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Abstract

The physical importance of the stress-energy tensor is twofold: at the one hand, it is a fundamental
quantity appearing on the equations of mechanics; at the other hand, this tensor is the source of the
gravitational field.

Due to this importance, two different procedures have been developed to find this tensor for a given
physical system. The first of the systematic procedures gives the canonical tensor, but this tensor is
not usually symmetric and it is repaired, via the Belifante and Rosenfeld formula, to give the Hilbert
tensor associated to the second procedure.

After showing the physical deficiencies of the canonical and Hilbert tensors, we introduce a new and
generalized tensor Θµν without such deficiencies. This Θµν is (i) symmetric, (ii) conserved, (iii) in
agreement with the energy and momentum of a system of charges interacting via NILI potentials
Λµ(R(t)), and (iv) properly generalizes the Belifante and Rosenfeld formula, with the Hilbert tensor
being a special case of Θµν .
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1 Introduction

The physical importance of the stress-energy tensor, thereafter ECMST [1], is twofold: at the
one hand, the ECMST is a fundamental quantity appearing on the equations of mechanics [2];
at the other hand, the ECMST is the source of the gravitational field [3, 4].

Due to this importance, different procedures have been developed to find the ECMST for
a given physical system. The first of the systematic procedures emphasizes the role of the
ECMST in the equations of motion and obtains a ECMST from the analysis –via Noether’s
theorem– of the conserved currents associated with the spacetime translations of classical
field theories on Minkowski spacetime. This is the canonical ECMST, whose density [1] is

τµν ≡ Lδµν − ∂L

∂

(
∂φζ

∂xµ

) ∂φζ
∂xν

, (1)

with L the field Lagrangian density and φζ the field components. Greek indices run over
values 0, 1, 2, 3.

In general, this canonical ECMST density is not symmetric, τµν 6= τνµ, and cannot be used
as source of the gravitational field. This deficiency is particularly relevant for the field theory
of gravity, because not only matter but the own gravitons contribute to the total gravitational
field through a nonlinear coupling [3, 4].

A second systematic procedure gives a ECMST density by varying the spacetime metric gµν
in the relativistic action. This is the Hilbert ECMST density [1]

tµν ≡ −2
δL
δgµν

. (2)

By definition, the Hilbert ECMST density is symmetric, tµν = tνµ, and the proper source in
the Hilbert and Einstein equations Gµν = (8πG/c4)tµν . Nevertheless, tµν does not provide
the ECMST density of the own gravitational field [3, 4].

The Belifante and Rosenfeld formula [5–8] connects both tensor densities

tµν = τµν + DρK
ρµν , (3)

for some quantities K due to classical spin and with Dρ denoting either an ordinary ∂ρ or a
covariant partial derivative ∇ρ, depending on the version of the formula. The Belifante and
Rosenfeld formula is presented in the literature as a systematic «repair» [8] of the canonical
ECMST density. Recently, Gotay & Marsden have obtained a «generalized Belinfante-
Rosenfeld formula» [8] valid for arbitrary field theories.

In the next section, we will show additional physical deficiencies of the canonical and Hilbert
tensors. A new and generalized ECMST Θµν is defined and analyzed in the section 3. Finally
we show, in the section 4, how the Hilbert Tµν must be considered a special case of the new
Θµν .
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2 Further limitations of the existent ECMSTs

Apart from the problems outlined above, the two available procedures to find the ECMST fail
for a broader kind of physical systems. Consider the action proposed recently by Chubykalo &
Smirnov-Rueda in their improvement of the classical field theory of electromagnetism [9,10].

The interaction part of their new action contains NILI potentials Λµ = Λµ(R(t)), which are
«irreducible» [9,10] to the field-theoretic Aµ = Aµ(r , t) . It is easy to check that the canonical
procedure fails to find the ECMST for this system, because in the canonical approach [11]:

«the energy-momentum tensor of the whole system is the sum of the energy-
momentum tensors for the electromagnetic field and for the particles, where in
the latter the particles are assumed to not interact with one another.»

As a consequence of the assumption of non-interacting particles, the canonical ECMST density
τµν = τµνm +τµνf for their action contains a matter and a field term, but is lacking an interaction
component density τµνint that depends of the NILI potentials Λµ. The canonical ECMST for
this system is not conserved; moreover, the canonical ECMST is in disagreement with the
equations of motion, because the generalized forces are function of the NILI potentials [9,10].

The ordinary Hilbert procedure fails to find the ECMST for this system for essentially the same
reason quoted above. In the ordinary Hilbert procedure, the variation of the metric δgµν is not
considered in the interaction part of the whole action with ordinary field-theoretic potentials
Aµ. The trick consists on absorbing the metric into the covariant potentials Aν = gµνA

µ

and then taking the Aν as constants [12]. This is equivalent to the canonical assumption
of non-interacting particles. The Hilbert ECMST density tµν = tµνm + tµνf for their action is
also lacking an interaction component density tµνint that depends of the NILI potentials [9,10].
The Hilbert ECMST for this system also disagrees with the conservation laws and with the
equations of motion.

It is evident that we need a new definition of the ECMST working for this broader kind of
physical systems. This definition is given in the following section.

3 Definition of a new and generalized ECMST

We start with the Hamiltonian formulation of mechanics for a system of N particles. Using
the Hamilton and Jacobi equation in classical mechanics [13] or the Schrödinger equation in
quantum mechanics [14], we can derive the action

S =

∫ (∑
k

p[k]v[k] − H

)
dt, (4)

which gives the classical or quantum paths generated by the Hamilton equations or by the
Schrödinger equation, respectively.
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As Weinberg emphasizes, the integrand on the quantum action is not the Lagrangian, as
many believe, because the momenta p[k] in (4) «are independent variables» [14]. His remark
is also valid when (4) is the classical action. Effectively, the velocities in (4) are dependent
variables, v[k] = v[k](p[k], q[k]) = ∂H/∂p[k], for a given classical Hamiltonian H(p[k], q[k]).

The integrand on the action (4) can be rewritten using

H −
∑
k

p[k]v[k] = ηµν
∑
k

pµ[k]v
ν
[k] = ηµν

∑
k

vµ
[k]p

ν
[k] = ηµν

1

2

∑
k

(
pµ[k]v

ν
[k] + vµ

[k]p
ν
[k]

)
(5)

and this suggests the following general definition of the ECMST

Θµν ≡ 1

2

∑
k

(
pµ[k]v

ν
[k] + vµ

[k]p
ν
[k]

)
. (6)

This tensor is symmetric by definition. It is conserved because both pα and vβ are conserved
quantities. The physical meaning of this tensor follows from the action (4): this new Θµν is
the tensor whose trace ηµνΘµν gives minus the temporal rate of change of the action dS/dt.

For many dynamical systems, the functional relation v[k] = v[k](p[k], q[k]) can be inverted to
obtain p[k] = p[k](q[k], v[k]) in whose case the action (4) reduces to S =

∫
Ldt for a Lagrangian

L = L(q[k], v[k]). Consider the following Lagrangian for a system of charges interacting via
NILI potentials [9, 10]

LNILI = LNILIm + LNILIint = −
∑
k

mkc
2

√
vµ
[k]ηµνv

ν
[k]

c2
− ek

c
vµ
[k]ηµνΛν

[k]. (7)

The application of the general definition (6) to the Lagrangian (7) gives the following ECMST

Θµν =
∑
k

mkΓ[k]v
µ
[k]v

ν
[k] +

1

2

ek
c

(
vµ
[k]A

ν
[k] + Aµ

[k]v
ν
[k]

)
, (8)

with Γ[k] the time-dilation factor. When particles are at rest, the energy component is in
complete agreement with the energy of this system of charges in stationary regimes [9, 10].

Θ00 =
∑
k

mkc
2 + ekA

0
[k]. (9)

As emphasized in the previous section, the ordinary Hilbert procedure does not consider the
variation of the metric in the interaction part of the whole action. Effectively, if we rewrite
the interacting Lagrangian as LNILIint = −

∑
k(ek/c)vµ

[k]Λµ[k] and take the functional derivative
of the Lagrangian (7) with respect to the flat metric, Tµν ≡ −2(δLNILI/δηµν), whereas the
NILI potentials Λµ[k] are set constant [12], we will obtain the ordinary Hilbert ECMST

Tµν =
∑
k

mkΓ[k]v
µ
[k]v

ν
[k], (10)

whose energy component for particles at rest, T 00 =
∑

k mkc
2, is lacking the charge-charge

NILI interactions in (9). For the sake of comparison with the new ECMST (6), it is interesting
to consider what happens when we relax the assumption of non-interacting particles in the
ordinary Hilbert procedure.
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If we take the functional derivative of the whole Lagrangian (7) with respect to the flat metric
again, but now allowing the NILI potentials Λµ[k] to vary, we obtain the tensor

Zµν =
∑
k

mkΓ[k]v
µ
[k]v

ν
[k] +

ek
c

(
vµ
[k]Λ

ν
[k] + Λµ

[k]v
ν
[k]

)
. (11)

When we relax the assumption of non-interacting particles, the energy component for particles
at rest, Z 00 =

∑
k mkc

2 + 2ekΛ0
[k], is counting twice the charge-charge NILI interactions.

It is interesting that the correct ECMST (8) is somewhat in the middle between the ordinary
Hilbert tensor (10) and the tensor (11). Of course, adding a field term Lf to (7) does not
eliminate the difficulties with (10) and (11), because the field term depends of the field
potentials Aµ(r , t) and cannot compensate the energy, the comomentum, and the stress
generated by the NILI potentials Λµ(R(t)). In the next section, we will show why the ordinary
Hilbert tensor (10) is valid for the free part of the Lagrangian (7) but is not valid for LNILIint .

4 The Hilbert ECMST as a special case from Θµν

For those systems with Lagrangian action S =
∫
Ldt, the general definition (6) of the ECMST

and the relation between its trace and the action implies

L = −ηµνΘµν . (12)

Taking the functional derivative with respect to ηµν , we obtain

δL

δηµν
= −

(
1 + ηµν

δ

δηµν

)
Θµν . (13)

This relation can, in general, be inverted to obtain

Θµν = −
(

1 + ηµν
δ

δηµν

)−1
δL

δηµν
. (14)

Using the identity (1 + B)−1 = (1−B + B2 −B3 + B4 + · · · ) for systems whose Lagrangian
verifies the constraint

ηµν
δ2L

δηµν2
= −1

2

δL

δηµν
, (15)

the Lagrangian relation (14) reduces to the Hilbert relation(
1 + ηµν

δ

δηµν

)−1
δL

δηµν
=

(
1 +

1

2
+

1

4
+

1

8
+

1

16
+ · · ·

)
δL

δηµν
= 2

δL

δηµν
. (16)

Therefore, the ordinary Hilbert tensor Tµν = −2(δL/δηµν) can be considered a special case
of the general tensor Θµν .

As shown in the previous section, the new Θµν defined by (6) gives the correct ECMST for
a system with Lagrangian (7). Notice that the kinetic Lagrangian LNILIm in (7) satisfies the
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constraint (15), which implies that (16) can be applied to LNILIm . Nevertheless, the interac-
tion Lagrangian LNILIint does not satisfy (15), but ηµν(δ2LNILIint /δηµν

2) = 0. Combining both
constraints (14) reduces to

Θµν = −2
δLNILIm

δηµν
− δLNILIint

δηµν
. (17)

This result explains why the Hilbert prescription can be applied only to the kinetic part
(−2δLNILIm /δηµν) of the whole Lagrangian (7), whereas the incorrect tensor Zµν = −2δL/δηµν
counts twice the charge-charge NILI interactions. This confirms the remark made at the end
of the previous section: the correct ECMST Θµν is somewhat in the middle between the
ordinary Hilbert tensor Tµν and the tensor Zµν .

Finally, it must be emphasized that the usual expression for the Hilbert ECMST density (2) can
be obtained from (16) by taking densities on both sides of (16) and applying a geometrization
procedure [4].

Summarizing, the new definition Θµν ≡ (1/2)
∑

k(pµ[k]v
ν
[k] + vµ

[k]p
ν
[k]) provides a generalized

ECMST which is (i) symmetric, (ii) conserved, (iii) in agreement with the energy and mo-
mentum of a system of charges interacting via NILI potentials, and (iv) properly generalizes
the Belifante and Rosenfeld formula, with the Hilbert tensor Tµν being a special case of Θµν .

References and notes

[1] Sometimes named the stress-energy-momentum or energy-momentum tensor. We prefer
to name this tensor according to its elements –energy, comomentum, and stress–, correct
dimensions –momentum has not units of energy–, and in ordered form –energy is given
by the zero zero element–. It is also usual in the relativistic literature to confound the
tensor with its density.

[2] The theory of relativity; second edition 1977: Oxford University Press; Delhi. Møller,
C.

[3] Field Theory of Gravitation: Desire and Reality 1996: Gravitation 2, 69–81. Baryshev,
Yurij V.

[4] General relativity as geometrical approximation to a field theory of gravity 2012:
viXra:1203.0042. González Álvarez, Juan Ramón.

[5] On the spin angular momentum of mesons 1939: Physica 6(7–12), 887–898. Belin-
fante, F. J.

[6] On the current and the density of the electric charge, the energy, the linear momentum
and the angular momentum of arbitrary fields 1940: Physica 7(5), 449–474. Belinfante,
F. J.

[7] Sur le tenseur d’impulsion-énergie 1940: Mém. Acad. Roy. Belg. Sci., 18(6), 1–30.
Rosenfeld, L.

[8] Stress-Energy-Momentum Tensors and the Belinfante-Rosenfeld Formula 1992: Con-
temp. Mathem. 132, 367–392. Gotay, Mark J.; Marsden, Jerrold E.



REFERENCES AND NOTES 7

[9] Action-at-a-distance as a full-value solution of Maxwell equations: The basis and ap-
plication of the separated-potentials method 1996: Phys. Rev. E 53(5), 5373–5381.
Chubykalo, Andrew E.; Smirnov-Rueda, Roman.

Erratum: Action-at-a-distance as a full-value solution of Maxwell equations: The basis
and application of the separated-potentials method [Phys. Rev. E 53, 5373 (1996)] 1997:
Phys. Rev. E 55(3), 3793–3793. Chubykalo, Andrew E.; Smirnov-Rueda, Roman.

[10] Reply to "Comment on ’Action-at-a-distance as a full-value solution of Maxwell equa-
tions: The basis and application of the separated-potentials method’" 1998: Phys. Rev.
E 57(3), 3683–3686. Chubykalo, Andrew E.; Smirnov-Rueda, Roman.

[11] The Classical Theory of Fields; Fourth Revised English Edition 2000: Butterworth-
Heinemann; Amsterdam. Landau L. D.; Lifshitz E.M.

[12] Gravitation and Cosmology, Principles and applications of the general theory of relativity
2005: John Wiley & Sons (Asia) Pte. Ltd.; Singapore. Weinberg, Steven.

[13] Classical mechanics; Third edition 2001: Addison Wesley; San Francisco. Goldstein,
Herbert; Poole, Charles; Safko, John.

[14] The quantum theory of fields; Volume I 1996: Cambridge University Press; Cambridge.
Weinberg, Steven.


