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Abstract

In this document we analyze the thought experiment proposed by Bax-
ter. Baxter’s conclusion is that his thought experiment shows a contradic-
tion and that therefore relativity is wrong. However, we shall show that
there is no contradiction and that eventually Baxter has misinterpreted
relativity.

As Baxter in his thought experiment makes use of the relativistic light-
clock, we start with an analysis of the relativistic light-clock. The relativis-
tic light-clock eventually implies relations between time-intervals, but also
between distances, where a distinction is made between parallel distances
and orthogonal distances, with respect to the velocity of the moving dis-
tance. Correct implementation of the relativistic light-clock shows that
Baxter’s thought experiment does not lead to contradictions. Baxter’s
contradiction is based on misinterpretation of relativity by Baxter him-
self, i.e. he has not shown any contradiction.
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1 Clocks.

A clock is a device being used to measure time. There are many kinds of
clocks, but all clocks eventually do the same. A clock generates a cycles
and to calculate the time being measured by a clock, we simply count the
number of cycles.

1.1 The light-clock.

The light-clock is a clock that uses light to make a closed path. Light
moves along a path p from a beginning point o and eventually returns
to the same beginning point o. The time required for light to travel the
path p is defined as the cycle-time. Repeating the process that the light
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follows the path p yields a number of cycles and that eventually yields an
amount of time.

A practical form of a light-clock is the following: A light-clock is a
combination of a light-source and a mirror at some distance with respect
to the light-source, such that the light travels from the light source to the
mirror, is reflected and travels back from the mirror to the light source.
Once the light reaches the light-source again, the cycle is repeated.

Let us denote the light-source as S and the mirror as M. Let the
distance between S and M be L, let the speed of light when traveling
from S to M be c→ and let the speed of light when traveling from M to
S be c←. It is clear that the cycle-time is given by

t
 =
L

c→
+

L

c←
, (1)

which can be written as

t
 = 2L
1
2
(c→ + c←)[

1
2
(c→ + c←)

]2 − [ 1
2
(c→ − c←)

]2 . (2)

Let us define cσ = 1
2
(c→ + c←) and cδ = 1

2
(c→ − c←), then we obtain

t
 = 2L
cσ

c2σ − c2δ
, (3)

as being the general equation for the cycle-time.

1.2 The relativistic light-clock.

The relativistic light-clock is like the light-clock being described above,
with the addition that the second postulate of relativity is applied. The
second postulate of relativity tells us that c→ = c and c← = c, for a
stationary relativistic light-clock. Consequently we obtain cσ = c and
cδ = 0. Therefore

t
 =
2L

c
, (4)

as the cycle-time of the stationary relativistic light-clock.

1.2.1 Time alteration.

To compare the times as being measured by a stationary and by a mov-
ing relativistic light-clock, we need to send a signal from the moving clock
to the stationary clock. The light-clock being described is composed by
a light-source S and a mirror M.

Let us consider the case that a relativistic light-clock is moving away
from an observer o, and that the stationary relativistic light-clock is
described by the points S = (0, 0, 0) and M = (0, Ly, 0), such that the
moving relativistic light-clock is described by the points S = (vt′, 0, 0)
and M = (vt′, L′y, 0). When each cycle of the moving relativistic light-
clock is completed, a signal in the form of light is send to o. The light
path of the stationary relativistic light-clock is formed by S→M→ S,
while the light path of the moving relativistic light-clock is formed by
S → M → S′, which is not closed, as the source has moved from S
to S′. But when signals in the form of light are send from the moving
relativistic light-clock to o, then there are two signals for a cycle: First
the signal when the cycle starts, given by S → o. Second the signal

2



when the cycle is ended, given by S′ → o. It is clear that we can write
S′ → o = S′ → S → o. As the point defined as the start of the cycle is
given by S, we have again a closed path defined by S → M → S′ → S.
As the point S is fixed with respect to o, we only need to find the cycle-
time for the path S→M→ S′ → S.

We have already found that the cycle-time for the path S→M→ S
is given by

t
 =
2Ly
c

.

We now look to the path S→M→ S′ → S. Due to the symmetry, the
paths S→M and M→ S′ are mathematically equivalent. The point S
is defined by (vt′, 0, 0). The point M is defined by (vt′ + vt′S→M, L′y, 0).
Consequently, the traveled path for the light when traveling from S to
M, denoted by s′S→M, is given by

√
v2t′2S→M + L′2y . What relativity tells

us is that c =
s′S→M

t′S→M

, therefore

t′S→M =
L′y√

c2 − v2
. (5)

Due to the mathematical equivalence of S→M and M→ S′, we obtain

that t′S→M = t′M→S′ . We also find that s′S′→S =
2vL′y√
c2 − v2

. As relativity

tells us that c =
s′S′→S

t′S′→S

, we obtain t′S′→S =
v

c

2L′y√
c2 − v2

, so we obtain

t′S→M + t′M→S′ + t′S′→S =
2L′y
c

c + v√
c2 − v2

. (6)

As

c + v√
c2 − v2

=

√
c + v

c− v
, (7)

we can write

t′S→M + t′M→S′ + t′S′→S =
2L′y
c

√
c + v

c− v
. (8)

The expression t′S→M + t′M→S′ + t′S′→S is the cycle-time as described and
observed by o. Therefore we can write

t′
 = t

L′y
Ly

√
c + v

c− v
. (9)

Here we see the reciprocal relativistic Doppler factor. There is a difference
with the normal time-dilation equation. The reason is that we consider
observation. Whenever an observer o is observing, we can only observe
light paths in the form · · · → o. The two paths involved are S → o and
S → M → S′ → S → o. Eventually the time difference being observed
by o is the time required to form the closed path S→M→ S′ → S.

Hitherto we have considered the case that the velocity of the relativistic
light-clock is orthogonal with respect to the line connecting the source S
and the mirror M. We now consider the case such that the velocity of the
relativistic light-clock is parallel with respect to the line connecting the
source S and the mirror M. Let us consider the case that a relativistic
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light-clock is moving away from an observer o, and that the stationary
relativistic light-clock is described by the points S = (0, 0, 0) and M =
(Lx, 0, 0), such that the moving relativistic light-clock is described by the
points S = (vt′, 0, 0) and M = (vt′ + L′x, 0, 0). When each cycle of the
moving relativistic light-clock is completed, a signal in the form of light
is send to o. The light path of the stationary relativistic light-clock is
formed by S → M → S, while the light path of the moving relativistic
light-clock is formed by S→M→ S′, which is not closed, as the source
has moved from S to S′. But when signals in the form of light are send
from the moving relativistic light-clock to o, then there are two signals for
a cycle: First the signal when the cycle starts, given by S → o. Second
the signal when the cycle is ended, given by S′ → o. It is clear that
we can write S′ → o = S′ → S → o. As the point defined as the
start of the cycle is given by S, we have again a closed path defined by
S → M → S′ → S. As the point S is fixed with respect to o, we only
need to find the cycle-time for the path S→M→ S′ → S.

We have already found that the cycle-time for the path S→M→ S
is given by

t
 =
2Lx
c

.

We now look to the path S → M → S′ → S. Due to the symmetry,
the paths S → M and M → S′ → S are mathematically equivalent.
The point S is defined by (vt′, 0, 0). The point M is defined by (vt′ +
vt′S→M + L′x, 0, 0). Consequently, the traveled path for the light when
traveling from S to M, denoted by s′S→M, is given by vt′S→M +L′x. What

relativity tells us is that c =
s′S→M

t′S→M

, therefore

t′S→M =
L′x

c− v
. (10)

Due to the mathematical equivalence of S → M and M → S′ → S, we
obtain that t′S→M = t′M→S′→S, so we can write

t′S→M + t′M→S′→S =
2L′x
c

c

c− v
. (11)

The expression t′S→M + t′M→S′→S is the cycle-time as described and ob-
served by o. Therefore we can write

t′
 = t

L′x
Lx

c

c− v
. (12)

As for the parallel case.
We now combine the results what we have found for the orthogonal

and parallel moving relativistic light-clock :

t
′ = t

L′x
Lx

c

c− v
. (13a)

t
′ = t

L′y
Ly

√
c + v

c− v
. (13b)

The combination yields

t
′

t

=

L′y
Ly

√
c + v

c− v
. (14a)

L′x
Lx

=
L′y
Ly

√
1− v2/c2. (14b)
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As in relativity it is assumed that L′y = Ly, the consequences of the
relativistic light-clock are given by

t
′ = t


√
c + v

c− v
. (15a)

L′x = Lx
√

1− v2/c2. (15b)

These results are consistent with relativity.

2 Baxter’s rail-car thought experiment.

Glenn Baxter considers the following thought experiment1:

ARGUMENT

Three ticking clocks are synchronized while sitting next to each other.

Consider a thought experiment analogous to Dr. Einsteins 1905 derivation of
his famous “time slowing down” formula, t = t’ [square root of (1 - vˆ2/cˆ2)]

You sit on a train platform. Your time (being recorded on a note pad from
your previously synchronized clock number3) is “prime” time, t’

I am on the near side of a moving train (from left to right) and record time
t on my note pad from clock number 2.

Assume c is constant for us both, as did Dr. Einstein.

A light pulse is flashed at t = 0 on clock 1 across the train toward us both
and reaches me on the near side of the train car at t = t on my clock number
2. I measure the distance vector toward me across the train as ct, the first
leg of a triangle.

You measure the base vector of the triangle created by the train moving
at v relative to you from left to right during the time it took for the light to
cross the train in time t for me on clock 2 and time t’ for you on clock 3,
which is length vt’

You are situated so that when the light reaches me, you are looking straight
along the hypotenuse of the triangle (the third leg). You think the light trav-
eled that longer hypotenuse, and I think it went just across the train on leg
1, distance ct for me. Now we use the Pythagorean theorem:

(ct)ˆ2 + (vt’)ˆ2 = (ct’)ˆ2 Now solve for t.

t = (t’) [ square root of (1 - vˆ2/cˆ2)] This Is Dr. Einsteins famous 1905
(and incorrect) “time slowing down” formula. QED

As seen, my time “slows down” due to relative uniform motion, according
to Dr. Einstein. If v = c, my time slows to zero, and, of course, v can never
exceed c, also according to Dr. Einstein.

1First and second page of SPECIAL RELATIVITY MATH DISPROOF ON ONE PAGE[1]
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Now we repeat the experiment with me at the front of the train car and
you on the forward overpass. A light pulse is flashed from the middle of the
train at t = 0 and reaches the front at a different t = t, and I see it traveling
distance ct. You see it traveling ct’ + vt’

Now solve ct = ct’ + vt’ for t

t = ct’/c + vt’/c = t’(1 + v/c) so if v = c then t = 2t’ or time has
now “speed up” for me, etc. Time clocks cannot both slow down and speed
up on the same train car; a contradiction, and therefore Special Relativity is
wrong. QED

Where Baxter goes wrong is with his claim I see it traveling distance
ct. You see it traveling ct’ + vt’. It is two-folded:

1. We cannot see a traveled distance, we can only describe a traveled
distance. We can only see light that reaches us.

2. As light is traveling from the left side to the right side of the train-
car, during the traveling of the light, the train-car also moves. The
traveled distance of the light is therefore given by v∆t′+d′, where d′

is the length of the moving train-car, where ∆t′ is the time required
for the light to travel the particular path.

WHAT relativity tells us is:

c =
d

∆t
. (16a)

and also

c =
v∆t′ + d′

∆t′
. (16b)

The relativistic light-clock gives

t
′ = t


√
c + v

c− v
.

L′x = Lx
√

1− v2/c2.

Using the symbols d(′) and ∆t(′), we obtain

∆t′ = ∆t

√
c + v

c− v
. (17)

d′ = d
√

1− v2/c2. (18)

Consequently we find

v∆t′ + d′

∆t′
= v +

d′

∆t′

= v +
d

∆t

√
1− v2/c2

√
1− v/c

1 + v/c

= v + c

√√√√(1− v/c
)2(

1 + v/c
)(

1 + v/c
)

= v + c
(
1− v/c

)
= c, (19)

i.e. consistent with relativity; no contradiction whatsoever. Both ob-
servers agree on the rule that the speed of light is constant.
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3 Conclusion.

As seen in the thought experiment proposed by Baxter, there is actually
no contradiction with respect to relativity. The contradiction as found by
Baxter is the result of not applying relativity properly and correctly, i.e.
Baxter has misinterpreted relativity. The main error that Baxter makes
is his claim: I see it traveling distance ct. You see it traveling ct’ + vt’, there
is no such claim within relativity.
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