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Abstract. 
Dr. Cai Wen defined in his 1983 paper:  
- the distance formula between a point x0 and a one-dimensional (1D) interval <a, b>; 
- and the dependence function which gives the degree of dependence of a point with respect to 
a pair of included 1D-intervals. 
This paper inspired us to generalize the Extension Set to two-dimensions, i.e. in plane of real 
numbers R2 where one has a rectangle (instead of a segment of line), determined by two 
arbitrary points A(a1, a2) and B(b1, b2). And similarly in R3, where one has a prism determined by 
two arbitrary points A(a1, a2, a3) and B(b1, b2, b3). We geometrically define the linear and non-
linear distance between a point and the 2D- and 3D-extension set and the dependent function 
for a nest of two included 2D- and 3D-extension sets. Linearly and non-linearly attraction point 
principles towards the optimal point are presented as well. 
The same procedure can be then used considering, instead of a rectangle, any bounded 2D-
surface and similarly any bounded 3D-solid, and any bounded n-D-body in Rn. 
These generalizations are very important since the Extension Set is generalized from one-
dimension to 2, 3 and even n-dimensions, therefore more classes of applications will result in 
consequence. 

 

Introduction. 

Extension Theory (or Extenics) was developed by Professor Cai Wen in 1983 by publishing a paper called 
“Extension Set and Non-Compatible Problems”. Its goal is to solve contradictory problems and also 
nonconventional, nontraditional ideas in many fields. 
Extenics is at the confluence of three disciplines: philosophy, mathematics, and engineering. 
A contradictory problem is converted by a transformation function into a non-contradictory one. 
The functions of transformation are: extension, decomposition, combination, etc. 
Extenics has many practical applications in Management, Decision-Making, Strategic Planning, 
Methodology, Data Mining, Artificial Intelligence, Information Systems, Control Theory, etc. 
Extenics is based on matter-element, affair-element, and relation-element. 
 
Extension Distance in 1D-space. 



Let’s use the notation <a, b> for any kind of closed, open, or half-closed interval { [a, b], (a, b), (a, b],      
[a, b) }. 

Prof. Cai Wen has defined the extension distance between a point x0 and a real interval X = <a, b>, by 

0( , ) | |
2 2

o
a b b ax X xρ + −= − −  

where in general ρ : (R, R2) (- ∞ , + ∞ ). 

Algebraically studying this extension distance, we find that actually the range of it is: 
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or its minimum range value 
2

b a−− depends on the interval X extremities a and b,  

and it occurs when the point x0 coincides with the midpoint of the interval X, i.e. x0 = 
2

a b+
. 

The closer is the interior point x0 to the midpoint 
2

a b+
of the interval <a, b>, the negatively larger is 

0( , )x Xρ . 
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                                                                        Fig. 1 

In Fig. 1, for interior point x0 between a and 
2

a b+
, the extension distance 0( , )x Xρ = a - x0 =the 

negative length of the brown line segment [left side]. Whereas for interior point x0 between 
2

a b+
 

and b, the extension distance 0( , )x Xρ = x0 - b =the negative length of the blue line segment [right 
side].   

Similarly, the further is exterior point x0 with respect to the closest extremity of the interval <a, b> to it 
(i.e. to either a or b), the positively larger is 0( , )x Xρ . 
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                                                                        Fig. 2 



In Fig. 2, for exterior point x0 < a, the extension distance 0( , )x Xρ = a - x0 =the positive length of 
the brown line segment [left side]. Whereas for exterior point x0 > b, the extension distance

0( , )x Xρ = x0 - b =the positive length of the blue line segment [right side].   

Principle of the Extension 1D-Distance. 

Geometrically studying this extension distance, we find the following principle that Prof. Cai has used in 
1983 defining it: 

0( , )x Xρ = the geometric distance between the point x0 and the closest extremity point of the 
interval <a, b> to it (going in the direction that connects x0 with the optimal point), distance 
taken as negative if x0 ∈<a, b>, and as positive if x0 ⊂ <a, b>. 
 

This principle is very important in order to generalize the extension distance from 1D to 2D (two-
dimensional real space), 3D (three-dimensional real space), and n-D (n-dimensional real space). 

The extremity points of interval <a, b> are the point a and b, which are also the boundary (frontier) of 
the interval <a, b>. 

 
Dependent Function in 1D-Space. 

Prof. Cai Wen defined in 1983 in 1D the Dependent Function K(y). 

If one considers two intervals X0 and X, that have no common end point, and X0 ⊂  X, then: 
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Since K(y) was constructed in 1D in terms of the extension distance (.,.)ρ , we simply generalize it to 
higher dimensions by replacing (.,.)ρ  with the generalized (.,.)ρ in a higher dimension. 

Extension Distance in 2D-Space. 

Instead of considering a segment of line AB representing the interval <a, b> in 1R, we consider a 
rectangle AMBN representing all points of its surface in 2D. Similarly as for 1D-space, the rectangle in 
2D-space may be closed (i.e. all points lying on its frontier belong to it), open (i.e. no point lying on its 
frontier belong to it), or partially closed (i.e. some points lying on its frontier belong to it, while other 
points lying on its frontier do not belong to it). 

Let’s consider two arbitrary points A(a1, a2) and B(b1, b2). Through the points A and B one draws parallels 
to the axes of the Cartesian system XY and one thus one forms a rectangle AMBN whose one of the 
diagonals is just AB.  
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  Fig. 3. P is an interior point to the rectangle AMBN and the optimal point O is in the center of 
symmetry of the rectangle 

 

Let’s note by O the midpoint of the diagonal AB, but O is also the center of symmetry (intersection of 
the diagonals) of the rectangle AMBN. 
Then one computes the distance between a point P(x0, y0) and the rectangle AMBN. 

One can do that following the same principle as Dr. Cai Wen did: 
- compute the distance in 2D (two dimensions) between the point P and the center O of the rectangle 
(intersection of rectangle's diagonals); 
- next compute the distance between the point P and the closest point (let's note it by P' ) to it on the 
frontier (the rectangle’s four edges) of the rectangle AMBN; 

this step can be done in the following way: 

considering P’ as the intersection point between the line PO and the frontier of the rectangle, and taken 
among the intersection points that point P’ which is the closest to P;  this case is entirely consistent with 
Dr. Cai’s approach in the sense that when reducing from a 2D-space problem to two 1D-space problems, 
one exactly gets his result. 

The Extension 2D-Distance, for P ≠ O, will be:  

0 0(( , ), )x y AMBMρ = d(point P, rectangle AMBN) = |PO| - |P'O|= ± |PP’| 

i) which is equal to the negative length of the red segment |PP’| in Fig. 3 
when P is interior to the rectangle AMBN; 

ii) or equal to zero  
when P lies on the frontier of the rectangle AMBN (i.e. on edges AM, MB, BN, or NA) since P 

coincides with P’; 
iii) or equal to the positive length of the blue segment |PP’| in Fig. 4 

           P 

                                O 



when P is exterior to the rectangle AMBN. 
 

where |PO| means the classical 2D-distance between the point P and O, and similarly for |P'O| and 
|PP’|. 

The Extension 2D-Distance, for the optimal point (i.e. P=O), will be  
( , )O AMBMρ = d(point O, rectangle AMBN) = - max d(point O, point M on the frontier of AMBN). 

 

     y                             

                               A(a1,a2)                                                                  N(b1,a2) 

             P                                            

                                P’                  P                                                        P’’ 

                               

                            M(a1,b2)                                                                  B(b1,b2)        

                                                                                                                                                                           x 

 Fig. 4. P is an exterior point to the rectangle AMBN and the optimal point O is in the center of 
symmetry of the rectangle 

 

The last step is to devise the Dependent Function in 2D-space similarly as Dr. Cai's defined the 
dependent function in 1D. 

The midpoint (or center of symmetry) O has the coordinates 
1 1 2 2( , )
2 2

a b a bO + +
. 

Let’s compute the |PO| - |P'O|. 

In this case, we extend the line OP to intersect the frontier of the rectangle AMBN. P’ is closer to P than 
P’’, therefore we consider P’. 

The equation of the line PO, that of course passes through the points P(x0, y0) and 
1 1 2 2( , )
2 2

a b a bO + +
, 

is: 
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Since the x-coordinate of point P’ is a1 because P’ lies on the rectangle’s edge AM, one gets the y-
coordinate of point P’ by a simple substitution of xP’ = a1 into the above equality: 
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. 

Therefore P’ has the coordinates P’(  xP’ = a1,  yP’ =
2 2 0

0 1 0
1 1 0

2 ( )
2

a b yy a x
a b x

+ −+ −
+ −

 ) . 

The distance 
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Whence the Extension 2D-Distance formula: 
 

0 0(( , ), )x y AMBMρ = d( P(x0,y0), A(a1,a2)MB(b1,b2)N ) = |PO| - |P'O| 

=
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= ± 2 2
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Properties. 

As for 1D-distance, the following properties hold in 2D: 

Property 1. 

a) (x,y)∈ Int(AMBN) iff (( , ), )x y AMBNρ < 0, where Int(AMBN) means interior of AMBN; 

b) (x,y)∈Fr(AMBN) iff (( , ), )x y AMBNρ = 0, where Fr(AMBN) means frontier of AMBN; 

c) (x,y)∉AMBN iff (( , ), )x y AMBNρ > 0. 

Property 2. 



Let A0M0B0N0 and AMBN be two rectangles whose sides are parallel to the axes of the Cartesian system 
of coordinates, such that they have no common end points, and A0M0B0N0 ⊂  AMBN. We assume they 
have the same optimal points O1 ≡ O2 ≡ O located in the center of symmetry of the two rectangles. 

Then for any point (x,y)∈R2 one has 0 0 0 0(( , ), ) (( , ), )x y A M B N x y AMBNρ ρ≥ . 
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Fig. 5. Two included rectangles with the same optimal points O1 ≡ O2 ≡ O located in their 
common center of symmetry 

 

Dependent 2D-Function. 

Let A0M0B0N0 and AMBN be two rectangles whose sides are parallel to the axes of the Cartesian system 
of coordinates, such that they have no common end points, and A0M0B0N0 ⊂  AMBN. 

The Dependent 2D-Function formula is: 

2
0 0 0 0

(( , ), )( , )
(( , ), ) (( , ), )

D
x y AMBNK x y

x y AMBN x y A M B N
ρ

ρ ρ
=

−  

Property 3. 

Again, similarly to the Dependent Function in 1D-space, one has: 

a) If (x,y)∈  Int(A0M0B0N0), then K2D(x,y) > 1; 

b) If (x,y)∈  Fr(A0M0B0N0), then K2D(x,y) = 1; 
c) If (x,y)∈  Int(AMBN - A0M0B0N0), then 0 < K2D(x,y) < 1; 

d) If (x,y)∈  Fr(AMBN), then K2D(x,y) = 0; 
e) If (x,y)∉  AMBN , then K2D(x,y) < 0. 

General Case in 2D-Space. 

         A0                                                N0 

         M0                  O                 B0 



One can replace the rectangles by any finite surfaces, bounded by closed curves in 2D-space, and one 
can consider any optimal point O (not necessarily the symmetry center). Again, we assume the optimal 
points are the same for this nest of two surfaces. 
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 Fig. 6. Two included arbitrary bounded surfaces with the same optimal points situated in their 
common center of symmetry 

 

Linear Attraction Point Principle. 

We introduce the Attraction Point Principle, which is the following: 

Let S  be a given set in the universe of discourse U, and the optimal point O∈  S . Then each point P(x1, 
x2, …, xn) from the universe of discourse tends towards, or is attracted by, the optimal point O, because 
the optimal point O is an ideal of each point.  

That’s why one computes the extension n-D-distance between the point P and the set S  as ρ( (x1, x2, …, 
xn), S ) on the direction determined by the point P and the optimal point O, or on the line PO, i.e.:  a) ρ( (x1, x2, …, xn), S ) = the negative distance between P and the set frontier, if P is inside the set 

S; b) ρ( (x1, x2, …, xn), S ) = 0, if P lies on the frontier of the set S; c) ρ( (x1, x2, …, xn), S ) = the positive distance between P and the set frontier, if P is outside the set. 

It is a king of convergence/attraction of each point towards the optimal point. There are classes of 
examples where such attraction point principle works. 



If this principle is good in all cases, then there is no need to take into consideration the center of 
symmetry of the set S, since for example if we have a 2D piece which has heterogeneous material 
density, then its center of weight (barycenter) is different from the center of symmetry. 

Let’s see below such example in the 2D-space: 
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Fig. 7. The optimal point O as an attraction point for all other points P1, P2, …, P8 in the universe 
of discourse R2 

 

Remark 1. 

Another possible way, for computing the distance between the point P and the closest point P' to it on 
the frontier (the rectangle’s four edges) of the rectangle AMBN, would be by drawing a perpendicular 
(or a geodesic) from P onto the closest rectangle’s edge, and denoting by P’ the intersection between 
the perpendicular (geodesic) and the rectangle’s edge. 

And similarly if one has an arbitrary set S  in the 2D-space, bounded by a closed curve. One computes 

d(P, S) = inf | |
Q S

PQ
∈

  

as in the classical mathematics. 

Extension Distance in 3D-Space. 

We further generalize to 3D-space the Extension Set and the Dependent Function. 
Assume we have two points A(a1, a2, a3) and B(b1, b2, b3) in 3D. Drawing through A and B parallel 



planes to the planes’ axes (XY, XZ, YZ) in the Cartesian system XYZ we get a prism AM1M2M3BN1N2N3 
(with eight vertices) whose one of the transversal diagonals is just the line segment AB. Let’s note by O 
the midpoint of the transverse diagonal AB, but O is also the center of symmetry of the prism. 

Therefore, from the line segment AB in 1D-space, to a rectangle AMBN in 2D-space, and now to a prism 
AM1M2M3BN1N2N3 in 3D-space. Similarly to 1D- and 2D-space, the prism may be closed (i.e. all points 
lying on its frontier belong to it), open (i.e. no point lying on its frontier belong to it), or partially closed 
(i.e. some points lying on its frontier belong to it, while other points lying on its frontier do not belong to 
it). 

Then one computes the distance between a point P(x0, y0, z0) and the prism AM1M2M3BN1N2N3. 

One can do that following the same principle as Dr. Cai’s: 
- compute the distance in 3D (two dimensions) between the point P and the center O of the prism 
(intersection of prism's transverse diagonals); 
- next compute the distance between the point P and the closest point (let's note it by P' ) to it on the 
frontier (the prism’s lateral surface) of the prism AM1M2M3BN1N2N3; 

considering P’ as the intersection point between the line OP and the frontier of the prism, and taken 
among the intersection points that point P’ which is the closest to P; this case is entirely consistent with 
Dr. Cai’s approach in the sense that when reducing from 3D-space to 1D-space one gets exactly Dr. Cai’s 
result; 

- the Extension 3D-Distance will be: d(P, AM1M2M3BN1N2N3) = |PO| - |P'O| = ± |PP’|, 
where |PO| means the classical distance in 3D-space between the point P and O, and similarly for |P'O| 
and |PP’|. 

 

 

 

 

 

 

 

 

 

 



                 

                z                                                                                                                P 

                                                      A                                           Q’                   

                                                                                     Q           P’ 

                                                                                 O 

                                                                                                                  B 

                                      

 

      

                     y           
Fig. 8. Extension 3D-Distance between a point and a prism, where O is the optimal point 
coinciding with the center of symmetry                                                                                                                                     
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Property 4. 

a)  (x,y,z)∈ Int(AM1M2M3BN1N2N3) iff 1 2 3 1 2 3(( , , ), )x y z AM M M BN N Nρ < 0, where 
Int(AM1M2M3BN1N2N3) means interior of AM1M2M3BN1N2N3; 

b) (x,y,z)∈Fr(AM1M2M3BN1N2N3) iff 1 2 3 1 2 3(( , , ), )x y z AM M M BN N Nρ = 0, where 
Fr(AM1M2M3BN1N2N3) means frontier of AM1M2M3BN1N2N3; 

c) (x,y,z)∉  AM1M2M3BN1N2N3 iff 1 2 3 1 2 3(( , , ), )x y z AM M M BN N Nρ > 0. 

Property 5. 

Let A0M01M02M03B0N01N02N03 and AM1M2M3BN1N2N3 be two prisms whose sides are parallel to the axes 
of the Cartesian system of coordinates, such that they have no common end points, and 
A0M01M02M03B0N01N02N03 ⊂  AM1M2M3BN1N2N3. We assume they have the same optimal points O1 ≡ O2 
≡ O located in the center of symmetry of the two prisms. 

Then for any point (x,y,z)∈R3 one has
0 01 02 03 0 01 02 03 1 2 3 1 2 3(( , , ), ) (( , , ), )x y z A M M M B N N N x y z AM M M BN N Nρ ρ≥ . 

 
Dependent 2D-Function. 



The last step is to devise the Dependent Function in 3D-space similarly to Dr. Cai's definition of the 
dependent function in 1D-space. 
 

Let A0M01M02M03B0N01N02N03 and AM1M2M3BN1N2N3 be two prisms whose faces are parallel to the axes 
of the Cartesian system of coordinates XYZ, such that they have no common end points, such that 
A0M01M02M03B0N01N02N03 ⊂  AM1M2M3BN1N2N3. We assume they have the same optimal points O1 ≡ O2 
≡ O located in the center of symmetry of these two prisms. 

The Dependent 3D-Function formula is: 

1 2 3 1 2 3
3

1 2 3 1 2 3 0 01 02 03 01 02 03

(( , , ), )( , , )
(( , , ), ) (( , , ), )

D
x y z AM M M BN N NK x y z

x y z AM M M BN N N x y z A M M M BN N N
ρ

ρ ρ
=

−  

Property 6. 

Again, similarly to the Dependent Function in 1D- and 2D-spaces, one has: 

a) If (x,y,z)∈  Int(A0M01M02M03B0N01N02N03), then K3D(x,y,z) > 1; 

b) If (x,y,z)∈  Fr(A0M01M02M03B0N01N02N03), then K3D(x,y,z) = 1; 
c) If (x,y,z)∈  Int(AM1M2M3BN1N2N3 - A0M01M02M03B0N01N02N03), then 0 < K3D(x,y,z) < 1; 

d) If (x,y,z)∈  Fr(AM1M2M3BN1N2N3), then K3D(x,y,z) = 0; 
e) If (x,y,z)∉  AM1M2M3BN1N2N3, then K3D(x,y,z) < 0. 

General Case in 3D-Space. 

One can replace the prisms by any finite 3D-bodies, bounded by closed surfaces, and one considers any 
optimal point O (not necessarily the centers of surfaces’ symmetry). Again, we assume the optimal 
points are the same for this nest of two 3D-bodies. 

Remark 2. 

Another possible way, for computing the distance between the point P and the closest point P' to it on 
the frontier (lateral surface) of the prism AM1M2M3BN1N2N3 is by drawing a perpendicular (or a 
geodesic) from P onto the closest prism’s face, and denoting by P’ the intersection between the 
perpendicular (geodesic) and the prism’s face. 

And similarly if one has an arbitrary finite body B  in the 3D-space, bounded by surfaces. One computes 
as in classical mathematics: 

d(P, B) = inf | |
Q B

PQ
∈

 

 



Linear Attraction Point Principle in 3D-space. 
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               Fig. 9. Linear Attraction Point Principle for any bounded 3D-body                                                                                      
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Non-Linear Attraction Point Principle in 3D-Space (and in n-D-Space). 

There might be spaces where the attraction phenomena undergo not linearly by upon some specific 
non-linear curves. Let’s see below such example for points Pi whose trajectories of attraction towards 
the optimal point follow some non-linear 3D-curves.  
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n-D-Space. 

In general, in a universe of discourse U, let’s have an n-D-set S and a point P. 
Then the Extension Linear n-D-Distance between point P and set S, is: 
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where O is the optimal point (or linearly attraction point); 
d(P,P’) means the classical linearly n-D-distance between two points P and P’; 
Fr(S) means the frontier of set S; 
and |OP’| means the line segment between the points O and P’ (the extremity points O and P’ included), 
therefore P∈|OP’| means that P lies on the line OP’, in between the points O and P’. 
For P coinciding with O, one defined the distance between the optimal point O and the set S  as the 
negatively maximum distance (to be in concordance with the 1D-definition). 
 
And the Extension Non-Linear n-D-Distance between point P and set S, is: 
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where ( , )c P Sρ means the extension distance as measured along the curve c; 
O is the optimal point (or non-linearly attraction point); 
the points are attracting by the optimal point on trajectories described by an injective curve c; 
dc(P,P’) means the non-linearly n-D-distance between two points P and P’, or the arclength of the curve c 
between the points P and P’; 
Fr(S) means the frontier of set S; 
and c(OP’) means the curve segment between the points O and P’ (the extremity points O and P’ 
included), therefore P∈c(OP’) means that P lies on the curve c in between the points O and P’. 
For P coinciding with O, one defined the distance between the optimal point O and the set S  as the 
negatively maximum curvilinear distance (to be in concordance with the 1D-definition). 
 
In general, in a universe of discourse U, let’s have a nest of two n-D-sets, S1 ⊂  S2, with no common end 
points, and a point P. 
Then the Extension Linear Dependent n-D-Function referring to the point P(x1, x2, …, xn) is: 
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ρ
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where 2( , )P Sρ is the previous extension linear n-D-distance between the point P and the n-D-set S2. 

And the Extension Non-Linear Dependent n-D-Function referring to point P(x1, x2, …, xn) along the curve 
c is: 
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where 2( , )c P Sρ is the previous extension non-linear n-D-distance between the point P and the n-D-set 

S2 along the curve c. 

Remark 3. 

Particular cases of curves c could be interesting to studying, for example if c are parabolas, or have 
elliptic forms, or arcs of circle, etc. Especially considering the geodesics would be for many practical 
applications. 

Tremendous number of applications of Extenics could follow in all domains where attraction points 
would exist; these attraction points could be in physics (for example, the earth center is an attraction 



point), economics (attraction towards a specific product), sociology (for example attraction towards a 
specific life style), etc. 

Conclusion. 

In this paper we introduced the Linear and Non-Linear Attraction Point Principle, which is the following: 

Let S  be an arbitrary set in the universe of discourse U of any dimension, and the optimal point O∈  S . 
Then each point P(x1, x2, …, xn), n ≥ 1, from the universe of discourse (linearly or non-linearly) tends 
towards, or is attracted by, the optimal point O, because the optimal point O is an ideal of each point.  

It is a king of convergence/attraction of each point towards the optimal point. There are classes of 
examples and applications where such attraction point principle may apply. 

If this principle is good in all cases, then there is no need to take into consideration the center of 
symmetry of the set S, since for example if we have a 2D factory piece which has heterogeneous 
material density, then its center of weight (barycenter) is different from the center of symmetry. 

Then we generalized in the track of Cai Wen’s idea the extension 1D-set to an extension n-D-set, and 
defined the Linear (or Non-Linear) Extension n-D-Distance between a point P(x1, x2, …, xn) and the n-D-
set S  as ρ( (x1, x2, …, xn), S ) on the linear (or non-linear) direction determined by the point P and the 
optimal point O (the line PO, or respectively the curvilinear PO) in the following way: d) ρ( (x1, x2, …, xn), S ) = the negative distance between P and the set frontier, if P is inside the set 

S; e) ρ( (x1, x2, …, xn), S ) = 0, if P  lies on the frontier of the set S; f) ρ( (x1, x2, …, xn), S ) = the positive distance between P and the set frontier, if P is outside the set. 

We got the following properties: 

a) It is obvious from the above definition of the extension n-D-distance between a point P in the 
universe of discourse and the extension n-D-set S  that: 

i) Point P(x1, x2, …, xn) ∈ Int(S)  iff  ρ( (x1, x2, …, xn), S ) < 0; 
ii) Point P(x1, x2, …, xn) ∈Fr(S)  iff  ρ( (x1, x2, …, xn), S ) = 0; 
iii) Point P(x1, x2, …, xn) ∉S  iff  ρ( (x1, x2, …, xn), S ) > 0. 

b) Let S1 and S2 be two extension sets, in the universe of discourse U, such that they have no 
common end points, and S1 ⊂  S2. We assume they have the same optimal points O1 ≡ O2 ≡ O 
located in their center of symmetry. Then for any point P(x1, x2, …, xn)∈U one has: ρ( (x1, x2, …, xn), S1 ) ≥ ρ( (x1, x2, …, xn), S2 ). 

Then we proceed to the generalization of the dependent function from 1D-space to Linear (or Non-
Linear) n-D-space Dependent Function, using the previous notations. 

The Linear (or Non-Linear) Dependent n-D-Function of point P(x1, x2, …, xn) along the curve c, is: 
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(where c may be a curve or even a line) 

which has the following property: 

f) If point P(x1, x2, …, xn) ∈ Int(S1), then 1 2( , ,..., )nD nK x x x > 1; 

g) If point P(x1, x2, …, xn) ∈Fr(S1), then 1 2( , ,..., )nD nK x x x = 1; 

h) If point P(x1, x2, …, xn) ∈ Int(S2-S1), then 1 2( , ,..., )nD nK x x x ∈  (0, 1); 

i) If point P(x1, x2, …, xn) ∈ Int(S2), then 1 2( , ,..., )nD nK x x x = 0; 

j) If point P(x1, x2, …, xn) ∉ Int(S2), then 1 2( , ,..., )nD nK x x x < 0. 
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