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� ABSTRACT: We give an interpretation of the Riemann Xi-function ξ(s) as
the quotient of two functional determinants of an Hermitian Hamiltonian H =
H† . To get the potential of this Hamiltonian we use the WKB method to

approximate and evaluate the spectral Theta function Θ(t) =
∑
n

exp(−tγ2
n) over

the Riemann zeros on the critical strip 0 < Re(s) < 1 . Using the WKB method
we manage to get the potential inside the Hamiltonian H , also we evaluate
the functional determinant det(H + z2) by means of Zeta regularization, we
discuss the similarity of our method to the method applied to get the Zeros
of the Selberg Zeta function. In this paper and for simplicity we use units so
2m = 1 = ~
� Keywords: = Riemann Hypothesis, Functional determinant, WKB semiclas-
sical Approximation , Trace formula ,Bolte's law, Quantum chaos.

1. Riemann Zeta function and Selberg Zeta function

Let us consider a Riemann surface with constant negative curvature, this sur-
face can be constructed as the upper complex plane divided by a discrete sub-
group of the modular group PSL(2, R) , Selberg [14] studied the problem of

the 2-dimensional Laplacian with the metric ds2 = dx2+dy2

y2 ,discrete boundary

conditions are imposed for the discrete group PSL(2, R)

∆Ψn(x, y) = y2

(
∂2

∂x2
+

∂2

∂y2

)
Ψn(x, y) = EnΨn(x, y) En =

1

4
+ k2

n (1)

These momenta kn are the non-trivial zeros of the Selberg Zeta function, which
can be de�ned by an Euler product over the Geodesic of the surface in an
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analogy with the Riemann Zeta function

ζ(s) =

∞∑
n=1

1

ns
=
∏
n

1

(1− p−sn )
Z(s) =

∏
P

∞∏
k=0

(
1−N(P )−(s+k)

)
(2)

In both cases the Riemann Zeta function and the Selberg Zeta function can be
expressed by an in�nite product

Selberg also studied a Trace formula which relates the Zeros (momenta of the
Laplacian ∆ ) on the critical line Z

(
1
2 + ikn

)
= 0 and the length of the Geodesic

of the Surface in the form∑
n

h(kn) =
µ(D)

4π

∫ ∞
0

dkkh(k) tanh (πk)+
∑

P∈p.p.o

lnN(P )

N(P )1/2 −N(P )1/2
g(lnN(P )

(3)
Here, p.p.o means that we are taking the sum over the length of the Geodesic,
h(k) is a test function and g(k) is the Fourier cosine transform of h(k) g(k) =
1

2π

∫∞
0
dxh(x) cos(kx) µ(D) is the area of the fundamental domain describing

the Riemann surface . In case we had a surface with the length of the Geodesic
lnN(P ) = ln p for `p' on the second side of the equation a prime number,then
the Selberg Trace is very similar to the Riemann-Weil sum formula [12]

∑
γ

h(γ) = 2h

(
i

2

)
−g(0) lnπ−2

∞∑
n=1

Λ(n)√
n
g(lnn)+

1

2π

∫ ∞
−∞

dsh(s)
Γ′

Γ

(
1

4
+
is

2

)
(4)

This formula (4) related a sum over the imaginary part of the Riemann zeros to

another sum over the primes, here Λ(n) =

{
ln p n = pk

0 otherwise
with `k' a positive

integer is the Mangoldt function, in case lnN(P ) = ln p both zeta function of

Selberg and Riemann are related by 1
Z(s) =

∞∏
n=0

ζ (n+ s) and their logarithmic

derivative is quite similar if we set the function Λgeodesic(P ) = lnN(P )
1−N(P )−1

ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n)n−s
Z ′

Z
(s) =

∑
P∈p.p.o

Λgeodesic(P )N(P )−s (5)

In both cases the Riemann and Selberg zeta functions obey a similar functional
equation which relates the value at s and 1-s

ζ(1− s) = X(s)ζ(s) Z(1− s) = exp

(
−µ(D)

4π

∫ s−1/2

0

vtan(πv)dv + c

)
Z(s)

(6)
The constant of integration `c' is determined by setting s = 1/2 , and X(s) =
2 (2π)

−s
Γ(s) cos

(
πs
2

)
for the case of the Riemann zeta function.
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With the aid of the Selberg Trace formula (3) , we can evaluate the Eigenvalue
staircase for the Laplacian ∆ = y2

(
∂2
x + ∂2

y

)
N

(
E =

1

4
+ p2

)
=
∑
En≤E

1 =
∑
n

µ(D)

4π

∫ p

0

dkkh(k) tanh (πk)+
1

π
argZ

(
1

2
+ ip

)
(7)

Here p =
√
E − 1

4 , we can immediatly see that the smooth part of (7) satisfy

Weyl's law in dimension 2 Nsmooth(E) ≈ µ(D)
4π E , the oscillatory part of (7)

satisfy Bolte's semiclassical law [4] (page 34, theorem 2.10 ) 1
π argZ

(
λ
2 + i

√
E
)

with λ = 1 , the branch of the logarithm inside (7) is chosen, so argZ
(

1
2

)
= 0 in

this case the Selberg Zeta function is the dynamical zeta function of a Quantum
system and the Energies are related to the zeros of Z(s) .

2. A functional determinant for the Riemann Xi function
ξ(s)

From the analogies between the Riemann Zeta function and the Selberg Zeta
function, we could ask ourselves if there is a Hamiltonian operator (the simplest
second order di�erential operator which has a classical and quantum meaning
and it is well studied ) in the form

HΨn(x) = −d
2Ψn(x)

dx2
+ V (x)Ψn(x) = EnΨn(x) Ψn(0) = 0 = Ψn(∞) En = γ2

n

V (x) =

{
f(x) x > 0
∞ x ≤ 0

(8)

The function f(x) de�ned inside the equation (8) for the potential V (x) and
the Hamiltonian H = p2 + V (x) must be evaluated.
The idea here is to choose f(x) so the Energies of the Hamiltonian are the square
of the imaginary part of the Riemann zeros En = γ2

n.,
In this paper we will prove that this function can be obtained within the WKB

approach as f−1(x) = 2
√
π d

1
2

dx
1
2
N(x) ,here N(x) is the Eigenvalue staircase of

the Hamiltonian de�ned in (8) .
For the case of this Hamiltonian, which involves the imaginary part of the zeros
the exact eigenvalue staircase N(x) can be evaluated [9]

N(E) =
∑
n

H (E − En) =
1

π
arg ξ

(
1

2
+ i
√
E

)
= 1+

1

π
arg ζ

(
1

2
+ i
√
E

)
+
ϑ(
√
E)

π

(9)

With H(x) =

{
1 x>0
0 x<0

, ϑ(T ) = arg Γ
(

1
4 + iT2

)
− T

2 lnπ ≈ T
2 ln

(
T

2πe

)
− π

8 +

1
48T + ...
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Also we will prove how the Riemann Xi function ξ(s) = s(s−1)
2 π−

s
2 Γ
(
s
2

)
ζ(s) =

ξ(1 − s) is proportional to the functional determinant det (H − s(1− s)) , and
we will also show that the density of states can be evaluated from the argument

of the Xi-function E = p2 1
2πp

d
dp=mlogdet (H + iε− p) = ρ(E) =

∑
γn

δ
(
p2 − γ2

n

)
As a simple example of how Quantum Mechanics can help to solve problems of
�nding the roots of functions , let be a particle moving inside an in�nite potential
well , the energy is given by E = p2 and the one dimensional Schröedinger
equation [7] in units ~ = 2m = 1 (~ is the reduced Planck's constant with value
~ = 1.05.10−34 J.T−1 )

H0un(x) = −d
2un(x)

dx2
+ V (x)un(x) = Enun(x) un(0) = 0 = un(π) En = n2

(10)
un(x) = A sin (πx) ,

n this case the Euler's product formula for the sine function is the quotient
between 2 functional determinants

sin (π
√
x)

π
√
x

=

∞∏
n=1

(
1− x

En

)
=

det (H0 − x)

det (H0)

We can also compute the density of states to get the Poisson sum formula

ρ(E) =

∞∑
n=1

δ (E − En) =
1

2p

(∑
n

δ (p− n) +
∑
n

δ (p− n)

)
=

1

2p

∞∑
n=−∞

e2iπnp

(12)
o Zeta regularized determinant for ξ(s) :

Given an Operator P with real Eigenvalues {En} , we can de�ne its Zeta regu-
larized determinant [6] in the form

det
(
P + k2

)
= exp

(
− d

ds
ζP (s, k2) |s=0

)
(13)

Here ζP (s, k2) = Tr
{

(P + k2)−s
}

=
∑
n

(
En + k2

)−s
is the Spectral Zeta func-

tion of the operator taken over all the Eigenvalues, the relationship between

this spectral zeta function and the Theta function Θ(t) =
∑
n

exp(−tEn) =∫∞
0
dN(x)e−xt ,t>0 always , is given by the Mellin transform

∞∑
n=0

1
(En+k2)s =

1
Γ(s)

∫∞
0

dt
t e
−tk2Θ(t)ts−1 . If P is a Hamiltonian we can obtain the Theta func-

tion Θ(t) =
∑
n

exp(−tEn) (approximately) by an integral over the Phase space
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[7]

Θ(t) =

∞∑
n=0

exp (−tEn) ≈ 1

2π

∫ ∞
−∞

dp

∫ ∞
0

dxe−tp
2−tf(x) =

1

2
√
πt

∫ ∞
0

dxe−tf(x) = ΘWKB(t)

(14)
If we compare the semiclassical Theta function (14) and the spectral Theta

function Θ(t) =
∑
n

exp(−tEn) then we �nd

Θ(t) =

∞∑
n=0

exp (−tEn) = −s
∫ ∞

0

dtN(t)e−st ≈ 1

2π

∫ ∞
−∞

dx

∫ ∞
0

dp exp(−tp2−tf(x))

(15)

=
1

2π

∫ ∞
−∞

dq

∫ ∞
−∞

dp exp(−tp2−tf(x)) =
1

2
√
πt

∫ ∞
0

dxe−tf(x) =
1

2
√
πt

∫ ∞
0

dre−tr
dV −1(r)

dr
(16)

From expressions (14) and (15) and setting N(0) = 0 (after changes of variable)

√
s

∫ ∞
0

dxN(x)e−sx =
1

2
√
π

∫ ∞
0

dxf−1(x)e−sx → f−1(x) = 2
√
π
d1/2

dx1/2
N(x)

(17)
To prove (16) and (17) we have used the properties of the integral representation
for the Laplace inverse transform

∀α ∈ R Dαekt = kαekt Dαf(t) =
1

2πi

∫ c+i∞

c−i∞
dsF (s)estsα (18)

nd the fact that if two Laplace transforms are equal then L {f(t)} = L {g(t)} im-
plies that f(t) = g(t) , for the case of the Riemann ZerosN(E) = 1

π arg ξ
(

1
2 + i

√
E
)

(Bolte's semiclassical law in one dimension) so f−1(x) = 2√
π
d

1
2

dx
1
2

arg ξ
(

1
2 + i

√
x
)

, since we want our potential inside (8) to be positive whenever we take the
inverse we must choose the POSITIVE branch of the inverse in order to get
f(x) ≥ 0 on the interval [0,∞) , the half derivative and the half integral for any
well behaved function are given in [13]

d−
1
2 f(x)

dx−
1
2

=
1

Γ(1/2)

∫ x

0

dt
f(t)√
x− t

d
1
2 f(x)

dx
1
2

=
1

Γ(1/2)

d

dx

∫ x

0

dtf(t)√
x− t

(19)

We have written implicitly the potential inside (8) , if the function f(x) is de�ned

by the functional equation f−1(x) = 2√
π
d

1
2

dx
1
2

arg ξ
(

1
2 + i

√
x
)

= 2
∑
n

H(x−γ2
n)√

x−γ2
n

,

then we may evaluate the Spectral Zeta function of the Quantum system given
in (8), then

det
(
H + z2

)
det (H)

= exp

(
− d

ds
ζP (s, z2) |s=0 +

d

ds
ζP (s, 0) |s=0

)
=
ξ(z + 1/2)

ξ(1/2)
(20)
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For the potential de�ned by f−1(x) = 2√
π
d

1
2

dx
1
2

arg ξ
(

1
2 + i

√
x
)
, we can evaluate

the Theta kernel using (14) ,(15) and (16) Θ(t) =
∑
n
e−tEn = 1

2
√
πt

∫∞
0
dxdf

−1(x)
dx e−tx

, for this potential the spectral theta function and its derivative are

ζH(s, z2) =

∞∑
n=0

1

(γ2
n + z2)

s − d

ds
ζH(0, z2) =

∞∑
n=0

ln
(
γ2
n + z2

)
ζ

(
1

2
+ iγn

)
= 0

(21)
Taking exponentials we reach to the in�nite product for the Riemann Xi-function
as an spectral determinant (functional determinant over the Eigenvalues of H)

det
(
H + z2

)
det(H)

=

∞∏
n=0

(γ2
n + z2)

∞∏
n=0

γ2
n

=

∞∏
n=0

(
1 +

z2

En

)
=
ξ (1/2 + z)

ξ (1/2)
(22)

If we choose the positive branch f(x) ≥ 0 of the inverse f−1(x) = 2√
π
d

1
2

dx
1
2

arg ξ
(

1
2 + i

√
x
)

then the potential will be always positive so the Energies of the Hamiltonian
inside (8) will be all positive En = γ2

n ∈ R+ , then all the non-trivial zeros of
the Riemann Zeta function will be on the critical line Re(s) = 1

2 , with a simple
change of variable z = s− 1

2 we obtain

ξ(s)

ξ(0)
=

det
(
H − s(1− s) + 1

4

)
det
(
H + 1

4

) =
ξ(1− s)
ξ(0)

=
∏
ρ

(
1− s

ρ

)
(23)

Equation (22) is the Hadamard product for the Riemann Xi-function in terms
of the quotient of 2 functional determinants, since the expected value of the
Hamiltonian is positive 〈ψn|H|ψn〉 ≥ 0 and Hermitian ,with f(x) ≥ 0 then all
the Energies are positive En = s(1− s) ∈ R+ Riemann Hypothesis should hold.
If we set s = 1

2 +i
√
E then is it clear that the roots of the functional determinant

det(E −H) are the roots of the function ξ
(

1
2 + i

√
E
)

In the limit x → ∞ ,the smooth part of the Eigenvalue staircase is given by

N(E) ≈
√
E

2π log
(√

E
2πe

)
, e =

∞∑
n=0

1
n! , if we use the expression for the logarithm

log(x) ≈ xε−1
ε as ε → 0 and apply the half derivative expression, then the

following holds ε→ 0

fsmooth(x) ≈ 4π2e2

(
ε
√
πx+B

A(ε)

) 2
ε

f−1
smooth(x) ≈

(
4π2e2

)−ε/2
A(ε)xε/2 −B
√
πε

(24)
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A(ε) =
Γ( 3+ε

2 )
Γ(1+ ε

2 )
and B = Γ

(
3
2

)
=
√
π

2 , the second expression inside (24) is the

asymptotic of f(x) as x→∞ , for this potential , the energies are

W (x) =

∞∑
n=1

(−n)n−1

n!
xn Esmoothn = f(n) = N−1

smooth(E) ≈ 4π2n2

W 2 (ne−1)

(25)

We can also test our formula f−1(x) = 2
√
π d

1
2 n(x)

dx
1
2

(and compare it with (24) )

with the potentials xn n = 1, 2,∞ ( an in�nite potential well is assumed at the
point x = 0 ) these are the cases of the linear potential (bouncer) , Harmonic
oscillator and in�nite potential well

f−1(x) =
2
√
x

ω
f(x) =

(ωx)2

4
N(E) =

E

2ω
(26)

f−1(x) = x
1
n f(x) = xn n→∞ N(E) =

1√
4π
.
Γ
(

1
m + 1

)
Γ
(

1
m + 3

2

)E 1
m+ 1

2

(27)

f−1(x) =
x

k
f(x) = kx N(E) =

2E3/2

3πk
(28)

From expression (23) we can also compute the density of states of our Hamilto-

nian with p =
√
E and δ

(
E − γ2

)
= δ(p−γ)+δ(p+γ)

2p we will also use the Shokhot-

sky's formula for the delta function − 1
π=m

(
1

x+iε

)
= δ(x) ε→ 0

− 1
2π

d
dE arg ξ

(
1
2 + iε+ i

√
E
)

=
∑
γ
δ
(
E − γ2

)
=
∑
γ
δ
(
p2 − γ2

)
=

1
π
ζ
ζ

(
1
2 + ip

)
1
2p + 1

π
ζ′

ζ

(
1
2 − ip

)
1
2p −

lnπ
2πp + Γ′

Γ

(
1
4 + ip2

)
1

4πp+

Γ′

Γ

(
1
4 − i

p
2

)
1

4πp +
δ(p− i

2 )+πδ(p+ i
2 )

2p = ρ(E) = 1
2πp

d
dpargdet (H + iε− p)

(29)

Here 1
−π limε→0=m

(
2

2x±i+2iε

)
= δ

(
x± i

2

)
, this factor comes from the loga-

rithmic derivative of s(s − 1) along the critical line s = 1
2 + ip , equation (29)

is a distributional version of the Riemann-Weil trace formula , taking formally
the logarithm of the Euler product for the Riemann Zeta function on the crit-

ical line yields to
∞∑
n=1

Λ(n)√
n
e−ip lnn =reg − ζ

′

ζ

(
1
2 + ip

)
, using two test functions

h(x) and g(x) g(x) = 1
π

∫∞
0
dr cos(rx)h(r) we recover the oscillatory part of the

Riemann-Weil trace formula −2
∞∑
n=1

Λ(n)√
n
g(lnn) .

Unlike the model of Wu and Sprung, we have considered also the oscillatory

part of the Riemann Eigenvalue Staircase 1
π arg ζ

(
1
2 + i

√
E
)
, which satisfy

Bolte's semiclassical law , Wu and Sprung [17] considered only the smooth part
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of teh Eigenvalue staircase in the limit T >> 1 T
2π ln

(
T

2πe

)
≈ N(T ) in order

to get a Hamiltonian whose Energies are the positive imaginary part of the
Riemann Zeros, their starting point is the Harmonic oscillator [15] , but unlike
the normal quantum mechanical oscillator whose functional determinant gives

the Gamma function
√

2π
Γ(s) =

∞∏
n=1

(
1 + s

n

)
the product taken ONLY over the

positive imaginary part of the zeros (even if it converges)
∞∏
n=0

(
1 + s

γn

)
has no

meaning, also the Wu-Sprung model doesn't obey Weyl's law in one dimension
mainly Nsmooth(E) = O

(
Ed/2

)
, in our case , the Hamiltonian (8) with the

Smooth part of the Eigenvalue staircase N(E) ≈
√
E

2π log
(√

E
2πe

)
, satis�es a

Weyl's law with d = 1 + ε
2 and the spectral determinant (quotient) ∆(E)

∆(0) =
∞∏
n=0

(
1− E

En

)
En = γ2

n is proportional to the Riemann xi function on the critical

line ξ
(

1
2 + i

√
E
)

By analogy with the zeros of the Selberg Zeta function, is better to consider the
case with the Energies En = γ2

n , in this case the Trace of the Resolvent of the

Hamiltonian (E + iε−H)
−1

is the Riemann-Weil trace for the Riemann zeros.

o Analytic expressions for the potential from Riemann-Weil trace formula:

From the expression for the fractional derivative of powers d
kxλ

dxk
= Γ(λ+1)

Γ(λ−k+1)x
λ−k

, we can obtain for the inverse function

f−1(x) =
2√
π

d
1
2

dx
1
2

arg ξ

(
1

2
+ i
√
x

)
= 2

∑
γ>0

H(x− γ2)√
x− γ2

(30)

Using the Riemann-Weil formula we can rewrite (28) as

f−1(x) =
4√

4x+ 1
+

1

2π

∫ √x
−
√
x

dr√
x− r2

(
Γ′

Γ

(
1

4
+
ir

2

)
− lnπ

)
−
∞∑
n=1

Λ(n)√
n
J0

(√
x lnn

)
(31

Here g(u = lnn, x) = 1
π

∫√x
0

cos(ut)√
x−t2 dt =

J0(u
√
x)

2 , here the integral can be

expressed in terms of the zeroeth order Bessel function.

o Numerical evaluation of the functional determinant :
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We need to evaluate the half-derivative inside the inverse of the potential f−1(x) =
2√
π
d

1
2

dx
1
2

arg ξ
(

1
2 + i

√
x
)
, to do so we can use the Grunwald-Letnikov formula

[13] with an step ε = 0.01 and q = 1
2

∆qg(x)

εq
≈ d

1
2 g(x)

dx
1
2

≈ 1

εq

∞∑
n=0

(−1)n
Γ(q + 1)

Γ(n+ 1)Γ(q − n+ 1)
g (x+ (q − n)ε) (32)

In order to evaluate 1
π arg ζ

(
1
2 + i

√
x
)
for big `x' , we have used the Riemann-

Siegel formula [10] k =
√
x

Z(k) = ζ

(
1

2
+ ik

)
eiϑ(k) = 2

U(k)∑
n=1

cos (ϑ(k)− k lnn)√
n

+O

(
1

k1/4

)
k →∞ (33)

The functions inside (A.3) are u(k) =

[√
k
2π

]
, [x] is the �oor function and

ϑ(T ) = arg Γ
(

1
4 + iT2

)
− T

2 lnπ ≈ T
2 ln

(
T

2πe

)
− π

8 + 1
48T + ... (34)

For the case of the functional determinant of our Hamiltonian operator with the

potential f−1(x) = 2√
π
d

1
2

dx
1
2

arg ξ
(

1
2 + i

√
x
)
de�ned as

L→∞ (35)(
− d2

dx2
+

1

4
+ f(x)− λ

)
y(x, λ) = 0 y(0, λ) = 0 = y(L, λ)

λ = s(1− s),
e can evaluate the functional determinant of the operator (35) by the Gelfand-
Yaglom method [18] , in this case we need to solve the initial value problem(

− d2

dx2
+

1

4
+ f(x)− λ

)
y(x, λ) = 0 y(0, λ) = 0

dy(0, λ)

dx
= 1 (36)

Unfortunately exact solutions can not be found , in the WKB approximation
(36) has the solution

Π(x) =

√
f(x) +

1

4
− λ (37)

y(x, λ) ≈ 1

Π(x)1/2

(
C+ exp

∫ x

0

Π(t)dt+ C− exp−
∫ x

0

Π(t)dt

)
The 2 constants C± are chosen so (37) solves the initial value problem (36)

The Gelfand-Yaglom theorem, [18] tells us that the functional determinant is
related to the solution of the initial value problem (36) and the boundary value
problem (35) in the form

λ = s(1− s) (38)
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lim
L→∞

y(L, λ)

y(L, 0)
=

det
(
H + 1

4 − s(1− s)
)

det
(
H + 1

4

) =
ξ(s)

ξ(0)
=
∏
ρ

(
1− s

ρ

)
The main advantage of the Gelfand-Yaglom method , is that we do not need
to evaluate any single eigenvalue in order to obtain the functiona determinant
det
(
H + 1

4 − λ
)
, unfortunately this method is only valid for ordinary di�eren-

tial equations

TABLE1 : comparison between the Riemann Zeros (square) from the tables of
Odlyzko and the Numerical values of the energies for our Hamiltonian operator

(8) with f−1(x) = 2√
π
d

1
2

dx
1
2

arg ξ
(

1
2 + i

√
x
)
, to obtain numerically the potential

we have used formula (34) to evaluate the fractional derivative and the Riemann-
Siegel formula (32) to evaluate S(T ) = 1

π arg ζ
(

1
2 + iT

)
n Zeros (square) Energies
0 199.7897 198.7886
1 441.9244 441.9240
2 625.5401 625.5406
3 925.6684 925.6683
4 1084.7142 1084.7139
5 1412.7149 1412.7146
6 1674.3400 1674.3398
7 1877.2289 1877.2287
8 2304.4896 2304.4893
9 6363.8591 6363.8589

o Bessel function J0 (a
√
x) and the density of states for our Hamiltonian and

the Riemann zeros ρ(x) =
∞∑
n=0

δ
(
x− γ2

n

)
:

Let us compare the Riemann-Weyl explicit formula and the de�nition for the
inverse of our potencial function f−1(x)∑

γ
δ
(
x− γ2

)
= 1

π
ζ
ζ

(
1
2 + i

√
x
)

1
2
√
x

+ 1
π
ζ′

ζ

(
1
2 − i

√
x
)

1
2
√
x
− lnπ

2πp

+Γ′

Γ

(
1
4 + i

√
x

2

)
1

4π
√
x

+ Γ′

Γ

(
1
4 − i

√
x

2

)
1

4π
√
x

+
δ(
√
x− i

2 )+δ(
√
x+ i

2 )
2
√
x

= ρ(x)

(39)

f−1(x) =
4√

4x+ 1
+

1

2π

∫ √x
−
√
x

dr√
x− r2

(
Γ′

Γ

(
1

4
+
ir

2

)
− lnπ

)
−
∞∑
n=1

Λ(n)√
n
J0

(√
x lnn

)
(40)

From the equation for our potential f−1(x) = 2
√
π d

1
2

dx
1
2
N(x) taking again the

10



half-derivative operator we get d
1
2

dx
1
2
f−1(x) = 2

√
π dN(x)

dx = ρ(x) , this means that

perhaps the equations (39) and (40) should be related by a fractional operator
d±

1
2

dx±
1
2
, for the smooth part this is almost trivial to �nd from the de�nition of

the half-integral 1√
π

∫ x
0

dt√
x−tf(t) and the fact that

(
d±

1
2

dx±
1
2

)2

g(x) = dg(x)
dx , for

teh oscillating part of the potential we must recall the identity

cos (x)

x
=

∞∑
n=0

(−1)n

(2n)!
x2n−1 J0 (x) =

∞∑
n=0

(−1)n

(n!)
2

(x
2

)2n √
π
d

1
2

dx
1
2

J0

(
a
√
x
)

=
cos (
√
ax)√
x

(41)
quation (41) is a bit harder to prove, we can prove (41) by using the Taylor
expansion of the 2 functions and then applying the property of the half derivative

operator for power series d
1
2 xn

dx
1
2

= Γ(n+1)

Γ(n+ 1
2 )
xn−

1
2 , so we choose the potential

from the WKB formalism and we also have proved that the density of states of
our Hamiltonian de�ned in (8) is just the Riemann-Weil explicit formula in a

distributional framework so f−1(x)
2
√
π

= d−
1
2

dx−
1
2
ρ(x)

APPENDIX A: An implicit equation for the potential f(x)
from the Bohr-Sommerfeld quantization conditions

The expression f−1(x) = 2√
π
d

1
2

dx
1
2

arg ξ
(

1
2 + i

√
x
)
can also be obtained from the

Bohr-Sommerfeld quantization conditions [7]

E = f(a) 2

∫ a

0

dx
√
E − f(x) = p(x)

∮
C

pdq = 2π

(
n+

1

2

)
(A.1)

' is the classical turning point n = N(E) is the Eigenvalue staircase, the �rst
integral inside (A.1) is a line integral taken over the closed orbit of the classical
system, equation (A.1) can be understood as an integral equation for the inverse
of the potential in the form

2π

(
1

2
+ n(E)

)
= 2

∫ a=a(E)

0

√
E − V (x)dx = 2

∫ E

0

√
E − xdf

−1

dx
=
√
πD
− 1

2
x f(x)

(A.2)
If we take the half derivative on both sides of (A.2) we would get f−1(x) =

2
√
π d

1
2

dx
1
2

(
1
2 + 1

π arg ξ
(

1
2 + i

√
x
))

in this case this result is completely equivalent

to the one we got by Zeta regularization and by the WKB approximation of the
Theta function 1

2
√
πt

∫∞
0
dxe−tf(x) = ΘWKB(t) .

From equation f−1(x) = 2
√
π d

1
2

dx
1
2

(
1
2 + 1

π arg ξ
(

1
2 + i

√
x
))

the density of states

could be evaluated approximately as 1
2
√
π
d

1
2 f−1(x)

dx
1
2

= ρ(x) =
∑
n
δ
(
x− γ2

n

)
11
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