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The theory of gravitational relativity and intrinsic theory of gravitationdhtieity
(TGR/$TGR), the special theory of relativity and intrinsic special theory of nelati
(SR/¢SR), and their union, on flat four-dimensional relativistic spacetimet] and its
underlying flat two-dimensional relativistic intrinsic spacetimg, ¢cgt), at the second
stage of evolutions of spacetifirdrinisic spacetime and parametémnginsic parame-
ters in a gravitational field of arbitrary strength, isolated in the previougnsamre
developed fully in the first two parts of this paper. Mass and other pdesiredations
in the context of TGR and the implied modification of Newton’s law of uniakggav-
ity in the context of TGR are derived. Local Lorentz invariance is validiae flat
spacetime in the context of TGR. This first part is devoted to the grapduigabaches
in the four-world picture to these flat spacetjinginsic spacetime theories, while an-
alytical approaches shall be developed in the second part to complémegraphical
approaches. The other theories isolated at the second stage of ewhitispace-
time/intrinsic spacetime and paramet@rginsic parameters in every gravitational field
namely, the metric theory of absolute intrinsic gravigMAG) and combined metric
theory of absolute intrinsic gravity and absolute intrinsic motigMAG U ¢MAM), on
curved ‘two-dimensional’ absolute intrinsic spacetimg, ¢pé¢t); their projective theo-
ries into the flat relativistic intrinsic spacetime namely, the Newtonian thealsdlute
intrinsic gravity @NAG) and combined Newtonian theory of absolute intrinsic gravity
and absolute intrinsic motiomNAG U pNAM), as well as the outward manifestations
of these in the flat four-dimensional relativistic spacetime namely, theobservable
Newtonian theory of absolute gravity (NAG) and combined Newtonian thebab-
solute gravity and absolute motion (NAGNAM), shall be developed in the third part
of this paper.

*Author’s surname had been Adekugbe or Adekugbe-Joseph2oritll.
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1 Introduction

1.1 On the global spacetiryiatrinsic spacetime geometries of theorj@grinsic
theories of gravity, motion and other non-gravitational e at the second
stage of evolutions of spacetirfietrinsic spacetime and parametefiatrinsic
parameters in a gravitational field

The theory of relativity in spacetime and intrinsic theoffyrelativity in intrinsic
spacetime, due to the presence of a long-range metric faick fieveloped in [1]
and adapted to the gravitational field in section 2 of [2], idirct pre-requisite
to this paper. As has been robustly established in thoseoguewapers, the four-
dimensional spacetime, qualified as relativistic spacetimd denoted by( ct) in
our notation, containing the relativistic masses«/c?) of material particles and
bodies and the underlying relativistic intrinsic spacetip, ¢cot) containing the
relativistic intrinsic massegm, ¢</¢c?) of particles and bodies, which evolve at the
second stage of evolutions of spacetimiinsic spacetime and paramef@ginsic
parameters in a gravitational field, are everywhere flat imavitational field of
arbitrary strength (or in every gravitational field).

There are, in addition, in every gravitational field, thevad two-dimensional
proper intrinsic spacetimef’, ¢pcot’) with orthogonal curvilinear intrinsic dimen-
siongp’ andgcet’ and consequently with intrinsic Lorentzian metric tendaeery
point of it, containing the intrinsic rest massesn, ¢<’ /$#c?) of material particles
and bodies, which projects the flat relativistic intringiasetime ¢p, ¢cot) under-
neath it. There is also the curved ‘two-dimensional’ aboiatrinsic spacetime
(#p, pEot), an absolute intrinsic Riemannian metric space with alteahtrinsic
sub-Riemannian metric tensegk, containing the absolute intrinsic rest masses
#iy and ¢M, of particles and bodies. Finally there is the constantly ‘flao-
dimensional’ absolute-absolute intrinsic-intrinsic spéme ¢¢p, ¢¢c¢¢t) isolated
in[3], containing the absolute-absolute intrinsic-ingic rest masseg i, ¢z /dpt)?
of particles and bodies in it, in every gravitational field.

The flat relativistic spacetimé&(ct) containing the relativistic masses,(/c?)
or (M,E/c?) of particles and bodies and the hierarchy of intrinsic sgiates
namely, flat relativistic intrinsic spacetim@d, ¢c¢t) underlying &, ct), curved pro-
per intrinsic spacetimepp’, ¢cgt’), curved absolute intrinsic spacetlm@(qﬁwt)
and flat absolute-absolute intrinsic-intrinsic spaceti@ep, ¢¢c¢¢t) underlying
the flat gp, pcot) and the associated hierarchy of intrinsic masges, ¢=/¢c?),
(6o, &’ /$C2), (dig, p&/$E2) and oo, dpé/dpc) respectively, listed above have
been shown to evolve simultaneously at the combined firstsaednd stages of
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evolutions of spacetinfimtrinsic spacetimes and parametarginsic parameters in
a gravitational field in sub-section 1.1 of [2] and illusedigraphically as the global
spacetimgintrinsic spacetime geometries of Figs. 7 and 8 and theiersas in
Figs. 9 and 10 of that paper.

Fig. 7 of [2] was re-presented as Fig. 9 of [4] where the flabdimensional’
absolute-absolute intrinsic-intrinsic spacetlm¢ﬁ( ¢¢c¢¢t) isolated in [3] was in-
corporated into the geometry. Thus Fig. 9 of [4] of combinest ind second stages
of evolutions of spacetinfimtrinsic spacetime and paramet@rginsic parameters
in a gravitational field and its complementary diagram asdftihverses (not drawn)
in [4], constitute the complete set of spacetimiinsic spacetime geometries that
support the theories of gravijtgtrinsic gravity, motiorintrinsic motion and all other
non-gravitational law#ntrinsic non-gravitational laws in a gravitational field dur
universe and the negative universe.

In order to make this paper as autonomous as possible antbatsanvenience
of reading, Fig. 9 of [4] shall be reproduced as Fig. 1 anddtmplementary dia-
gram (not drawn) in [4] shall be presented as Fig. 2 of thisspapVe only need

to incorporate the flatggp, potost) and Codp*, ¢¢c¢¢t ) into Figs. 7 and 8
of [2] to accompllsh these. However the inverse diagramaiobet by incorpo-

rating @({)p, ¢¢>c¢¢t) and egbq&p , ¢¢c¢¢t ), into Fig. 9 and 10 of [2], shall not be
drawn in order to conserve space.

As finally determined in section 3 of [4], the theories of gtgintrinsic grav-
ity and theories of combined gravjigtrinsic gravity and motiofintrinsic motion at
the first stage of evolutions of spacetifinérinsic spacetime and paramef@rginsic
parameters in a gravitational field must be formulated withtrinsic local Lorentz
frames on the curved ‘2-dimensional’ absolute intrinsiacggime §p, ¢&¢t) and
curved two-dimensional proper intrinsic spacetimg’(#cgt’) with respect to in-
trinsic 1-observers along the curved proper intrinsic sgatand 3-observers in the
relativistic Euclidean 3-spacgin Fig. 1. These areMAG, ¢NAG* and pMAG +
#MAM, ¢NAG*+¢pNAM* on the curved ¢p, pc¢t) and the primed intrinsic theo-
ries gNAG’ and gNAG+pNAM’ within intrinsic Local Lorentz frames on curved
(¢p’, pcot’).

There is also the primed intrinsic classical (or Newtonf®dry of (relative)
gravity (¢CG") within intrinsic local Lorentz frames on the curved prop#rinsic
spacetime o', pcgt’), with essential equations (115) (118) of [4], formulated
with respect to intrinsic 1-observers in the curved propétirisic spacepp’ and
3-observers in the relativistic Euclidean 3-space Fig. 1. The CG¢CG arise
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Figure 1. The global spacetiretrinsic spacetime diagram of combined first
and second stages of evolutions of spacefimwnsic spacetime and parame-
tergintrinsic parameters in a gravitational field of arbitratyeagth that is valid
with respect to 3-observers in the relativistic Euclidesspaces in our universe and
the negative universe.

from the proper intrinsic gravitational spegdl; (¢r’), proper intrinsic gravitational
potentialpd’(¢r’) and proper intrinsic gravitational fielsly’ (¢r’) established along
the curvedsp’ andgcet’ by Mg and@E’ /¢c? of the gravitational field source at the
origins of the curve@p’ andgcet’ respectively.

Apart from ¢MAG, ¢NAG*, pMAG+pMAM, ¢NAG*+ ¢NAM*, ¢NAG’,
¢oNAG’+¢NAM’ and¢pCG, there are also primed intrinsic spacial theory of relativ-
ity (¢SR) and other primed intrinsic classical non-gravitatiormal$CNGL’ and
primed intrinsic special-relativistic non-gravitationaws ()CNGL'+¢#SR) within
intrinsic local Lorentz frames on curved proper intringi@setime ¢o’, pcot’), for-
mulated with respect to intrinsic 1-observers along theediproper intrinsic space
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Figure 2: The complementary diagram to Fig. 1 that is valithwespect to 1-
observers in the relativistic time dimensions in our uréeeand the negative uni-
verse.

¢p’ and 3-observers in the relativistic Euclidean 3-spade Fig. 1. The intrinsic
theories on the curvedp, ¢tst) and curveddp’, pcgt’) listed in this and the fore-
going two paragraphs have been brought forward to the sestageé of evolutions
of spacetimgntrinsic spacetime and paramet@rginsic parameters from the first
stage in a gravitational field of arbitrary strength.

The primed intrinsic theoriegNAG’, ¢NAG’+¢NAM’, ¢SR, pCNGL’, ¢SR,
¢SR+¢CNGL’ and¢CG’ within proper (or primed) intrinsic local Lorentz frames
on curved two-dimensional proper intrinsic spagg’ (¢cet’), formulated with re-
spect to intrinsic 1-observers along the curved propeinisitt spacesp’ in Fig. 1, at
the first stage of evolutions of spacetitinéinsic spacetime and paramef@rginsic
parameters in a gravitational field, project the unprimedrniic theories namely,
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ONAG, pNAG+¢pNAM, ¢SR,¢CNGL, pCNGL+¢SR andpCG respectively into the

respective unprimed (or relativistic) intrinsic local lemtz frames on the flat two-

dimensional relativistic intrinsic spacetimgo( ¢cet) in Fig. 1, at the second stage
of evolutions of spacetinfimtrinsic spacetime and paramef@rginsic parameters

in a gravitational field, which are valid with respect to 3sebvers in the relativistic

Euclidean 3-spack overlying in Fig. 1.

The projective unprimed (or gravitational-relativistiafrinsic theories on the
flat relativistic intrinsic spacetimepp, ¢cgt) are then made manifest in the respec-
tive unprimed (or gravitational-relativistic) theoriesmely, NAG, NAG-NAM, SR,
CNGL, CNGL+SR and CG, within unprimed (or relativistic) local Lorentarhes
on flat four-dimensional relativistic spacetin €t) with respect to 3-observers in
¥ at the second stage of evolutions of spacefimiénsic spacetime and parame-
tergintrinsic parameters in a gravitational field.

There are also theMAG, ¢NAG* and pMAG +pMAM, ¢NAG* +pNAM* on
the curved ‘two-dimensional’ absolute intrinsic spaceti@p, ¢4f) to be formu-
lated with respect to 3-observers in the relativistic Edein 3-spac&, as well
as the Newtonian theory of absolute-absolute intrinstidrgic gravity ppNAAG,
the Newtonian theory of absolute-absolute intrinsichirsic motionggNAAM and
their uniong¢NAAG +¢¢NAAM on the constantly flat absolute-absolute intrinsic-
intrinsic spacetime¢(¢;§, ¢¢?:¢¢f), to be formulated with respect to 3-observers in
¥ in Fig. 1, at the second stage of evolutions of spacetint@jsit spacetime and
parametepintrinsic parameters in a gravitational field.

The program of this paper in three parts is to formulate theiored (or gravita-
tional-relativistic) theories at the second stage of etohs of spacetimintrinsic
spacetime and parametg@nsrinsic parameters in a gravitational field namely, NAG
#NAG, NAG/pNAG+NAM/pNAM, SR/#SR, CNGI/¢CNGL and CGsCG on the
flat relativistic spacetim@at relativistic intrinsic spacetimex(ct)/(¢p, #cot), as
well aspMAG, gNAG* and pMAG +¢pMAM, pNAG* +¢NAM* on curved (@p, ppt)
with respect to 3-observers in the relativistic EuclideaspaceX in Fig.1, while
dSNAAG, pdNAAM and p¢NAAG +psNAAM on flat (¢dp, pppet), shall be for-
mulated with respect to 3-observers in the relativisticliiean 3-spac& in Fig. 1
in another paper later in this volume.

The unprimed (or gravitational-relativistic) intrinsi@ssical (or Newton’s) the-
ory of gravity (¢CG) within unprimed intrinsic local Lorentz frames on the fial-
ativistic intrinsic spacetimep, ¢cgt) and its outward manifestation (CG) within
unprimed local Lorentz frames on the flat relativistic spimee <, ct), shall be
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developed along with the unprimed (or gravitational-igistic) intrinsic special
theory of relativity ¢SR) within unprimed intrinsic local Lorentz frames on the
flat relativistic intrinsic spacetimesp, ¢cst) and its outward manifestation namely,
the unprimed (or gravitational-relativistic) special ¢ing of relativity within un-
primed local Lorentz frames on the flat relativistic spavetig, ct), with respect to
3-observers iz in Fig. 1, in the first two parts of this paper.

The sMAG, ¢NAG* and pMAG+¢pMAM, ¢NAG*+ #NAM* on curved ab-
solute intrinsic spacetimepp, p&pt) and NAGHNAG, NAG/¢NAG+NAM /¢NAM
on flat relativistic spacetimitat relativistic intrinsic spacetimex(ct)/(¢p, pcet),
shall be formulated with respect to 3-observers in Fig. 1 in the third part of this
paper, whilep¢pNAAG, ¢dNAAM and ¢¢NAAG +dsNAAM on flat (¢dp, pdCodt),
shall be formulated with respect to 3-observers in theikestit Euclidean 3-space
¥ in another paper later in this volume, as mentioned above.

The unprimed classical and special-relativistic non-gaséional laws (CNGL
and CNGL+SR) on flat relativistic spacetim&,(ct) and the unprimed intrinsic clas-
sical and intrinsic special-relativistic non-gravitat# laws CNGL andpCNGL+
#SR) on flat relativistic intrinsic spacetime, ¢c¢t) in Fig. 1, shall be considered
in the process of validating the principle of equivalencdlatrelativistic spacetime
(=, ct) in a gravitational field of arbitrary strength in anotheppafollowing the
third part of this paper.

1.2 Further on the concepts of gravitational velocity, grigational potential and
gravitational acceleration in spacetime and the respeetiatrinsic parame-
ters in intrinsic spacetime

The concept of static speed was derived graphically witlhimg-range metric force
field in section 2 of [5], where it was denoted by. It was particularized to the
gravitational field, given the alternative name of grawitaél speed and re-denoted
by V,(r') in [2]. There indeed exists the concept of gravitationdbwity \7;(r’) in

the Euclidean 3-spac#, which corresponds to the concept of gravitational aceeler
ationg’(r’) in ¥’ in the phenomenon of gravity, whefg(r’) andg’(r’) are related

thus
D10\ GM()a__ 1d A4
190 =~ = 2 V(Y] M

The definition ofV, (r’) that satisfies Eq. (1) is

2GMoa

1 (eN\2 _
Vg(r)_ r

(2a)
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or
2GMoa

V,(r') = - =

(2b)
where\7(;(r’) is the proper gravitational velocity at radial distamt&om the center
of the assumed spherical rest md&sof the gravitational field source in the proper
Euclidean 3-spacFE’ (in Fig. 2 or 3 of [6]).

The relationship between gravitational speed and gramitak potential also de-
duced and written as Eq. (17) of [2] is the following

_ GMoa
r’

3)

Except for the replacement of the rest mdfsby the active gravitational mass
(or gravitational chargeMoa, Egs. (1)- (3) have been deduced and presented as
Egs. (16a-b)- (18) of [2]. The need to replace the rest mass by the activwdtgra
tional mass (or gravitational charge) in the definitionsted proper gravitational
velocity \7_;(r’), proper (or Newtonian) gravitational potenti@!(r’) and proper
(or Newtonian) gravitational acceleration (or fieil{r’) was deduced in sub-sub-
section 2.1.5 of [6] and sub-section 2.1 of [4], see the disian leading to Eg. (55)
of [4].

The negative root is taken in Eq. (2b) in order to make theitgonal speed
(or velocity) attractive like gravitational acceleratiand gravitational potential. In-
deed\7;(r’) andg’(r’) are collinear vectors, both pointing radially towardsc¢kater
of the gravitational field source in the case of a sphericaVitational field source.
The definition of the gravitational speed along with its riegesign (or its attractive
nature) of Eq. (2b) was deduced in sub-sub-section 2.1.6]@fr{d sub-section 2.1
of [4] with respect to 3-observers in the relativistic Edelan 3-spacE in Fig. 1; see
the discussion leading to Eq. (55) of [4]. However there isayénal more funda-
mental justification for the attractive nature of the graiidnal speed (or velocity),
from which the gravitational potential and gravitationateleration (or field) inherit
their attractive nature, which shall be presented elseswvih further development,
as mentioned in section 1.2 of [4].

One finds from the relation of gravitational potentil(r’) and gravitational
acceleration (or fieldj’ (r’) to the gravitational veIocit)?;(r’) in (1) and (3), that the
gravitational velocity is the most fundamental of the thgeavitational parameters
\7;(r’), @’(r’) andg’(r’). There could not have been the concepts of gravitational
potential and gravitational acceleration without the @piof gravitational velocity
as Egs. (1) and (3) show. As a matter of fact, gravitationsdiptial and gravitational

’ ’ 1 ’ ’
V() = =SVl )? =
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field inherit their attractive natures from the attractivaure of their gravitational
velocity progenitor as shall be justified shortly. Recadittabsolute intrinsic static
speed is a fundamental geometrical parameter isolatedongarnge metric force
field in general in section 2 of [5]. The concepts of poterdiatl field could not
appear at that geometrical foundation.

Now the centrality of the gravitational potential and gtational field obtains
in a spherically symmetric gravitational field only. Thegtational potential and
gravitational field are functions of all the spherical cdnedesr’, r’¢’ andr’ sing’ ¢’
that originate from the centroid of a non-spherical grdidtaal field source as
(r,0,¢")andg’(r', ¢, ¢'). The gravitational field does not point purely radially
towards the centroid of a non-spherical gravitational fssidrce.

On the other hand, gravitational velocity is central in beggtherically-symmetric
and non-spherically-symmetric gravitational fields. Tlywavitational velocity can
be function of the radial coordinate onlyﬁg(r’) and point radially towards the cen-
ter or centroid of every every gravitational field sourcehgmical or non-spherical).
Thus we can write as follows for a non-spherically-symneggriavitational field

V, = V() =V (r)F;
g = g.0.¢)
= gi(r.0. Q) +g,(r.0.¢)e';
4 ’ / AV (4)
+g,(r', 60, ¢")¢';
q), = q)/(r,’gl’¢’);
(non- spherical gravfield source)

The centrality in all gravitational fields is a property oétbravitational velocity to
be explained formally elsewhere with further development.

Another important dierence among the properties of gravitational potential
' (r',d,¢") and gravitational fieldg’(r’,#,¢’) in a non-spherically-symmetric
gravitational field (or®’(r’) and g’(r’) in a spherically-symmetric gravitational
field) and the gravitational veIocit?;(r’) in a non-spherically-symmetric or spheri-
cally-symmetric gravitational field, is that proper (or sd&al) gravitational po-
tential ®'(r’, ¢, ¢’) and proper (or classical) gravitational figjd(r’, ¢, ¢’) in the
proper Euclidean 3-spaé# in the context of the primed classical theory of gravity
(C@) on flat proper spacetime(, ct’) at the first stage of evolutions of space-
time/intrinsic spacetime and paramet@iginsic parameters, transform non-trivia-
lly to relativistic gravitational potentiab(r, 8, ¢) and relativistic gravitational field
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g(r, 0, ) on flat relativistic Euclidean 3-spa&ean the context of the theory of grav-
itational relativity (TGR) on flat relativistic spacetimg, ¢t) in Fig. 1 at the second
stage of evolutions of spacetifirdrinsic spacetime and paramet@rginsic para-
meters in a gravitational field as follows

O(r. 6, ¢) = fo(V,(r)Q'(r. 6", ¢") (5)

and
g(r.0,¢) = f,(V, ()G’ (r'. ¢, ¢) (6)

where the functionds(V(r’) and f,(V,(r") shall be determined in the second part
of this paper.

Whereas gravitational velocity is invariant, transformtrigially in the context
of the relativistic theory of gravity between flat proper epiame &', ct’) and flat
relativistic spacetime, ct) in every gravitational field as follows

V,(r) = V(1) (7)

This invariance was first stated without proof as invariaotetatic velocity by
Eq. (79b) of [7] and particularized to the gravitational di¢still without proof) as
Eq. (2b) of [2]. The proof of Eg. (7) can still not be given asthoint, but elsewhere
with further development, where the peculiar propertiethefgravitational velocity
namely, its centrality in all gravitational fields and itvamiance (7), as well as the
mechanism by which a gravitational field source establisteesuniform gravita-
tional velocity\7;(r’) along every radial direction from its centroid, therebyigg
rise to gravitational field and gravitational potential asgenies, shall be unraveled.
As prescribed without proof in sub-sub-section 2.1.5 of [8e non-observ-
able immaterial negative active gravitational mass (oatieg gravitational charge)
—Moa, hidden within the observable positive physical (or mat¢rest mas$/, of a
gravitational field source is the source of the proper gasigihal velocity, proper (or
classical) gravitational potential and proper (or claal3igravitational field. Hence
these parameters have been written in terms of the negathwgtagional charge
—Moa in Egs. (1), (2a) or (2b) and (3). Thus the negativity of thaviational
charge is the origin of the attractive nature of gravitagiovelocity, gravitational
potential and gravitational field, as being prescribed faw in the present theory.
An important task to be executed elsewhere with further ldgweent is funda-
mental explanations of the origin of immaterial active dgi@ional mass (or gravi-
tational charge) and its negative sign, as well as the mddheve — Mg is contained

613A. Joseph. Formulating gravity and motion at second stage of evdutfepacetime..... I.
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in the rest mas#/y and the mechanism by whichMgg hidden inMg establishes
Vg(r’), '(r',0,¢") andg’(r', ¢, ¢') at every point in the proper Euclidean 3-space
3’ from the centroid oM.

Just as gravitational potenti@ (r’, ¢, ¢’) is a property of space at a position of
coordinatesr(, r'¢’, r’ sing’¢’) from the centroid of the rest mab4 of the gravita-
tional field source, such that when a test particle arrivekiatposition, it acquires
gravitational potentiad’(r’, ¢, ¢’), so is gravitational velocitﬁ;(r’) a property of
space at at the position of coordinate5i’9’,r’ sin@¢’) from the centroid of the
rest masdV, of the gravitational field source, which a test particle aezgiupon
arriving there.

Unlike the dynamical velocity of dynamics (or special relativity), gravitational
velocity — a static velocity- is not made manifest in actual translation in space of
the test particle that acquires it. Thus a test particle sttnedative to an observer
at radial distance’ from the centroid of the rest mad4, of a gravitational field
source in the proper Euclidean 3-spatgpossesses yet gravitational veIoQ?Q(r’)
relative to this observer and all other observers.

Gravitational velocity is dterent from escape velocitygsg which has the same
expression as Eq.(2b) faf/(r’), in the sense thakscis a dynamical velocity di-
rected radially away from a gravitational field source, whagarticle possesses and
escapes the gravitational influence of the field source.gesealocity, although de-
termined by the gravitational field source, is a propertyhefparticle.

Gravitational velocity\7§;(r’) is a more appropriate parameter to incorporate into
the theory of gravitational relativity (TGR) on flat relastic spacetimeX, ct) in
Fig. 1, started in section 2 of [2], than gravitational poign It has several analogies
to the dynamical velocity of dynamics (or special relativity). For instance, the
gravitational spee(r’) effects the theory of gravitational relativity (TGR) on flat
four-dimensional relativistic spacetimg, ¢t), just as dynamical speeckffects the
special relativity (SR) on the flat four-dimensional releiic spacetimeX, ct) in
Fig. 1.

The gravitational velocity7;(r’) of TGR being a property of space, makes TGR
possible on the flat relativistic spacetin} ¢t) in all finite neighborhood of a grav-
itational field source in the absence of a test particle. @rother hand, dynamical
velocity 7 of SR, being a property of the particle in motion, makes it detary for
a particle to be in motion relative to the observer for SR tpassible.

The gravitational velocitﬁé(r'), (like gravitational potentiadd’(r’, ¢, ¢’)), is
invariant with the observer or frame of reference, wherbasdlynamical velocity

A.Joseph. Formulating gravity and motion at second stage of evolutiepscetime. . .. 1.614
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varies with the observer or frame of reference. The concielativity associated
with gravitational velocity\7;(r’) and the theory of gravitational relativity (TGR)
induced by\7_,;(r'), in the absence of SR, is merely relativity with positiorsjmace
in a gravitational field and not relativity with observer earhe of reference, as
discussed in sub-sub-section 2.2.1 of [2]. It refers toatam with gravitational
speedV,(r’) of space and time intervals of events and physical parasetich
implies their variations with position in a gravitationaglfi.

On the other hand, gravitational velocity is an absoluteeter in the context
of dynamics (or SR), since the gravitational velocity at\aegiposition in space is
not made manifest in motion and is the same relative to akiess of frames of
reference. Conversely dynamical veloaitis absolute in the context of TGR, since
a given dynamical velocity of a particle relative to an obserdoes not vary with
gravitational velocity or with position in a gravitation@ld. That is, it is invariant
in the context of TGR as shall be demonstrated in the seconafihis paper.

It may be recalled that the clarification of the concepts tdtiwe static speed
and relativity associated with relative static speed inatire metric force field was
done in sub-section 2.3 of [1] and adapted to the clarificatibrelative gravita-
tional speed and relativity associated with relative gedidnal speed in a relative
gravitational field in sub-sub-section 2.2.1 of [2].

Now the largest possible kinematic velocity of particles;liding photon, in
spacetime is the velocity of an electromagnetic wave in vate, = 3 x 10° nys.
Likewise the largest possible gravitational (or statidpe#y that can be established
at a point in spacetime by a gravitational field source or doation of gravitational
field sources is the velocity of gravitational waves= 3x 10 my/s. These velocities
of ‘signal’ were first introduced in [8], see Table Il and TalV of that paper.

While the velocity of lightc, is made manifest in actual translation through
space of electromagnetic waves, the maximum over all griémital velocitiesc,,
(like gravitational velocityv,(r’)), is not made manifest in actual translation through
space of gravitational waves. It @spriori in the present theory that gravitational
waves possess constant gravitational (or static) spged,3 x 108 nys, but are at
rest always relative to all observers. This actually ingptheat gravitational radiation
involving energy transfer in spacetime is impossible orsdaet exist. The fact that
gravitational éfect propagates through space at the speed of light but novagea
such that if a body is suddenly introduced or annihilated poiat in space, the
effect propagates away at the speed of light, hagtardnt explanation, which has
been started in sub-section 1.1 of [2] and will be completeevehere with further
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development.

The value of gravitational velocity at the surface (or evenmtizon) of a black
hole isc,. This is so since at the surface (or event horizon) of a blaxd& bf rest
massMp and radiusy, the gravitational speed is given from Eq. (2a)\4gry,)/c, =
(2GMoa/ruc3)Y/2. But 2GMoa/ry»c; = 1 for a black hole. Henc¥,(rp) = ¢,. Thus
a particle that falls to the surface (or event horizon) of acklhole acquires the
gravitational (or static) speed, = 3 x 10® nys. We shall find in future articles that
this event (of fall of a test particle to the event horizon bfack hole) is not allowed
for a test particle with non-zero rest mass, just as a parntwith non-zero rest mass
cannot attain the speed of light in vacuagin relative motion.

As has been noted in [8] and earlier in this section, we hasatisd two dif-
ferent speeds of ‘signals’ namely, the dynamical speed edteimagnetic waves
(or light), usually denoted by c, but which has been re-dembt/c, since [8], and
the gravitational (or static) speed of gravitational wawekich has been denoted
by c, since [8]. This fact has remained unknown in physics untizndhe only
speed of signal known in physics until now is the dynamicalespof lightc,, usu-
ally denoted by, which both electromagnetic and gravitational waves amknto
possess.

1.3 Further on the spacetim@trinsic spacetime geometries of the theory of
gravitational relativityintrinsic theory of gravitational relativity and special
theory of relativityintrinsic special theory of relativity in a gravitational &ld

As introduced in section 2 of [8], the flat four-dimensionatnic spacetimeX, ct)

is composed of the flat four-dimensiondliae spacetime of dynamics and electro-
magnetism g, ¢,t) and the flat four-dimensional metric spacetime of the tiesor
of gravity &, c,t). Thatis,

(Z, ct) = (Z4, Cot) U (Zg, Cyt)
or
(<3, ) = (x5, %2, 3, ¢, t) U (k2 x>, o)

The dfine spacetime of dynamics and electromagnetiyncit) is inseparably em-
bedded in the metric spacetime of the theories of gralifyd,t), yielding the met-
ric compound spacetim&(ct).

Likewise the metric compound intrinsic spacetingg,@c¢t) is composed of
the dfine intrinsic spacetime of intrinsic dynamics and intrinsiectromagnetism
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denoted by gy, ¢c,¢t) in [8] and the metric intrinsic spacetime of the theories of
intrinsic gravity ¢p,, ¢c,¢t). That s,

(40, ¢cpt) = (Bpg, 9Cy81) U (dx, ¢C, 1)

Again the dfine @y, ¢c,¢t) is inseparably embedded in the metritpf, ¢c,t)
yielding the metric compound intrinsic spacetingg.¢cet).

The masses and intrinsic massegm of every particle or body are likewise
composed of the non-ponderable (€iree) dynamical componenty and¢my and
the ponderable (metric) componentg and¢m,. That is,

m=m, Umy

and
¢pm=¢pm, U ¢imy

Again my is inseparably embedded in, forming the compound masa and
¢my is inseparably embedded ¢m, forming the compound intrinsic magsn in
nature. Thus as the non-ponderable (ffima) dynamical masey of a particle
moves at a velocity in the dfine spacetime of dynamic&{, c,t) relative to an
observer, it drags its ponderable (or metric) gravitationassm, along, such that
m, moves at equal velocity in its spacetime of the theories of gravit,(c,t)
relative to the observer. Consequently the ponderable étrichcompound mags
is observed to move at velocityin the metric compound spacetimg, €t) relative
to the observer.

Now the gravitational velocitﬁé’,(r’) is a relative velocity in the context of
the theory of gravitational relativity (TGR) on flat relastic spacetimeX, ct) in
Fig. 1, started in section 2 of [2] and shall be advanced &urih this first part of
this paper; the gravitational-relativistic form of the s$&cal (or Newton’s) theory
of gravity (CG) on flat relativistic spacetim&,(ct), shall be developed in the sec-
ond part of this paper and a Maxwellian theory of gravity (MT@at describes the
‘propagation’ at gravitational veIocity_/’;(r’) on the flat relativistic spacetim&,(ct),
of massless gravitational fielfland another induced massless partner-gravitational
field d'in the relativistic Euclidean 3-spagan a gravitational field, to be developed
elsewhere with progress of the present theory. The MTG imtbgic spacetime
(X4, c,t) of the theories of gravity is the gravitational countetpair electromag-
netism (EM) in the fiine spacetime of electromagnetism and dynanligso; t).

The gravitational velocity\7;(r’) must be treated as a relative velocity in the
context of the theories of gravity namely, TGR, CG and MTGttanflat relativistic
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spacetime X, ct), where, as discussed in the sub-section 2 of [2] and mesdion
in the preceding sub-section, the reIativity@J(r’) refers to the variation of its
magnitude with position in the gravitational field.

On the other hand, the gravitational velocity is absolutiaéncontext of the dy-
namical theories namely, the special theory of relativ@R], the special-relativistic
form of classical (or Newton'’s) theory of motion (CM) and @ynics of non-gravita-
tional fields and parameters, that is, electromagnetism) (&¥ other non-gravita-
tional laws. In other words, should the dynamical veloditgf relative motion
be replaced by the gravitational (or static) velocﬁg(r’) in these dynamical laws,
then\79’,(r’) must be treated as absolute and the resulting theoriesiaghszrvable,
which is so since7;(r’) is not made manifest in motion and since it is the same
relative to all observers or frames of reference.

Let us temporarily separate théfime proper intrinsic time dimensiogc,$t’
from the metric proper intrinsic gravitational time dim@sg¢c,¢t’ and combine
the metric compound proper intrinsic spage with ¢c,¢t’ to have flat proper intrin-
sic spacetimegp’, ¢c,t’) underlying flat proper spacetimg’(c,t’) in the assumed
absence of relative gravity (or assumed absence of relgtagtational velocity
V(1))

Then let us introduce non-uniform intrinsic gravitatiorspleedV,(r’) along
the straight lingpp’ along the horizontal and straight lige,#t” along the vertical.
This will causegp’ to be curved towards the vertical, whipe,¢t” will remain not
curved from its vertical position. This is so because therisic gravitational speed
¢V, (¢r’) being absolute in the context of intrinsic dynamics, it bsalute on the
intrinsic dynamical spacetimey’, ¢c,¢t’). Consequently the intrinsic dynamical
time dimensionpc,¢t’ is undfected (or is invariant) with the presencegdf; (¢r”).
On the other hand, the presencegdf (¢r’) along the compound proper intrinsic
spacegp’ will causegp’ to transform non-trivially into the compound relativistic
intrinsic spacepp. Graphically the foregoing paragraph and this paragrapanme
that the presence of non-unifoigV; (¢r’) alonggp’ along the horizontal and along
¢c,¢t” along the vertical, will causgp’ to be curved towards the vertical, thereby
projecting¢p along the horizontal, whilgc,¢t’ will remain not curved from its
vertical position, as illustrated in Fig. 3(a).

On the other hand, let us hypothetically combine the comgguaper intrinsic
spacepp’ with the proper intrinsic gravitational time dimensigg,¢t’ to have a flat
(¢p’, pcygt’) in the assumed absence of relative intrinsic gravitatidieéd (or in
the assumed absence of relative gravitational velcﬂ;i(y)). Then let non-uniform
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intrinsic gravitational speeg@lV, (¢r’) be introduced along the straight lige” along
the horizontal and straight linge,¢t” along the vertical of the flagp’, ¢c,¢t’). This
will causegp’ to be curved into the first quadrant towards the vertical gagt’ to
be curved into the second quadrant towards the horizontall&ineously, so that
¢p’ andgc,¢t’ constitute orthogonal curvilinear intrinsic dimensioas,illustrated
in Fig. 3(b).

Fig. 3(b) arises becaug®//(¢r’) being a relative intrinsic speed in the context
of the theories of intrinsic gravity, it is relative on therinsic gravitational space-
time (¢p.¢c,¢t"). Consequently the presence of non-unifafif(¢r) alonggc,¢t’
will cause it to transform non-trivially int@c,¢t. Graphically this means that the
presence of non-uniforgaV, (¢r’) alonggc,¢t” along the vertical will causgc,¢t’
to be curved relative to the vertical as in Fig. 3(b).

The curved compound proper intrinsic spacstraight line proper intrinsic dy-
namical time dimensiorpp’, ¢c,¢t’) in Fig. 3(a) possesses non-Lorentzian intrinsic
metric tensor of the Gaussian form,

dps? = pc2det’” — pgr1dep’ (8)

On the other hand, the curved compound proper intrinsicespatirved proper
intrinsic gravitational time dimensiomg’, ¢c,¢t’) in Fig. 3(b) possesses the intrin-
sic Lorentzian metric

dps? = gcidet? — dep’® (9)

This is so becausgp’ and¢c,¢t’ are orthogonal curvilinear intrinsic dimensions.
However Eq. (9) must be derived from the full diagram in the-orld picture of
Fig. 1 along with its complementary diagram of Fig. 2, as dorgection 2 of [2].
The conclusion that can be drawn from all the foregoing isifttae dynamical
time dimensiore,t and the intrinsic time dimensiapc, ¢t are the only time dimen-
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sion and intrinsic time dimension that exist along the wiith inetric 3-spack and
intrinsic metric spac@p in nature, then the theories of gravity on flat relativistic
spacetime ¥, ct) namely, TGR, CG and MTG, will be impossible, since flat rela-
tivistic spacetimeX, c,t) with Lorentzian metric tensor does not exist in Fig. 3(a).

On the other hand, if the gravitational time dimensighand intrinsic grav-
itational time dimensiomc,¢t are the only time dimension and intrinsic time di-
mension that exist along with the metric 3-spacand intrinsic metric spacgp,
so that Fig. 3(b), which must be drawn in the two-world pietunbtains in every
gravitational field, then TGR, CG and MTG will be possible be flat relativistic
spacetimeX, c,t). However the dynamical theories namely, SR, CM, EM androthe
non-gravitational dynamical laws on flat spacetime in a iggfienal field will be
impossible on flat spacetime in this case, as shall be disdigt®ortly.

However the dynamical time dimension and intrinsic dynaiiene dimension
(c,t/¢c,¢t) and the gravitational time dimension and intrinsic gratinal time
dimension €,t/¢c,¢t) are not separated in gravitation as done in Figs. 3(a) and
3(b) in nature. What happens in reality is that although ihis proper intrinsic
gravitational time dimensionc,¢t’ that is curved by the presence of non-uniform
relative intrinsic gravitational speeV/;(¢r’) in a gravitational field, sincgc,¢t’ is
not separated fromic,¢t’, both¢c,¢t” andgc,¢t” are curved, so that the compound
intrinsic time dimensiomcgt’ = gcpt’ U ¢c,¢t” is curved along with the compound
intrinsic spacepp” = ¢p;, U ¢y’ in a gravitational field, as illustrated in Fig. 3(c).
Fig. 3(c) must actually be presented in the full form wittie two-world picture as
in Fig. 1.

peptM ct
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Figure 3: ¢)

The conclusion then is that it is the metric compound twoetisional proper
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intrinsic spacetimedp’, gcot’) that is curved relative to its projective flat metric
compound two-dimensional relativistic intrinsic spaneti(p, #cgt) that underlies
flat metric compound four-dimensional relativistic spaoet (, ct) in a gravita-
tional field in the contexts of the theory of gravitationdbt@&ity/intrinsic theory of
gravitational relativity (TGR$TGR). Consequently the theories of gravity namely,
TGR, CG and MTG operate on flat compound four-dimensionatimspacetime
(%, ct) and the theories of intrinsic gravity name$l GR, #CG andpMTG operate
on flat compound two-dimensional intrinsic metric spacetifpp, pcot) in every
gravitational field.

Again let us artificially separate the compound one-dinmaradisymmetry-part-
ner relativistic masse/¢c? of a particle in the straight line compound relativistic
intrinsic time dimensiomcgt along the vertical into itsfine dynamical component
¢eq/¢C; and metric gravitational componep,/¢c2, wheregey/¢c? is resident in
the the #ine relativistic intrinsic dynamical time dimensigi, ¢t and¢sg/¢c§ is
resident in the metric relativistic intrinsic gravitatirtime dimensiorgc,¢t.

The special theory of relativity (SR) and intrinsic spedtatory of relativity
(¢SR) are yet absent in the discussion in the preceding pgtagiehe term ‘rela-
tivistic’ in relativistic intrinsic masspe/¢c? in relativistic intrinsic time dimension
¢cpt and relativistic intrinsic masgm in relativistic intrinsic spacepp, refers to
the presence of the theory of gravitational relativity (T\GRat converts the flat
proper spacetimeX(, ct’) containing the rest massesy(&’/c?) and Mo, E’/c?)
of particles and bodies into flat relativistic spacetirig €t’) containing the rela-
tivistic massesr, €/¢?) and (M, E/c?) of particles and bodies (in the absence of
SR) and the presence of the intrinsic theory of gravitatioglativity (#TGR) that
converts the flat proper intrinsic spacetingg’( ¢cgt’) containing the intrinsic rest
massesdimo, ¢’ /¢c?) and Mo, 9E’ /¢c?) of particles and bodies into flat relativis-
tic intrinsic metric spacetimepp, ¢cot) containing the relativistic intrinsic masses
(pm, pe/¢c?) and M, pE/¢c?) of particles and bodies (in the absence8R).

As done previously, gravitational-relativistic shall@ftbe used to refer to the
presence of TGR, as distinct from special-relativistid tleders to the presence of
SR. The adjective relativistic shall be used to refer toegitlituation whenever pos-
sibility of confusion can be ruled out. The relativistic masor M in the relativistic
Euclidean 3-spack in the context of TGR shall be identified as the inertial mass i
the second part of this paper.

Let us artificially combine the metric gravitational-reNédtic intrinsic gravi-
tational mass;zssg/qscg (artificially separated fron¢sd/¢c§), which is resident in
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the metric relativistic intrinsic gravitational time dimsiongc,¢t along the vertical
with the metric compound relativistic intrinsic mag® in the metric compound rel-
ativistic intrinsic spacgp along the horizontal. This gives the relativistic intrinsi
mass ¢m, ¢, /¢C§) of the particle in flat relativistic intrinsic spacetimgo( ¢c,¢t)

in the absence of special relativity and intrinsic spe@édtivity yet.

Let us then introduce special relativitytrinsic special relativity by considering
the gravitational-relativistic intrinsic masgr, ¢e_,,/¢cj) of the particle to perform
intrinsic motion at intrinsic dynamical speed on the flat relativistic intrinsic met-
ric spacetimedp, ¢c,¢t) relative to an observer. The possession of intrinsic speed
¢v relative to the observer of the compound intrinsic maisscontained in an ele-
mentary interval of intrinsic metric spadep, will cause it to be in intrinsic motion
along an #&ine intrinsic space coordinate that is inclined at an intrinsic angle
oy relative togp along the horizontal. This is so because possession ofiitri
speedpu relative to the observer by théfime dynamical masgmy will causegmy
to undergo intrinsic motion along the inclineffine intrinsic spaceX and drag the
metric gravitational intrinsic magsm, along, thereby making the metric compound
intrinsic masspm = ¢m, U ¢my contained in elementary intervep of intrinsic
metric spac@p to move at intrinsic speeapb along the inclined fine intrinsic space
X

On the other hand, the possession of intrinsic dynamicadperelative to an
observer by the metric gravitational ma&s‘g/gbcg in the metric intrinsic gravita-
tional time dimensioc,¢t along the vertical, will not caus@g/qbcg contained in
elementary intervapc,dg¢t of the metric intrinsic gravitational time dimensigo, ¢t
to be in intrinsic motion along anfiane intrinsic coordinatec,¢f that is inclined
anti-clockwise at an intrinsic anglg) relative togc,¢t along the vertical. Rather
¢sg/¢c§ contained in intervagc,dgt will remain not rotated frompc,¢t along the
vertical, but will move at intrinsic speegb alonggc,¢t along the vertical.

The end of the foregoing paragraph is so because the relatiiresic dynamical
speedgpv in the context 0ipSR (or on the flat fine intrinsic dynamical spacetime
(¢x. gc,¢t) of $SR), is an absolute intrinsic speed on the flat metric initigsav-
itational spacetimegip,, ¢c,¢t). Hence the possession g relative to an observer
by ¢z,/6C5 in gc,¢t, will leave bothgs,/¢cs andgc,gt unchanged (or invariant).
Graphically this means thaateg/cpcg contained in intervagc,d¢t of ¢c,¢t, cannot
be in motion along anféne intrinsic coordinate that is rotated anti-clockwise hy a
intrinsic anglegy relative togc,¢t along the vertical. Rathejrsg/cpcj contained in
¢c,dgt will be moving at the intrinsic speegb in ¢c,¢t along the vertical relative
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to the observer.

Possession of intrinsic dynamical spegdelative to an observer by the metric
intrinsic gravitational masgm, contained in intervatlgp, of the metric intrinsic
gravitational spacep, along the horizontal, will likewise leave bo#hm, and¢p,
unchanged (or invariant). Graphically this means #mjf contained irdgp, should
not be in motion along anfiéne intrinsic coordinate that is rotated anti-clockwise
by an intrinsic anglepy relative togp, along the horizontal.

However sincepmy contained ind¢gy is not separated fromm, contained in
d¢p,, thereby giving rise to the compound intrinsic mags contained in inter-
val dgp of compound intrinsic spacgp in the artificially prescribed intrinsic mass
(¢m, ¢8/¢C§) of a particle, the intrinsic motion afmy contained ind¢y along the
affine intrinsic space coordina#&, which is rotated anti-clockwise by intrinsic an-
gle ¢y relative to the horizontal, by virtue of the intrinsic speedf pmy relative to
the observer, will dragm, contained indgp, in intrinsic motion at intrinsic speed
¢v along the inclined intrinsicfiine space coordinatX.

Whereas since onlysg/¢c§ contained inpc,dg¢t exists ingc,¢t along the ver-
tical in the artificially prescribed intrinsic magsn, s, /¢c§) of the particle, there
is no rotation ofpegy /¢c§ contained inpc,dg¢f to cause the rotation efs, /¢c§ con-
tained ingc,d¢t from its vertical position. This paragraph and the foregoiwo
paragraphs explain the geometry of Fig. 4(a) for the redatitrinsic motion of the
artificially prescribedsm, ¢, /¢c2).
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On the other hand, let us artificially combine the metric comm intrinsic mass
¢m occupying intervaldgp of the metric compound intrinsic spage along the
horizontal with the &ine equivalent intrinsic dynamical ma$sd/¢c§ occupying
intervalgc, dgt of affine intrinsic dynamical time dimensiafe, ¢t along the vertical
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(which is artificially separated from the metric intrinsi@gitational masges, /¢c§),
in the assumed absence of intrinsic dynamical sgee®lative to an observer (or
of ¢SR).

Let us then introduce intrinsic special relatiygpecial relativity by considering
the intrinsic massgm, ¢gd/¢c§) of the artificial particle on the artificial flat intrinsic
space ¢p, ¢c,¢t) to possess intrinsic dynamical spegdrelative to the observer.
This will cause the compound intrinsic mags contained in intervatigp of the
metric compound intrinsic spa@g to be in intrinsic motion at intrinsic speef
along an #&ine intrinsic space coordina# that is inclined at an intrinsic angley
relative togp along the horizontal, as in Fig. 4(a).

The possession of intrinsic dynamical speedelative to the observer of the
affine symmetry-partner intrinsic dynamical m¢s§/¢c§ occupying intervagc, dgt
of affine dynamical intrinsic time dimensiaft, ¢t along the vertical, will likewise
causepsd/¢c§ contained in intervapc, d¢t to be intrinsic motion along arfizne in-
trinsic time coordinatec, ¢t that is inclined anti-clockwise into the second quadrant
atintrinsic anglepy relative togc, ¢t along the vertical. This is so because a relative
intrinsic dynamical speedv is a relative intrinsic speed on the flafige intrinsic
dynamical spacetimepg, ¢c,¢t). Consequently possession of intrinsic dynamical
speedgv relative to an observer byffine intrinsic dynamical massa!>|(m,¢sd/c§)
on flat @y, ¢c,¢t), will cause rotation of fiine i~ntrinsic frame ¢y, ¢c,¢t) of the
particle relative to fiine intrinsic frameqﬁ):(, #c,¢t) of the observer.

The foregoing two paragraphs imply that possession ofisittidynamical speed
¢v of the artificially prescribed intrinsic masgr(, ¢gd/¢c§) of a particle on the ar-
tificial flat intrinsic spacetimedp, ¢c,t), will give rise to the geometry depicted in
Fig. 4(b). However it is the full form within the two-world giure of Fig. 4(b) and
its complementary diagram that must be drawn, as shall be lder in this paper.

The inclined &ine intrinsic space coordinate spacstraight line intrinsic met-
ric time dimension along the verticap¥, #c,¢t) in Fig. 4(b) possesses non-Lorent-
zian ‘metric’ tensor of the Gaussian form,

dp& = pcidet® — pgr1dei” (10)

On the other hand, the inclinedfiae intrinsic spacetimepf, ¢c,¢t) in Fig. 4(b)
possesses the intrinsic Lorentzian ‘metric’ tensor

dp¥ = pcdet® — dpi? (11)

However Eq. (11) must be derived from the full diagram in the-ivorld picture
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along with its complementary diagram, as done with Figs) & 8(b) of [9] and
as shall be re-visited later in this paper.

The conclusion that can be drawn from the above is that if theitional time
dimensionc,t and intrinsic gravitational time dimensiaft,¢t are the only time
dimension and intrinsic time dimension that exist alonghwite metric Euclidean
3-space and its underlying straight line intrinsic metric spagein every gravita-
tional field in nature, then the dynamical theories namé®y, t8e special-relativistic
classical (or Newtonian) theory of motion (CM), electromatism (EM) and other
non-gravitational dynamical laws, will be impossible on at flelativistic space-
time (Z, c,t) in a gravitational field, since a flat relativistiiae intrinsic spacetime
geometry ofSR and hence a flatfine spacetime geometry of SR do not exist in
Fig. 4(a).

On the other hand, if thefline dynamical time dimensiagt and dfine intrinsic
dynamical time dimensionc ¢t are the only time dimension and intrinsic time di-
mension that exist along with the metric Euclidean 3-spaaed straight line metric
intrinsic intrinsic spaceyp underlyingX in every gravitational field (as known until
now in physics), so that Fig. 4(b), which must be drawn in thie-wvorld picture
along with its complementary diagram exists in every gedidnal field, then SR,
CM, EM and other non-gravitational dynamical laws will bespible on a flat rela-
tivistic spacetimey, ¢ t) in every gravitational field, since Lorentziafiiae intrinsic
spacetime geometry and hence Lorentzian spcetime geowigtain in Fig. 4(a).
However TGR, CG and MTG will be impossible on the flat relatiid spacetime
(Z, 6 t) in this situation.

However the fline dynamical time dimensigatfine intrinsic dynamical time di-
mension €,t/¢c¢t) and metric gravitational time dimensjonetric intrinsic grav-
itational time dimensiong;t/¢c,¢t) are not separated in dynamics an gravity in
reality unlike as done in Figs. 4(a) and 4(b). What happengatity is that al-
though it is the fine symmetry-partner intrinsic dynamical maﬁ@e/(pcﬁ contained
in interval ¢c,d¢t of affine intrinsic dynamical time dimensiagt,¢t, which pos-
sesses intrinsic dynamical spegdrelative to the observer and undergoes intrinsic
motion at intrinsic speegv along an &ine intrinsic time coordinatec,¢f that is
inclined anti-clockwise at an intrinsic angte relative togc, ¢t along the vertical,
as illustrated in Fig. 4(b), sinoﬁsd/¢c§ andcpeg/qscg are not separated in nature,
¢ed/¢c§ drags¢eg/¢c§ along. Consequently it is the metric compound symmetry-
partner intrinsic masge/¢c? = ¢e,/$c; U peq/¢c; that undergoes intrinsic motion
at intrinsic speed along the inclined iine intrinsic time coordinatec,¢f in a
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gravitational field.

Thus the metric compound symmetry-partner intrinsic ngagéc? = ¢sg/¢c§u
¢ed/¢c§ occupying intervapcdgt of the metric compound intrinsic time dimension
¢cgt, which is in intrinsic motion at intrinsic dynamical spegdalong an &ine in-
trinsic time coordinatec, ¢t, which is inclined into the second quadrant at intrinsic
anglegy relative to the metric intrinsic time dimensiggt along the vertical, must
be combined with the metric compound intrinsic mgss= ¢m, U ¢y, occupying
intervaldgp of the metric compound intrinsic spagge, which is in intrinsic motion
at intrinsic dynamical speegb along an &ine intrinsic space coordinagg that is
inclined into the first quadrant at equal intrinsic anglerelative to the metric com-
pound intrinsic spacgp along the horizontal. In other words, the artificial diagram
of Fig. 4(b) must be replaced with the natural diagram of B{g) for SR¢SR in
every gravitational field.

Figure 4: c¢)

However it is the full form in the two-world picture of Fig. & and its com-
plementary diagram, along with their inverses, that mustriag/n, from which the
intrinsic local Lorentz transformatidiocal Lorentz transformatio{LT/LLT) and
their inverses must be derived in every gravitational fiakddone in [9] and as shall
be re-visited later in this paper.

Again the conclusion that follows from the natural geomaedfyFig. 4(c) for
SR¢SR in a gravitational field, is that the dynamical laws nam8&l, CM, EM
and other non-gravitational dynamical laws, operate onflétemetric compound
gravitational-relativistic spacetim&,(ct) (prescribed in the context of the theory of
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gravitational relativity (TGR)) and the intrinsic dynaralcheories namelyySR,
#CM, ¢EM and other non-gravitational intrinsic dynamical lawgetate on the flat
gravitational-relativistic intrinsic metric spacetimgo(¢cot) prescribed by TGR.
The TGR, the relativistic form (in the context of TGR) of tHagsical (or New-
tonian) theory of gravity (CG) and the Maxwellian theory odgty (MTG), involv-
ing relative gravitational velocitﬁg(r’) on the flat metric compound gravitational-
relativistic spacetimeX, ct), are the counterparts of SR, the special-relativistis-cla
sical (or Newtonian) theory of motion (CM) and electromaiigm (EM), involving
dynamical velocityi relative to the observer on the flat relativistic spacetiRi&t)
in a gravitational field. Th&TGR, ¢CG and¢MTG, involving relative intrinsic
gravitational spee@V,(¢r’) on the flat metric compound gravitational-relativistic
intrinsic spacetimegp, ¢cgt), are likewise the counterpartsgbR,¢CM andgpEM,
involving intrinsic dynamical speegb relative to the observer on the flat relativistic
spacetimeXct) in every gravitational field.

2 The theory of gravitational relativity /intrinsic theory of gravitational rela-
tivity by graphical approach

As mentioned towards the end of sub-section 1.1, the firstparts of this paper
shall be devoted to the development of the theory of graweitat relativityintrinsic
theory of gravitational relativity (TGRTGR); the gravitational-relativistic form
(in the context of TGRYTGR) of the classical (or Newton’s) law of graviigtrinsic
classical (or intrinsic Newton’s) law of gravity (Q@&CG) and the gravitational-
relativistic form (in the context of TGRTGR) of the special theory of relativity
and intrinsic special theory of relativity (3¢SR), on the flat relativistic spacetime
(%, ct) and its underlying flat relativistic intrinsic spacetingg(¢cet) in Fig. 1.

Now the absolute intrinsic rest masgsif, ¢£/¢¢%) in absolute intrinsic motion
at absolute dynamical spee¥y relative to the curved ‘two-dimensional’ absolute
intrinsic metric spacetimegp, tst) within an absolute intrinsic local Lorentz
frame on the curvedgp, ¢c¢t), at ‘distance’'¢f from the base of the absolute in-
trinsic rest mass¢Mo, E/4¢2) of the gravitational field source at the origin of
the curved ¢p, ptot) in Fig. 1, acquires the absolute intrinsic gravitatiorngded
¢V, (¢f) established at ‘distances? along the curvedsp and ¢esf by ¢Mo and
#E /pE2 respectively.

The absolute intrinsic dynamical speg¥y of the absolute intrinsic rest mass
(prg, p£/9E%) of the test particle and the absolute intrinsic gravitsglospeed
¢\7g(¢f) within the absolute intrinsic local Lorentz frame on thevad P, ¢Cef)
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at ‘distance’¢f along the curvedp and¢cgf from the base oMy in ¢p and the
base ofpE/¢¢c2 in ¢&4f, are then projected invariantly into the correspondingpro
intrinsic local Lorentz frame on the curved proper intrinspacetimedpo’, ¢cgt’),
at ‘distance’¢r’ along the curvegp’ andgcgt’ from the base o Mg in gp’ and the
base ofpE’ /¢c? in ¢cet’ in Fig. 1.

Thus the intrinsic rest massrto, ¢<’/¢c?) of the particle ‘projected’ into the
curved @p’, pcot’) within the proper intrinsic local Lorentz frame on the oeav
(g0, pcgpt’) at ‘distance’sr’ along the curve@p’ and curvedscgt’ from the base
of ¢Mg on curvedgp’ and base ofsE’/¢c? on curvedgcet’, by the absolute in-
trinsic rest mass¢fi, ¢&/¢¢2) of the particle in absolute intrinsic motion relative
to the curved §p, #Cot) in Fig. 1, possesses the projective absolute intrinsiedpe
¢V, (¢f) and¢Vy. In addition, the intrinsic rest masgrty, ¢’ /¢c) of the particle
possesses proper intrinsic gravitational spg¥f{¢r’) established at ‘distancet”’
along the curvedyp’ by ¢My at the origin of the curvedp’ and at ‘distancegr’
alonggcgt’ by ¢E’/¢c? at the origin of the curvedcgt’ in Fig. 1.

As follows from the foregoing two paragraphs, the intringést mass £y,
¢&’ /¢c?) of the particle possesses the intrinsic spegds ¢Vg(¢f) and ¢V, (¢r’)
within the proper intrinsic local Lorentz frame on the glbbarved proper intrinsic
spacetimedp’, pcot’) at ‘distance’gr’ along the curveadp’ from the base opMg
in ¢p’ and at ‘distanceyr’ along the curvedscgt’ from the base ofpE’/¢c? in
pcot’, as indicated in Fig. 1. Given that the intrinsic rest massog, ¢sa/¢c?) of
an observer possesses absolute intrinsic dynamical spégdwithin this proper
intrinsic local Lorentz frame on the global curvesb(, ¢c¢t’), then the intrinsic rest
mass ¢my, ¢’ /$c) of the particle will be in intrinsic motion at intrinsic dgmical
speedpy = Vg — ¢V, relative to the intrinsic rest masgrtoa, ¢, /$c?) of the
observer within this proper intrinsic local Lorentz frametbe curveddp’, gcot’).

It follows that primed intrinsic special theory of relatiyi(¢SR) can be for-
mulated for the intrinsic motion at intrinsic speed of the intrinsic rest mass
(pmo, <’ /pC?) of the particle relative to the intrinsic rest magsnga, psa/¢c?) of
the observer within the proper intrinsic local Lorentz feawn the global curved
(g0, pcopt’) at ‘distance’gr’ along the curvedp’ from the base opMg in ¢p’ in
Fig. 1. It also follows that the primed intrinsic classical {ntrinsic Newton’s) the-
ory of gravity ¢CG’) can be formulated in terms of the proper intrinsic graidtaedl
speedpV, (¢r') and the associated proper intrinsic gravitational peaéegtd’(¢r”)
and proper intrinsic gravitational acceleratiggf (¢r’) within this proper intrinsic
local Lorentz frame on the global curvegi(, gcot’).
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Further more the primed Newtonian theory of absolute istcigravity ¢NAG’)
can be formulated in terms of the absolute intrinsic graiaiten speectb%(ﬂ)
and the associated absolute intrinsic gravitational piztepd(47) and absolute in-
trinsic gravitational acceleratiopg(¢f), which are invariantly projected into the
proper intrinsic local Lorentz frame on the global curvedpar intrinsic spacetime
(¢p’, pcopt’) at ‘distance’sr’ along the curvedp’ from the base opMg in ¢p’ by
oV, (¢F), pO(4F) and ¢g(¢f) on the curved absolute intrinsic spacetim, ¢est)
in Fig. 1. Also the primed Newtonian theory of absolute imit motion §NAM”)
can be formulated in terms of the absolute intrinsic dynairspeedsVy projected
into the proper intrinsic local Lorentz frame on the globahed proper intrinsic
spacetimedgp’, pcot’) at distancepr’ from the base opMg in ¢p’, as an intrinsic
speed possessed by the intrinsic rest mass, (@s’/¢c?) of the particle.

Thus the primed intrinsic theorig€€G', SR, pNAG’+ pNAM’ exist within the
proper intrinsic local Lorentz frame on the global curvedyar intrinsic spacetime
(9o, pcgpt’) at ‘distance’gr’ from the base ap Mg in the curvedsp’ in Fig. 1. Let the
elementary intervaldgp’ of the curved proper intrinsic spagg’ and elementary
interval gcdgt’ of the curved proper intrinsic time dimensigogt’ be the dimen-
sions of this proper intrinsic local Lorentz frame on thelglbcurved §p’, pcot’).
Then the intrinsic local Lorentz frame shall be denoted dp(, pcdgt’). It con-
tains the intrinsic rest massrty, ¢’ /¢c?) of the particle and harbors the primed
intrinsic theoriespCG', SR, oNAG’ andgNAM".

The primed intrinsic local Lorentz framelgp’, #cdgt’) on the global curved
proper intrinsic spacetimesf’, #cot’), with the intrinsic rest masspng, ¢’ /¢c?)
of the particle and the primed intrinsic theorig€G', ¢SR, ¢NAG’ and pNAM’
within it, is then projected as the unprimed intrinsic lotalrentz frame dgp,
¢cdgt) on the global flat relativistic intrinsic spacetimgop( ¢cot) with the gravita-
tional-relativistic intrinsic massgn, ¢</¢c?) of the particle and the gravitational-
relativistic (or unprimed) intrinsic theoriesCG, ¢SR,¢NAG andgpNAM within it
in Fig. 1.

The projective unprimed intrinsic local Lorentz franuigf, #dcet) and the grav-
itational-relativistic intrinsic massn, ¢s/¢c?) of the particle and the gravitational-
relativistic intrinsic theorie®CG, ¢SR, gNAG and¢pNAM in it on the global flat
relativistic intrinsic spacetimagp, ¢cgt), are then made manifest in the unprimed
local Lorentz frame, containing the gravitational-refstic mass i, £/¢?) of the
particle and harboring the unprimed theories CG, SR, NAGNAR! within it on
the global flat relativistic spacetim&,(ct) in Fig. 1.
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The foregoing paragraph is further summarized as the fatigwransforma-
tions:

(dgp’, pcdgt’) — (dep, pedgt);
(o, ¢&’ [$C°) — (pm, pe/$C?);
(6CG, ¢SR, ¢NAG’, pNAM’) — (¢CG, SR ¢NAG, sNAM),

in the context of the intrinsic theory of gravitational gy (¢TGR), which are
made manifest outwardly in the following transformations:

(dr’,r’'de’, 1’ sing’dy’, cdt’) — (dr, rdé, r sinde, cdt);

(Mo, &' /¢%) — (M &/c?);
(CG,SR,NAG’,NAM’) — (CG, SR NAG, NAM),

in the context of the theory of gravitational relativity (Rk

Now global curved four-dimensional proper spacetirBe ’) does not exist
along with global curved two-dimensional proper intrinsgacetimedo’, gcot’) in
Fig. 1. Thus there is nowhere to place the proper local Laréaime in Fig. 1.
It shall therefore be placed on the global flat proper spaeett’, ct’) in Fig. 11
of [6] at the first stage of evolutions of spacetjin&insic spacetime and para-
metergintrinsic parameters in a gravitational field, which endufer no moment
before evolving to the final Fig. 1 at the second stage.

The program of this first part and the second part of this pipée following

1. Derivation of intrinsic metric spacetime coordinatesimtl transformations,
intrinsic mass and other intrinsic parameter transforomstin the context of
¢#TGR and derivation of the gravitational-relativistic imsic theoriespGC
and¢SR within intrinsic local Lorentz frames on the global fldat@istic in-
trinsic spacetimedip, ¢cgt), in terms of the gravitational-relativistic intrinsic
parametergm, pd(4r) andgg(4r) obtained; and

2. Derivation of metric spacetime coordinate interval §farmations, mass and
other parameter transformations in the context of TGR amigat@n of the
gravitational-relativistic theories GC and SR within lbtarentz frames on
the global flat relativistic spacetimg,(ct), in terms of the gravitational-relat-
ivistic parametersn, ®(¢r) andg(¢r) obtained.

There are two approaches towards the accomplishment o§ifermnd 2 above
namely, a graphical approach to be developed in this firdt gfathis paper and
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an analytical approach, to complement the graphical aphrda be developed in
the second part of this paper.

The rest of this section shall be devoted to the developnféfG&/¢ TGR by the
graphical approach, while the next section shall be devtwteétle development of
SR/¢SR by the graphical approach on flat spacetime in a grawvitaltfgeld, upon the
flat spacetiméntrinsic spacetimeX, ct)/(¢p, pcét) and massntrinsic massif/¢m)
that evolve in the context of TGRTGR. Actually the TGRsTGR by the graphical
approach has been accomplished to a large extent in sectibf2 We shall be
repeating section 2 of [2], while adding some important itieia the rest of this
section.

2.1 Derivation of intrinsic gravitational local Lorentz tansformation graphi-
cally and validating intrinsic gravitational local Lorerz invariance in the
context of the intrinsic theory of gravitational relativit

The global spacetinjimtrinsic spacetime diagrams of combined first and second
stages of evolutions of spacetifimrinsic spacetime and paramef@arginsic para-
meters in a gravitational field of arbitrary strength of Figsind 8 and their inverses
Figs. 9 and 10 of [2] are required here. Figs. 7 and 8 and [1§ imeen repro-
duced as Figs. 1 and 2 of this paper, while incorporating titeafdsolute-absolute
intrinsic-intrinsic spacetimes$p, ¢¢tpgt) of our universe andHp@p*,—ddtodt*)

of the negative universe isolated in [3], which could notegugin Figs. 7 — 10 of [2].
However the inverses of Figs. 1 and 2 of this paper have naot 8eevn on order to
conserve space.

The local spacetimimtrinsic spacetime diagrams (within a local Lorentz frame
shown as Figs. 11 and 12 and their inverses as Figs. 13 andaan drom the
global geometries of Figs. 7 and 8 and their inverses of Rigsd 10 respectively,
within a gravitational field of arbitrary strength in [2],alhbe reproduced as Figs. 5
— 8 here.

The local spacetimimtrinsic spacetime diagram of Fig. 5 is valid with respect
to 3-observers in the relativistic Euclidean 3-spaZesd—X* of our universe and
the negative universe. It has been drawn within a properrforgul) intrinsic local
Lorentz frame at ‘distancér’ along the curved proper intrinsic spagg’ from
the base of the intrinsic rest maghly of the gravitational field source located at
the origin of the curved proper intrinsic spagg’ in Fig. 1 of this paper, which
corresponds to unprimed intrinsic local Lorentz frame astahce’¢r along the
straight line relativistic intrinsic spacgp along the horizontal, from the base of
the gravitational-relativistic intrinsic mageM of the gravitational field source in
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Figure 5:

¢p and unprimed local Lorentz frame at radial distandeom the center of the
gravitational-relativistic mashl of the assumed spherical gravitational field source
in X. Spherical gravitational field sources shall be assumeitiauth a time when
the Maxwellian theory of gravity (MTG) shall be developedeasmhnon-spherical
gravitational field sources shall be brought in.

The explanation of the derivation of Fig. 5 from Fig. 7 of [2fmm Fig. 1 of this
paper is as done for the derivation of Fig. 6 from Fig. 1 in [Lhe partial intrinsic
gravitational local Lorentz transformation derivablewiespect to 3-observers in
the relativistic Euclidean 3-spacgin our universe from Fig. 5, which has been
derived in [2], is the following

dep’ = d¢pseo¢wg(¢r’)—¢cgd¢ttan¢%(¢f’)?}

(w.r.t. 3— observers irr) (12)

The complementary diagram to Fig. 5, which is valid with exsyo 1-observers
in the time dimensionst and—ct* of our universe and the negative universe respec-
tively, is depicted as Fig. 6. Fig. 6 has been drawn withinghme local Lorentz
frame as Fig. 5, from the global geometry of Fig. 8 of [2] or.R2gof this paper,
with the same explanation for drawing Fig. 7 from Fig. 3 in[1]
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Figure 6:

The partial intrinsic gravitational local Lorentz trangfaation derivable with
respect to 1-observers in the relativistic time dimensibf our universe from
Fig. 6, which has been derived in [2] is the following
gedgt’ = gedgt secpy,(4r') — dep tangy,(¢r'); (13)
(w.r.t. 1 — observers irct)

By collecting Egs. (12) and (13) we obtain the full intringjavitational local
Lorentz transformationGLLT) derivable from Figs. 5 and 6 as follows

dep’ = depsecpy,(or') — pc,dgttangy,(¢r');
(w.r.t. 3— observers itE); (14)
gedgt’ = pedgt secpyy(4r') — ddp tandy,(¢r');

(w.r.t. 1 — observers irct)

There is an inverse to system (14), which must be derived flaninverses to
Figs. 5and 6. The inverse to Fig. 5is depicted in Fig. 7. Flta§been drawn within
the same local Lorentz frame as Figs. 5 and 6, from the glotaingtry of Fig. 9
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of [2] or from the undrawn inverse to Fig. 1 of this paper, wetime explanation for
drawing Fig. 8 from Fig. 4 in [1].
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Figure 7: The inverse to the spacetjin&rinsic spacetime geometry to Fig. 5 at
the second stage of evolutions of spacetjfinéinsic spactimes within symmetry-
partner gravitational fields in the positive and negativivenses that is valid with
respect to 1-observers in the relativistic time dimensiaritke two universes.

Fig. 7 is valid with respect to 1-observers in the relaticistime dimensions
ct and —ct* of our universe and the negative universe. The explanatidghi®is
the same as given for the validity of Fig. 8 of [1] and Fig. 9 &f With respect to
1-observers irt’ and—ct” in those diagrams.

The partial inverse intrinsic gravitational local Lorentansformation that is
derivable with respect to 1-observersdnin our universe from Fig. 7, which has
been derived in [2] is the following

dgp’ = dep’ seapwg(qsr')+¢cd¢t’tan¢wg(¢r’):}

. 15
(w.r.t. 1 — observers irct) (15)

The inverse to Fig. 6 is depicted as Fig. 8. Again Fig. 8 has loeawn within
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the same local Lorentz frame as Fig. 5 — Fig. 7, from the glgbametry of Fig. 10
of [2] or the inverse to Fig. 2 (not drawn) of this paper, witine explanation for
drawing Fig. 9 from Fig. 5 in [1].
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Figure 8: The inverse to the spacetjin&insic spacetime geometry to Fig. 6 at
the second stage of evolutions of spacetjfing$nsic spactimes within symmetry-
partner gravitational fields in the positive and negativevense that is valid with
respect to 3-observers in the relativistic Euclidean 3epan the two universes.

Fig. 8 is valid with respect to 3-observers in the relaticifuclidean 3-spaces
¥ and-X* of our universe and the negative universe. the explanafidthi®is as
given for the validity of Fig. 9 of [1] or Fig. 10 of [2] with rgmct to 3-observers in
¥ and-X* in those diagrams.

The partial intrinsic gravitational local Lorentz transfaation that can be de-
rived with respect to 3-observers ihin our universe from Fig. 8, which has been
derived in [2] is the following

gedgt = ¢Cd¢t’sec¢lﬁg(¢f’)+d¢P'tan¢lﬁg(¢f/)i}

(w.r.t. 3— observersirx) (16)

By collecting Egs. (14) and (15) we obtain the full inverseiirsic gravitational
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local Lorentz transformation (inversgGLLT), that is, inverse to system (14), as
follows

dep’ secpyr,(¢r') + pcdgt’ tangy, (¢r’);
(w.r.t. 1 — observers irct)pcdgt

gedot’ secpyry(or’) + dgp’ tangyry(4r');
(w.r.t. 3— observers irx)

dep

(17)

The elementary indefinitely short intervalgo’ andgcdgt’ that appear in Figs. 5
— 8 and in systems (14) and (17), have been taken about ‘destan’ along the
curvedgp’ from the base opMg in ¢p’ and along the curvedcst’ from the base
of ¢E’/¢c? in ¢cgt’ in Figs. 7 and 8 of [2] or Figs. 1 and 2 of this paper. They
are the intrinsic dimensions of the proper (or primed) irdti¢ local Lorentz frame
(depo’, pcdgt’) on the global curved proper intrinsic spaceting’(pcgt’) at ‘dis-
tance’¢r’ along the curvedyp’ from the base obMg in ¢p’ in those figures, as
mentioned earlier. They project elementary intengap andgcdgt of relativistic
intrinsic space and relativistic intrinsic time dimensian‘distance’¢r along ¢p
from the base oM in ¢p along the horizontal and at ‘distaneg’ alonggcegt from
the base 0BE/¢c? in gcot along the vertical.

The projective elementary intrinsic coordinate internvds and¢cdgt are the
intrinsic dimensions of the relativistic (or unprimed)rinsic local Lorentz frame
(dep, pcdet) on flat relativistic intrinsic spacetima@g, ¢cot) at ‘distance’¢r along
¢p from the base opM in ¢p in Figs. 7 and 8 of [2] or Figs. 1 and 2 of this paper.

As derived in [2], the relative intrinsic anglsy,(¢r’) is related to the relative
intrinsic gravitational speegV; (¢r’) within the intrinsic local Lorentz frame at ‘dis-
tance’¢r’ along the curvedp’ from the base obMg in ¢p’ in Fig. 1 as

. oV (or")
SiNGY,(or') = ——— = @B,(¢r") (18a)
¢C,
oV (gr')?
COSbU(01') = 1= = dnler) (asb)
g

By using Egs. (18a) and (18b), the&SLLT (14) and its inverse (17) can be
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written explicitly in terms of intrinsic gravitational spd respectively as follows

dep” = ¢yy(pr)(dop — ¢V, (r)dat);
(w.r.t. 3— observers irkt);
oV, (¢r") (19)
dgt’ = y,(er')(det — ;cz dgp);
4

(w.rt1 - observers irct)

and
dgp = ¢y,(¢r')(dep” + ¢V, (¢r')det’);
(w.r.t. 1 — observers irtt);
PVy(or’) (20)
dot = gyy(or)(dat’ + — 5—dop’);

g
(w.r.t 3— observers irx)

As also derived in [2], the intrinsic gravitational spegd (¢r’) is related to the
intrinsic rest masgMy of the gravitational field source as

OV (¢')? = 2GpMo/gr’

However this relation must now be written in terms of the inenial intrinsic ac-
tive gravitational mass (or gravitational charge), aftéraducing the gravitational
charge that is imperceptibly hidden within the rest masshassburce of gravita-
tional speed, gravitational potential and gravitatior@ederation in [6], as already
done in [4]; see Eq. (119) of [4]. In other words, we must replthe last equation
by the following

#V,(#')? = 2G¢Moa/gr’ (21)
Then the relations (18a) and (18b) can be written in terms3gf\gg/¢r’ as

. 2GopM
Singu, (o) = [T = 08, 0r) (222)

_ 2G¢Moa
Pr'gcz

cospy,(¢r’) = gy (o)t (22b)

By using Egs. (22a) and (22b), the&LLT (14) or (19) and its inverse (17)
or (20) can be written explicitly in terms of the intrinsicagitational parameter
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2GpMoa/¢r’ respectively as follows

2GpM
dép’ = y,(or')(dap - (‘fr, 2 dgt);
(w.r.t. 3 - observers it);
(23)
, , _ [2G¢Moa ]
Ao = o) dot— || Ao
(w.r.t 1 — observers irct)
and
2GpM
dop = oy, (o)’ + \[ 52 dor)
(w.r.t. 1 — observers irtt);
(24)
_ , , 2G¢pMoa ,
Wt = on(or)aet + || TG dp)

(w.r.t 3 - observers irx) '

wheregy, (¢r’) is given by Eq. (22b).
As also derived in [2], theGLLT (14), (19) or (23) or its inverse (17), (20) or
(24) leads to intrinsic gravitational local Lorentz inance ¢GLLI)

pCdet? — dpp? = ¢pc?dpt’? — dep’? (25)

This invariance obtains at every point on the curved propéinisic spacetime
(¢p’, pcpt’) and at every point on the flat relativistic intrinsic spamet (o, pcot)
in Figs. 1 and 2, showing formally that the relativistic infic spacetimegp, ¢cgt)
is everywhere flat in every gravitational field.

Another results derived in [2] is the intrinsic gravitatedihength contraction and
intrinsic gravitational time dilation implied by theGLLT and its inverse. In order
to do this, only the intrinsic coordinate interval transf@tions derived with respect
to 3-observers in the Euclidean 3-spada the¢GLLT and its inverse are relevant,
since these are the observers that observe or measure mgthction and time
dilation. By collecting the intrinsic coordinate interdehnsformations with respect
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to 3-observers i in systems (14) and (17) we have

dgp’ = depsecpy,(¢r’) — gc,dettandy,(¢r');
(w.r.t. 3— observers ilt); (26)
gedgt = godet’ secpyy(¢r') + dp” tandys,(4r');

(w.r.t. 3— observers itk

Now when a hypothetical intrinsic 1-observer in the relatie intrinsic space
¢p underlyingX, with respect to whom the first equation of system (26) is addial,
picks his intrinsic laboratory rod to measure the resuli@atninsic coordinate inter-
val projected into the relativistic intrinsic spagpe along the horizontal in Fig. 5,
given by the right-hand side of the first equation of syste6),(Be will be able to
measure the terrdgp secpy,(¢r’) but not the termpedgt tangy,(¢r’). Likewise
when the hypothetical intrinsic 1-observer in the intrinspacegp underlyingZ,
with respect to whom the second equation of system (26)dsvallid, picks his lab-
oratory clock to measure the resultant intrinsic coordiriaterval projection into
the relativistic intrinsic time dimensiopcgt in Fig. 6, expressed by the right-hand
side of the second equation of system (26), he will be able éasure the term
pcdpt’ secpy,(¢r’) but not the terntdgp” tangy,(¢r’).

Thus by collecting the terms that are measurable with isiciteboratory rod
and intrinsic laboratory clock in system (26) by intrinsiotiserver inpp we have

dép’ cosdy,(¢r’) (273)
dt’ secpu,(¢r”) (27b)

dep
ot

Equations (27a) and 27(b) are mere intrinsic coordinakerwat projections with
respect to intrinsic 1-observers ¢ and 3-observers in the relativistic Euclidean
3-spacex overlying ¢p.

The forms of Eqgs. (27a) and (27b) implied by system (19) ar®) é2e the
following

oV, (or2\"*
dgp = ¢n(¢r’)‘ld¢p’=(1—‘;T] dep’ (28a)
g
oV, (or )
dgt = ¢yg(¢r’)d¢t’=(1--‘;7] dgt’ (28b)
9

And the form of Egs. (27a) and (27b) implied by systems (23) &) are the
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following
_ n-1 , _ _ ZG¢M0a Yz ’
dép = ¢y,(er)"dgp’ = (1 s ] de (29a)
_ ’ ’ 2G¢Moa 2 ’
dgt = ¢y,(¢r)dst’ = (1— Py ) det (29b)

Equations (27a) and (27b), Egs. (28a) and (28b) and Eqs) é2@h(29b) are
alternative forms of intrinsic gravitational length cadtion and intrinsic gravita-
tional time dilation formulae in the context of the intringheory of gravitational
relativity (#TGR). They pertain to the measurable sub-space of the tptalesof
¢TGR, where the total space @fTGR is the flat relativistic intrinsic spacetime
(¢p, pcot) in Fig. 1.

Let us obtain a graphical representation of the measurablesgace 0HTGR,
to which the intrinsic gravitational length contractiordantrinsic gravitational time
dilation formulae pertain. We must simply combine the lowalf of the first quad-
rant of Fig. 5 and the upper half of the first quadrant of Figb&h of which are
valid with respect to 3-observers in the relativistic Edelin 3-spacg&, into one
diagram depicted in Fig. 9.

-over)
AoV, @Y)
oedot'! _{godat

T pmpc’
L - BV, @)

oye)—"7 Tl
L/ - L gmgc
L//? - - - LT gV(er)

oV @)

Figure 9: The measurable sub-space of the spagd GR to which intrinsic grav-
itational length contraction and intrinsic gravitatiomiahe dilation formulae in the
context ofp TGR pertain with respect to 3-observers in the Euclideap®ex.

The intrinsic coordinate interval projection relationgittitan be derived with
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respect to 3-observers in the Euclidean 3-spaftem Fig. 9 are

dgp = dep’ cospy,(¢r) ; ¢cdgt = pedat’ cospy,(¢r”),

which are the same as Eq. (27a) and (27b).

Fig. 9 and the intrinsic gravitational length contractiomléntrinsic gravitational
time dilation formulae derivable from it are valid with resgh to 3-observers in the
relativistic Euclidean 3-spac&goverlying the relativistic intrinsic spaeg along the
horizontal. It is important to note that there is no projestof the inclinedpcdgt
along the horizontal and no projection of the inclirdegh’ along the vertical in the
measurable sub-space®fGR of Fig. 9.

2.2 Derivation of intrinsic mass relation in the context @TGR by the graphical
approach

Now in the hypothetical situation of the absence of relaiintensic gravitational
speed but the presence of non-uniform absolute intrinsigigttional spee¢Vg(¢f)
along the straight line proper intrinsic spate along the horizontal in Fig. 3 or 4
of [6], the intrinsic rest masgmy, of a particle located at ‘distancet’ along the
straight linegp’” along the horizontal from the base of the intrinsic rest ngddg of
the gravitational field source igp’, is equivalent to intrinsic total energgo$c?.

If we now allow the intrinsic rest magsMg of the gravitational field source to
establish relative intrinsic gravitational spegd;(¢r’) at ‘distance’sr’ along the
straight linegp’ along the horizontal whergmy is located, then the intervalpp’
of ¢p” about this point containingmg will be inclined at intrinsic angley,(¢r’)
relative to the horizontal and project interdalp of relativistic intrinsic space along
the horizontal, as illustrated in Fig. 9. The intrinsic resss of the test particle
still possessing intrinsic total energyny¢c? is inclined alongdgp’ and ‘projects’
intrinsic grav- itational-relativistic magsm contained within the projective interval
dgp along the horizontal. The ‘projective’ gravitationala@Vistic intrinsic mass
¢mis equivalent to intrinsic total energymgc? within dgp along the horizontal, as
illustrated in Fig. 9.

The intrinsic mass relation in the context 6TGR is a relationship between
the intrinsic rest masgmy contained within the inclinedgp’ and the ‘projective’
gravitational-relativistic intrinsic magsn contained within the projectiveyp along
the horizontal in Fig. 9. In other to derive that relatiogshét us re-write Eq. (18b)
as follows

BCCOSH,(41') = dC\[1 - V(41?62 (30)
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The interpretation of this equation is that the compoundrisic speed of signalsc

at every point of the inclined interval of proper intrinsi@tric spacesp’ projects

a componenpc cosy,(¢r’) into every point of the projective interval of relativisti
intrinsic metric spacégp along the horizontal. Let us obtain the square of Eq. (30)
and multiply the result bym to have

$MopC? cOS gy (p1') = pmopc’(1 — ¢V (41')?/$c2) (31)

The implication of Eq. (31) is that the intrinsic total engrgmy¢c® of the test
particle in the inclined proper intrinsic space interdap’ ‘projects’ gravitational-
relativistic intrinsic total energgmogc? cos’ ¢y, (¢r’) into the projective relativistic
intrinsic space intervalgp along the horizontal in Fig. 9.

Thus what has been written gsngc® within dgp in Fig.9 is the same as
Ppmogc? cos ¢, (¢r’), from which we have

PMPC” = PpMogpC? COS iy (¢1”)

Hence
¢m = ¢y coS iy (1) (32)
or VoY
_ PV, (o1’
¢m = ¢my [1— ¢—C§J (33)
o 2GopM
_ _ 2G¢$Moa
om = om 1~ 22002 (34)

Egs. (32) — (34) are alternative forms of the intrinsic ma¢ations in the context
of ¢TGR, which shall be re-derived by an alternative analyteggbroach in the
second part of this paper. The intrinsic mass relation inctirgext of TGR is a
new result not derived in [2].

As mentioned earlier, the gravitational-relativisticrinsic massgpm (= ¢mg
X ¢y,(¢r’)~2) in the context o TGR, shall be referred to as gravitational-relativistic
intrinsic mass. Indeed every relativistic (or unprimedjgmaeter on the flat rela-
tivistic spacetimeX, ct) in Fig. 1, which evolves from the corresponding proper (or
classical) parameter on the flat proper spacetibiect’) in Fig. 11 of [6] in the
context of TGR, shall be referred to as the gravitationkdtigstic parameter.

The intrinsic gravitational local Lorentz transformati@fGLLT) in the alter-
native forms of systems (14), (19) and (23) and its inverghénalternative forms
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(17), (20) and (24); the validation of intrinsic gravitatad local Lorentz invariance
(¢GLLI) (25); the intrinsic gravitational length contracticand intrinsic gravita-
tional time dilation formulae in the alternative forms of £¢27a-b), (28a-b) and
(29a-b) and the intrinsic mass relation in the contextp®GR in the alternative
forms of Eqgs. (32) — (34), all derived graphically in this ssdxtion and the previ-
ous one are dficient results o TGR for now. Other results shall be added from
the analytical approach in the second part of this paper.

3 Intrinsic special theory of relativity (¢SR) and combined¢SR and ¢ TGR
on flat intrinsic spacetime in a gravitational field by the graphical approach

The flat four-dimensional relativistic spacetin® ¢t) and its underlying flat two-
dimensional relativistic intrinsic spacetimgo( ¢cgt) in Fig. 1 and 2, which evolve

in the context of the theory of gravitational relativity (Rpand intrinsic theory

of gravitational relativity §TGR) respectively, constitute the flat spacetime for the
special theory of relativity (SR) and flat intrinsic spao®ifor the intrinsic special
theory of relativity pSR) in a gravitational field of arbitrary strength.

It is the gravitational-relativistic mass that evolves in the relativistic Euclid-
ean 3-spac& in the context TGR that undergoes relative motion on the @kt-r
tivistic spacetime, ct) in the context of SR in every gravitational field and it is the
gravitational-relativistic intrinsic masgm that evolves in the relativistic intrinsic
spacegp, given in the alternative forms of Egs. (32) — (34), that ugdes relative
intrinsic motion on the flat relativistic intrinsic spaageg (o, #cgt) in the context
of SR in every gravitational field.

The unprimed (or gravitational-relativistic) intrinsipexcial theory of relativity
(¢SR), involving the gravitational-relativistic intrinsinasspm in relative intrinsic
motion within an unprimed intrinsic local Lorentz frame oatftelativistic intrinsic
spacetimedp, gcgt), to be developed in this section, is the projection of thmpd
intrinsic special theory of relativitygSR), involving the intrinsic rest masgm, of
the particle or object in relative intrinsic motion withihe corresponding proper
(or primed) intrinsic local Lorentz frame on the curved montrinsic spacetime
(po’, pcopt’) in Fig. 1.

The unprimed (or gravitational-relativistic) special dng of relativity (SR), in-
volving the gravitational-relativistic mass of the patrticle or object in relative mo-
tion within the corresponding local Lorentz frame on thefitatr-dimensional rela-
tivistic spacetimeX, ct) is the outward (or physical) manifestation¢BR.
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3.1 Derivation of intrinsic local Lorentz transformationgLLT) and its inverse
and validating intrinsic local Lorentz invariancegLLl) of #SR on the flat
relativistic intrinsic spacetime o TGR by the graphical approach

In order to derive combinedTGR andgpSR, we must simply formulaigSR on the
flat relativistic intrinsic spacetimep, ¢cgt) in terms of the gravitational-relativistic
intrinsic masgm of the test particle, which evolved in the contex¢diGR, derived
in sub-section 2.2, as the intrinsic mass that undergoggasit motion relative to
the observer in every gravitational field.

Let the gravitational-relativistic intrinsic masgn, ¢s/¢c?) of a particle occupy
a little relativistic intrinsic metric spacetimddp, pcdgt) of the flat two-dimensional
relativistic intrinsic spacetimepp, ¢cgt) of pTGR. Let us denote the intrinsictane
spacetime frame attached #nf, p=/$Cc?) by (6%, pcpt) — this is the particle’s intrin-
sic dfine spacetime frame on the flat relativistic intrinsic medpgacetimedp, ¢ceot)
in every gravitational field (denoted byX', ¢cot’) on the flat proper intrinsic metric
spacetimedp’, ¢cgt’) in the absence of relative gravity at the first stage of evolu
tions of spacetimfntrinsic spacetime and paramefarginsic parameters in every
gravitational field in [6] and [4]).

As the gravitational-relativistic intrinsic masang, ¢=/$c?) moves at intrinsic
dynamical speegv relative to the observer within an intrinsic local Lorentarhe
on flat intrinsic metric spacetimeg, ¢cst), it becomes the special-relativistic cum
gravitational-relativistic intrinsic mass in the conteftcombined¢SR andpTGR
(or in the context ofpSR+#TGR) on the flat §p, pcgpt). The special-relativistic
cum gravitational-relativistic intrinsic mass shall bedted by ¢m, ¢&/¢c?), where
M = ¢yg(pv)pm andpz/pc® = ¢yq(pv)pe/pc?. The special-relativistic cum gravi-
tational-relativistic intrinsic massgth, ¢&/¢c®) occupies a little intrinsic metric
spacetime interval to be denoted lpp, pcdgt) of the global flat relativistic in-
trinsic spacetimedgp, ¢cdgt).

Let us denote the intrinsicfiane spacetime frame attached #WT( o2/ 6C%) by
(qﬁi ¢cot) —this is the observer's intrinsidfine spacetime frame on the flat relativis-
tic intrinsic metric spacetimepp, #cgt) in a gravitational field of arbitrary strength
(denoted by ¢X, pcet) on flat proper intrinsic spactimes’, ¢pcet’) in the absence
of relative gravity at the first stage of evolutions of spanetintrinsic spacetime in
a gravitational field in [6] and 13).

As developed in [9] and applied in section 2 of [4], the imsiexmotion of the
gravitational-relativistic massp(n, ¢=/¢c?) of the particle at intrinsic dynamical
speedpv will give rise to the spacetinfimtrinsic spacetime geometry @SR in a
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gravitational field in the two-world picture depicted in Fi.

A@CEt
C - 4 TGE B2
pefpc? N - - AQEfC
e” T m@:; dgp
Ny -1¢C ot b APV
~\\ .
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-pP; -gm* PV _ \ \L/‘Z’% gx #{,wv

o 'éii/‘_" """ e '(éj'\vg'/'/'”'i?\ffiz'_'%if gin ~ """ op
_dgp* | : > i \\\ +— -@C,Ptsin@VYy
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Figure 10:

Fig. 10 is valid relative to symmetry-partner 3-observd?etér and Peter*)
in the relativistic Euclidean 3-spac&sand —X* in our universe and the negative
universe. Fig. 10 is the same as Fig. 8(a) of [9], except thatintrinsic rest
mass $my, <’ /$c?) and the intrinsic special-relativistic massw ¢e/¢c?); pm =
dya(pv)pmy of the particle in intrinsic motion relative to the obserweere not
shown in Fig. 8(a) of [9].

Further more, thefine intrinsic space coordinates denotedyyand¢X in in
the assumed absence of gravitational field [9] are denotg& la)ndqﬁ):( respectively
in a gravitational field in Fig. 10. Thefiane intrinsic time coordinates denoted
by gcat’ andgegt in [9], are denoted byc, ¢t and gc, ¢t respectively in Fig. 10.
Fig. 10 on flat relativistic spacetim&,(ct) of TGR in a relative gravitational field,
at the second stage of evolutions of spacefinignsic spacetime, corresponds to
Fig. 4 of [4] on flat proper spacetim&/( ct’) in the absence of relative gravity at the
first stage.

As first introduced in [8] and discussed further in sub-secti.3 of this paper,
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the intrinsic time dimensiogcgt is composed of thefine dynamical component
¢c,¢t and the metric static (or gravitational) componenj¢t. The dfine intrin-
sic dynamical time coordinates must appeap®R, as discussed in sub-section 1.3
of this paper and must be denoted ¢y, f and¢c,¢t, as done one in Fig. 10. In-
deed Fig. 10 is the full two-world form of the partial spaosdiintrinsic spacetime
geometry of SRSR of Fig. 4(c) in a gravitational field field. The concept ofi¢
dimension being composed of th&ae dynamical and metric gravitational compo-
nents was unknown in [9], hence thi@ae intrinsic time coordinates were denoted
by ¢cot” andgcet in that paper.

The intrinsic dfine coordinates are represented by broken lines, while the in
trinsic metric spac&yp and intrinsic metric time dimensiogacgt are represented
by dotted lines as usual in Fig. 10. The little intrinsic netspacetime inter-
val (d¢p, gcdgt) contained within the gravitational-relativistic intgic mass ¢m,
¢e/¢c) is located at the end of the inclined extendefina intrinsic spacetime
(9%, gc,¢t) of the particle’s intrinsic frame and the little intrinsicetric spacetime
interval d¢p, pcdgt) contained within the gravitational-relativistic cum sjz-
relativistic intrinsic massdm, ¢g/¢c?) is located at the end of the projective ex-
tended &ine intrinsic spacetimeqs&, ¢c,¢t) of the observer’s~ intrinsic frame in
Fig. 10. The projective fiine intrinsic coordinate$>:< and ¢c,t lie along the in-
trinsic metric spac@p and intrinsic metric time dimensiopcgt respectively, but
they cannot altegp andgcgt.

The global flat relativistic intrinsic metric spacetimgp(¢cgt) that evolved in
the context ofgTGR is not dfected by the intrinsic motion on the flat intrinsic
metric spacetimedf, cgt) of the intrinsic mass of a particle relative to an ob-
server. However the little gravitational-relativistidiimsic metric spacetime inter-
val (dgp, pcdgt) contained within the intrinsic gravitational-relatitics mass ¢m,
pe/pc?) of pTGR is transformed into little gravitational-relativistcum special-
relativistic intrinsic metric spacetime intervaldp, ¢cdgt) contained within the in-
trinsic gravitational-relativistic cum special-relagtic mass ¢m, #g/$C?) that
evolves at the top of the intrinsic observer’s frar@&,@bcyﬁ), due to the intrin-
sic motion of gpm, ¢=/¢c?) relative to the observer (or in the context of combined
#TGR andpSR).

The partial intrinsic local Lorentz transformation (in ttentext ofgSR), which
can be derived from Fig. 10 with respect to the 3-observete(Pm the relativistic
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Euclidean 3-spack, as done from Fig. 8(a) of [9], is the following

¢X = pRSechyq — ¢C,pt tangyg; } @)

(w.r.t. 3— observer Peter i)

The complementary diagram to Fig. 10 that co-exists with Fig which is valid
with respect to 1-observeReter andPeter* in the time dimensiornd and—ct* of
our universe and the negative universe is depicted in Fig. 11

APCPt
- gXsin@Vy ¢E/¢c2:¢ - pefpc?

gcdgpt/
; (25‘;\-&2310* QWt ¢c,¢?//&>cy¢f
- QPA‘ ‘\\\\\\ _Qx* /de//
[ S~ . //
-d I e N
_Q) p<* - ¢p\‘_} ....... ﬂ\ \T -, 1\7**.***.*. Q)S****?:nmqu >
OVigh g i 2k aop @P
// \\\@3'( ‘ |
{oVy: S dep
/ o AN
-¢C7¢tz ¢Cv¢?*:l¢v ) ¢ﬁl\ 2%
/—Q)cdgzﬁ* : @RESIND Yy
—czie*/;zsczii N T
{(zj agt* 2V
v -gcatt
Figure 11:

Fig. 11 is the same as Fig. 8(b) of [9], except for the sarnfterdinces between
Fig. 8(a) of [9] and Fig. 10, discussed above, which alsotéeésween Fig. 8(b)
of [9] and Fig. 11.

The partial intrinsic local Lorentz transformation (in ttentext ofpSR), which
can be derived from Fig. 11 with respect to 1-obseReter in the relativistic metric
time dimensiorct, as done from Fig. 8(b) of [9], is the following

ol = o,dtsechyy - pXtangye 6)
(w.r.t. 1 — observetPeter inct)
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By collecting Egs. (35) and (36) we obtain the full intrindcal Lorentz trans-
formation @LLT) (in the context ofpSR) as follows

gk seapya - gc, st tangue;
(w.r.t. 3— observer Peter i)

do, ol = dc,tseapyy - gXtandys;
(w.r.t. 1 — observerPeter inct)

#%
(37)

There is an inverse to system (37), which must be derived theminverses to
Figs. 10 and 11. While Figs. 10 and 11 are essentially the sarféga. 8(a) and
8(b) of [9], as mentioned above, the inverses to Figs. 10 dnard essentially the
same as the inverses to the inverses of Figs. 8(a) and 8(B) nafmely, Figs. 9(a)
and 9(b) of that paper. The inverses to Fig. 10 and 11 shalbaatrawn here in
order to conserve space, while the inverse to system (37)jekabe written as
follows

¢X = ¢Xseapyq + ¢C gttangyy;
(w.r.t. 1 — observePaul inct)
~ . (38)
g gt = ¢C,ptsecpyq + pXtangyq;

(w.r.t. 3— observer Paul i)

The intrinsic local Lorentz transformatiogl(L T) of system (37) and its inverse
of system (38) are described as local because the intrifisine aoordinates that
appear in them and in Figs. 10 and 11 and their inverses (la@trgr are limited
in extensions to the interior of the intrinsic local Loreritame on the flat two-
dimensional relativistic intrinsic spacetimgo( ¢cét), at an arbitrary ‘distancepr
from the base of the gravitational-relativistic maggl of the gravitational field
source ingp in Fig. 1.

Now the relative intrinsic angléyq in systems (37) and (38) and in Figs. 10 and
11, is related to the intrinsic dynamical spegdof intrinsic motion relative to the
observer within the intrinsic local Lorentz frame as follow

singg = du/gc, = Ba(gv) (39a)

cospus = \[L-on2/6c2 = dya(n) (39b)

The formal derivation of Eqgs. (39a) and (39b) from systen® é&hd (38) has
been done in [9]. It must be noted that the dynamical intcispeedsc, of intrinsic
electromagnetic waves appears in Egs. (39a) and (39b) indhiext of SR, so
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that the numerator and the denominatopirigc, are homogeneous in dynamical
intrinsic speeds. It may be recalled that the separatioheo§peed of ‘signals’ into
the static (or gravitational) speed of gravitational waggand dynamical speed of
electromagnetic waves was firstintroduced only in [8]. Consequently the intrinsic
speedgc, in Egs. (39a) and (39b) could only appeardasin the corresponding
equations in [9].

By using Egs. (39a) and (39b), theLT (37) and its inverse (38) can be written
explicitly in terms of the intrinsic speeagb respectively as follows

0% = Pya(gu)(#X - pusl);
(w.r.t. 3— observer Peter il)

- ~ ~ (40)
6 = dvon)et- 2%,
(wrt 1- observeiPeter inct)
and . .
R = Gralgo)e%+ oo );
(w.r.t. 1 — observerPaul inct)
~ (41)

o= vt 2o%);
(w.r.t. 3— observer Paul ix)

Either system (37) or (38) or the explicit form (40) or (41ads to intrinsic
local Lorentz invarianceglLLIl) (in the context of¢SR) on the flat relativistic in-
trinsic metric spacetimegp, ¢cot) that evolved in the context afTGR in every
gravitational field, B

$CPt? - X* = gt — ¢%° (42)

This intrinsic local Lorentz invariance is valid within eyentrinsic local Lorentz
frame on the flat relativistic intrinsic spacetimg( pcgt) of pTGR in Fig. 1 in every
gravitational field.

The intrinsic @fine length contraction and intrinsifime time dilation formulae
in the context of»SR on the flat relativistic intrinsic metric spacetingg (¢cgt) in
a gravitational field, which systems (37) and (38) imply, as\d in [9], are the
following

<
X
Il

$pX COSPYrg (43a)
ot secpyy (43b)

SN
—+|
Il
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The alternative forms in terms of the intrinsic spegdof Eqs. (43a) and (43b),
which systems (40) and (41) imply are the following

~ 2
5 = gyalon) o = (1— 2L y/2dgs (44a)
[o[oy
~ o (131)2 ~1/294 4F
B = dyalonst = 1 - 22y 12dgt (44b)
¢c;,

The derivations of Egs. (43a) and (43b) from systems (37) (88y and the
derivations of Eqgs. (44a) and (44b) from systems (40) angl{dte been done fully
in [9]. It must be mentioned that Egs. (43a-b) and (44(a-b)vatid with respect to
3-observer (Peter) at rest relative to the observer’s frame

3.1.1 Explicit form of combined ¢ TGR and ¢SR

Now as mentioned earlier in this section, the unprimed (avigational-relativistic)
intrinsic special theory of relativitySR) within an intrinsic local Lorentz frame
on flat relativistic intrinsic metric spacetimec, ¢c¢t) that evolved in the context
of ¢TGR in Fig. 1, is the projection of the primed intrinsic sp@dheory of rela-
tivity (¢SR)) within the corresponding intrinsic local Lorentz frame thie curved
proper intrinsic metric spacetimgd’, ¢cgt’) in that figure. Consequently the intrin-
sic dfine coordinategX and ¢c,¢t of the intrinsic particle’'s frame i®SR within
intrinsic local Lorentz frame on flat relativistic intritsspacetimedp, ¢cet), are
projections of the intrinsicféine coordinategX’ andg¢c,¢t’ of intrinsic particle’s
frame in SR within the corresponding intrinsic local Lorentz frame amed
(po’, pcopt’) in Fig. 1. )

The transformation of the particle’s intrinsic framgX(, ¢c,¢t") on the curved
(¢p’, pcpt’) into particle’s intrinsic framed, ¢c,¢f) on the flat §p, pcpt) must be
derived in the context afTGR, as the intrinsic gravitational local Lorentz transfor
mation @GLLT) of system (14), (19) or (23) and its inverse of system)(120) or
(24). That is, we must simply repladep’, ¢cdst’, dgp andgcdst in those systems
by ¢%', gc,¢t’, pX andgc, ¢t respectively. The resulting systems shall not be written
out explicitly in order to conserve space. However the msiig gravitational length
contraction and intrinsic gravitational time dilation ¢he context ofpTGR), which
they imply are given like Eqgs. (27a-b) or (28a-b) or (29a-$bjalows

Xt
1l

¢
¢

¢X’ COSPy,(¢r’) (45a)
ot secpyy(¢r”) (45b)

—~
I
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or
P
ot

or
PR
ot

= gy or) % = (1

= ¢yylor)et’ = (1-

Bye(pr) ToX = (1-

Pyq(or)et’ = (1-

V(o)
¢c2
PV (4r')?

2
¢c;

2GpMoa
Pr'¢cs

2G¢pMoa
pr'gcz

)1/2¢)~(/

)_1/2¢t~,

)1/2¢)~</

)—1/2¢t~/

(46a)

(46D)

(47a)

(47b)

We shall now incorporate Egs. (45a-b), (46a-b) and (47aehyed int the con-
text of pTGR into Egs. (43a-b),and Eqgs. (44a-b) derived in the camteSR to ob-
tain gravitational-relativistic cum special-relativcsintrinsic length contraction and
gravitational-relativistic cum special-relativistidimsic time dilation in the context
of combinedpTGR and¢SR in the following alternative forms on flat relativistic
intrinsic metric spacetimesp, ¢cgt) in a gravitational field of arbitrary strength

or
#X
ot
or
#X

#X
ot

= ¢yy(or) tpya(gv) toX’

(1-

2
¢cg

PV, (pr')?

)21~

= ¢yy(¢r")dra(gpv)gt’

(1-

2
¢C;

PV, (pr')?

o
¢cs

By, (@) pyalpv) oX’

@

2G¢pMoa
P12

Y7L -

¢
oc;

¢X’ CoSpy,(pr") COSpqg
ot secpy,(¢r') secpyr

)1/2¢)~</

2
“12p4 PV 172 o
)y e —¢C$) Pt

)l/2¢)'z/

(48a)
(48b)

(49a)

(49D)

(50a)
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Pt = oy (or)pya(pv)et’
- _ 2G¢Moa, 12 _ ¢_U2 -1/2 &
= (1 ¢r,¢C§) 1 ¢C§) Pt (50Db)

Now the intrinsic local Lorentz transformatiogl{LT) of system (37) and its
inverse of system (38) and their explicit forms in terms afiivsic dynamical speed
¢v of systems (40) and (41), have been written for the intriaflice coordinates
P%, ¢c, ¢t ¢§( andgc, ¢t in Figs. 10 and 11 and their inverses (not drawn). They can
equally be written for the little interval of intrinsic métrspacetime dgp, cdgt)
contained within the gravitational-relativistic mags1( ¢s/¢c?) and the little in-
terval of intrinsic metric spacetimédgp, #cdpt) contained within the gravitational-
relativistic cum special-relativistic masgi, ¢z/¢c?) in respectively as follows

dgp = dgpsecpyqy — ¢cdst tangya;
(w.r.t. 3— observer Peter il)
- _ (51)
gedgt = gcdgt secpyq — dgp tangyg;
(w.r.t. 1 — observetPeter inct)
and
dégp = ddpsecpyq + ¢cdgttandyq;
(w.r.t. 1 — observefPaul inct)
- (52)
gcdgt = ¢cdgt secpyy + dgp tandiyy;
(w.r.t. 3— observer Paul i)
or )
dgp = ¢ya(¢v)(dep — udgt );
(w.r.t. 3— observer Peter i)
- _ (53)
Aot = yolon)(cet - 5007
(w.rt 1- observeeter inct)
and

¢p = ¢ya(pv)(dsp + d¢v¢f );
(w.r.t. 1 — observetPaul inct)

] (54)
At = gya(du)(dot + %dcpp);

(w.r.t. 3— observer Paul i)
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System (51) or (52) or its explicit form in terms @6 (53) or (54) leads to the
following invariance

$CRdt” — dgp? = ¢C2dgt? — dep? (55)

This is intrinsic local Lorentz invariance (in the contexft#BSR) within the little
intrinsic metric spacetimedfp, ¢cdgt) contained within the intrinsic massgrg,
pe/pc?) of the particle in relative intrinsic motion relative to abserver.

The intrinsic length contraction and intrinsic time ditatiformulae (43a) and
(43b) implied by systems (37) and (38) or their explicit ferin terms ofgv of
Egs. (44a) and (44b) implied by systems (40) and (41), cpores to the following
implied by systems (51) and (52) and systems (53) and (54)

dgp = dgpcosgyyq (56a)
dgt = detsecpyy (56b)
or
_ 1 ¢ 1)
dép = ¢ya(év) d¢P:(1‘¢_02) dep (57a)
Y
- ¢\ 1)
dot = ¢)’d(¢v)d¢t=(1—¢—cz) dot (57b)
Y

Equations (56a) and (56b) and Egs. (57a) and (57b) are afiezriorm of intrin-
sic length contraction and intrinsic time dilation of thild intrinsic metric space-
time interval within the intrinsic mass of the particle irtrinsic motion relative to
an observer. They are valid with respect to the 3-obsenete(Pat rest relative to
the observer's frame as being formulated at present.

The intrinsic length contraction and intrinsic time ditatiformulae in terms of
intrinsic afine coordinategX, ¢c,t, ¢>:< andgc, ¢t of Egs. (45a-b), Egs. (46a-b) and
Egs. (47a-b) in the context @TGR can equally be written in terms of the little in-
trinsic metric spacetime coordinate intervelsp, ¢cdgt, dgp andgcdgst contained
within the intrinsic mass of the particle in intrinsic maticelative to the observer.
However those equations shall not be written in order to exvesspace.

Finally the intrinsic length contraction and intrinsic grdilation formulae in the
context of combine@dTGR andgSR of Egs. (48a-b), (49a-b) and (50a-b) are given
terms of the intrinsic metric coordinate intervalgo, ¢cdgt, dgp andgcdgt within
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the particle respectively as follows

dgp = ddp’ cospy,(¢r') cospg (58a)
det = dot’ secpy,(¢r') secpyq (58b)
or _ n—-1 -1 ’
dép = ¢y(dr') " ¢yalgv)"dep
V(o1
- q-2 (;Z; Lyuagy - ¢>c2)l/2d¢ (59a)
dgt = éy,(r')dya(pv)det
n2
- (1_—¢V‘j;fzr) R 2) 2y (59b)
9
or — n-1 -1 ’
dép = ¢yy(dr’) " ¢yalgv) "dep
2G¢M
= - a ¢Cz)”2d¢ (602)
dot = ¢yy(¢r)dya(gv)et
2GoM
= @- ¢r¢¢cga> AL~ ¢C2) Yogt (60b)

Equations (58a-b), (59a-b) and (60a-b) express grauitaticelativistic cum
special-relativistic intrinsic length contraction andgitational-relativistic cum special-
relativistic intrinsic time dilation in the context @fTGR+¢SR of the little proper
intrinsic metric spacetime intervatkyp’ and¢cdgt’ contained within the intrinsic
rest massdimy, ¢&’/¢c?) in intrinsic motion at intrinsic dynamical speed within
the proper (or primed) intrinsic local Lorentz frame on theved proper intrinsic
metric spacetimeglp’, ¢pcgt’) relative to the observer in Fig. 1. They are valid rel-
ative to the 3-observer (Peter) in the relativistic Eudid@-spac&, who is at rest
relative to the observer’s frame within the correspondowal Lorentz frame on the
flat relativistic spacetimex ct).

3.1.2 The case of the electron

Now all equations from system (51) through Egs. (60a-b) Hmeaen written for a
particle or object with compound rest mass

(Mo, &'/c?) = (Mo, U Mag , &, /C; U £4/C5),
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contained in non-zero volume of compound proper metric sjiae
(d¥', cdt’) = (dX U dZy, c,dt’ U c,dt’).
Consequently such a particle or object has non-zero contpiotrinsic rest mass

(Mo, ¢’ /¢C%) = (¢pMoy U ¢pMog , d&,,/$C; U dey/¢Co),

contained in a non-zero interval of compound proper inicingetric spacetime

(ddp’ . gedat’) = (dep, U dex’ . de,dat’ U gc,dat).

Consequently the gravitational-relativistic intrinsi@ss of the particle or object
that evolved in the context @ TGR namely,

(M, ¢s/¢C%) = ($My U gMy , dey/¢C; U peal $C2),

is contained in non-zero interval of compound relativistitrinsic spacetime of
¢TGR,

(dgp . podgt) = (dp, U day . éc,dat U g, dgt)

and the gravitational-relativistic cum special-relatfi¢ intrinsic mass,
(¢, ¢&/¢C”) = (¢, U ¢My, ¢8,/¢C; U ¢&4/4C;),

is contained in non-zero interval of gravitational-relaiic cum special-relativistic
intrinsic spacetime,

(dgp.. cdet) = (4, U dg¥. oc,dat U o, dgb).

in Figs. 10 and 11.

On the other hand, let us replace the particle or object wéhrimcompound rest
massTy = My, U Myg by the electron with pureffine dynamical rest masge. The
rest mass of the electron occupies a spherical voliiyef radiusroe, of the dfine
proper dynamical 3-spac¥,, which corresponds to a point of zero extension of
the metric compound proper Euclidean 3-spateConsequently the intrinsic rest
mass of the electror(nge, ¢soe/¢c§), occupies intervaldgy’, ¢c,d¢t’) of affine
dynamical proper intrinsic spacetimgy( , ¢c,¢t’), which corresponds to a point
of zero extension in the metric compound proper intrinsacspime ¢p, ¢cgt’).
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Thus if we replace the particle or object in motion relatiwettte observer in a
gravitational field, considered so far, by the electronptie little interval of the rel-
ativistic intrinsic metric spacetime intervalfp , ¢cdgt) containing the metric com-
pound gravitational-relativistic intrinsic masgng, ¢</#c%) and the intrinsic met-
ric spacetime intervaldgp , ¢cdgt) containing the metric compound gravitational-
relativistic cum special-relativistic intrinsic masgig, z/¢c%), must be replaced
by little interval of pure &ine relativistic intrinsic dynamical spacetime coordinate
interval dgy , ¢c,dgt) (that evolved in the context afTGR), containing gravita-
tional-relativistic mass of the electrotrte, ¢se/¢c§) (that evolved in the context
of g TGR) and little interval of pureféine relativistic intrinsic dynamical spacetime
coordinate intervaldgy , ¢c,d¢t) (that evolved in the context ¢flTGR+¢SR), con-
taining gravitational-relativistic cum special-relasitic intrinsic mass of the elec-
tron (¢ma,¢§e/¢c§) (that evolved in the context sfTGR+¢SR) respectively, in
Figs. 10 and 11 and in all equations from system (51) through E60a-b). Those
equations shall not be written however in order to consepaees.

The unwritten resulting equations obtain for the pufiina dynamical intrinsic
spacetime intervalgl ’, ¢c,d¢t’) contained within the intrinsic rest mass of the
electron $mge, ¢soe/¢c§), on curved proper intrinsic metric spacetingg’( ¢cét’),
despite the fact that the rest mass of the electnyg ( soe/cﬁ) occupies a point of
zero extension of the metric compound proper spacetiEhet() and the intrinsic
rest mass of the electron occupies a point of zero extensitre anetric compound
proper intrinsic spacetimeg’ , ¢cét’).

3.2 Graphical approach to the derivation of intrinsic masslations in the con-
texts ofSR and combine@TGR and¢SR

We recall that like the coordinate 4-vector = (%o, %1, %2, %) = (¢, %, 7, 2) of SR
in the rectangular coordinate system of the Euclidean 8espain the flat four-
dimensional relativistic metric spacetimg, €t) that evolved in every gravitational
field in the context of TGR, the momentum 4-vecfmron (&, ct) is given in the
rectangular coordinate system of the Euclidean 3-spas

Pa=(Po, P1, P2, P3) = (Mc, , M, Mo, Mvy) (61)

This is the gravitational-relativistic momentum 4-vedtasit evolved on the flat rel-
ativistic spacetimeX, ct) in the context of TGR. The velocity = vji + v ] + v}k
is being assumed to be a non-zero velocity of the gravitatioglativistic massn
of the particle (that evolved in the relativistic Euclidezuspacez in the context of
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TGR), relative to its own frame, that is relative to the peets frame ¢,{, X, 7, 2)
on the flat metric spacetim&,(ct).

The corresponding gravitational-relativistic cum spkoiativistic momentum
4-vectorp, that evolved on the flat relativistic spacetin® «t) in the context of
combined TGR and SR is

Pa=(Po, Pr» P2, P3) = (e, , Mo, Mo, Moy) (62)

whered = vy + uyf + vk is the velocity of the gravitational-relativistic mass
in Ehe particle’s &ine frame ¢,f, X, 77, 2) relative to the observersfitne frame
(c,f, X, 7, ) on the flat metric spacetim&,ct).

Also corresponding to the intrinsic coordinate 2-vectd;, = (¢%o, %1) =
(¢c,9t, ¢X) of SR on the flat two-dimensional relativistic intrinsic spawe (¢p,
¢cot) that evolved in the context of TGR, the intrinsic momentism 2-vectopp,
on the flat relativistic intrinsic spacetimed, ¢c¢t) where

#pa = (¢Po. ¢P1) = (#MeC, , pMpv’) (63)

This is the gravitational-relativistic intrinsic moment2-vector that evolved in on
the flat relativistic intrinsic spacetimed, #c¢t) in the context o TGR. The intrin-
sic speedpv’ is being assumed to be non-zero intrinsic speed of the gtanitl-
relativistic intrinsic masgm of the particle relative to its own frame, that is,dh
relative to the intrinsic particle’s frames¢, ¢, ¢X) on the flat relativistic intrinsic
metric spacetimegp, ¢cgt) of pTGR.

The corresponding gravitational-relativistic cum speoéativistic intrinsic
momentum 2-vectopp,, in the context of combinedTGR andgSR is

$P1 = ($Po» #P1) = (¢#MéC, . pMpv) (64)

wheregv is the intrinsic speed of the gravitational-relativistitrinsic massm in
the intrinsic particle’s framed(c, ¢t , ¢X) relative to the observer’s intrinsic frame
(pc,ot, ¢§<) on the flat intrinsic metric spacetimed, ¢cet).

Corresponding to the intrinsic spacetime diagrams of Fi§sand 11 in the
context ofpSR , there are intrinsic momentum diagrams, which must beirdud
by replacing the fiine intrinsic spacetime coordinatgs,¢f and¢X of the particle’s
intrinsic frame by the componentgy, = gmgc, andgpy = gmpv’ respectively of
the gravitational-relativistic intrinsic momentum 2-t@c¢p, of Eq. (63) and by
replacing the fiine intrinsic spacetime coordinatgs, ¢t and¢x of the observer's
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Figure 12:

intrinsic frame by the componenfiy = ¢mgc, andp, = ¢Mgv respectively of the
gravitational-relativistic cum special-relativistictiimsic momentum 2-vectapp,
of Eq. (64). The resulting diagrams are depicted in Figsajlagd 12(b).

Fig. 12(a) is valid with respect to the 3-observer (Petenhim Euclidean 3-
spaceX at rest relative to the observer's frame in our universe dagymmetry-
partner (Peter*) in the Euclidean 3-spa€®* at rest relative to the observer’s frame
in the negative universe, while Fig. 12(b) is valid with respto the 1-observer
(Peter) the time dimensicut at rest relative to the observer’s frame in our universe
and his symmetry-partnePéter*) in the time dimensionct* at rest relative to the
observer’s frame in the negative universe.

The partial intrinsic momentum transformation derivablighwespect to 3-ob-
server Peter il in our universe from Fig. 12(a), by following the proceduse=d
to derive partial intrinsic coordinate transformationtwiespect to Peter iB from
Fig. 8(a) of [9], is the following

1 _ -1 _ 4570 .
pp° = PP Secpyq — ¢p° tangyy; } (65)

(w.r.t. 3— observer Peter iB)

And the partial intrinsic momentum transformation derieabith respect to 1-
observerPeter in our universe from Fig. 12(b), by following the prdeee used to
derive partial intrinsic coordinate transformation witsspect toPeter inct from
Fig. 8(b) in [9], is the following

0 _ =0 =1 .
ép° = ¢p-secpyy — ¢p-tangyy; } (66)

(w.rt. 1 — observetPeter inct)
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By collecting Egs. (65) and (66) we obtain the full intringrmmentum trans-
formation derivable from Figs. 12(a) and 12(b) as follows

¢pt = ¢P'secpyq - ¢P°tangya;
(w.r.t. 3— observer Peter il)

¢P° secpyq — $P* tangy;
(w.r.t. 1 — observePeter inct)

(67)

op°

There is an inverse intrinsic momentum transformationt ihathe inverse to
system (67), which must be derived from the inverses to Rig&) and 12(b). The
inverse diagrams shall not be drawn however in order to ceaspace, while the
inverse to system (67) is the following

¢pt = ¢psechyq +¢p°tangya;
(w.rt. 1 - observeiPeter inct)
- (68)
¢P° = op°sechyq + ¢p* tangyq;

(w.r.t. 3— observer Peter i&)

Either system (67) or (68) leads to the following invariance
(#P° — (#P)? = (#p%)* - (¢p") (69)

And by lettingp® = ¢Mgc,; $p* = ¢Mgv; op° = gmpc, andgpt = gmpv’,
along with se@yq = ¢ya(¢v) = (1 - ¢v?/¢c5) /% and tanpya = ¢ya(pv)dv/ge, in
systems (67) and (68) we have

gy’ = dya(dv)(¢Mpv — pmpv);
(w.r.t. 3— observer Peter il)

o _¢_Uz_ (70)
Pya(pv)(¢mgc, — gm ¢c,)'

(w.r.t. 1 — observePeter inct)

gmpc,

and
gmpo = $yd(pv)(gmpy’ + pmpu);
(w.r.t. 1 — observePaul inct)
(71)

3
Ry

relon)@moc, + @ S0
(w.r.t. 3— observer Paul ix)
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And the invariance (69) becomes the following
gM2pC; — gMm2gv” = pni'cs — pmpu’? (72)

The vanishing of the right-hand side of the first equationystem (70) implies
the vanishing ofsp' = pmgv’. Indeed the gravitational-relativistic intrinsic mass
g¢m is at rest relative to its own frame (or particle’s intringiame) ¢c,¢t, $%).
Hence it possesses zero intrinsic spegd (= 0) and zero intrinsic momentum
(pmgv’ = 0) relative to its frame. On the other hamtim possesses component of
intrinsic momentunyp® = pm¢c, along the natural intrinsic geodesic, ¢t of its
intrinsic frame. Consequentiyp® = gmg¢c, in the particle’s frame must be retained.
In other wordsgv’ must be allowed to vanish in Eq. (63) to have the correctrisici
momentum 2-vector in the intrinsic particle framegam = (¢mgc, , 0).

The gravitational-relativistic cum special-relativisintrinsic masspm of the
particle actually possesses intrinsic spgedf intrinsic motion relative to its frame
(or relative to the observer at rest relative to its framye) ¢t , ¢§<). Consequently
both¢p® = ¢mpc, andgp! = gMgv must be retained in the observer’s frame.

By allowing gmgv’ to vanish, while retaining the other terms in the invariance
(72) we have

PM2(C: — pv°) = pmpC (73)
Hence
_ Pv? ~1/2
gm=¢m(l— -—)""° = ¢yq(pv)gm (74)
¢c;

This is the intrinsic mass relation with respect to 3-obsefPeter) at rest relative
to the observer’s frame in the context@g®R on flat relativistic intrinsic spacetime
(¢p, pcot) in every gravitational field. It can also be written in terafghe intrinsic
anglegyq in Figs.10 and 11 and Figs. 12(a) and 12(b) as

¢M = dya(pv)pm = gmsechyq (75)

Now by multiplying through Eq. (73) b;bcf,, we obtain the following intrinsic
energy expression in the contextR

$M2¢Cy — pMpCopv” = priepc (76)
The intrinsic special-relativistic kinetic energ¥ is likewise given as follows
¢T = ¢myc; — gmgc;
= dyalgv)pmsc; — pmpc;
= ¢gmecZ ((1- g /pct) 2 - 1) (77)
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Equations (76) and (77) are valid with respect to the 3-olesgPeter) at rest rela-
tive to the observer'sfane frame ¢,t, X, j,%) on the flat relativistic metric space-
time (&, ct).

By incorporating the intrinsic mass redlation in the conteik¢TGR derived
graphically and presented in the alternative forms of E8@) € (34) in sub-section
2.2 into the intrinsic mass relation in the contexiy&R in the alternative forms of
Egs. (74) and (75) we obtain the following alternative forofighe intrinsic mass
relations in the context of combingd GR andpSR

¢gMm = ¢myCcos ¢y, (4r') Sechyy

= Moy, (or’) *dya(gv) (78)
PV o1y 2

= oma- e Z—%)-”Z (79)

B 2G¢Mga T

= ¢mp(l- q)r’—q)cg)(l - ¢—C§) (80)

And the intrinsic special-relativistic kinetic energy imet context of combined
¢TGR andpSR is given in the following alternative forms by incorpangtEqgs. (32)
—(34) into Eq. (77)

¢T = ¢mopcs cos guy(or')[secyq — 1] (81)
— 201 _ W _ ¢_U2 -1/2 _
= Omooci(L- — I - )M -] (82)
_ 21 _ 2GoMoa,. . ¢*\ 1pp
= oML - A - L) -] (83)

Now the gravitational-relativistic cum special-relasic intrinsic massm in
the context ol TGR+#SR is given in the alternative forms of Egs. (78), (79) and
(80) and the pure gravitational-relativistic intrinsic $s@min the context o TGR
is given in the alternative forms of Eqgs. (32), (33) and (38Y. using Eq. (78) or
(79) or (80) and Eq. (32) or (33) or (34) in Eq. (76) we have

$MBoC, — PigpCc2pr® = pmpoc) (84)

wheregify = ¢yq(dv)pmy is the special-relativistic intrinsic mass expressiorhia t
context of the primed intrinsic special theory of relagv{pSR) (while retaining
the notation in section 2 of [4]), on the within the properimsic local Lorentz

661A. Joseph. Formulating gravity and motion at second stage of evdutfepacetime..... I.



Vol. 1(3B): Article 14 THE FUNDAMENTAL THEORY ... (M) Mar, 202

frame on the curved proper intrinsic spacetimg’ (¢cot’) at ‘distance’gr’ along
the curvedpp’ from the base opMy in ¢p’ with respect to an intrinsic 1-observer
on the curvedp’ within or outside this intrinsic local Lorentz frame in Fify.

The dtect of intrinsic gravitational relativityTGR) cancels out in the intrinsic
gravitational-relativistic cum intrinsic special-relastic expression (76), thereby
making the pure intrinsic special-relativistic express{84) to remain unchanged
with position in a gravitational field.

The intrinsic local Lorentz transformatiopl(LT) and its inverse in the context
of SR on the flat relativistic intrinsic spacetimgop( ¢cet) in the alternative forms
of systems (37) and (38) and systems (40) and (41); the @ntrlocal Lorentz in-
variance ¢LLI) (42) in the context ofpSR on flat ¢p, pcgt) in a gravitational field
of arbitrary strength; the intrinsic length contractiordantrinsic time dilation for-
mulae on flat ¢p, #cgt) in the context ofpSR in a gravitational field of arbitrary
strength in the alternative forms of Egs. (43a-b) and (44anul in the context of
combinedsTGR andySR in the alternative forms of Egs. (48a-b), (49a-b) and{50a
b); the intrinsic mass relation in the conted®R on flat intrinsic metric spacetime
(¢p, pcot) in a gravitational field of arbitrary strength in the altatiwe forms of
Egs. (74) and (75); the intrinsic total energy expressioth iatrinsic kinetic en-
ergy in the context opSR on the flatfp, pcot) in a gravitational field of arbitrary
strength of Egs. (76) and (77); the intrinsic mass expressithe context of com-
bined¢TGR and¢SR of Egs. (78), (79) or (80) and for intrinsic kinetic enerfy
Egs. (81), (82) or (83), are adequate results for the topibtisfsub-section. The
results have indeed been derived graphically. Other sitriparameter relations in
the context of combinedTGR and¢SR shall be derived analytically in the second
part of this paper.

4 The TGR, SR and combined TGR and SR on flat four-dimensional gace-
time as outward manifestations ofg TGR, ¢SR and combined¢TGR and
¢SR on flat two-dimensional intrinsic spacetime

4.1 The TGR as outward manifestation on flat spacetime¢dfGR on flat in-
trinsic spacetime

The flat four-dimensional relativistic metric spacetin¥ df) that evolved at the
combined first and second stages of evolutions of spacétitriesic spacetime
and parametefimtrinsic parameters in a gravitational field in Fig.1, i® thut-
ward manifestation of the underlying flat two-dimensiorgativistic intrinsic met-
ric spacetime dp, pcot), wheregp is a one-dimensional isotropic intrinsic space
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(with no unique orientation in the relativistic Euclideais@acex) with respect to 3-
observers irk. The theory of gravitational relativity (TGR) on flat fouirgensional
spacetimey, ct) is likewise the outward (or physical) manifestation of thiinsic
theory of gravitational relativityATGR) on the flat two-dimensional intrinsic space-
time (¢p, gcot).

The foregoing implies that the results of TGR on flat spacet{#ct) can be
written directly from the results af TGR on flat intrinsic spacetimepg, ¢cot) by
simply removing the symbap from the results o TGR. However in doing this,
proper care must be taken of the fact that TGR is a physicaldouensional theory,
while #TGR is an intrinsic two-dimensional theory.

Now in converting the two-dimensional intrinsic gravitatal local Lorentz
transformation §GLLT) and its inverse, written in terms of the intervalgp’ and
¢cdgt’ of the two-dimensional proper intrinsic spacetimg’(¢cgt’) and inter-
vals dgp and ¢cdgt of the flat two-dimensional relativistic intrinsic metripace-
time (pp, pcot) in the alternative forms of systems (14) and (17), systei@} énd
(20) and systems (23) and (24), to the four-dimensionalitptaonal local Lorentz
transformation (GLLT) and its inverse, to be written in termf coordinate in-
tervalsdr’, r’'d¢’ ,r’ sin@’dy’ andcdt’ of the flat four-dimensional proper space-
time (&, ct’) and coordinate intervaldr, rdé@, r sinfde and cdt of the flat four-
dimensional relativistic spacetimg, (ct), we must be guided by the following facts:

1. The Euclidearlr’ andX are relative spaces (i.e. without hat label unlike the
absolute spac&) and non-isotropic with respect to 3-observersinor £
(unlike the absolute spade which is isotropic with respect to 3-observers in
the relative Euclidean 3-spacEsor X, as properly established in sub-section
4.7 of [6]). Isotropy of a given 3-space relative to an obseim the same or
another space, as used here, means that all directions givitre space are
identical with respect to the observer, thereby making $&ropic space to
contract to a one-dimensional isotropic space (or isotrdphension) with
no unique orientation in the 3-space of the observer. glehd 3-spac& is
not isotropic with respect to observers in it by this defariti

2. The gravitational velocit%(r’) is a relative velocity in the context of TGR.
This simply means that the magnitude\@(r’) varies with position of dfer-
ent radial distancessfrom the center of the gravitational field sourcelinas
discussed in sub-section 2.2.1 of [2].

3. The gravitational velocity7;(r’) is purely radial in every gravitational field,
spherically-symmetric or not, as discussed earlier insedtion 1.2 (see sys-
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tem (4)) of this paper, but which is still to be formally ediabed.

The three facts itemized above imply that $8LLT (14) and its inverse (17)
must be transformed into GLLT and its inverse on flat four-elisional spacetime
respectively as follows

dr’' = drseay,(r) - cdttany,(r’);

r'de’ =rdo; r’sin@’dy’ = rsinfdy;
(w.r.t. 3 - observers ix) (85)

cdt’

cdtseay,(r') — dr tany,(r’)
(w.r.t. 1 — observers irct)

and
dr = dr'seaqy,(r’) + cdt’ tany,(r');
rdd = r’d¢’; rsinddy =r’sing’dy’;
(w.r.t. 1 — observers irct’) (86)

cdt = cdt’ seay,(r') + dr’ tany,(r’)
(w.r.t. 3— observers irrt’)

If the Euclidean 3-spaces andX were absolute and isotropic with respect to
3-observers in them, (like the absolute spﬁd:eabsolute and isotropic with respect
to 3-observers i’ or ), then the first three equations of system (85) would have
been

dX’ = dZ seqy,(r’) — cdttany,(r’)

. And if ¥ andX are considered to be relative and non-isotropic with resjoe8-
observers in them, which they are, b@'(r’) is not purely radial towards the center
of the gravitational field source, then the transformatiohs’'d¢’ andr’ sin¢’dy’
into rdd andr sinddy would not have taken the trivial forms they take in systems
(85) and (86).

The appearance of the angle(r’) in systems (85) and (86) suggests that the
spacetime coordinate intervads’ andcdt’ are inclined at angle,(r’) relative to
dr and cdt respectively in a local spacetime geometry, ldgp’ and gcdgt’ are
actually inclined at intrinsic angley,(¢r’) relative todgp and¢cdgt respectively
in the local intrinsic spacetime geometries of Figs. 7 andt8& appearance of the
angley,(r’) in systems (85) and (86) then suggests further that thereglabal
spacetime geometries in which extended proper radial dmaem’ and extended
proper time dimensiowt’ are curved relative to their projective extended straight
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line relativistic radial dimension and relativistic time dimensiont respectively,
like extendedspp’ andgcet’ are actually curved relative to extendgd and ¢cot
respectively in Figs. 1 and 2.

However local spacetime geometries in which spacetimevialedr’ and cdt’
are inclined by angle,(r’) relative todr andcdt respectively and global spacetime
geometries in which extended spacetime dimensidandct’ are curved relative
to extended andct, which system (85) may suggest, is hypothetical; they does
not exist in reality. They may be referred to as intrinsi@tiek rotation ofdr’ and
cdt’ relative todr andcdt and intrinsic curvature of extendetlandct’ relative to
extended andct. This is what is realized by the actual rotational of intiersgpace-
time intervalsdgp’ andgcdgt’ relative todgp andgcdgt by intrinsic anglepy,,(¢r’)
in Figs. 7 and 8 and actual curvature of extended intrinshcspme dimensiongp’
andgcgt’ relative to extendedp andgcgt in every gravitational field in Figs. 1 and
2.

The outward manifestations of the definition of the intrinanglegy,(¢r’) in
Egs. (18a) and (18b), obtained by simply removing the symitaske the following

sing,(r') =V (r')/c, = By(r') (87a)
cosy, (') = J1-Vi(r)2/c2 = y,(r')™* (87b)

The outward manifestations on four-dimensional spacetifisystems (19) and
(20), which can be obtained by using Egs. (87a) and (87b) stes)s (85) and (86)
are the following respectively

dr' = y,(r)(dr -V, (r")dt);
r'de’ = rdg; r’sing’dy’ = r sinfdy;
(w.r.t. 3— observers i)

(88)
V,(r')
at = y,(r) (dt -— dr);
9
(w.r.t. 1 — observers irct)
and
dr = y,(r)dr + V,(r)dt);
rdd = r’d¢’; rsinddy =r’sin@’dy’;
(w.r.t. 1 - observers irct’)
(89)

Vi)
dt = yy(r’)(dt’+"(:—2dr];

(w.r.t. 3 — observers irx’)
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wherey,(r’) is given by Eq. (87b).
The outward manifestations on flat four-dimensional sparzin the context of
TGR of Egs. (22a) and (22b) in the contextydfGR are the following

2GMoa _ ’
/W = 3,() (90a)
[ 26Mm
cosy,(r') 1- rcz"a =y, (90b)
g9

The outward manifestation on flat four-dimensional spateif, ct) of systems
(23) and (24) on flat intrinsic spacetimgo({ #cgt), which can be obtained by using
Egs. (90a) and (90b) in systems (85) and (86) are the follgwéspectively

siny,(r’)

2GM

> 0 :
r'de’” =rdog; r’sing’dy’ = r sinfdy;
(w.r.t. 3— observers i) (91)

dr’ = y_,,(r’)[dr—

;L , 2GMopa
ar = y,(r )[dt r'cg dr
(w.r.t. 1 — observers irct)

d = yg(r’)[dr’+ ‘/—ZGrl\,/loadt’];

rdd = r’d¢’; rsinddy =r’sing’dy’;
(w.r.t. 1 - observers irct’) (92)

and

_ ’ y ZGMoa /1.
da = yg(r)[dt+‘/ 7 dr],

(w.r.t. 3— observersirr’)

wherey,(r’) is given by Eq. (90b).

Systems (85), (88) and (91) are alternative forms of grawital local Lorentz
transformation (GLLT) in the context of TGR and systems (§8%) and (92) are
their inverses. Either the GLLT (85), (88) or (91) or its irse (86), (89) or (92)
leads to gravitational local Lorentz invariance (GLLI) hetcontext of TGR

2dt? — dr2 — r2(d6? + sir? 0dy?) = 2t — dr’2 — r'3(de’? + s 'dy’?)  (93)
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This is the outward manifestation on flat four-dimensionecetime in the context
of TGR of the intrinsic gravitational local Lorentz invamniee ¢GLLI) (25) on flat
two-dimensional intrinsic spacetime in the contexpdGR.

The validity of Eq. (93) at every point in spacetime in a gtational field,
guarantees formally the flathess everywhere in a grauwtatifield of the four-
dimensional relativistic spacetimg, (ct), which evolved in the context of TGR at the
second stage of evolutions of spacetimiinsic spacetime and paramef@ginsic
parameters in a gravitational field, as illustrated alréadie global geometries of
Figs. 1 and 2.

The outward manifestations on flat four-dimensional spaeein the context
of TGR of the intrinsic gravitational length contractiondaimtrinsic gravitational
time dilation in the context apTGR, given in the alternative forms of Egs. (27a-b),
(28a-b) and (29a-b) are the following respectively

dr = dr’cosy,(r'); rdd =rdg’; andr sinfdy = r’ sing’dy’ (94a)

dt = dt'seay,(r) (94b)
V/(r)?
dr = y,(r)tdr' = (1- Az))l/zdr’; rdo = rde’;
Cg
and r sinfdy = r’ sing’dy’ (95a)
2
dt = y,(r)dt =(1- ( ) BEAREN e (95b)
g
and
dar = y, ()t =(1- 2GM°a)1/2dr rdo = rde’;
g9
and r sinfdy = r’ sing’dy’ (96a)
dt = y,(r)dt =(1- 2?';"03) Vg (96b)

4

Equations (94a-b), (95a-b) and (96a-b) are alternativexgoof gravitational
length contraction and gravitational time dilation in thantext of TGR. It must be
noted that the rotation afr’ relative todr suggested by the first equation of system
(94a) and the rotation afit’ relative tocdt suggested by Eq. (94b) are intrinsic rota-
tions, that is, they are not actual or observable rotatiaitts rgspect to 3-observers
in X, as discussed earlier. The non-observable intrinsiciontsare what appear as
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actual rotations oflgp’ relative todgp andgcdgt’ relative togcdgt in Fig. 9 of the
measurable sub-space®fGR, to which intrinsic gravitational length contraction
and intrinsic gravitational time dilation formulae of E§&7a-b), 28(a-b) or (29a-b)
in the context ofpTGR pertain.

Finally the outward manifestations on the flat four-dimensal spacetime in the
context of TGR of the intrinsic mass relation in the contdx¢©GR, derived graph-
ically in sub-section 2.2 and presented in the alternativa$ of Eqgs. (32), (33) and
(34), is given in the following alternative forms, obtainkeyd simply removing the
symbolg from Egs. (32) — (34)

m=moy,(r')2 = mocogy,(r) (97)
V;(r’)2
_ ( ~ 2?,'::'2061] (99)
g

The gravitational-relativistic masa that evolved from the rest masy in the con-
text of TGR shall be identified as the inertial mass and paggiavitational mass in
the second part of this paper.

The gravitational local Lorentz transformation (GLLT) imetalternative forms
of systems (85), (88) and (91) and its inverse in the alterm&irms of systems (86),
(89) and (92); the gravitational local Lorentz invarian@LLI) (93); the gravita-
tional length contraction and gravitational time dilatimnmulae in the alternative
forms of Eqs¢, (94a-b), (95a-b) and (96a-b) and the massorelst the context
of TGR in the alternative forms of Egs. (97) — (99), ardfisient results of TGR
for now. Other results shall be added from the analyticafeggh to TGR to be
developed in the second part of this paper.

Since the results of TGR in this sub-section have been writiesctly from
the results ofpTGR derived graphically in sub-sections 2.1 and 2.2, we hiave
effect accomplished the graphical approach to TGR. It must iberaged however
that there are no local spacetime geometries involvingivelaotations of physi-
cal spacetime intervals and no global spacetime geomdtkielring curvature of
extended physical spacetimes in the context of TGR.
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4.2 SR and combined SR and TGR on flat spacetime in a gravitaidield of
arbitrary strength

Just as done by writing the results of the theory gravitatioslativity (TGR) on the
flat relativistic spacetimeX( ct) in sub-section 4.1 directly from the corresponding
results of the intrinsic theory of gravitational relativ{ip TGR), derived graphically
in sub-sections 2.1 and 2.2, the results of SR and combinesh8R GR on the flat
relativistic spacetimeX, ct), shall be written directly from the results ¢ER and
combinedgSR and¢TGR on flat two-dimensional relativistic intrinsic spacedi
(¢p, pcot), derived graphically in sub-sections 3.1 and 3.2. Thidlgail the
removal of the symbap from the results 0pSR andpSR+¢TGR essentially, while
taking proper care of the fact that SR and+SK5R are four-dimensional theories
on flat €, ct), while SR andpSR+¢TGR are two-dimensional intrinsic theories on
flat (¢p, pcpt).

The intrinsic local Lorentz transformatiogl(LT) in the context ofSR and
its inverse in terms of extended straight lin@irge intrinsic spacetime coordinates,
which are but limited in extensions to the interior of a lotalentz frame in the
external gravitational field, in the alternative forms of®ms (37) and (38) and
systems (40) and (41), on the flat relativistic intrinsic ritespacetime ¢p, ¢cgt)
that evolved in the context @TGR in a gravitational field, are made manifest out-
wardly (or physically) within a local Lorentz from on the faur-dimensional rel-
ativistic metric spacetimeX(ct) in the context of SR in the external gravitational
field respectively as follows

% = Xseoyq-citanyg =7 2=7
(w.r.t. 3— observer Peter il)
) ) i (100)
¢t = c,tseq)y — Xtanyy;
(w.r.t. 1 — observePeter inct)
and
X = %seayq+cftanyg; j=u; 2=7
(w.rt. 1 — observetPeter inct)
) ) (101)
ot = ctseayqy + Xtanyy;

(w.r.t. 3— observer Peter i&)
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or . i

X = ya)X-ut); y=p5;2=%

(w.r.t. 3— observer Peter iR)
= U~

7a@( - X);

Y ~
(w.r.t. 1 — observerPeter inct)

(102)

—
Il

and e
ya@)(X+t); y=4;2=2
(w.r.t. 1 — observetPeter inct)

x|t
Il

(103)

—+1
Il

YaO)E+ 5%

Y
(w.r.t. 3— observer Peter iR)

where the outward manifestations on the flat spacetijet) of Egs. (39a) and
(39b) on flat intrinsic spacetimeg, ¢cpt) namely,

singg = v/c, =LBul(v) (104a)
cosg = J1-0v2/c2 = yq()? (104b)

have been used in converting systems (100) and (101) tonsggte02) and (103).
Except for the change of notations of th@irge intrinsic coordinates, systems (100)
and (101) are the same as systems (28) and (29) of [9] andrsy$1€92) and (103)
are the same as systems (33) and (34) of [9].

As discussedjn [9], the rotation of théfiae spacetime coordinatesandc,t
relative tox andc,t respectively by angléq, which system (100) may suggest and
the inverse rotation oX andc,t relative tox'andc,{ respectively at negative angle
—i4, Which system (101) may suggest, do not exist in realityreffiatitious. They
may be described as intrinsic rotations, which is formalhawthe rotations of the
intrinsic dfine coordinategX and ¢c,¢t relative to¢§< fmd #c, ¢t respectively in
Figs. 10 and 11 and the inverse rotatiomﬁ&fand¢cy¢f relative togx and ¢c, ¢t
respectively by negative intrinsic angl@y in the inverses to Figs. 10 and 11 (not
drawn) represent.

The outward (or physical) manifestations on the flat foumehsional relativis-
tic metric spacetime, ct) in the context of TGR, of intrinsic gravitational local
Lorentz transformationgGLLT) and its inverse on the flat relativistic intrinsic met-
ric spacetime fp, gcgt) in the context of intrinsic gravitational theory of relati
ity (¢TGR), in the alternative forms of systems (14) and (17), esyst (19) and
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(20) and systems (23) and (24), take on the alternative fafnisystems (85) and
(86), systems (88) and (89) and systems (91) and (92) in eyramtational field
(spherically-symmetric or not), with respect to 3-obsesva X. This, as discussed
earlier in sub-section 4.1, is due to the fact that the réfdic Euclidean 3-space

is not isotropic (i.e. all directions iB are not the same) with respect to 3-observers
in ¥ and the gravitational velocity is purely radial in every\gtational field, as dis-
cussed in sub-section 1.2 leading to system (4), to be ésiablformally elsewhere
with further development.

The outward manifestations on the flat four-dimensionaltiabtic spacetime
(%, ct) in the context of SR in a gravitational field of the intrindcal Lorentz trans-
formation @LLT) and its inverse on flat two-dimensional intrinsic metspacetime
(¢p, pcot) in the context ofpSR in a gravitational field, in the alternative forms of
systems (37) and (38) and systems (40) and (41), likewisettekalternative forms
of systems (100) and (101) and systems (102) and (103), évy @air of frames of
reference in relative motion, as explained hereunder.

Now let the dfine spacetime coordinate systemd ( %.7. Z) and .1, X, 7, %)
on the flat four-dimensional relativistic metric spacetifect) of TGR be the
frames of reference of a particle and the observer resgdgtnithin a local Lorentz
frame on the flat spacetim&,(ct) in a gravitational field of arbitrary strength. The
corresponding fiine intrinsic spacetime coordinate systems of the intrifraimes
of the particle and observer in the underlying flat two-disienal relativistic in-
trinsic metric spacetimepp , ¢cgt) of TGR are gc,¢t, ¢X) and gc,¢t, ¢§<) re-
spectively, wheresX and ¢§< are both aligned along the singular one-dimensional
universal isotropic relativistic intrinsic spage.

Let the particle’s framecﬁ, X, i, Z) be in motion at velocityjop = U, rela-
tive to the observer’s frame,, X, i, 7), which implies that the particle’s intrinsic
frame @cgt, #X) is in intrinsic motion at intrinsic speedvop = ¢v, relative to the
observer's intrinsic framec(i, X, j, z), where|go| = [3]. The intrinsic speeguv
lies along the intrinsic coordinatgx, which, itself lies along the singular universal
isotropic intrinsic spacep.

The outward (or physical) manifestation of the intrinsicomtinate system
(¢c,¢t, ¢X) obtained by simply removing the symbslis (c,f, ). It then follows
that the intrinsic motion at intrinsic speed along the intrinsic coordinateX of
the particle’s intrinsic frame g€, ¢t , #X) relative to the observer’s intrinsic frame
(¢c,gt, ¢§<) is made manifest outwardly as the motion at speatbng the coor-
dinatex of the partial coordinate systern,{, X) of the particle’s frame on the flat
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four-dimensional spacetim& ( ct) relative to the observer. When the other coordi-
nates of the particle’s frame namepafidZ are incorporated inta(f, X) we have a
situation where the intrinsic motion at intrinsic spe@esp = ¢v, along the intrinsic
coordinatepX of the partlcles intrinsic frameg(c, #t, ¢X) relative to the observer’s
intrinsic frame ¢c, ¢t ¢x) is made manifest outwardly as the motion at velocity,
Uop = U, along the goordlnatg 6f the particle’s frameq,t, X, i, Z) relative to the
observer’s framedt, X, j %) on the flat four-dimensional spacetini, (ct).

Once itis adopted as a convention that ¥aeaxis of every frame shall be along
the direction of the velocity of relative motion of the frame, then the velocity,
vop = U, is purely along theX—axis of every frame. Thus for the present case
of a particle’s frame c(yt x y Z) in motion at velocity,iop = ¥, relative to the
observer’s frameqvt X, y z) Uop is purely along the coordlnabe Which also
lies above the isotropic intrinsic spage. That is,

dop =0 =uvxl =0l (105a)

On the other hand, the observer’s fram@t(i ? %) is in motion at velocity,
Upo = —0, relatlve to the particle’s frame(f, X, i, Z) and the observer’s intrinsic
frame @cy¢t ¢x) is in intrinsic motion at |ntr|nS|c speedypo = —¢u, relative to
the particle’s intrinsic framegc, ¢t , ¢X) in the above The intrinsic motion at intrin-
sic speed-¢v of the observer’s intrinsic frameﬁ(:ycpt #X) relative to the particle’s
intrinsic frame gc, ¢t, $X), which occurs along the intrinsic space coordlnﬁtehat
is aligned along the singular universal isotropic intrinspacesp, is made manifest
in the motion of the observer’s frame ., X, ; %) at velocity,ipo = -0, along the
coordinatex of the observer's frame relative to the particle’s frarnd ( X, i, Z)
on the flat four-dimensional spacetin®, (ct). Again,vpo = -7, is purely along the
coordinatex of the observer's frame. That is,

Gpo = 7 = —v3} = —ui (105b)

The velocitiesipo andipp lie along the same line but are oppositely directed
in the Euclidean 3-spacg It then follows that the coordinatesof the particle’s
frame, along which the velocit§op lies, and the corresponding coordinatef the
observer’s frame along which the velocity lies, are collinear irk.

_The conclusion then is that although the coordinate sysfefiisX, i, Z) and
(c,t, X, ¥, 2) of two frames in relative motion can be orientated relatveach
other in space in an uncountable number of ways, the relatiemntation of the
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coordinate systems in which the coordinatemdX of the two frames are collinear
along the direction of their relative velocity is the naflyrgrescribed orientation

for deriving the Lorentz transformation (LT) and its inveror the two frames.

However the corresponding coordinates of the two framesatteecollinear with the

velocity of their relative motion may be takengaaﬁd? orZandz itis just a matter

of convention that they shall be takensaaridX. A corollary of this conclusion is

that the LT and its inverse take on the forms of systems (100)&01) or systems
(102) and (103) for every pair of frames in relative motion.

The natural orientation of the coordinate systems of twméa in relative mo-
tion for deriving the LT and its inverse isolated above isunalt because it takes
into consideration the fact that the intrinsic motion atiimgic speedgvop = ¢v,
of the intrinsic frame dc,¢t, ¢X) relative to the intrinsic framegg, ¢, ¢>:() and
the converse intrinsic motion at intrinsic spe@dpo = —¢v, of the intrinsic frame
(¢cy¢t ¢x) relative to the intrinsic framegg, ¢t, ¢X) take place along the intrin-
sic coordinategX and¢x respectively, which are both aligned along the singular
universal isotropic intrinsic spaagp. The intrinsic coordinategX and¢>:< and the
intrinsic speedgvop and ¢vpo, Which are aligned along the singular straight line
universal isotropic intrinsic spaggp are then made manifest in coordinataridx
and velocitiesiop andipo that lie along a straight line along the collinear coordi-
natesxandX in <.

_An arbitrary orientation in space of the coordinates systént, X, i, Z) and
(c,f, X, 5. 2) of two frames in relative motion at a velociyon the flat four-
dimensional spacetim&( ct), for the purpose of deriving the LT and its inverse, in
which the coordinates andX and the velocity’ are not collinear, does not put into
consideration the relative intrinsic motion at intringieedsv of the intrinsic frames
(¢c,9t, ¢X) and (j;cyqbt ¢x) in the underlying flat two-dimensional intrinsic space-
time (gp, ¢cpt). Whereas it is the relative intrinsic motion of the intrindiames
in intrinsic spacetime that determines the observed velatiotion of the frames in
spacetime. Such arbitrary orientation of coordinate systef two fames in relative
motion is impossible. On the other hand, the collinearitthefcoordinates andX,
which is inherent in the Lorentz transformation and its myeein the familiar forms
of systems (102) and (103), is usually considered to be anmrgstfon in the special
theory of relativity.

Itis crucial to note thapSR involves extended intrinsidie spacetime coordi-
natewx and¢cy¢t and consequently SR involves extended four-dimensidfiaka

spacetime coordinatésy,z andc,t, (which are but limited to interiors of a local
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Lorentz frames in a gravitational field for motion within aagitational field). The
only metric intrinsic spacetme involved &SR is the little intrinsic metric spacetime
interval dgp and ¢cet contained within the gravitational-relativistic cum sjadc
relativistic intrinsic masgm of the test particle in relative motion. Consequently
the only metric spacetime involved in SR is the little volu® contained within

m moving inX and little interval of time dimensionrdt contained within the the
symmetry-partner maggc?> moving along the time dimensia, of the particle in
relative motion. An implication of this is that the motion aftest particle in the
extended flat relativistic metric spacetinig, (ct) that evolves in the context of TGR
can neither alter the Lorentzian metric nor the label3bf ¢t). In other words, the
extended flat spacetim& ( ct) of TGR does not transform into another extended
flat spacetimeX, cf) due to the relative motion of a particle or body b, (ct) in
the context of SR.

Similarly it is due to the fact that the isotropic relativisintrinsic spacesp and
the intrinsic gravitational speeglV,(¢r’) that lies alongpp is naturally orientated
along radial directions from the centroid of every grawiaal field source (spher-
ical or non-spherical) in the relativistic Euclidean 3-sp2 only that the outward
manifestation irE of gV, (¢r’) namely, the gravitational velocit?;(r’) is naturally
along radial directions from the centroid of every grawitaal field source (spher-
ical or non-spherical) irx only, as shall be taken up fully elsewhere with further
development. Consequentﬁé(r’) is radially towards the centroid of every grav-
itational field source, spherically-symmetric or not, aastesl by system (4), and
GLLT and its inverse can take on the forms of systems (85) 86l ¢r systems
(88) and (89) or systems (91) and (92), in which the coordmattervals’dd’ and
r’' sin@dy’ transform into the coordinate intervaldd andr sinddy trivially only in
every gravitational field (spherical or non-spherical).

After the long but important digression to establish thé tlaat the local Lorentz
transformation (LLT) and its inverse of SR can take on thenfopf systems (100)
and (101) or systems (102) and (103) only within or outsideaitational field,
for every pair of frames of reference in relative motion, éimel gravitational local
Lorentz transformation and its inverse can take on the farfr/stems (85) and
(86) or systems (88) and (89) or systems (91) and (92) in eyexyitational field
(spherically symmetric or not), let us return to the subggdhis sub-section, which
is writing the results of SR and combined SR and TGR on thedlatfimensional
spacetime X, ct) from the corresponding results #5R and combine@SR and
¢TGR on flat intrinsic spacetimeyg, ¢cet).
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Either system (100) or (101) or the explicit form in termsiué speed (102) or
(103) leads to local Lorentz invariance (LLI) (of SR ) on thet flelativistic space-
time , ct) of TGR in a gravitational field. That is,

T2 Z2 22 Z2 282 g2 ~2 =2
P -XP -y -2 = - % -2 (106)

This is the outward manifestations on the fl&tdt) in the context of SR of the
intrinsic local Lorentz invariances(_LI) (of ¢SR) (42) on flat ¢p, ¢cet).

The Lorentz transformation (LLT) and its inverse of systgih30) and (101)
or system (102) and (103) and the LLI (106) they imply, obtaithin every lo-
cal Lorentz frame in every gravitational field (sphericalymmetric or not). The
LLI has thus been validated on the flat relativistic spacet{# ct) that evolved in
the context of TGR in every gravitational field, as shall digore-done purely an-
alytically in the second part of this paper. It may be rechtleat LLI remains an
assumption (without theoretical validation) but with abant experimental support
in the general theory of relativity (GR) [10, 11, etc].

The intrinsic special-relativistic length contractiordaintrinsic special-relativ-
istic time dilation formulae in the alternative forms of E{43a) and (43b) and
Egs. (44a) and (44b) in the context@®BR on the flat relativistic intrinsic spacetime
(¢p, pcot) of pTGR in a gravitational field, are made manifest outwardlyfloys-
ically) in special-relativistic length contraction anceggal-relativistic time dilation
formulae in the context of SR on the flat relativistic spaveti, ct) of TGR in
every gravitational field respectively as follows

X = Xcosyy; ?: 7 andz =7 (107a)
t = f{seoqq (107b)
or
X = () %= (1-1}/A)Y*%y =jj; andz=2 (108a)
t = ya)f= Q- VH (108b)

The intrinsic gravitational-relativistic cum specialatvistic length contrac-
tion and intrinsic gravitational-relativistic cum spédeialativistic time dilation for-
mulae on the flat relativistic intrinsic spacetimgp(#cgt) in the context of com-
bined ¢TGR and¢SR, in the alternative forms of Egs. (48a-b) and (50a-b), are
likewise made manifest outwardly on the flat four-dimenaiospacetimeX, ct)
of TGR as gravitational-relativistic cum special-relattic length contraction and
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gravitational-relativistic cum special-relativistierte dilation formulae in the con-
text of combined TGR and SR respectively as follows

X = X cosy,(r)cosys y=§' 2=2 (109a)
[ = Useos(r)seos (109b)
X N ya(v) K VoY aq _ Pirzg
X = y(r) yaw) "X =(1-—F—)""(1- 5)"°X;
Cg Cy
y=i 2=% 1108)
H ’ Fr Vl(rl)Z _ 1)2 _ ~
U=yl =1 - =5=) 1= 5) ™A (110b)
Cg Cy
or
% N1 (\-1o7 2GMoa 2o
X = (") yal) K = (1- r'—c2o)l/2(1— 2
9 Y
y=j's 2=7 (111a)
H o f N 2GMoa, _ 2
t = vyt =(1-— 2Oa) Y21 — =) 12 (111b)
r Cg Cy

The dfine spacetime coordinates with prime Iab)eﬂ’ , X', y’ andZ” are those
of the particle’s frame in the context of the primed spediabiry of relativity (SR),
involving the motion of the rest masy, of the particle relative to the observer,
within a local Lorentz frame at radial distancdrom the center of the rest mab
of the gravitational field source, in the proper Euclideaspacex’ of the flat proper
(or classical) spacetim&(, ct’) (in Fig. 11 of [6]), which evolved in the context of
absolute intrinsic gravifiabsolute gravity 4AG/AG) — assuming relative gravity
was still absent — at the first stage of evolutions of spa@ttninsic spactime and
parametepintrinsic parameters in a gravitational field. The coortisa,t, X, j
andz are those of the observer's frame in the context of the urgatispecial theory
of relativity (SR), involving the motion of the gravitatiahrelativistic massn of the
particle relative to the observer, within a local Lorentrfre at radial distaneggrom
the center of the gravitational-relativistic madsof the gravitational field source, in
the relativistic Euclidean 3-spaéeof the flat relativistic spacetime&(ct) of TGR
in Fig. 1, which evolved at the second stage of evolutionspaicetimgintrinsic
spactime and parametdérgrinsic parameters in a gravitational field.
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However while the resultant time dilation formula in the o of combined
TGR and SR of Eq. (109b), (110b) or (111b) is valid for an aajt orientation
of the coordinates of 3—spa<§e _17 andz of the observer’s frame relative to a radial
direction from the center of the mabkof the gravitational field source i, within
a local Lorentz frame, the resultant length contractionmiaa (109a), (110a) or
(111a) is valid for the particular orientation of the sphtaordinates in whichk
along which motion of the particle relative to the obsenasws, lies along a radial
direction from the center d¥1.

In a situation where the coordinafealong which the motion of the particle
relative to the observer occurs does not lie along a radiattion from the center
of the gravitational field sourch in X, on the other hand, the length contraction
formula (109a), (110a) or (111a) must be modified approgisatif, for instance,
the coordinateX andj are orientated perpendicular to a radial direction from the
center ofM, while the coordinaté lies along a radial direction from the center of
M within a local Lorentz frame for a give moment, then the profoe classical)
coordinatex” will suffer special-relativistic contraction solely, the proper ¢tas-
sical) coordinate”will suffer gravitational-relativistic contraction solely, whtlee
proper (or classical) coordinaig Will suffer no contraction for that moment. Then
system (109a), (110a) or (111a) must be modified accordioghyis situation. For
instance system (111a) must be modified as follows

_ 2GMoa

2
~ U ~ ~
X= 1——1/2)(’; —N/; z=(1
( Cz) y=y ( r,cg

Y

4 (112)

while Eqg. (111b) remains unchanged.

The outward manifestations in the context of SR on the flat-Ebmensional
gravitational-relativistic spacetim&,(ct), of the intrinsic local Lorentz transforma-
tion and its inverse in terms of the little gravitationalatévistic intrinsic metric
spacetime intervaldgp, ¢cdgt) contained within the gravitational-relativistic in-
trinsic mass ¢m, ¢=/$c?) of the particle and the little gravitational-relativisgum
special-relativistic intrinsic metric spacetime intdri@yp, #cdgt) contained within
the gravitational-relativistic cum special-relativistnass intrinsic §m, ¢z/¢c?) of
the particle, in the alternative forms of systems (51) arit) émd systems (53) and
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(54) in the context 0#SR are the following

dx dxseayq — cdttanyq; dy = dy; dz=dz;

(w.r.t. 3— observer Peter i)

_ (113)
cdt = cditseayy — dXtanyy;

(w.r.t. 1 — observeiPeter inct)
and
dx = dxseaqyq+ cdttanyy; dy = dy; dz = dz

(w.r.t. 1 — observeiPeter inct)
~ (114)
cdt = cdtseayq + dxtanyy;

(w.r.t. 3— observer Peter i)

o dx = yq()(dX-vdt); dy = dy; dz=dz
(w.r.t. 3— observer Peter iR)
v (115)
dt = ya)(dt- gdx);

Y ~
(w.r.t. 1 — observetPeter inct)

and
dX = yq@)(dx+ vdt); dy = dy; dz = dz
(w.r.t. 1 — observeiPeter inct)

df = ya(o)(dt+ C—Uzdx); (116)

Y
(w.r.t. 3— observer Peter i&)

The metric spacetime coordinate intervdls dy, dzandcdt in systems (113)

— (116) are the dimensions of the gravitational-relatigistass , £/c¢?) of the
particle that evolved on the flat relativistic spacetirBecf) in the context of TGR,
while dx, dy, dx andcdt are the dimensions of the gravitational-relativistic cum
special-relativistic mas$i, /c?) that evolved onX, ct) in the context of combined
TGR and SR.

The special-relativistic length contraction and spepddtivistic time dilation
formulae implied by systems (113) and (114) and systems) @i® (116), are the
outward manifestations of Egs. (56a-b) and Egs. (57a-harbntext obSR, given
as follows

dx
dt

dxcosyy; dy =dy; dz=dz (117a)
dt seayy (117b)
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and

o
XI
Il

2
ya()tdx; = (1 - %)de; dj = dy; dz=dz (118a)
Y

o
=3
11

2
f = y()dt = (1- %)’Mdt (118b)

Y
Only the dimensiomix of the particle (or object), a box, say, along which its motio
relative to the observer occurs,fBars special-relativistic contraction relative to the
observer according to system (117a) or (118a).

The intrinsic special-relativistic cum gravitationalagvistic length contrac-
tion and special-relativistic cum gravitational-relé&hc time dilation of the lit-
tle proper intrinsic metric spacetime intervalgp, ¢cdgt) contained within the
special-relativistic cum gravitational-relativisticimsic mass¢m, ¢z/¢c?) of the
particle or object on the flat relativistic intrinsic spaoe (po , ¢cet), in the context
of combined¢TGR and¢SR, given in the alternative forms of Egs. (58a-b), (59a-
b) and (60a-b), are likewise made manifest on the flat fooredisional relativistic
spacetimey, ct) in the context of combined TGR and SR respectively as falow

dx = dx cosy,(r')cosyq; dy=dy’; dz=dz, (119a)
dt = dt’sea,(r’)seasq (119b)
or
dx = y,(r) ya(o) tdX’;
\V 2
= (1- ( ) R (e )1/2dx’; dy=dy; dz=dz; (120a)
!7 7
dt = y,()ya(v)dt’;
V' (r 2
= (1- Vot ))1/2(1 —) 2t (120b)
g 7
or
dx = yg(l")_lyd(v)_ldx';
= (- 2?'::'20&)1/2( )1/2dx'; dj=dy; dz=dZ; (121a)
7
dt = y,(r)ya(v)dt’;
= (1- 2?';"205‘) v2(1 - )’1/2dt’ (121b)

V
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Again the length contraction formulae of the dimensionshef particle or ob-
ject of system (119a), (120a) or (121a) is valid in a situatihere its dimension
dx, along which its motion relative to the observer occurs inith local Lorentz
frame, is orientated along a radial direction from the cenfehe masav of the
gravitational field source il. Otherwise systems (119a), (120a) and (121a) must
be modified appropriately.

The intrinsic mass relation (74) or (75), the intrinsic t@aergy expression (76)
and the intrinsic kinetic energy relation (77), derivedgnagally in the context of
#SR on the flat relativistic intrinsic spacetimgp(, ¢cgt) in a gravitational field ear-
lier, are made manifest in mass relation, total energy esgiwa and kinetic energy
relation on the flat relativistic spacetim®, €t) in the context of SR in a gravitational
field respectively as follows

2

— [/

M = yg(v)m = mseayq = m(1 - E) vz (122)
Y

=24 —2022 24
m’cy — M°c2v® = nc) (123)

and

=l
I

mcZ(ya(v) - 1)
me2 ((1-o?/c2) ™2 - 1) (124)

The intrinsic mass relation in the context of combiddsR andpSR derived
graphically in sub-sections 2.2 and 3.2 and presented iralteenative forms of
Egs. (78), (79) and (80) are made manifest on the flat fouedsional relativistic
spacetimeX, ct) in the context of combined TGR and SR in the following algern
tive forms

m = moy,(r) ?ya)

= mycos y,(r') seayq (125)
V/(r,)z 2

= my(l- )= 5) (126)
9 Y
2GM 2

= m- - B (127)

The massnis the gravitational-relativistic cum special-relathiidsmass in the con-
text of combined TGR and SR.
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The intrinsic gravitational-relativistic cum specialativistic kinetic energy in
the context of combinedTGR and¢SR presented in the forms of Eqs¢, (80) — (82)
are likewise made manifest on flat four-dimensional reisiiiv spacetimeX, ct) in
the context of combined TGR and SR respectively as follows

T = mocZcos y,(r)[secyq — 1] (128)
V' (r’ 2 2

= mc(L- “’f;) @ - 5" -1] (129)

= mci(1- 2?,?20"")[(1 - 2—2)‘1/2 - 1] (130)
g9 Y

The kinetic energy is the gravitational-relativistic cum special-relatiidskinetic
energy in the context of combined TGR and SR.

Finally the intrinsic total energy expression (76) on thé ifdativistic intrinsic
spacetimedp , ¢cgt) in the context of combinedTGR andgpSR is made manifest
in total energy expression on the flat relativistic spacet{)ct) in the context of
combined TGR and SR as follows

=24 =222 24
m?c; - M%ci” = ey (131)

wherem is given by Eq. (126) or (127) in the context of T&GBR andm is given
by Eq. (97), (98) or (99) in the context of TGR. By using Eq.&)1L2r (127) and
Eq. (97), (98) or ((99) in Eq. (131) we have

frect - iPe2? = mc! (132)

wherem = y4(v)Mmy is the special-relativistic mass expression (usuallytemitas

m = yhy) in the context of the primed special theory of relativityR(pon flat
proper spacetimex(, ct’) in the absence of relative gravity, with the geometry of
Fig. 11 of [6], at the first stage of evolutions of spacefimeinsic spacetime and
parameteritrinsic parameters in a gravitational field of arbitrateagth.

The dfect of gravitational relativity (that is, thefect of TGR) cancels out in the
gravitational-relativistic cum special-relativisticmession (131), thereby making
the pure special-relativistic expression (132) to remaichanged with position in
a gravitational field.

Every result of TGR, SR and combined TGR and SR on the flativistt
spacetimey, ct) of TGR has its corresponding results in the context DER, ¢SR
and combine@TGR andgSR on the flat relativistic intrinsic spacetimgp(, ¢cet)
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of pTGR in a gravitational field, where most of the results of TGR,and combined
TGR and SR can be obtained by simply removing the symbdobm the results of
¢TGR, ¢SR and combined TGR, ¢SR. There is certainly a graphical approach to
TGR, SR and combined TGR and SR the graphical approach #T GR, #SR and
combinedpTGR and¢SR, as developed in this first part of this paper.

The fact that TGR, SR and TGFSR, etc, on the flat four-dimensional rela-
tivistic spacetimeX, ct) of TGR are outward (or physical) manifestationgdiGR,
#SR,¢TGR+¢SR, etc, on the flat relativistic intrinsic spaceting (#cot) of pSTGR
in a gravitational field, establishes a notion that non-olzgge intrinsic physics in
intrinsic spacetime determines the observed physics icesipae. The formal es-
tablishment of this notion at this point in the present tigdsrcrucial, because it
(the notion) authenticates one of the background philosapktand-point of the
present theory, that the domain of physics transcends tmaitiocof experience.

There are actually two possible approaches to each of TGRyn@Rombined
TGR and SR on the flat four-dimensional relativistic spanet{, ct) of TGR in a
gravitational field namely,

1. The graphical approach to TGR, SR and combined TGR ande8Re graph-
ical approach t@TGR, ¢SR and combinedTGR andySR, as developed in
this first part of this paper, and

2. An analytical approach to TGR, SR and combined TGR and Sthefiat
four-dimensional spacetim&,(ct) of TGR, to be developed in the second part
of this paper, to complement the graphical approach. Homtxeeanalytical
approach to SR, which has been developed by Einstein in 9@, not be
repeated.
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