angleφψg(φr′) is related to the relative
intrinsic gravitational speedφV ′g(φr′) within the intrinsic local Lorentz frame at ‘dis-
tance’φr′ along the curvedφρ′ from the base ofφM0 in φρ′ in Fig. 1 as

sinφψg(φr′) =
φV ′g(φr′)

φcg
≡ φβg(φr′) (18a)

cosφψg(φr′) =

√

1−
φV ′g(φr′)2

φc2
g

≡ φγg(φr′)−1 (18b)

By using Eqs. (18a) and (18b), theφGLLT (14) and its inverse (17) can be
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written explicitly in terms of intrinsic gravitational speed respectively as follows

dφρ′ = φγg(φr′)(dφρ − φV ′g(φr′)dφt);

(w.r.t. 3− observers inΣ);

dφt′ = φγg(φr′)(dφt −
φV ′g(φr′)

φc2
g

dφρ);

(w.r.t 1− observers inct)















































(19)

and
dφρ = φγg(φr′)(dφρ′ + φV ′g(φr′)dφt′);

(w.r.t. 1− observers inct);

dφt = φγg(φr′)(dφt′ +
φV ′g(φr′)

φc2
g

dφρ′);

(w.r.t 3− observers inΣ)















































(20)

As also derived in [2], the intrinsic gravitational speedφV ′g(φr′) is related to the
intrinsic rest massφM0 of the gravitational field source as

φV ′g(φ
′)2 = 2GφM0/φr′

However this relation must now be written in terms of the immaterial intrinsic ac-
tive gravitational mass (or gravitational charge), after introducing the gravitational
charge that is imperceptibly hidden within the rest mass as the source of gravita-
tional speed, gravitational potential and gravitational acceleration in [6], as already
done in [4]; see Eq. (119) of [4]. In other words, we must replace the last equation
by the following

φV ′g(φ
′)2 = 2GφM0a/φr′ (21)

Then the relations (18a) and (18b) can be written in terms of 2GφM0a/φr′ as

sinφψg(φr′) =

√

2GφM0a
φr′

≡ φβg(φr′) (22a)

cosφψg(φr′) =

√

1−
2GφM0a
φr′φc2

g

≡ φγg(φr′)−1 (22b)

By using Eqs. (22a) and (22b), theφGLLT (14) or (19) and its inverse (17)
or (20) can be written explicitly in terms of the intrinsic gravitational parameter
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2GφM0a/φr′ respectively as follows

dφρ′ = φγg(φr′)(dφρ −

√

2GφM0a
φr′

dφt);

(w.r.t. 3− observers inΣ);

dφt′ = φγg(φr′)(dφt −

√

2GφM0a
φr′φc4

g

dφρ);

(w.r.t 1− observers inct)



































































(23)

and

dφρ = φγg(φr′)(dφρ′ +

√

2GφM0a
φr′

dφt′);

(w.r.t. 1− observers inct);

dφt = φγg(φr′)(dφt′ +

√

2GφM0a
φr′φc4

g

dφρ′);

(w.r.t 3− observers inΣ)



































































(24)

whereφγg(φr′) is given by Eq. (22b).

As also derived in [2], theφGLLT (14), (19) or (23) or its inverse (17), (20) or
(24) leads to intrinsic gravitational local Lorentz invariance (φGLLI)

φc2dφt2 − dφρ2 = φc2dφt′2 − dφρ′2 (25)

This invariance obtains at every point on the curved proper intrinsic spacetime
(φρ′, φcφt′) and at every point on the flat relativistic intrinsic spacetime (φρ, φcφt)
in Figs. 1 and 2, showing formally that the relativistic intrinsic spacetime (φρ, φcφt)
is everywhere flat in every gravitational field.

Another results derived in [2] is the intrinsic gravitational length contraction and
intrinsic gravitational time dilation implied by theφGLLT and its inverse. In order
to do this, only the intrinsic coordinate interval transformations derived with respect
to 3-observers in the Euclidean 3-spaceΣ in theφGLLT and its inverse are relevant,
since these are the observers that observe or measure lengthcontraction and time
dilation. By collecting the intrinsic coordinate intervaltransformations with respect
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to 3-observers inΣ in systems (14) and (17) we have

dφρ′ = dφρ secφψg(φr′) − φcgdφt tanφψg(φr′);

(w.r.t. 3− observers inΣ);

φcdφt = φcdφt′ secφψg(φr′) + dφρ′ tanφψg(φr′);

(w.r.t. 3− observers inΣ







































(26)

Now when a hypothetical intrinsic 1-observer in the relativistic intrinsic space
φρ underlyingΣ, with respect to whom the first equation of system (26) is alsovalid,
picks his intrinsic laboratory rod to measure the resultantintrinsic coordinate inter-
val projected into the relativistic intrinsic spaceφρ along the horizontal in Fig. 5,
given by the right-hand side of the first equation of system (26), he will be able to
measure the termdφρ secφψg(φr′) but not the termφcdφt tanφψg(φr′). Likewise
when the hypothetical intrinsic 1-observer in the intrinsic spaceφρ underlyingΣ,
with respect to whom the second equation of system (26) is also valid, picks his lab-
oratory clock to measure the resultant intrinsic coordinate interval projection into
the relativistic intrinsic time dimensionφcφt in Fig. 6, expressed by the right-hand
side of the second equation of system (26), he will be able to measure the term
φcdφt′ secφψg(φr′) but not the termdφρ′ tanφψg(φr′).

Thus by collecting the terms that are measurable with intrinsic laboratory rod
and intrinsic laboratory clock in system (26) by intrinsic 1-observer inφρ we have

dφρ = dφρ′ cosφψg(φr′) (27a)

φt = dφt′ secφψg(φr′) (27b)

Equations (27a) and 27(b) are mere intrinsic coordinate interval projections with
respect to intrinsic 1-observers inφρ and 3-observers in the relativistic Euclidean
3-spaceΣ overlyingφρ.

The forms of Eqs. (27a) and (27b) implied by system (19) and (20) are the
following

dφρ = φγg(φr′)−1dφρ′ =















1−
φV ′g(φr′)2

φc2
g















1/2

dφρ′ (28a)

dφt = φγg(φr′)dφt′ =















1−
φV ′g(φr′)2

φc2
g















−1/2

dφt′ (28b)

And the form of Eqs. (27a) and (27b) implied by systems (23) and (24) are the
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following

dφρ = φγg(φr′)−1dφρ′ =













1−
2GφM0a
φr′φc2

g













1/2

dφρ′ (29a)

dφt = φγg(φr′)dφt′ =













1−
2GφM0a
φr′φc2

g













−1/2

dφt′ (29b)

Equations (27a) and (27b), Eqs. (28a) and (28b) and Eqs, (29a) and (29b) are
alternative forms of intrinsic gravitational length contraction and intrinsic gravita-
tional time dilation formulae in the context of the intrinsic theory of gravitational
relativity (φTGR). They pertain to the measurable sub-space of the total space of
φTGR, where the total space ofφTGR is the flat relativistic intrinsic spacetime
(φρ, φcφt) in Fig. 1.

Let us obtain a graphical representation of the measurable sub-space ofφTGR,
to which the intrinsic gravitational length contraction and intrinsic gravitational time
dilation formulae pertain. We must simply combine the lowerhalf of the first quad-
rant of Fig. 5 and the upper half of the first quadrant of Fig. 8,both of which are
valid with respect to 3-observers in the relativistic Euclidean 3-spaceΣ, into one
diagram depicted in Fig. 9.
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Figure 9: The measurable sub-space of the space ofφTGR to which intrinsic grav-
itational length contraction and intrinsic gravitationaltime dilation formulae in the
context ofφTGR pertain with respect to 3-observers in the Euclidean 3-spaceΣ.

The intrinsic coordinate interval projection relations that can be derived with
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respect to 3-observers in the Euclidean 3-spaceΣ from Fig. 9 are

dφρ = dφρ′ cosφψg(φr′) ; φcdφt = φcdφt′ cosφψg(φr′),

which are the same as Eq. (27a) and (27b).
Fig. 9 and the intrinsic gravitational length contraction and intrinsic gravitational

time dilation formulae derivable from it are valid with respect to 3-observers in the
relativistic Euclidean 3-spaceΣ overlying the relativistic intrinsic spaceφρ along the
horizontal. It is important to note that there is no projection of the inclinedφcdφt
along the horizontal and no projection of the inclineddφρ′ along the vertical in the
measurable sub-space ofφTGR of Fig. 9.

2.2 Derivation of intrinsic mass relation in the context ofφTGR by the graphical
approach

Now in the hypothetical situation of the absence of relativeintrinsic gravitational
speed but the presence of non-uniform absolute intrinsic gravitational speedφV̂g(φr̂)
along the straight line proper intrinsic spaceφρ′ along the horizontal in Fig. 3 or 4
of [6], the intrinsic rest massφm0 of a particle located at ‘distance’φr′ along the
straight lineφρ′ along the horizontal from the base of the intrinsic rest massφM0 of
the gravitational field source inφρ′, is equivalent to intrinsic total energym0φc2.

If we now allow the intrinsic rest massφM0 of the gravitational field source to
establish relative intrinsic gravitational speedφV ′g(φr′) at ‘distance’φr′ along the
straight lineφρ′ along the horizontal whereφm0 is located, then the intervaldφρ′

of φρ′ about this point containingφm0 will be inclined at intrinsic angleφψg(φr′)
relative to the horizontal and project intervaldφρ of relativistic intrinsic space along
the horizontal, as illustrated in Fig. 9. The intrinsic restmass of the test particle
still possessing intrinsic total energyφm0φc2 is inclined alongdφρ′ and ‘projects’
intrinsic grav- itational-relativistic massφm contained within the projective interval
dφρ along the horizontal. The ‘projective’ gravitational-relativistic intrinsic mass
φm is equivalent to intrinsic total energyφmφc2 within dφρ along the horizontal, as
illustrated in Fig. 9.

The intrinsic mass relation in the context ofφTGR is a relationship between
the intrinsic rest massφm0 contained within the inclineddφρ′ and the ‘projective’
gravitational-relativistic intrinsic massφm contained within the projectivedφρ along
the horizontal in Fig. 9. In other to derive that relationship, let us re-write Eq. (18b)
as follows

φc cosφψg(φr′) = φc
√

1− φV ′g(φr′)2/φc2
g (30)

641A. Joseph. Formulating gravity and motion at second stage of evolutions of spacetime . . . I.



Vol. 1(3B) : Article 14 THE FUNDAMENTAL THEORY ... (M) Mar, 2012

The interpretation of this equation is that the compound intrinsic speed of signalsφc
at every point of the inclined interval of proper intrinsic metric spaceφρ′ projects
a componentφc cosψg(φr′) into every point of the projective interval of relativistic
intrinsic metric spacedφρ along the horizontal. Let us obtain the square of Eq. (30)
and multiply the result byφm0 to have

φm0φc2 cos2 φψg(φr′) = φm0φc2(1− φV ′g(φr′)2/φc2
g) (31)

The implication of Eq. (31) is that the intrinsic total energy φm0φc2 of the test
particle in the inclined proper intrinsic space intervaldφρ′ ‘projects’ gravitational-
relativistic intrinsic total energyφm0φc2 cos2 φψg(φr′) into the projective relativistic
intrinsic space intervaldφρ along the horizontal in Fig. 9.

Thus what has been written asφmφc2 within dφρ in Fig. 9 is the same as
φm0φc2 cos2 φψg(φr′), from which we have

φmφc2 = φm0φc2 cos2 φψg(φr′)

Hence
φm = φm0 cos2 φψg(φr′) (32)

or

φm = φm0















1−
φV ′g(φr′)2

φc2
g















(33)

or

φm = φm0













1−
2GφM0a
φr′φc2

g













(34)

Eqs. (32) – (34) are alternative forms of the intrinsic mass relations in the context
of φTGR, which shall be re-derived by an alternative analyticalapproach in the
second part of this paper. The intrinsic mass relation in thecontext ofφTGR is a
new result not derived in [2].

As mentioned earlier, the gravitational-relativistic intrinsic massφm (= φm0

×φγg(φr′)−2) in the context ofφTGR, shall be referred to as gravitational-relativistic
intrinsic mass. Indeed every relativistic (or unprimed) parameter on the flat rela-
tivistic spacetime (Σ, ct) in Fig. 1, which evolves from the corresponding proper (or
classical) parameter on the flat proper spacetime (Σ′, ct′) in Fig. 11 of [6] in the
context of TGR, shall be referred to as the gravitational-relativistic parameter.

The intrinsic gravitational local Lorentz transformation(φGLLT) in the alter-
native forms of systems (14), (19) and (23) and its inverse inthe alternative forms
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(17), (20) and (24); the validation of intrinsic gravitational local Lorentz invariance
(φGLLI) (25); the intrinsic gravitational length contraction and intrinsic gravita-
tional time dilation formulae in the alternative forms of Eqs. (27a-b), (28a-b) and
(29a-b) and the intrinsic mass relation in the context ofφTGR in the alternative
forms of Eqs. (32) – (34), all derived graphically in this sub-section and the previ-
ous one are sufficient results ofφTGR for now. Other results shall be added from
the analytical approach in the second part of this paper.

3 Intrinsic special theory of relativity (φSR) and combinedφSR andφTGR
on flat intrinsic spacetime in a gravitational field by the graphical approach

The flat four-dimensional relativistic spacetime (Σ, ct) and its underlying flat two-
dimensional relativistic intrinsic spacetime (φρ, φcφt) in Fig. 1 and 2, which evolve
in the context of the theory of gravitational relativity (TGR) and intrinsic theory
of gravitational relativity (φTGR) respectively, constitute the flat spacetime for the
special theory of relativity (SR) and flat intrinsic spacetime for the intrinsic special
theory of relativity (φSR) in a gravitational field of arbitrary strength.

It is the gravitational-relativistic massm that evolves in the relativistic Euclid-
ean 3-spaceΣ in the context TGR that undergoes relative motion on the flat rela-
tivistic spacetime (Σ, ct) in the context of SR in every gravitational field and it is the
gravitational-relativistic intrinsic massφm that evolves in the relativistic intrinsic
spaceφρ, given in the alternative forms of Eqs. (32) – (34), that undergoes relative
intrinsic motion on the flat relativistic intrinsic spacetime (φρ, φcφt) in the context
of φSR in every gravitational field.

The unprimed (or gravitational-relativistic) intrinsic special theory of relativity
(φSR), involving the gravitational-relativistic intrinsicmassφm in relative intrinsic
motion within an unprimed intrinsic local Lorentz frame on flat relativistic intrinsic
spacetime (φρ, φcφt), to be developed in this section, is the projection of the primed
intrinsic special theory of relativity (φSR′), involving the intrinsic rest massφm0 of
the particle or object in relative intrinsic motion within the corresponding proper
(or primed) intrinsic local Lorentz frame on the curved proper intrinsic spacetime
(φρ′, φcφt′) in Fig. 1.

The unprimed (or gravitational-relativistic) special theory of relativity (SR), in-
volving the gravitational-relativistic massm of the particle or object in relative mo-
tion within the corresponding local Lorentz frame on the flatfour-dimensional rela-
tivistic spacetime (Σ, ct) is the outward (or physical) manifestation ofφSR.
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3.1 Derivation of intrinsic local Lorentz transformation (φLLT) and its inverse
and validating intrinsic local Lorentz invariance (φLLI) of φSR on the flat
relativistic intrinsic spacetime ofφTGR by the graphical approach

In order to derive combinedφTGR andφSR, we must simply formulateφSR on the
flat relativistic intrinsic spacetime (φρ, φcφt) in terms of the gravitational-relativistic
intrinsic massφm of the test particle, which evolved in the context ofφTGR, derived
in sub-section 2.2, as the intrinsic mass that undergoes intrinsic motion relative to
the observer in every gravitational field.

Let the gravitational-relativistic intrinsic mass (φm, φε/φc2) of a particle occupy
a little relativistic intrinsic metric spacetime (dφρ, φcdφt) of the flat two-dimensional
relativistic intrinsic spacetime (φρ, φcφt) of φTGR. Let us denote the intrinsic affine
spacetime frame attached to (φm, φε/φc2) by (φx̃, φcφt̃) – this is the particle’s intrin-
sic affine spacetime frame on the flat relativistic intrinsic metricspacetime (φρ, φcφt)
in every gravitational field (denoted by (φx̃′, φcφt̃′) on the flat proper intrinsic metric
spacetime (φρ′, φcφt′) in the absence of relative gravity at the first stage of evolu-
tions of spacetime/intrinsic spacetime and parameters/intrinsic parameters in every
gravitational field in [6] and [4]).

As the gravitational-relativistic intrinsic mass (φm, φε/φc2) moves at intrinsic
dynamical speedφv relative to the observer within an intrinsic local Lorentz frame
on flat intrinsic metric spacetime (φρ, φcφt), it becomes the special-relativistic cum
gravitational-relativistic intrinsic mass in the contextof combinedφSR andφTGR
(or in the context ofφSR+φTGR) on the flat (φρ, φcφt). The special-relativistic
cum gravitational-relativistic intrinsic mass shall be denoted by (φm, φε/φc2), where
φm = φγd(φv)φm andφε/φc2 = φγd(φv)φε/φc2. The special-relativistic cum gravi-
tational-relativistic intrinsic mass (φm, φε/φc2) occupies a little intrinsic metric
spacetime interval to be denoted by (dφρ, φcdφt ) of the global flat relativistic in-
trinsic spacetime (dφρ, φcdφt).

Let us denote the intrinsic affine spacetime frame attached to (φm, φε/φc2) by
(φx̃, φcφt̃) – this is the observer’s intrinsic affine spacetime frame on the flat relativis-
tic intrinsic metric spacetime (φρ, φcφt) in a gravitational field of arbitrary strength
(denoted by (φx̃, φcφt̃) on flat proper intrinsic spactime (φρ′, φcφt′) in the absence
of relative gravity at the first stage of evolutions of spacetime/intrinsic spacetime in
a gravitational field in [6] and 13).

As developed in [9] and applied in section 2 of [4], the intrinsic motion of the
gravitational-relativistic mass (φm, φε/φc2) of the particle at intrinsic dynamical
speedφv will give rise to the spacetime/intrinsic spacetime geometry ofφSR in a
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gravitational field in the two-world picture depicted in Fig. 10.
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Figure 10:

Fig. 10 is valid relative to symmetry-partner 3-observers (Peter and Peter*)
in the relativistic Euclidean 3-spacesΣ and−Σ∗ in our universe and the negative
universe. Fig. 10 is the same as Fig. 8(a) of [9], except that the intrinsic rest
mass (φm0, φε

′/φc2) and the intrinsic special-relativistic mass (φm, φε/φc2); φm =
φγd(φv)φm0 of the particle in intrinsic motion relative to the observerwere not
shown in Fig. 8(a) of [9].

Further more, the affine intrinsic space coordinates denoted byφx̃′ andφx̃ in in
the assumed absence of gravitational field [9] are denoted byφx̃ andφx̃ respectively
in a gravitational field in Fig. 10. The affine intrinsic time coordinates denoted
by φcφt̃′ andφcφt̃ in [9], are denoted byφcγφt̃ andφcγφt̃ respectively in Fig. 10.
Fig. 10 on flat relativistic spacetime (Σ, ct) of TGR in a relative gravitational field,
at the second stage of evolutions of spacetime/intrinsic spacetime, corresponds to
Fig. 4 of [4] on flat proper spacetime (Σ′, ct′) in the absence of relative gravity at the
first stage.

As first introduced in [8] and discussed further in sub-section 1.3 of this paper,
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the intrinsic time dimensionφcφt is composed of the affine dynamical component
φcγφt and the metric static (or gravitational) componentφcgφt. The affine intrin-
sic dynamical time coordinates must appear inφSR, as discussed in sub-section 1.3
of this paper and must be denoted byφcγ t̃ andφcγφt̃, as done one in Fig. 10. In-
deed Fig. 10 is the full two-world form of the partial spacetime/intrinsic spacetime
geometry of SR/φSR of Fig. 4(c) in a gravitational field field. The concept of time
dimension being composed of the affine dynamical and metric gravitational compo-
nents was unknown in [9], hence the affine intrinsic time coordinates were denoted
by φcφt̃′ andφcφt̃ in that paper.

The intrinsic affine coordinates are represented by broken lines, while the in-
trinsic metric spaceφρ and intrinsic metric time dimensionφcφt are represented
by dotted lines as usual in Fig. 10. The little intrinsic metric spacetime inter-
val (dφρ, φcdφt) contained within the gravitational-relativistic intrinsic mass (φm,
φε/φc2) is located at the end of the inclined extended affine intrinsic spacetime
(φx̃, φcγφt̃ ) of the particle’s intrinsic frame and the little intrinsicmetric spacetime
interval (dφρ, φcdφt ) contained within the gravitational-relativistic cum special-
relativistic intrinsic mass (φm, φε/φc2) is located at the end of the projective ex-
tended affine intrinsic spacetime (φx̃, φcγφt̃ ) of the observer’s intrinsic frame in

Fig. 10. The projective affine intrinsic coordinatesφx̃ andφcγ t̃ lie along the in-
trinsic metric spaceφρ and intrinsic metric time dimensionφcφt respectively, but
they cannot alterφρ andφcφt.

The global flat relativistic intrinsic metric spacetime (φρ, φcφt) that evolved in
the context ofφTGR is not affected by the intrinsic motion on the flat intrinsic
metric spacetime (φρ, φcφt) of the intrinsic mass of a particle relative to an ob-
server. However the little gravitational-relativistic intrinsic metric spacetime inter-
val (dφρ, φcdφt) contained within the intrinsic gravitational-relativistic mass (φm,
φε/φc2) of φTGR is transformed into little gravitational-relativistic cum special-
relativistic intrinsic metric spacetime interval (dφρ, φcdφt) contained within the in-
trinsic gravitational-relativistic cum special-relativistic mass (φm, φε/φc2) that
evolves at the top of the intrinsic observer’s frame (φx̃, φcγφt̃), due to the intrin-
sic motion of (φm, φε/φc2) relative to the observer (or in the context of combined
φTGR andφSR).

The partial intrinsic local Lorentz transformation (in thecontext ofφSR), which
can be derived from Fig. 10 with respect to the 3-observer (Peter) in the relativistic
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Euclidean 3-spaceΣ, as done from Fig. 8(a) of [9], is the following

φx̃ = φx̃ secφψd − φcγφt̃ tanφψd;

(w.r.t. 3− observer Peter inΣ)















(35)

The complementary diagram to Fig. 10 that co-exists with Fig. 10, which is valid
with respect to 1-observers̃Peter and̃Peter* in the time dimensionsct and−ct∗ of
our universe and the negative universe is depicted in Fig. 11.
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Figure 11:

Fig. 11 is the same as Fig. 8(b) of [9], except for the same differences between
Fig. 8(a) of [9] and Fig. 10, discussed above, which also exist between Fig. 8(b)
of [9] and Fig. 11.

The partial intrinsic local Lorentz transformation (in thecontext ofφSR), which
can be derived from Fig. 11 with respect to 1-observerP̃eter in the relativistic metric
time dimensionct, as done from Fig. 8(b) of [9], is the following

φcγφt̃ = φcγφt̃ secφψd − φx̃ tanφψd;

(w.r.t. 1− observer̃Peter inct)















(36)

647A. Joseph. Formulating gravity and motion at second stage of evolutions of spacetime . . . I.



Vol. 1(3B) : Article 14 THE FUNDAMENTAL THEORY ... (M) Mar, 2012

By collecting Eqs. (35) and (36) we obtain the full intrinsiclocal Lorentz trans-
formation (φLLT) (in the context ofφSR) as follows

φx̃ = φx̃ secφψd − φcγφt̃ tanφψd;

(w.r.t. 3− observer Peter inΣ)

φcγφt̃ = φcγφt̃ secφψd − φx̃ tanφψd;

(w.r.t. 1− observer̃Peter inct)







































(37)

There is an inverse to system (37), which must be derived fromthe inverses to
Figs. 10 and 11. While Figs. 10 and 11 are essentially the same as Figs. 8(a) and
8(b) of [9], as mentioned above, the inverses to Figs. 10 and 11 are essentially the
same as the inverses to the inverses of Figs. 8(a) and 8(b) of [9] namely, Figs. 9(a)
and 9(b) of that paper. The inverses to Fig. 10 and 11 shall notbe drawn here in
order to conserve space, while the inverse to system (37) shall just be written as
follows

φx̃ = φx̃ secφψd + φcγφt̃ tanφψd;

(w.r.t. 1− observer̃Paul inct)

φcγφt̃ = φcγφt̃ secφψd + φx̃ tanφψd;

(w.r.t. 3− observer Paul inΣ)







































(38)

The intrinsic local Lorentz transformation (φLLT) of system (37) and its inverse
of system (38) are described as local because the intrinsic affine coordinates that
appear in them and in Figs. 10 and 11 and their inverses (not drawn), are limited
in extensions to the interior of the intrinsic local Lorentzframe on the flat two-
dimensional relativistic intrinsic spacetime (φρ, φcφt), at an arbitrary ‘distance’φr
from the base of the gravitational-relativistic massφM of the gravitational field
source inφρ in Fig. 1.

Now the relative intrinsic angleφψd in systems (37) and (38) and in Figs. 10 and
11, is related to the intrinsic dynamical speedφv of intrinsic motion relative to the
observer within the intrinsic local Lorentz frame as follows

sinφψd = φv/φcγ ≡ φβd(φv) (39a)

cosφψd =

√

1− φv2/φc2
γ ≡ φγd(φv) (39b)

The formal derivation of Eqs. (39a) and (39b) from systems (37) and (38) has
been done in [9]. It must be noted that the dynamical intrinsic speedφcγ of intrinsic
electromagnetic waves appears in Eqs. (39a) and (39b) in thecontext ofφSR, so
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that the numerator and the denominator inφv/φcγ are homogeneous in dynamical
intrinsic speeds. It may be recalled that the separation of the speed of ‘signals’ into
the static (or gravitational) speed of gravitational wavescg and dynamical speed of
electromagnetic wavescγ was first introduced only in [8]. Consequently the intrinsic
speedφcγ in Eqs. (39a) and (39b) could only appear asφc in the corresponding
equations in [9].

By using Eqs. (39a) and (39b), theφLLT (37) and its inverse (38) can be written
explicitly in terms of the intrinsic speedφv respectively as follows

φx̃ = φγd(φv)(φx̃ − φvφt̃ );

(w.r.t. 3− observer Peter inΣ)

φt̃ = φγd(φv)(φt̃ −
φv

φc2
γ

φx̃ );

(w.r.t. 1− observer̃Peter inct)















































(40)

and
φx̃ = φγd(φv)(φx̃ + φvφt̃ );

(w.r.t. 1− observer̃Paul inct)

φt̃ = φγd(φv)(φt̃ +
φv

φc2
γ

φx̃ );

(w.r.t. 3− observer Paul inΣ)















































(41)

Either system (37) or (38) or the explicit form (40) or (41) leads to intrinsic
local Lorentz invariance (φLLI) (in the context ofφSR) on the flat relativistic in-
trinsic metric spacetime (φρ, φcφt) that evolved in the context ofφTGR in every
gravitational field,

φc2
γφt̃ 2 − φx̃2 = φc2

γφt̃ 2 − φx̃2 (42)

This intrinsic local Lorentz invariance is valid within every intrinsic local Lorentz
frame on the flat relativistic intrinsic spacetime (φρ, φcφt) of φTGR in Fig. 1 in every
gravitational field.

The intrinsic affine length contraction and intrinsic affine time dilation formulae
in the context ofφSR on the flat relativistic intrinsic metric spacetime (φρ, φcφt) in
a gravitational field, which systems (37) and (38) imply, as derived in [9], are the
following

φx̃ = φx̃ cosφψd (43a)

φt̃ = φt̃ secφψd (43b)
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The alternative forms in terms of the intrinsic speedφv of Eqs. (43a) and (43b),
which systems (40) and (41) imply are the following

φx̃ = φγd(φv)−1φx̃ = (1−
φv2

φc2
γ

)1/2dφx̃ (44a)

φt̃ = φγd(φv)φt̃ = (1−
φv2

φc2
γ

)−1/2dφt̃ (44b)

The derivations of Eqs. (43a) and (43b) from systems (37) and(38) and the
derivations of Eqs. (44a) and (44b) from systems (40) and (41) have been done fully
in [9]. It must be mentioned that Eqs. (43a-b) and (44(a-b) are valid with respect to
3-observer (Peter) at rest relative to the observer’s frame.

3.1.1 Explicit form of combined φTGR and φSR

Now as mentioned earlier in this section, the unprimed (or gravitational-relativistic)
intrinsic special theory of relativity (φSR) within an intrinsic local Lorentz frame
on flat relativistic intrinsic metric spacetime (φρ, φcφt) that evolved in the context
of φTGR in Fig. 1, is the projection of the primed intrinsic special theory of rela-
tivity (φSR′) within the corresponding intrinsic local Lorentz frame onthe curved
proper intrinsic metric spacetime (φρ′, φcφt′) in that figure. Consequently the intrin-
sic affine coordinatesφx̃ andφcγφt̃ of the intrinsic particle’s frame inφSR within
intrinsic local Lorentz frame on flat relativistic intrinsic spacetime (φρ, φcφt), are
projections of the intrinsic affine coordinatesφx̃′ andφcγφt̃′ of intrinsic particle’s
frame inφSR′ within the corresponding intrinsic local Lorentz frame on curved
(φρ′, φcφt′) in Fig. 1.

The transformation of the particle’s intrinsic frame (φx̃′, φcγφt̃′) on the curved
(φρ′, φcφt′) into particle’s intrinsic frame (φx̃, φcγφt̃) on the flat (φρ, φcφt) must be
derived in the context ofφTGR, as the intrinsic gravitational local Lorentz transfor-
mation (φGLLT) of system (14), (19) or (23) and its inverse of system (17), (20) or
(24). That is, we must simply replacedφρ′, φcdφt′, dφρ andφcdφt in those systems
by φx̃′, φcγφt̃′, φx̃ andφcγφt̃ respectively. The resulting systems shall not be written
out explicitly in order to conserve space. However the intrinsic gravitational length
contraction and intrinsic gravitational time dilation (inthe context ofφTGR), which
they imply are given like Eqs. (27a-b) or (28a-b) or (29a-b) as follows

φx̃ = φx̃ ′ cosφψg(φr′) (45a)

φt̃ = φt̃ ′ secφψg(φr′) (45b)
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or

φx̃ = φγg(φr′)−1φx̃ ′ = (1−
φVg(φr′)2

φc2
g

)1/2φx̃ ′ (46a)

φt̃ = φγg(φr′)φt̃ ′ = (1−
φVg(φr′)2

φc2
g

)−1/2φt̃ ′ (46b)

or

φx̃ = φγg(φr′)−1φx̃ ′ = (1−
2GφM0a
φr′φc2

g

)1/2φx̃ ′ (47a)

φt̃ = φγg(φr′)φt̃ ′ = (1−
2GφM0a
φr′φc2

g

)−1/2φt̃ ′ (47b)

We shall now incorporate Eqs. (45a-b), (46a-b) and (47a-b) derived int the con-
text ofφTGR into Eqs. (43a-b),and Eqs. (44a-b) derived in the context of φSR to ob-
tain gravitational-relativistic cum special-relativistic intrinsic length contraction and
gravitational-relativistic cum special-relativistic intrinsic time dilation in the context
of combinedφTGR andφSR in the following alternative forms on flat relativistic
intrinsic metric spacetime (φρ, φcφt) in a gravitational field of arbitrary strength

φx̃ = φx̃ ′ cosφψg(φr′) cosφψd (48a)

φt̃ = φt̃ ′ secφψg(φr′) secφψd (48b)

or

φx̃ = φγg(φr′)−1φγd(φv)−1φx̃ ′

= (1−
φVg(φr′)2

φc2
g

)1/2(1−
φv2

φc2
γ

)1/2φx̃ ′ (49a)

φt̃ = φγg(φr′)φγd(φv)φt̃ ′

= (1−
φVg(φr′)2

φc2
g

)−1/2(1−
φv2

φc2
γ

)−1/2φt̃ ′ (49b)

or

φx̃ = φγg(φr′)−1φγd(φv)−1φx̃ ′

= (1−
2GφM0a
φr′φc2

g

)1/2(1−
φv2

φc2
γ

)1/2φx̃ ′ (50a)
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φt̃ = φγg(φr′)φγd(φv)φt̃ ′

= (1−
2GφM0a
φr′φc2

g

)−1/2(1−
φv2

φc2
γ

)−1/2φt̃ ′ (50b)

Now the intrinsic local Lorentz transformation (φLLT) of system (37) and its
inverse of system (38) and their explicit forms in terms of intrinsic dynamical speed
φv of systems (40) and (41), have been written for the intrinsicaffine coordinates
φx̃, φcγφt̃, φx̃ andφcγφt̃ in Figs. 10 and 11 and their inverses (not drawn). They can
equally be written for the little interval of intrinsic metric spacetime (dφρ, φcdφt)
contained within the gravitational-relativistic mass (φm, φε/φc2) and the little in-
terval of intrinsic metric spacetime (dφρ, φcdφt) contained within the gravitational-
relativistic cum special-relativistic mass (φm, φε/φc2) in respectively as follows

dφρ = dφρ secφψd − φcdφt tanφψd;

(w.r.t. 3− observer Peter inΣ)

φcdφt = φcdφt secφψd − dφρ tanφψd;

(w.r.t. 1− observer̃Peter inct)







































(51)

and
dφρ = dφρ secφψd + φcdφt tanφψd;

(w.r.t. 1− observer̃Paul inct)

φcdφt = φcdφt secφψd + dφρ tanφψd;

(w.r.t. 3− observer Paul inΣ)







































(52)

or
dφρ = φγd(φv)(dφρ − φvdφt );

(w.r.t. 3− observer Peter inΣ)

dφt = φγd(φv)(dφt −
φv

φc2
γ

dφρ );

(w.r.t. 1− observer̃Peter inct)















































(53)

and
φρ = φγd(φv)(dφρ + dφvφt );

(w.r.t. 1− observer̃Paul inct)

dφt = φγd(φv)(dφt +
φv

φc2
γ

dφρ );

(w.r.t. 3− observer Paul inΣ)















































(54)

A. Joseph. Formulating gravity and motion at second stage of evolutions of spacetime . . . I.652



Mar, 2012 THE FUNDAMENTAL THEORY ... (M) Vol. 1(3B) : Article14

System (51) or (52) or its explicit form in terms ofφv (53) or (54) leads to the
following invariance

φc2dφt
2
− dφρ2

= φc2dφt2 − dφρ2 (55)

This is intrinsic local Lorentz invariance (in the context of φSR) within the little
intrinsic metric spacetime (dφρ, φcdφt) contained within the intrinsic mass (φm,
φε/φc2) of the particle in relative intrinsic motion relative to anobserver.

The intrinsic length contraction and intrinsic time dilation formulae (43a) and
(43b) implied by systems (37) and (38) or their explicit forms in terms ofφv of
Eqs. (44a) and (44b) implied by systems (40) and (41), correspond to the following
implied by systems (51) and (52) and systems (53) and (54)

dφρ = dφρ cosφψd (56a)

dφt = dφt secφψd (56b)

or

dφρ = φγd(φv)−1dφρ = (1−
φv2

φc2
γ

)1/2dφρ (57a)

dφt = φγd(φv)dφt = (1−
φv2

φc2
γ

)−1/2dφt (57b)

Equations (56a) and (56b) and Eqs. (57a) and (57b) are alternative form of intrin-
sic length contraction and intrinsic time dilation of the little intrinsic metric space-
time interval within the intrinsic mass of the particle in intrinsic motion relative to
an observer. They are valid with respect to the 3-observer (Peter) at rest relative to
the observer’s frame as being formulated at present.

The intrinsic length contraction and intrinsic time dilation formulae in terms of
intrinsic affine coordinatesφx̃, φcγφt̃, φx̃ andφcγφt̃ of Eqs. (45a-b), Eqs. (46a-b) and
Eqs. (47a-b) in the context ofφTGR can equally be written in terms of the little in-
trinsic metric spacetime coordinate intervalsdφρ, φcdφt, dφρ andφcdφt contained
within the intrinsic mass of the particle in intrinsic motion relative to the observer.
However those equations shall not be written in order to conserve space.

Finally the intrinsic length contraction and intrinsic time dilation formulae in the
context of combinedφTGR andφSR of Eqs. (48a-b), (49a-b) and (50a-b) are given
terms of the intrinsic metric coordinate intervalsdφρ, φcdφt, dφρ andφcdφt within
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the particle respectively as follows

dφρ = dφρ′ cosφψg(φr′) cosφψd (58a)

dφt = dφt′ secφψg(φr′) secφψd (58b)

or
dφρ = φγg(φr′)−1φγd(φv)−1dφρ′

= (1−
φVg(φr′)2

φc2
g

)1/2(1−
φv2

φc2
γ

)1/2dφρ′ (59a)

dφt = φγg(φr′)φγd(φv)dφt′

= (1−
φVg(φr′)2

φc2
g

)−1/2(1−
φv2

φc2
γ

)−1/2dφt′ (59b)

or
dφρ = φγg(φr′)−1φγd(φv)−1dφρ′

= (1−
2GφM0a
φr′φc2

g

)1/2(1−
φv2

φc2
γ

)1/2dφρ′ (60a)

dφt = φγg(φr′)φγd(φv)φt′

= (1−
2GφM0a
φr′φc2

g

)−1/2(1−
φv2

φc2
γ

)−1/2φt′ (60b)

Equations (58a-b), (59a-b) and (60a-b) express gravitational-relativistic cum
special-relativistic intrinsic length contraction and gravitational-relativistic cum special-
relativistic intrinsic time dilation in the context ofφTGR+φSR of the little proper
intrinsic metric spacetime intervalsdφρ′ andφcdφt′ contained within the intrinsic
rest mass (φm0, φε

′/φc2) in intrinsic motion at intrinsic dynamical speedφv within
the proper (or primed) intrinsic local Lorentz frame on the curved proper intrinsic
metric spacetime (φρ′, φcφt′) relative to the observer in Fig. 1. They are valid rel-
ative to the 3-observer (Peter) in the relativistic Euclidean 3-spaceΣ, who is at rest
relative to the observer’s frame within the corresponding local Lorentz frame on the
flat relativistic spacetime (Σ, ct).

3.1.2 The case of the electron

Now all equations from system (51) through Eqs. (60a-b) havebeen written for a
particle or object with compound rest mass

(m0 , ε
′/c2) ≡ (m0g ∪ m0d , ε

′
g/c

2
g ∪ ε

′
d/c

2
γ),
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contained in non-zero volume of compound proper metric spacetime

(dΣ′, cdt′) ≡ (dΣ′g ∪ dΣ′d , cgdt′ ∪ cγdt′).

Consequently such a particle or object has non-zero compound intrinsic rest mass

(φm0 , φε
′/φc2) ≡ (φm0g ∪ φm0d , φε

′
g/φc2

g ∪ φε
′
d/φc2

γ),

contained in a non-zero interval of compound proper intrinsic metric spacetime

(dφρ′ , φcdφt′) ≡ (dφρ′g ∪ dφχ′ , φcgdφt′ ∪ φcγdφt′).

Consequently the gravitational-relativistic intrinsic mass of the particle or object
that evolved in the context ofφTGR namely,

(φm , φε/φc2) ≡ (φmg ∪ φmd , φεg/φc2
g ∪ φεd/φc2

γ),

is contained in non-zero interval of compound relativisticintrinsic spacetime of
φTGR,

(dφρ , φcdφt) ≡ (dφρg ∪ dφχ , φcgdφt ∪ φcγdφt)

and the gravitational-relativistic cum special-relativistic intrinsic mass,

(φm , φε/φc2) ≡ (φmg ∪ φmd , φεg/φc2
g ∪ φεd/φc2

γ),

is contained in non-zero interval of gravitational-relativistic cum special-relativistic
intrinsic spacetime,

(dφρ , φcdφt) ≡ (dφρg ∪ dφχ , φcgdφt ∪ φcγdφt),

in Figs. 10 and 11.
On the other hand, let us replace the particle or object with metric compound rest

massm0 ≡ m0g ∪m0d by the electron with pure affine dynamical rest massm0e. The
rest mass of the electron occupies a spherical volumedΣ′d of radiusr0e, of the affine
proper dynamical 3-spaceΣ′d, which corresponds to a point of zero extension of
the metric compound proper Euclidean 3-spaceΣ′. Consequently the intrinsic rest
mass of the electron (φm0e , φε0e/φc2

γ), occupies interval (dφχ ′ , φcγdφt′) of affine
dynamical proper intrinsic spacetime (φχ ′ , φcγφt′), which corresponds to a point
of zero extension in the metric compound proper intrinsic spacetime (φρ , φcφt′).
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Thus if we replace the particle or object in motion relative to the observer in a
gravitational field, considered so far, by the electron, then the little interval of the rel-
ativistic intrinsic metric spacetime interval (dφρ , φcdφt) containing the metric com-
pound gravitational-relativistic intrinsic mass (φm , φε/φc2) and the intrinsic met-
ric spacetime interval (dφρ , φcdφt) containing the metric compound gravitational-
relativistic cum special-relativistic intrinsic mass (φm , φε/φc2), must be replaced
by little interval of pure affine relativistic intrinsic dynamical spacetime coordinate
interval (dφχ , φcγdφt) (that evolved in the context ofφTGR), containing gravita-
tional-relativistic mass of the electron (φme , φεe/φc2

γ) (that evolved in the context
of φTGR) and little interval of pure affine relativistic intrinsic dynamical spacetime
coordinate interval (dφχ , φcγdφt) (that evolved in the context ofφTGR+φSR), con-
taining gravitational-relativistic cum special-relativistic intrinsic mass of the elec-
tron (φme , φεe/φc2

γ) (that evolved in the context ofφTGR+φSR) respectively, in
Figs. 10 and 11 and in all equations from system (51) through Eqs. (60a-b). Those
equations shall not be written however in order to conserve space.

The unwritten resulting equations obtain for the pure affine dynamical intrinsic
spacetime interval (φχ ′ , φcγdφt′) contained within the intrinsic rest mass of the
electron (φm0e , φε0e/φc2

γ), on curved proper intrinsic metric spacetime (φρ′, φcφt′),
despite the fact that the rest mass of the electron (m0e , ε0e/c2

γ) occupies a point of
zero extension of the metric compound proper spacetime (Σ′, ct′) and the intrinsic
rest mass of the electron occupies a point of zero extension of the metric compound
proper intrinsic spacetime (φρ′ , φcφt′).

3.2 Graphical approach to the derivation of intrinsic mass relations in the con-
texts ofφSR and combinedφTGR andφSR

We recall that like the coordinate 4-vector ˜xλ = (x̃0, x̃1, x̃2, x̃3) = (cγ t̃, x̃, ỹ, z̃) of SR
in the rectangular coordinate system of the Euclidean 3-space Σ, in the flat four-
dimensional relativistic metric spacetime (Σ, ct) that evolved in every gravitational
field in the context of TGR, the momentum 4-vectorpλ on (Σ, ct) is given in the
rectangular coordinate system of the Euclidean 3-spaceΣ as

pλ = (p0 , p1 , p2 , p3 ) = (mcγ , mv′x , mv′y , mv′z ) (61)

This is the gravitational-relativistic momentum 4-vectorthat evolved on the flat rel-
ativistic spacetime (Σ, ct) in the context of TGR. The velocity~v ′ = v′x î + v′y ĵ + v′zk̂
is being assumed to be a non-zero velocity of the gravitational-relativistic massm
of the particle (that evolved in the relativistic Euclidean3-spaceΣ in the context of
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TGR), relative to its own frame, that is relative to the particle’s frame (cγ t̃ , x̃ , ỹ , z̃ )
on the flat metric spacetime (Σ, ct).

The corresponding gravitational-relativistic cum special-relativistic momentum
4-vector pλ that evolved on the flat relativistic spacetime (Σ, ct) in the context of
combined TGR and SR is

pλ = (p0 , p1 , p2 , p3 ) = (mcγ , mv′x , mv′y , mv′z ) (62)

where~v = vx î + vy ĵ + vzk̂ is the velocity of the gravitational-relativistic massm
in the particle’s affine frame (cγ t̃ , x̃ , ỹ , z̃ ) relative to the observer’s affine frame

(cγ t̃ , x̃ , ỹ , z̃ ) on the flat metric spacetime (Σ, ct).
Also corresponding to the intrinsic coordinate 2-vectorφx̃λ = (φx̃0 , x̃1) =

(φcγφt̃ , φx̃) of φSR on the flat two-dimensional relativistic intrinsic spacetime (φρ,
φcφt) that evolved in the context of TGR, the intrinsic momentum is a 2-vectorφpλ
on the flat relativistic intrinsic spacetime (φρ, φcφt) where

φpλ = (φp0 , φp1) = (φmφcγ , φmφv′) (63)

This is the gravitational-relativistic intrinsic momentum 2-vector that evolved in on
the flat relativistic intrinsic spacetime (φρ, φcφt) in the context ofφTGR. The intrin-
sic speedφv′ is being assumed to be non-zero intrinsic speed of the gravitational-
relativistic intrinsic massφm of the particle relative to its own frame, that is, ofφm
relative to the intrinsic particle’s frame (φcγφt̃ , φx̃) on the flat relativistic intrinsic
metric spacetime (φρ, φcφt) of φTGR.

The corresponding gravitational-relativistic cum special-relativistic intrinsic
momentum 2-vectorφpλ, in the context of combinedφTGR andφSR is

φpλ = (φp0 , φp1) = (φmφcγ , φmφv) (64)

whereφv is the intrinsic speed of the gravitational-relativistic intrinsic massφm in
the intrinsic particle’s frame (φcγφt̃ , φx̃ ) relative to the observer’s intrinsic frame

(φcγφt̃ , φx̃ ) on the flat intrinsic metric spacetime (φρ, φcφt).
Corresponding to the intrinsic spacetime diagrams of Figs.10 and 11 in the

context ofφSR , there are intrinsic momentum diagrams, which must be obtained
by replacing the affine intrinsic spacetime coordinatesφcγφt̃ andφx̃ of the particle’s
intrinsic frame by the componentsφp0 = φmφcγ andφp1 = φmφv′ respectively of
the gravitational-relativistic intrinsic momentum 2-vector φpλ of Eq. (63) and by
replacing the affine intrinsic spacetime coordinatesφcγφt̃ andφx̃ of the observer’s
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Figure 12:

intrinsic frame by the componentsp0 = φmφcγ and p1 = φmφv respectively of the
gravitational-relativistic cum special-relativistic intrinsic momentum 2-vectorφpλ
of Eq. (64). The resulting diagrams are depicted in Figs. 12(a) and 12(b).

Fig. 12(a) is valid with respect to the 3-observer (Peter) inthe Euclidean 3-
spaceΣ at rest relative to the observer’s frame in our universe and his symmetry-
partner (Peter*) in the Euclidean 3-space−Σ∗ at rest relative to the observer’s frame
in the negative universe, while Fig. 12(b) is valid with respect to the 1-observer
(P̃eter) the time dimensionct at rest relative to the observer’s frame in our universe
and his symmetry-partner (P̃eter*) in the time dimension−ct∗ at rest relative to the
observer’s frame in the negative universe.

The partial intrinsic momentum transformation derivable with respect to 3-ob-
server Peter inΣ in our universe from Fig. 12(a), by following the procedure used
to derive partial intrinsic coordinate transformation with respect to Peter inΣ from
Fig. 8(a) of [9], is the following

φp1 = φp1 secφψd − φp 0 tanφψd;

(w.r.t. 3− observer Peter inΣ)

}

(65)

And the partial intrinsic momentum transformation derivable with respect to 1-
observerP̃eter in our universe from Fig. 12(b), by following the procedure used to
derive partial intrinsic coordinate transformation with respect toP̃eter inct from
Fig. 8(b) in [9], is the following

φp0 = φp 0 secφψd − φp1 tanφψd;

(w.r.t. 1− observer̃Peter inct)

}

(66)
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By collecting Eqs. (65) and (66) we obtain the full intrinsicmomentum trans-
formation derivable from Figs. 12(a) and 12(b) as follows

φp1 = φp1 secφψd − φp 0 tanφψd;

(w.r.t. 3− observer Peter inΣ)

φp0 = φp 0 secφψd − φp1 tanφψd;

(w.r.t. 1− observer̃Peter inct)







































(67)

There is an inverse intrinsic momentum transformation, that is, the inverse to
system (67), which must be derived from the inverses to Figs.12(a) and 12(b). The
inverse diagrams shall not be drawn however in order to conserve space, while the
inverse to system (67) is the following

φp1 = φp1 secφψd + φp0 tanφψd;

(w.r.t. 1− observer̃Peter inct)

φp 0 = φp0 secφψd + φp1 tanφψd;

(w.r.t. 3− observer Peter inΣ)







































(68)

Either system (67) or (68) leads to the following invariance

(φp 0)2 − (φp1)2 = (φp0)2 − (φp1)2 (69)

And by letting p 0 = φmφcγ; φp1 = φmφv; φp0 = φmφcγ andφp1 = φmφv′,
along with secφψd = φγd(φv) = (1− φv2/φc2

γ)
−1/2 and tanφψd = φγd(φv)φv/φcγ in

systems (67) and (68) we have

φmφv′ = φγd(φv)(φmφv − φmφv);

(w.r.t. 3− observer Peter inΣ)

φmφcγ = φγd(φv)(φmφcγ − φm
φv2

φcγ
);

(w.r.t. 1− observer̃Peter inct)















































(70)

and
φmφv = φγd(φv)(φmφv′ + φmφv);

(w.r.t. 1− observer̃Paul inct)

φmφcγ = φγd(φv)(φmφcγ + (φmφv′
φv

φcγ
);

(w.r.t. 3− observer Paul inΣ)















































(71)
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And the invariance (69) becomes the following

φm 2φc2
γ − φm 2φv2 = φm2φc2

γ − φmφv′2 (72)

The vanishing of the right-hand side of the first equation of system (70) implies
the vanishing ofφp1 = φmφv′. Indeed the gravitational-relativistic intrinsic mass
φm is at rest relative to its own frame (or particle’s intrinsicframe) (φcγφt̃, φx̃).
Hence it possesses zero intrinsic speed (φv′ = 0) and zero intrinsic momentum
(φmφv′ = 0) relative to its frame. On the other hand,φm possesses component of
intrinsic momentumφp0 = φmφcγ along the natural intrinsic geodesicφcγφt̃ of its
intrinsic frame. Consequentlyφp0 = φmφcγ in the particle’s frame must be retained.
In other words,φv′ must be allowed to vanish in Eq. (63) to have the correct intrinsic
momentum 2-vector in the intrinsic particle frame asφpλ = (φmφcγ , 0).

The gravitational-relativistic cum special-relativistic intrinsic massφm̄ of the
particle actually possesses intrinsic speedφv of intrinsic motion relative to its frame
(or relative to the observer at rest relative to its frame) (φcγφt̃ , φx̃). Consequently
bothφp 0 = φmφcγ andφp1 = φmφv must be retained in the observer’s frame.

By allowing φmφv′ to vanish, while retaining the other terms in the invariance
(72) we have

φm 2(φc2
γ − φv

2) = φmφc2
γ (73)

Hence

φm = φm(1−
φv2

φc2
γ

)−1/2 = φγd(φv)φm (74)

This is the intrinsic mass relation with respect to 3-observer (Peter) at rest relative
to the observer’s frame in the context ofφSR on flat relativistic intrinsic spacetime
(φρ, φcφt) in every gravitational field. It can also be written in termsof the intrinsic
angleφψd in Figs.10 and 11 and Figs. 12(a) and 12(b) as

φm = φγd(φv)φm = φm secφψd (75)

Now by multiplying through Eq. (73) byφc2
γ, we obtain the following intrinsic

energy expression in the context ofφSR

φm 2φc4
γ − φm 2φc2

γφv
2 = φm2φc4

γ (76)

The intrinsic special-relativistic kinetic energyφT is likewise given as follows

φT = φmφc2
γ − φmφc2

γ

= φγd(φv)φmφc2
γ − φmφc2

γ

= φmφc2
γ

(

(1− φv2/φc2
γ)
−1/2 − 1

)

(77)
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Equations (76) and (77) are valid with respect to the 3-observer (Peter) at rest rela-
tive to the observer’s affine frame (cγ t̃ , x̃ , ỹ , z̃ ) on the flat relativistic metric space-
time (Σ, ct).

By incorporating the intrinsic mass re4lation in the context of φTGR derived
graphically and presented in the alternative forms of Eqs. (32) – (34) in sub-section
2.2 into the intrinsic mass relation in the context ofφSR in the alternative forms of
Eqs. (74) and (75) we obtain the following alternative formsof the intrinsic mass
relations in the context of combinedφTGR andφSR

φm = φm0 cos2 φψg(φr′) secφψd

= φm0φγg(φr′)−2φγd(φv) (78)

= φm0(1−
φV ′g(φr′)2

φc2
g

)(1−
φv2

φc2
γ

)−1/2 (79)

= φm0(1−
2GφM0a
φr′φc2

g

)(1−
φv2

φc2
γ

)−1/2 (80)

And the intrinsic special-relativistic kinetic energy in the context of combined
φTGR andφSR is given in the following alternative forms by incorporating Eqs. (32)
– (34) into Eq. (77)

φT = φm0φc2
γ cos2 φψg(φr′)[secφψd − 1] (81)

= φm0φc2
γ(1−

φV ′g(φr′)2

φc2
g

)[(1 −
φv2

φc2
γ

)−1/2 − 1] (82)

= φm0φc2
γ(1−

2GφM0a
φr′φc2

g

)[(1 −
φv2

φc2
γ

)−1/2 − 1] (83)

Now the gravitational-relativistic cum special-relativistic intrinsic massφm in
the context ofφTGR+φSR is given in the alternative forms of Eqs. (78), (79) and
(80) and the pure gravitational-relativistic intrinsic massφm in the context ofφTGR
is given in the alternative forms of Eqs. (32), (33) and (34).By using Eq. (78) or
(79) or (80) and Eq. (32) or (33) or (34) in Eq. (76) we have

φm̃2
0φc4

γ − φm̃2
0φc2

γφv
2 = φm2

0φc4
γ (84)

whereφm̃0 = φγd(φv)φm0 is the special-relativistic intrinsic mass expression in the
context of the primed intrinsic special theory of relativity (φSR′) (while retaining
the notation in section 2 of [4]), on the within the proper intrinsic local Lorentz
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frame on the curved proper intrinsic spacetime (φρ′, φcφt′) at ‘distance’φr′ along
the curvedφρ′ from the base ofφM0 in φρ′ with respect to an intrinsic 1-observer
on the curvedφρ′ within or outside this intrinsic local Lorentz frame in Fig.1.

The effect of intrinsic gravitational relativity (φTGR) cancels out in the intrinsic
gravitational-relativistic cum intrinsic special-relativistic expression (76), thereby
making the pure intrinsic special-relativistic expression (84) to remain unchanged
with position in a gravitational field.

The intrinsic local Lorentz transformation (φLLT) and its inverse in the context
of φSR on the flat relativistic intrinsic spacetime (φρ, φcφt) in the alternative forms
of systems (37) and (38) and systems (40) and (41); the intrinsic local Lorentz in-
variance (φLLI) (42) in the context ofφSR on flat (φρ, φcφt) in a gravitational field
of arbitrary strength; the intrinsic length contraction and intrinsic time dilation for-
mulae on flat (φρ, φcφt) in the context ofφSR in a gravitational field of arbitrary
strength in the alternative forms of Eqs. (43a-b) and (44a-b) and in the context of
combinedφTGR andφSR in the alternative forms of Eqs. (48a-b), (49a-b) and (50a-
b); the intrinsic mass relation in the contextφSR on flat intrinsic metric spacetime
(φρ, φcφt) in a gravitational field of arbitrary strength in the alternative forms of
Eqs. (74) and (75); the intrinsic total energy expression and intrinsic kinetic en-
ergy in the context ofφSR on the flat (φρ, φcφt) in a gravitational field of arbitrary
strength of Eqs. (76) and (77); the intrinsic mass expression in the context of com-
binedφTGR andφSR of Eqs. (78), (79) or (80) and for intrinsic kinetic energyof
Eqs. (81), (82) or (83), are adequate results for the topic ofthis sub-section. The
results have indeed been derived graphically. Other intrinsic parameter relations in
the context of combinedφTGR andφSR shall be derived analytically in the second
part of this paper.

4 The TGR, SR and combined TGR and SR on flat four-dimensional space-
time as outward manifestations ofφTGR, φSR and combinedφTGR and
φSR on flat two-dimensional intrinsic spacetime

4.1 The TGR as outward manifestation on flat spacetime ofφTGR on flat in-
trinsic spacetime

The flat four-dimensional relativistic metric spacetime (Σ, ct) that evolved at the
combined first and second stages of evolutions of spacetime/intrinsic spacetime
and parameters/intrinsic parameters in a gravitational field in Fig.1, is the out-
ward manifestation of the underlying flat two-dimensional relativistic intrinsic met-
ric spacetime (φρ, φcφt), whereφρ is a one-dimensional isotropic intrinsic space
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(with no unique orientation in the relativistic Euclidean 3-spaceΣ) with respect to 3-
observers inΣ. The theory of gravitational relativity (TGR) on flat four-dimensional
spacetime (Σ, ct) is likewise the outward (or physical) manifestation of theintrinsic
theory of gravitational relativity (φTGR) on the flat two-dimensional intrinsic space-
time (φρ, φcφt).

The foregoing implies that the results of TGR on flat spacetime (Σ, ct) can be
written directly from the results ofφTGR on flat intrinsic spacetime (φρ, φcφt) by
simply removing the symbolφ from the results ofφTGR. However in doing this,
proper care must be taken of the fact that TGR is a physical four-dimensional theory,
while φTGR is an intrinsic two-dimensional theory.

Now in converting the two-dimensional intrinsic gravitational local Lorentz
transformation (φGLLT) and its inverse, written in terms of the intervalsdφρ′ and
φcdφt′ of the two-dimensional proper intrinsic spacetime (φρ′, φcφt′) and inter-
vals dφρ andφcdφt of the flat two-dimensional relativistic intrinsic metric space-
time (φρ, φcφt) in the alternative forms of systems (14) and (17), systems (19) and
(20) and systems (23) and (24), to the four-dimensional gravitational local Lorentz
transformation (GLLT) and its inverse, to be written in terms of coordinate in-
tervalsdr′ , r′dθ′ , r′ sinθ′dϕ′ and cdt′ of the flat four-dimensional proper space-
time (Σ′, ct′) and coordinate intervalsdr , rdθ , r sinθdϕ and cdt of the flat four-
dimensional relativistic spacetime (Σ, ct), we must be guided by the following facts:

1. The EuclideanΣ′ andΣ are relative spaces (i.e. without hat label unlike the
absolute spacêΣ) and non-isotropic with respect to 3-observers inΣ′ or Σ
(unlike the absolute spaceΣ̂, which is isotropic with respect to 3-observers in
the relative Euclidean 3-spacesΣ′ or Σ, as properly established in sub-section
4.7 of [6]). Isotropy of a given 3-space relative to an observer in the same or
another space, as used here, means that all directions of thegiven space are
identical with respect to the observer, thereby making the isotropic space to
contract to a one-dimensional isotropic space (or isotropic dimension) with
no unique orientation in the 3-space of the observer. clearly the 3-spaceΣ is
not isotropic with respect to observers in it by this definition.

2. The gravitational velocity~V ′g(r
′) is a relative velocity in the context of TGR.

This simply means that the magnitude of~V ′g(r
′) varies with position of differ-

ent radial distancesr from the center of the gravitational field source inΣ, as
discussed in sub-section 2.2.1 of [2].

3. The gravitational velocity~V ′g(r
′) is purely radial in every gravitational field,

spherically-symmetric or not, as discussed earlier in sub-section 1.2 (see sys-
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tem (4)) of this paper, but which is still to be formally established.

The three facts itemized above imply that theφGLLT (14) and its inverse (17)
must be transformed into GLLT and its inverse on flat four-dimensional spacetime
respectively as follows

dr′ = dr secψg(r′) − cdt tanψg(r′);

r′dθ′ = rdθ; r′ sinθ′dϕ′ = r sinθdϕ;

(w.r.t. 3− observers inΣ)

cdt′ = cdt secψg(r′) − dr tanψg(r′)

(w.r.t. 1− observers inct)



















































(85)

and
dr = dr′ secψg(r′) + cdt′ tanψg(r′);

rdθ = r′dθ′; r sinθdϕ = r′ sinθ′dϕ′;

(w.r.t. 1− observers inct′)

cdt = cdt′ secψg(r′) + dr′ tanψg(r′)

(w.r.t. 3− observers inΣ′)



















































(86)

If the Euclidean 3-spacesΣ′ andΣ were absolute and isotropic with respect to
3-observers in them, (like the absolute spaceΣ̂ is absolute and isotropic with respect
to 3-observers inΣ′ or Σ), then the first three equations of system (85) would have
been

dΣ′ = dΣ secψg(r
′) − cdt tanψg(r

′)

. And if Σ′ andΣ are considered to be relative and non-isotropic with respect to 3-
observers in them, which they are, but~V ′g(r

′) is not purely radial towards the center
of the gravitational field source, then the transformationsof r′dθ′ andr′ sinθ′dϕ′

into rdθ andr sinθdϕ would not have taken the trivial forms they take in systems
(85) and (86).

The appearance of the angleψg(r′) in systems (85) and (86) suggests that the
spacetime coordinate intervalsdr′ andcdt′ are inclined at angleψg(r′) relative to
dr and cdt respectively in a local spacetime geometry, likedφρ′ andφcdφt′ are
actually inclined at intrinsic angleφψg(φr′) relative todφρ andφcdφt respectively
in the local intrinsic spacetime geometries of Figs. 7 and 8.The appearance of the
angleψg(r′) in systems (85) and (86) then suggests further that there are global
spacetime geometries in which extended proper radial dimension r′ and extended
proper time dimensionct′ are curved relative to their projective extended straight
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line relativistic radial dimensionr and relativistic time dimensionct respectively,
like extendedφρ′ andφcφt′ are actually curved relative to extendedφρ andφcφt
respectively in Figs. 1 and 2.

However local spacetime geometries in which spacetime intervals dr′ andcdt′

are inclined by angleψg(r′) relative todr andcdt respectively and global spacetime
geometries in which extended spacetime dimensionsr′ andct′ are curved relative
to extendedr and ct, which system (85) may suggest, is hypothetical; they does
not exist in reality. They may be referred to as intrinsic relative rotation ofdr′ and
cdt′ relative todr andcdt and intrinsic curvature of extendedr′ andct′ relative to
extendedr andct. This is what is realized by the actual rotational of intrinsic space-
time intervalsdφρ′ andφcdφt′ relative todφρ andφcdφt by intrinsic angleφψg(φr′)
in Figs. 7 and 8 and actual curvature of extended intrinsic spacetime dimensionsφρ′

andφcφt′ relative to extendedφρ andφcφt in every gravitational field in Figs. 1 and
2.

The outward manifestations of the definition of the intrinsic angleφψg(φr′) in
Eqs. (18a) and (18b), obtained by simply removing the symbolφ are the following

sinψg(r
′) = V ′g(r

′)/cg ≡ βg(r
′) (87a)

cosψg(r
′) =

√

1− V ′g(r′)2/c2
g ≡ γg(r

′)−1 (87b)

The outward manifestations on four-dimensional spacetimeof systems (19) and
(20), which can be obtained by using Eqs. (87a) and (87b) on systems (85) and (86)
are the following respectively

dr′ = γg(r′)(dr − V ′g(r
′)dt);

r′dθ′ = rdθ; r′ sinθ′dϕ′ = r sinθdϕ;

(w.r.t. 3− observers inΣ)

dt′ = γg(r′)













dt −
V ′g(r

′)

c2
g

dr













;

(w.r.t. 1− observers inct)































































(88)

and
dr = γg(r′)(dr′ + V ′g(r

′)dt′);

rdθ = r′dθ′; r sinθdϕ = r′ sinθ′dϕ′;

(w.r.t. 1− observers inct′)

dt = γg(r′)













dt′ +
V ′g(r

′)

c2
g

dr′












;

(w.r.t. 3− observers inΣ′)































































(89)
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whereγg(r′) is given by Eq. (87b).
The outward manifestations on flat four-dimensional spacetime in the context of

TGR of Eqs. (22a) and (22b) in the context ofφTGR are the following

sinψg(r
′) =

√

2GM0a
r′c2

g

≡ βg(r
′) (90a)

cosψg(r
′) =

√

1−
2GM0a

rc2
g

≡ γg(r)−1 (90b)

The outward manifestation on flat four-dimensional spacetime (Σ, ct) of systems
(23) and (24) on flat intrinsic spacetime (φρ, φcφt), which can be obtained by using
Eqs. (90a) and (90b) in systems (85) and (86) are the following respectively

dr′ = γg(r′)















dr −

√

2GM0a
r′

dt















;

r′dθ′ = rdθ; r′ sinθ′dϕ′ = r sinθdϕ;

(w.r.t. 3− observers inΣ)

dt′ = γg(r′)

















dt −

√

2GM0a
r′c4

g

dr

















;

(w.r.t. 1− observers inct)















































































(91)

and

dr = γg(r′)















dr′ +

√

2GM0a
r′

dt′














;

rdθ = r′dθ′; r sinθdϕ = r′ sinθ′dϕ′;

(w.r.t. 1− observers inct′)

dt = γg(r′)

















dt′ +

√

2GM0a
r′c4

g

dr′
















;

(w.r.t. 3− observers inΣ′)















































































(92)

whereγg(r′) is given by Eq. (90b).
Systems (85), (88) and (91) are alternative forms of gravitational local Lorentz

transformation (GLLT) in the context of TGR and systems (86), (89) and (92) are
their inverses. Either the GLLT (85), (88) or (91) or its inverse (86), (89) or (92)
leads to gravitational local Lorentz invariance (GLLI) in the context of TGR

c2dt2 − dr2 − r2(dθ2 + sin2 θdϕ2) = c2dt′2 − dr′2 − r′2(dθ′2 + sin2 θ′dϕ′2) (93)
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This is the outward manifestation on flat four-dimensional spacetime in the context
of TGR of the intrinsic gravitational local Lorentz invariance (φGLLI) (25) on flat
two-dimensional intrinsic spacetime in the context ofφTGR.

The validity of Eq. (93) at every point in spacetime in a gravitational field,
guarantees formally the flatness everywhere in a gravitational field of the four-
dimensional relativistic spacetime (Σ, ct), which evolved in the context of TGR at the
second stage of evolutions of spacetime/intrinsic spacetime and parameters/intrinsic
parameters in a gravitational field, as illustrated alreadyin the global geometries of
Figs. 1 and 2.

The outward manifestations on flat four-dimensional spacetime in the context
of TGR of the intrinsic gravitational length contraction and intrinsic gravitational
time dilation in the context ofφTGR, given in the alternative forms of Eqs. (27a-b),
(28a-b) and (29a-b) are the following respectively

dr = dr′ cosψg(r
′); rdθ = rdθ′; andr sinθdϕ = r′ sinθ′dϕ′ (94a)

dt = dt′ secψg(r
′) (94b)

dr = γg(r
′)−1dr′ = (1−

V ′g(r)2

c2
g

)1/2dr′; rdθ = rdθ′;

and r sinθdϕ = r′ sinθ′dϕ′ (95a)

dt = γg(r
′)dt′ = (1−

V ′g(r)2

c2
g

)−1/2dt′ (95b)

and

dr = γg(r
′)−1dr′ = (1−

2GM0a
r′c2

g

)1/2dr′; rdθ = rdθ′;

and r sinθdϕ = r′ sinθ′dϕ′ (96a)

dt = γg(r
′)dt′ = (1−

2GM0a
r′c2

g

)−1/2dt′ (96b)

Equations (94a-b), (95a-b) and (96a-b) are alternative forms of gravitational
length contraction and gravitational time dilation in the context of TGR. It must be
noted that the rotation ofdr′ relative todr suggested by the first equation of system
(94a) and the rotation ofcdt′ relative tocdt suggested by Eq. (94b) are intrinsic rota-
tions, that is, they are not actual or observable rotations with respect to 3-observers
in Σ, as discussed earlier. The non-observable intrinsic rotations are what appear as
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actual rotations ofdφρ′ relative todφρ andφcdφt′ relative toφcdφt in Fig. 9 of the
measurable sub-space ofφTGR, to which intrinsic gravitational length contraction
and intrinsic gravitational time dilation formulae of Eqs.(27a-b), 28(a-b) or (29a-b)
in the context ofφTGR pertain.

Finally the outward manifestations on the flat four-dimensional spacetime in the
context of TGR of the intrinsic mass relation in the context of φTGR, derived graph-
ically in sub-section 2.2 and presented in the alternative forms of Eqs. (32), (33) and
(34), is given in the following alternative forms, obtainedby simply removing the
symbolφ from Eqs. (32) – (34)

m = m0γg(r
′)−2 = m0 cos2ψg(r

′) (97)

= m0















1−
V ′g(r

′)2

c2
g















(98)

= m0













1−
2GM0a

r′c2
g













(99)

The gravitational-relativistic massm that evolved from the rest massm0 in the con-
text of TGR shall be identified as the inertial mass and passive gravitational mass in
the second part of this paper.

The gravitational local Lorentz transformation (GLLT) in the alternative forms
of systems (85), (88) and (91) and its inverse in the alternative forms of systems (86),
(89) and (92); the gravitational local Lorentz invariance (GLLI) (93); the gravita-
tional length contraction and gravitational time dilationformulae in the alternative
forms of Eqs¿ (94a-b), (95a-b) and (96a-b) and the mass relation in the context
of TGR in the alternative forms of Eqs. (97) – (99), are sufficient results of TGR
for now. Other results shall be added from the analytical approach to TGR to be
developed in the second part of this paper.

Since the results of TGR in this sub-section have been written directly from
the results ofφTGR derived graphically in sub-sections 2.1 and 2.2, we havein
effect accomplished the graphical approach to TGR. It must be reiterated however
that there are no local spacetime geometries involving relative rotations of physi-
cal spacetime intervals and no global spacetime geometriesinvolving curvature of
extended physical spacetimes in the context of TGR.
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4.2 SR and combined SR and TGR on flat spacetime in a gravitational field of
arbitrary strength

Just as done by writing the results of the theory gravitational relativity (TGR) on the
flat relativistic spacetime (Σ, ct) in sub-section 4.1 directly from the corresponding
results of the intrinsic theory of gravitational relativity (φTGR), derived graphically
in sub-sections 2.1 and 2.2, the results of SR and combined SRand TGR on the flat
relativistic spacetime (Σ, ct), shall be written directly from the results ofφSR and
combinedφSR andφTGR on flat two-dimensional relativistic intrinsic spacetime
(φρ, φcφt), derived graphically in sub-sections 3.1 and 3.2. This shall entail the
removal of the symbolφ from the results ofφSR andφSR+φTGR essentially, while
taking proper care of the fact that SR and SR+TGR are four-dimensional theories
on flat (Σ, ct), whileφSR andφSR+φTGR are two-dimensional intrinsic theories on
flat (φρ, φcφt).

The intrinsic local Lorentz transformation (φLLT) in the context ofφSR and
its inverse in terms of extended straight line affine intrinsic spacetime coordinates,
which are but limited in extensions to the interior of a localLorentz frame in the
external gravitational field, in the alternative forms of systems (37) and (38) and
systems (40) and (41), on the flat relativistic intrinsic metric spacetime (φρ, φcφt)
that evolved in the context ofφTGR in a gravitational field, are made manifest out-
wardly (or physically) within a local Lorentz from on the flatfour-dimensional rel-
ativistic metric spacetime (Σ, ct) in the context of SR in the external gravitational
field respectively as follows

x̃ = x̃ secψd − cγ t̃ tanψd; ỹ = ỹ; z̃ = z̃;

(w.r.t. 3− observer Peter inΣ)

cγ t̃ = cγ t̃ secψd − x̃ tanψd;

(w.r.t. 1− observer̃Peter inct)







































(100)

and

x̃ = x̃ secψd + cγ t̃ tanψd; ỹ = ỹ; z̃ = z̃;

(w.r.t. 1− observer̃Peter inct)

cγ t̃ = cγ t̃ secψd + x̃ tanψd;

(w.r.t. 3− observer Peter inΣ)







































(101)
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or
x̃ = γd(v)(x̃ − vt̃ ); ỹ = ỹ; z̃ = z̃;

(w.r.t. 3− observer Peter inΣ)

t̃ = γd(v)(t̃ −
v

c2
γ

x̃ );

(w.r.t. 1− observer̃Peter inct)















































(102)

and
x̃ = γd(v)(x̃ + vt̃ ); ỹ = ỹ; z̃ = z̃;

(w.r.t. 1− observer̃Peter inct)

t̃ = γd(v)(t̃ +
v

c2
γ

x̃ );

(w.r.t. 3− observer Peter inΣ)















































(103)

where the outward manifestations on the flat spacetime (Σ, ct) of Eqs. (39a) and
(39b) on flat intrinsic spacetime (φρ, φcφt) namely,

sinψd = v/cγ ≡ βd(v) (104a)

cosψd =

√

1− v2/c2
γ ≡ γd(v)−1 (104b)

have been used in converting systems (100) and (101) to systems (102) and (103).
Except for the change of notations of the affine intrinsic coordinates, systems (100)
and (101) are the same as systems (28) and (29) of [9] and systems (102) and (103)
are the same as systems (33) and (34) of [9].

As discussed in [9], the rotation of the affine spacetime coordinates ˜x andcγ t̃

relative tox̃ andcγ t̃ respectively by angleψd, which system (100) may suggest and

the inverse rotation of̃x andcγ t̃ relative tox̃ andcγ t̃ respectively at negative angle
−ψd, which system (101) may suggest, do not exist in reality, or are fictitious. They
may be described as intrinsic rotations, which is formally what the rotations of the
intrinsic affine coordinatesφx̃ andφcγφt̃ relative toφx̃ andφcγφt̃ respectively in

Figs. 10 and 11 and the inverse rotation ofφx̃ andφcγφt̃ relative toφx̃ andφcγφt̃
respectively by negative intrinsic angle−φψd in the inverses to Figs. 10 and 11 (not
drawn) represent.

The outward (or physical) manifestations on the flat four-dimensional relativis-
tic metric spacetime (Σ, ct) in the context of TGR, of intrinsic gravitational local
Lorentz transformation (φGLLT) and its inverse on the flat relativistic intrinsic met-
ric spacetime (φρ, φcφt) in the context of intrinsic gravitational theory of relativ-
ity (φTGR), in the alternative forms of systems (14) and (17), systems (19) and
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(20) and systems (23) and (24), take on the alternative formsof systems (85) and
(86), systems (88) and (89) and systems (91) and (92) in everygravitational field
(spherically-symmetric or not), with respect to 3-observers inΣ. This, as discussed
earlier in sub-section 4.1, is due to the fact that the relativistic Euclidean 3-spaceΣ
is not isotropic (i.e. all directions inΣ are not the same) with respect to 3-observers
in Σ and the gravitational velocity is purely radial in every gravitational field, as dis-
cussed in sub-section 1.2 leading to system (4), to be established formally elsewhere
with further development.

The outward manifestations on the flat four-dimensional relativistic spacetime
(Σ, ct) in the context of SR in a gravitational field of the intrinsiclocal Lorentz trans-
formation (φLLT) and its inverse on flat two-dimensional intrinsic metric spacetime
(φρ, φcφt) in the context ofφSR in a gravitational field, in the alternative forms of
systems (37) and (38) and systems (40) and (41), likewise take the alternative forms
of systems (100) and (101) and systems (102) and (103), for every pair of frames of
reference in relative motion, as explained hereunder.

Now let the affine spacetime coordinate systems (cγ t̃ , x̃ , ỹ , z̃) and (cγ t̃ , x̃ , ỹ , z̃ )
on the flat four-dimensional relativistic metric spacetime(Σ, ct) of TGR be the
frames of reference of a particle and the observer respectively within a local Lorentz
frame on the flat spacetime (Σ, ct) in a gravitational field of arbitrary strength. The
corresponding affine intrinsic spacetime coordinate systems of the intrinsicframes
of the particle and observer in the underlying flat two-dimensional relativistic in-
trinsic metric spacetime (φρ , φcφt) of φTGR are (φcγφt̃ , φx̃) and (φcγφt̃ , φx̃ ) re-
spectively, whereφx̃ andφx̃ are both aligned along the singular one-dimensional
universal isotropic relativistic intrinsic spaceφρ.

Let the particle’s frame (cγ t̃ , x̃ , ỹ , z̃) be in motion at velocity,~vOP = ~v, rela-
tive to the observer’s frame (cγ t̃ , x̃ , ỹ , z̃), which implies that the particle’s intrinsic
frame (φcφt, φx) is in intrinsic motion at intrinsic speed,φvOP = φv, relative to the
observer’s intrinsic frame (cγ t̃ , x̃ , ỹ , z̃), where|φv| = |~v|. The intrinsic speedφv
lies along the intrinsic coordinateφx, which, itself lies along the singular universal
isotropic intrinsic spaceφρ.

The outward (or physical) manifestation of the intrinsic coordinate system
(φcγφt̃, φx̃) obtained by simply removing the symbolφ is (cγ t̃ , x̃). It then follows
that the intrinsic motion at intrinsic speedφv along the intrinsic coordinateφx̃ of
the particle’s intrinsic frame, (φcγφt̃ , φx̃) relative to the observer’s intrinsic frame

(φcγφt̃ , φx̃ ) is made manifest outwardly as the motion at speedv along the coor-
dinatex̃ of the partial coordinate system (cγ t̃ , x̃) of the particle’s frame on the flat
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four-dimensional spacetime (Σ , ct) relative to the observer. When the other coordi-
nates of the particle’s frame namely, ˜y andz̃, are incorporated into (cγ t̃ , x̃ ) we have a
situation where the intrinsic motion at intrinsic speed,φvOP = φv, along the intrinsic
coordinateφx̃ of the particle’s intrinsic frame (φcγφt̃, φx̃ ) relative to the observer’s

intrinsic frame (φcγφt̃ , φx̃ ) is made manifest outwardly as the motion at velocity,
~vOP = ~v, along the coordinate ˜x of the particle’s frame (cγ t̃ , x̃ , ỹ , z̃) relative to the

observer’s frame (cγ t̃ , x̃ , ỹ , z̃ ) on the flat four-dimensional spacetime (Σ , ct).
Once it is adopted as a convention that theX−axis of every frame shall be along

the direction of the velocity~v of relative motion of the frame, then the velocity,
~vOP = ~v, is purely along theX−axis of every frame. Thus for the present case
of a particle’s frame (cγ t̃ , x̃ , ỹ , z̃) in motion at velocity,~vOP = ~v, relative to the

observer’s frame (cγ t̃ , x̃ , ỹ , z̃ ), ~vOP is purely along the coordinate ˜x, which also
lies above the isotropic intrinsic spaceφρ. That is,

~vOP = ~v = vx î = vî (105a)

On the other hand, the observer’s frame (cγ t̃ , x̃ , ỹ , z̃ ) is in motion at velocity,
~vPO = −~v, relative to the particle’s frame (cγ t̃ , x̃ , ỹ , z̃ ) and the observer’s intrinsic

frame (φcγφt̃ , φx̃ ) is in intrinsic motion at intrinsic speed,φvPO = −φv, relative to
the particle’s intrinsic frame (φcγφt̃ , φx̃ ) in the above. The intrinsic motion at intrin-

sic speed−φv of the observer’s intrinsic frame (φcγφt̃ , φx̃) relative to the particle’s
intrinsic frame (φcγφt̃, φx̃ ), which occurs along the intrinsic space coordinateφx̃ that
is aligned along the singular universal isotropic intrinsic spaceφρ, is made manifest
in the motion of the observer’s frame (cγ t̃ , x̃ , ỹ , z̃ ) at velocity,~vPO = −~v, along the
coordinatex̃ of the observer’s frame relative to the particle’s frame (cγ t̃ , x̃ , ỹ , z̃ )
on the flat four-dimensional spacetime (Σ , ct). Again,~vPO = −~v, is purely along the
coordinatẽx of the observer’s frame. That is,

~vPO = −~v = −vx̃ î = −vî (105b)

The velocities~vPO and~vOP lie along the same line but are oppositely directed
in the Euclidean 3-spaceΣ. It then follows that the coordinates ˜x of the particle’s
frame, along which the velocity~vOP lies, and the corresponding coordinatex̃ of the
observer’s frame along which the velocity~vPO lies, are collinear inΣ.

The conclusion then is that although the coordinate systems(cγ t̃ , x̃ , ỹ , z̃) and

(cγ t̃ , x̃ , ỹ , z̃ ) of two frames in relative motion can be orientated relativeto each
other in space in an uncountable number of ways, the relativeorientation of the
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coordinate systems in which the coordinates ˜x and x̃ of the two frames are collinear
along the direction of their relative velocity is the naturally prescribed orientation
for deriving the Lorentz transformation (LT) and its inverse for the two frames.
However the corresponding coordinates of the two frames that are collinear with the
velocity of their relative motion may be taken as ˜y andỹ or z̃ andz̃; it is just a matter
of convention that they shall be taken as ˜x and x̃. A corollary of this conclusion is
that the LT and its inverse take on the forms of systems (100) and (101) or systems
(102) and (103) for every pair of frames in relative motion.

The natural orientation of the coordinate systems of two frames in relative mo-
tion for deriving the LT and its inverse isolated above is natural because it takes
into consideration the fact that the intrinsic motion at intrinsic speed,φvOP = φv,
of the intrinsic frame (φcγφt̃ , φx̃ ) relative to the intrinsic frame (φcγφt̃, φx̃ ) and
the converse intrinsic motion at intrinsic speed,φvPO = −φv, of the intrinsic frame
(φcγφt̃, φx̃ ) relative to the intrinsic frame (φcγφt̃, φx̃ ) take place along the intrin-
sic coordinatesφx̃ andφx̃ respectively, which are both aligned along the singular
universal isotropic intrinsic spaceφρ. The intrinsic coordinatesφx̃ andφx̃ and the
intrinsic speedsφvOP andφvPO, which are aligned along the singular straight line
universal isotropic intrinsic spaceφρ are then made manifest in coordinate ˜x and x̃
and velocities~vOP and~vPO that lie along a straight line along the collinear coordi-
nates ˜x and x̃ in Σ.

An arbitrary orientation in space of the coordinates systems (cγ t̃ , x̃ , ỹ , z̃) and

(cγ t̃ , x̃ , ỹ , z̃ ) of two frames in relative motion at a velocity~v on the flat four-
dimensional spacetime (Σ , ct), for the purpose of deriving the LT and its inverse, in
which the coordinates ˜x and x̃ and the velocity~v are not collinear, does not put into
consideration the relative intrinsic motion at intrinsic speedφv of the intrinsic frames
(φcγφt̃ , φx̃) and (φcγφt̃ , φx̃ ) in the underlying flat two-dimensional intrinsic space-
time (φρ , φcφt). Whereas it is the relative intrinsic motion of the intrinsic frames
in intrinsic spacetime that determines the observed relative motion of the frames in
spacetime. Such arbitrary orientation of coordinate systems of two fames in relative
motion is impossible. On the other hand, the collinearity ofthe coordinates ˜x andx̃,
which is inherent in the Lorentz transformation and its inverse in the familiar forms
of systems (102) and (103), is usually considered to be an assumption in the special
theory of relativity.

It is crucial to note thatφSR involves extended intrinsic affine spacetime coordi-
natesφx̃ andφcγφt̃ and consequently SR involves extended four-dimensional affine

spacetime coordinates̃x, ỹ, z̃ andcγ t̃, (which are but limited to interiors of a local
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Lorentz frames in a gravitational field for motion within a gravitational field). The
only metric intrinsic spacetme involved inφSR is the little intrinsic metric spacetime
interval dφρ andφcφt contained within the gravitational-relativistic cum special-
relativistic intrinsic massφm of the test particle in relative motion. Consequently
the only metric spacetime involved in SR is the little volumedΣ contained within
m moving in Σ and little interval of time dimensioncdt contained within the the
symmetry-partner massε/c2 moving along the time dimensionct, of the particle in
relative motion. An implication of this is that the motion ofa test particle in the
extended flat relativistic metric spacetime (Σ , ct) that evolves in the context of TGR
can neither alter the Lorentzian metric nor the label of (Σ , ct). In other words, the
extended flat spacetime (Σ , ct) of TGR does not transform into another extended
flat spacetime (Σ , ct) due to the relative motion of a particle or body in (Σ , ct) in
the context of SR.

Similarly it is due to the fact that the isotropic relativistic intrinsic spaceφρ and
the intrinsic gravitational speedφV ′g(φr′) that lies alongφρ is naturally orientated
along radial directions from the centroid of every gravitational field source (spher-
ical or non-spherical) in the relativistic Euclidean 3-spaceΣ only that the outward
manifestation inΣ of φV ′g(φr′) namely, the gravitational velocity~V ′g(r

′) is naturally
along radial directions from the centroid of every gravitational field source (spher-
ical or non-spherical) inΣ only, as shall be taken up fully elsewhere with further
development. Consequently~V ′g(r

′) is radially towards the centroid of every grav-
itational field source, spherically-symmetric or not, as stated by system (4), and
GLLT and its inverse can take on the forms of systems (85) and (86) or systems
(88) and (89) or systems (91) and (92), in which the coordinates intervalsr′dθ′ and
r′ sinθ′dϕ′ transform into the coordinate intervalsrdθ andr sinθdϕ trivially only in
every gravitational field (spherical or non-spherical).

After the long but important digression to establish the fact that the local Lorentz
transformation (LLT) and its inverse of SR can take on the forms of systems (100)
and (101) or systems (102) and (103) only within or outside a gravitational field,
for every pair of frames of reference in relative motion, andthe gravitational local
Lorentz transformation and its inverse can take on the formsof systems (85) and
(86) or systems (88) and (89) or systems (91) and (92) in everygravitational field
(spherically symmetric or not), let us return to the subjectof this sub-section, which
is writing the results of SR and combined SR and TGR on the flat four-dimensional
spacetime (Σ, ct) from the corresponding results ofφSR and combinedφSR and
φTGR on flat intrinsic spacetime (φρ, φcφt).
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Either system (100) or (101) or the explicit form in terms of the speedv (102) or
(103) leads to local Lorentz invariance (LLI) (of SR ) on the flat relativistic space-
time (Σ, ct) of TGR in a gravitational field. That is,

c2
γ t̃ 2 − x̃2 − ỹ2 − z̃2 = c2

γ t̃ 2 − x̃2 − ỹ2 − z̃2 (106)

This is the outward manifestations on the flat (Σ, ct) in the context of SR of the
intrinsic local Lorentz invariance (φLLI) (of φSR) (42) on flat (φρ, φcφt).

The Lorentz transformation (LLT) and its inverse of systems(100) and (101)
or system (102) and (103) and the LLI (106) they imply, obtainwithin every lo-
cal Lorentz frame in every gravitational field (sphericallysymmetric or not). The
LLI has thus been validated on the flat relativistic spacetime (Σ, ct) that evolved in
the context of TGR in every gravitational field, as shall alsobe re-done purely an-
alytically in the second part of this paper. It may be recalled that LLI remains an
assumption (without theoretical validation) but with abundant experimental support
in the general theory of relativity (GR) [10,11, etc].

The intrinsic special-relativistic length contraction and intrinsic special-relativ-
istic time dilation formulae in the alternative forms of Eqs. (43a) and (43b) and
Eqs. (44a) and (44b) in the context ofφSR on the flat relativistic intrinsic spacetime
(φρ, φcφt) of φTGR in a gravitational field, are made manifest outwardly (orphys-
ically) in special-relativistic length contraction and special-relativistic time dilation
formulae in the context of SR on the flat relativistic spacetime (Σ, ct) of TGR in
every gravitational field respectively as follows

x̃ = x̃ cosψd; ỹ = ỹ; andz̃ = z̃ (107a)

t̃ = t̃ secψd (107b)

or

x̃ = γd(v)−1x̃ = (1− v2/c2
γ)

1/2x̃; ỹ = ỹ; andz̃ = z̃ (108a)

t̃ = γd(v)t̃ = (1− v2/c2
γ)
−1/2t̃ (108b)

The intrinsic gravitational-relativistic cum special-relativistic length contrac-
tion and intrinsic gravitational-relativistic cum special-relativistic time dilation for-
mulae on the flat relativistic intrinsic spacetime (φρ, φcφt) in the context of com-
bined φTGR andφSR, in the alternative forms of Eqs. (48a-b) and (50a-b), are
likewise made manifest outwardly on the flat four-dimensional spacetime (Σ, ct)
of TGR as gravitational-relativistic cum special-relativistic length contraction and
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gravitational-relativistic cum special-relativistic time dilation formulae in the con-
text of combined TGR and SR respectively as follows

x̃ = x̃ ′ cosψg(r
′) cosψd; ỹ = ỹ ′; z̃ = z̃ ′ (109a)

t̃ = t̃ ′ secψg(r
′) secψd (109b)

x̃ = γg(r
′)−1γd(v)−1x̃ ′ = (1−

V ′g(r
′)2

c2
g

)1/2(1−
v2

c2
γ

)1/2x̃ ′;

ỹ = ỹ ′; z̃ = z̃ ′ (110a)

t̃ = γg(r
′)γd(v)t̃ ′ = (1−

V ′g(r
′)2

c2
g

)−1/2(1−
v2

c2
γ

)−1/2t̃ ′ (110b)

or

x̃ = γg(r
′)−1γd(v)−1x̃ ′ = (1−

2GM0a
r′c2

g

)1/2(1−
v2

c2
γ

)1/2x̃ ′;

ỹ = ỹ ′; z̃ = z̃ ′ (111a)

t̃ = γg(r
′)γd(v)t̃ ′ = (1−

2GM0a
r′c2

g

)−1/2(1−
v2

c2
γ

)−1/2t̃ ′ (111b)

The affine spacetime coordinates with prime labelcγ t̃ ′ , x̃ ′ , ỹ ′ and z̃ ′ are those
of the particle’s frame in the context of the primed special theory of relativity (SR′),
involving the motion of the rest massm0 of the particle relative to the observer,
within a local Lorentz frame at radial distancer′ from the center of the rest massM0

of the gravitational field source, in the proper Euclidean 3-spaceΣ′ of the flat proper
(or classical) spacetime (Σ′, ct′) (in Fig. 11 of [6]), which evolved in the context of
absolute intrinsic gravity/absolute gravity (φAG/AG) – assuming relative gravity
was still absent – at the first stage of evolutions of spacetime/intrinsic spactime and
parameters/intrinsic parameters in a gravitational field. The coordinatescγ t̃ , x̃ , ỹ
andz̃ are those of the observer’s frame in the context of the unprimed special theory
of relativity (SR), involving the motion of the gravitational-relativistic massm of the
particle relative to the observer, within a local Lorentz frame at radial distancer from
the center of the gravitational-relativistic massM of the gravitational field source, in
the relativistic Euclidean 3-spaceΣ of the flat relativistic spacetime (Σ, ct) of TGR
in Fig. 1, which evolved at the second stage of evolutions of spacetime/intrinsic
spactime and parameters/intrinsic parameters in a gravitational field.
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However while the resultant time dilation formula in the context of combined
TGR and SR of Eq. (109b), (110b) or (111b) is valid for an arbitrary orientation
of the coordinates of 3-spacex̃ , ỹ and z̃ of the observer’s frame relative to a radial
direction from the center of the massM of the gravitational field source inΣ, within
a local Lorentz frame, the resultant length contraction formula (109a), (110a) or
(111a) is valid for the particular orientation of the spatial coordinates in which̃x
along which motion of the particle relative to the observer occurs, lies along a radial
direction from the center ofM.

In a situation where the coordinatex̃ along which the motion of the particle
relative to the observer occurs does not lie along a radial direction from the center
of the gravitational field sourceM in Σ, on the other hand, the length contraction
formula (109a), (110a) or (111a) must be modified appropriately. If, for instance,
the coordinates̃x and ỹ are orientated perpendicular to a radial direction from the
center ofM, while the coordinatẽz lies along a radial direction from the center of
M within a local Lorentz frame for a give moment, then the proper (or classical)
coordinate ˜x ′ will suffer special-relativistic contraction solely, the proper (or clas-
sical) coordinate ˜z ′ will suffer gravitational-relativistic contraction solely, whilethe
proper (or classical) coordinate ˜y ′ will suffer no contraction for that moment. Then
system (109a), (110a) or (111a) must be modified accordinglyfor this situation. For
instance system (111a) must be modified as follows

x̃ = (1−
v2

c2
γ

)1/2x̃ ′; ỹ = ỹ ′; z̃ = (1−
2GM0a

r′c2
g

)1/2z̃ ′ (112)

while Eq. (111b) remains unchanged.

The outward manifestations in the context of SR on the flat four-dimensional
gravitational-relativistic spacetime (Σ, ct), of the intrinsic local Lorentz transforma-
tion and its inverse in terms of the little gravitational-relativistic intrinsic metric
spacetime interval (dφρ, φcdφt) contained within the gravitational-relativistic in-
trinsic mass (φm, φε/φc2) of the particle and the little gravitational-relativistic cum
special-relativistic intrinsic metric spacetime interval (dφρ, φcdφt) contained within
the gravitational-relativistic cum special-relativistic mass intrinsic (φm, φε/φc2) of
the particle, in the alternative forms of systems (51) and (52) and systems (53) and
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(54) in the context ofφSR are the following

dx = dx secψd − cdt tanψd; dy = dy; dz = dz;

(w.r.t. 3− observer Peter inΣ)

cdt = cdt secψd − dx tanψd;

(w.r.t. 1− observer̃Peter inct)







































(113)

and
dx = dx secψd + cdt tanψd; dy = dy; dz = dz;

(w.r.t. 1− observer̃Peter inct)

cdt = cdt secψd + dx tanψd;

(w.r.t. 3− observer Peter inΣ)







































(114)

or
dx = γd(v)(dx − vdt ); dy = dy; dz = dz;

(w.r.t. 3− observer Peter inΣ)

dt = γd(v)(dt −
v

c2
γ

dx );

(w.r.t. 1− observer̃Peter inct)











































(115)

and
dx = γd(v)(dx + vdt); dy = dy; dz = dz;

(w.r.t. 1− observer̃Peter inct)

dt = γd(v)(dt +
v

c2
γ

dx);

(w.r.t. 3− observer Peter inΣ)











































(116)

The metric spacetime coordinate intervalsdx , dy , dz andcdt in systems (113)
– (116) are the dimensions of the gravitational-relativistic mass (m , ε/c2) of the
particle that evolved on the flat relativistic spacetime (Σ, ct) in the context of TGR,
while dx , dy , dx andcdt are the dimensions of the gravitational-relativistic cum
special-relativistic mass (m , ε/c2) that evolved on (Σ, ct) in the context of combined
TGR and SR.

The special-relativistic length contraction and special-relativistic time dilation
formulae implied by systems (113) and (114) and systems (115) and (116), are the
outward manifestations of Eqs. (56a-b) and Eqs. (57a-b) in the context ofφSR, given
as follows

dx = dx cosψd; dy = dy; dz = dz; (117a)

dt = dt secψd (117b)
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and

dx = γd(v)−1dx; = (1−
v2

c2
γ

)1/2dx; dy = dy; dz = dz; (118a)

dt = γd(v)dt; = (1−
v2

c2
γ

)−1/2dt (118b)

Only the dimensiondx of the particle (or object), a box, say, along which its motion
relative to the observer occurs, suffers special-relativistic contraction relative to the
observer according to system (117a) or (118a).

The intrinsic special-relativistic cum gravitational-relativistic length contrac-
tion and special-relativistic cum gravitational-relativistic time dilation of the lit-
tle proper intrinsic metric spacetime interval (dφρ , φcdφt) contained within the
special-relativistic cum gravitational-relativistic intrinsic mass (φm , φε/φc2) of the
particle or object on the flat relativistic intrinsic spacetime (φρ , φcφt), in the context
of combinedφTGR andφSR, given in the alternative forms of Eqs. (58a-b), (59a-
b) and (60a-b), are likewise made manifest on the flat four-dimensional relativistic
spacetime (Σ, ct) in the context of combined TGR and SR respectively as follows

dx = dx′ cosψg(r
′) cosψd; dy = dy′; dz = dz′; (119a)

dt = dt′ secψg(r
′) secψd (119b)

or

dx = γg(r
′)−1γd(v)−1dx′;

= (1−
V ′g(r

′)2

c2
g

)1/2(1−
v2

c2
γ

)1/2dx′; dy = dy′; dz = dz′; (120a)

dt = γg(r
′)γd(v)dt′;

= (1−
V ′g(r

′)2

c2
g

)−1/2(1−
v2

c2
γ

)−1/2dt′ (120b)

or

dx = γg(r
′)−1γd(v)−1dx′;

= (1−
2GM0a

r′c2
g

)1/2(1−
v2

c2
γ

)1/2dx′; dy = dy′; dz = dz′; (121a)

dt = γg(r
′)γd(v)dt′;

= (1−
2GM0a

r′c2
g

)−1/2(1−
v2

c2
γ

)−1/2dt′ (121b)
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Again the length contraction formulae of the dimensions of the particle or ob-
ject of system (119a), (120a) or (121a) is valid in a situation where its dimension
dx, along which its motion relative to the observer occurs within a local Lorentz
frame, is orientated along a radial direction from the center of the massM of the
gravitational field source inΣ. Otherwise systems (119a), (120a) and (121a) must
be modified appropriately.

The intrinsic mass relation (74) or (75), the intrinsic total energy expression (76)
and the intrinsic kinetic energy relation (77), derived graphically in the context of
φSR on the flat relativistic intrinsic spacetime (φρ , φcφt) in a gravitational field ear-
lier, are made manifest in mass relation, total energy expression and kinetic energy
relation on the flat relativistic spacetime (Σ, ct) in the context of SR in a gravitational
field respectively as follows

m = γd(v)m = m secψd = m(1−
v2

c2
γ

)−1/2, (122)

m2c4
γ − m2c2

γv
2 = m2c4

γ (123)

and

T = mc2
γ(γd(v) − 1)

= mc2
γ

(

(1− v2/c2
γ)
−1/2 − 1

)

(124)

The intrinsic mass relation in the context of combinedφTGR andφSR derived
graphically in sub-sections 2.2 and 3.2 and presented in thealternative forms of
Eqs. (78), (79) and (80) are made manifest on the flat four-dimensional relativistic
spacetime (Σ, ct) in the context of combined TGR and SR in the following alterna-
tive forms

m = m0γg(r
′)−2γd(v)

= m0 cos2ψg(r
′) secψd (125)

= m0(1−
V ′g(r

′)2

c2
g

)(1−
v2

c2
γ

)−1/2 (126)

= m0(1−
2GM0a

r′c2
g

)(1−
v2

c2
γ

)−1/2 (127)

The massm is the gravitational-relativistic cum special-relativistic mass in the con-
text of combined TGR and SR.
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The intrinsic gravitational-relativistic cum special-relativistic kinetic energy in
the context of combinedφTGR andφSR presented in the forms of Eqs¿ (80) – (82)
are likewise made manifest on flat four-dimensional relativistic spacetime (Σ, ct) in
the context of combined TGR and SR respectively as follows

T = m0c2
γ cos2ψg(r

′)[secψd − 1] (128)

= m0c2
γ(1−

V ′g(r
′)2

c2
g

)[(1 −
v2

c2
γ

)−1/2 − 1] (129)

= m0c2
γ(1−

2GM0a
r′c2

g

)[(1 −
v2

c2
γ

)−1/2 − 1] (130)

The kinetic energyT is the gravitational-relativistic cum special-relativistic kinetic
energy in the context of combined TGR and SR.

Finally the intrinsic total energy expression (76) on the flat relativistic intrinsic
spacetime (φρ , φcφt) in the context of combinedφTGR andφSR is made manifest
in total energy expression on the flat relativistic spacetime (Σ, ct) in the context of
combined TGR and SR as follows

m 2c4
γ − m 2c2

γv
2 = m2c4

γ (131)

wherem is given by Eq. (126) or (127) in the context of TGR+SR andm is given
by Eq. (97), (98) or (99) in the context of TGR. By using Eq. (126) or (127) and
Eq. (97), (98) or ((99) in Eq. (131) we have

m̃2c4
γ − m̃2c2

γv
2 = m2

0c4
γ (132)

wherem̃ = γd(v)m0 is the special-relativistic mass expression (usually written as
m = γm0) in the context of the primed special theory of relativity (SR′) on flat
proper spacetime (Σ′, ct′) in the absence of relative gravity, with the geometry of
Fig. 11 of [6], at the first stage of evolutions of spacetime/intrinsic spacetime and
parameters/intrinsic parameters in a gravitational field of arbitrary strength.

The effect of gravitational relativity (that is, the effect of TGR) cancels out in the
gravitational-relativistic cum special-relativistic expression (131), thereby making
the pure special-relativistic expression (132) to remain unchanged with position in
a gravitational field.

Every result of TGR, SR and combined TGR and SR on the flat relativistic
spacetime (Σ, ct) of TGR has its corresponding results in the context ofφTGR,φSR
and combinedφTGR andφSR on the flat relativistic intrinsic spacetime (φρ , φcφt)
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of φTGR in a gravitational field, where most of the results of TGR,SR and combined
TGR and SR can be obtained by simply removing the symbolφ from the results of
φTGR,φSR and combinedφTGR,φSR. There is certainly a graphical approach to
TGR, SR and combined TGR and SRvia the graphical approach toφTGR,φSR and
combinedφTGR andφSR, as developed in this first part of this paper.

The fact that TGR, SR and TGR+SR, etc, on the flat four-dimensional rela-
tivistic spacetime (Σ, ct) of TGR are outward (or physical) manifestations ofφTGR,
φSR,φTGR+φSR, etc, on the flat relativistic intrinsic spacetime (φρ , φcφt) of φTGR
in a gravitational field, establishes a notion that non-observable intrinsic physics in
intrinsic spacetime determines the observed physics in spacetime. The formal es-
tablishment of this notion at this point in the present theory is crucial, because it
(the notion) authenticates one of the background philosophical stand-point of the
present theory, that the domain of physics transcends the domain of experience.

There are actually two possible approaches to each of TGR, SRand combined
TGR and SR on the flat four-dimensional relativistic spacetime (Σ, ct) of TGR in a
gravitational field namely,

1. The graphical approach to TGR, SR and combined TGR and SRvia the graph-
ical approach toφTGR,φSR and combinedφTGR andφSR, as developed in
this first part of this paper, and

2. An analytical approach to TGR, SR and combined TGR and SR onthe flat
four-dimensional spacetime (Σ, ct) of TGR, to be developed in the second part
of this paper, to complement the graphical approach. However the analytical
approach to SR, which has been developed by Einstein in 1905,shall not be
repeated.
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