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1 Introduction

The problem of constructing good homology theories dates back to the days

of Čech and Vietoris. Čech homology has a plethora of good properties such

as continuity for compact spaces and shape invariance, but Čech homology

fails to be exact. For compact spaces, there is a little-known remedy to

problem of inexactness of Čech homology, namely the use of non-standard

coefficients, or equivalently, as proved by Garavaglia [3], the use of McCord’s

homology [9].
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McCord homology is based on hyperfinite chains of near-standard mi-

crosimplices, and as we proved in Korppi [6], it coincides with Čech homol-

ogy with non-standard coefficients and compact supports for regular spaces,

if the non-standard model used is rich enough.

In this paper we modify McCord’s construction of a homology theory

so that we base our homology theory on both near-standard and non-near-

standard microsimplices. Our approach extends the good properties of Mc-

Cord’s homology, such as exactness, continuity and shape invariance, for

non-compact spaces. Our homology theory coincides with McCord’s homol-

ogy for pairs of compact spaces, but it fails to have compact supports for

certain non-compact spaces.

Another, more popular way to circumvent the problems of inexactness of

Čech homology is to use Steenrod- style homology theories, such as strong

homology, as constructed in Mardesic [7]. However, strong homology fails to

be continuous, and it is only strong shape invariant.

Hence, Steenrod-style homology theories indeed have their uses, but our

homology theory has good properties not shared with Steenrod-style homol-

ogy theories.

We prove that our homology theory satisfies all the Eilenberg-Steenrod

axioms in an aribtrary small subcategory of the category whose objects are

pairs (X,A), where X is paracompact and A is closed in X, and whose

morphisms are continuous. All the other axioms hold in an arbitrary small

subcategory of the pairs of completely regular spaces (X,A), A closed in X,

but for the excision axiom there are some complications, see Lemma 21.

We also prove the following properties of our homology theory.

• Our homology theory finds quasi-components.

• For a polyhedral pair (X,A), our homology coincides with ∗H, the

non-standard version of the simplicial homology functor.

• Our homology theory is continuous with respect to resolutions.

• Our homology theory satisfies the strong excision axiom for (X,A), X

paracompact and A closed in X.

3



• Our homology theory is shape invariant.

The two restrictions are that our homology theory will be defined only for

non-standard coefficients ∗G, for an Abelian group G, and that one cannot

define the homology simultaneously for a proper class of pairs of spaces, but

must restrict oneself to an arbitrary small subcategory.

At the moment we do not have concrete applications of our homology

theory, but we think that proving the existence of a homology theory with

such strong properties is an interesting result in itself.

Non-standard universe

Throughout the paper, we assume that the reader is proficient with the

methods of non-standard analysis as presented in Robinson [10].

For our specific approach to the non-standard universe, see Korppi [5],

Section 2.

In a nutshell, our approach is as follows: We let S be an arbitrary set

of mathematical objects, which contains all the objects we are interested in.

We let M = R(κ) for a big enough cardinal number κ such that M contains

S and the auxiliary constructions we use in our proofs. Then we let the

non-standard universe ( ∗M, ∗ ∈) be a |R(κ)|-saturated elementary extension

of (M,∈).

Our proofs will work only for objects in S, but when there is no risk of

confusion, we do not explicitly mention this.

For X ∈M , we denote the non-standard counterpart of X in ∗M by ∗X.

When there is no risk of confusion, or more particularly, when X plays the

role of an element rather than a set, we suppress the ∗ from the notation.

If X is a set, we do not distinguish ∗X and {x ∈ ∗M | x ∗ ∈ ∗X} in the

notation.

By transfer we mean the principle that if φ is a first-order formula in the

language of set theory and x1, . . . , xn ∈ M , then M |= φ(x1, . . . , xn) if and

only if ∗M |= φ( ∗x1, . . . ,
∗xn).
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2 Normal covers

Let X a completely regular space. Following Mardesic and Segal [8], Ap-

pendix 1.3, we say that an open cover U of X is normal, if there is a partition

of unity subordinated to it.

By a partition of unity we mean a collection φU : X → I of continuous

functions such that for all x ∈ X we have
∑

U∈U φU(x) = 1 and for all U ∈ U

we have {x ∈ X | φU(x) > 0} ⊂ U . The sum
∑

is interpreted as the least

upper bound of finite subsums.

Theorem 2 in Mardesic and Segal [8], App. 1.3 states the following:

Lemma 1 An open cover U is normal if and only if there exists a map

f : X →M into a metric space and an open covering V of M such that f−1V

refines U.

As a corollary to the lemma we have the following:

Corollary 2 1. Each normal cover has a star-refinement that is a normal

cover.

2. Assume that U is an open cover of X and V is a normal cover such

that V refines U. Then U is a normal cover.

Proof: (1) Let U be a normal cover of X. By Lemma 1, there exists a

metric space M , a map f : X → M and an open cover W of M such that

f−1W refines U. Since M is metric, and hence paracompact, there exists

W′ that is a star-refinement of W. Now f−1W′ is a star-refinement f−1W,

which, in turn, is a refinement of U. Hence f−1W′ is a star-refinement of U.

(2) By Lemma 1, there exists a metric space M , a map f : X → M and

an open cover W of M such that f−1W refines V. Now f−1W refines U, and

the claim follows from Lemma 1. �

Theorem 4 in Mardesic and Segal [8], App. 1.3 states the following:

Lemma 3 Any two normal coverings U and U′ admit a normal covering U′′

which refines them both.
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We will be using also the following:

Lemma 4 If X is completely regular and U is an open neighbourhood of x,

then the cover (X \ x, U) is normal.

Proof: Since X is completely regular, there exists f : X → I such that

f(x) = 1, and f(y) = 0 if y 6∈ U . Now the choice fU = f , fX\x = 1− f is the

required partition of unity.�

Lemma 5 Let A be a subspace of X. If U is a normal cover of X, then

U ∩ A = {A ∩ U |U ∈ U} is a normal cover of A.

Proof: Since each metric space is paracompact, we can, by Lemma 1,

replace U with its locally finite normal refinement. By Corollary 2 (2), this

does not compromise the validity of the lemma.

Let (φU∈U) be a partition of unity for the normal cover U. For each

U ′ ∈ U ∩A, let φ′U ′ =
∑

U ′′ φU ′′ |A, where the sum is taken over U ′′ ∈ U such

that U ′ = A ∩ U ′′. One easily checks that (φ′U ′) is a partition of unity for

U ∩ A.�

3 Infinitesimal closeness

Let X and Y be completely regular spaces. Let x, y ∈ ∗X. We say that x

is infinitesimally close to y, x ∼ y, if for every normal cover U of X, there

exists U ∈ ∗U such that x, y ∈ U .

Let x ∈ X. We say that y ∈ ∗X is Robinson-close to x, if for all neigh-

bourhoods U of x we have that y ∈ ∗U .

Next we prove the basic properties of ∼.

Lemma 6 We have the following:

1. ∼ is an equivalence relation in ∗X.

2. Let x ∈ X, y ∈ ∗X. Then x is Robinson-close to y if and only if x ∼ y.

3. Let f : X → Y . Then f is continuous if and only if for all x ∼ x′ ∈ ∗X
we have that ∗f(x) ∼ ∗f(x′).
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Proof: We prove (1). Reflexivity and symmetry are trivial. We prove

transitivity. Let x, y, z ∈ ∗X, x ∼ y, y ∼ z. Let U be a normal cover of

X. By Corollary 2, the cover U has a star-refinement V. Now there exist

V, V ′ ∈ ∗V such that x, y ∈ V , y, z ∈ V ′. In particular y ∈ V ∩V ′ 6= ∅. Since

V is a star-refinement of U, we have that V ∪ V ′ ⊂ U for some U ∈ ∗U. But

now x, z ∈ U . Hence x ∼ z.

We prove (2). Assume x ∈ X, y ∈ ∗X, x ∼ y. Let U be a open

neighbourhood of x. Since X is completely regular, U = (U,X \ x) is a

normal cover of X, and thus x, y belong to a same element of ∗U. Since

x 6∈ ∗(X \ x), we must have x, y ∈ ∗U . Thus y is Robinson-close to x.

Assume that x ∈ X, y ∈ ∗X, x is Robinson-close to y. Let U be a normal

cover of X. Let U ∈ U such that x ∈ U . Since x is Robinson-close to y, we

have y ∈ ∗U . But now x, y ∈ ∗U ∈ ∗U. Thus, x ∼ y.

We prove (3). Let f : X → Y be continuous. Let x ∼ x′ ∈ ∗X. Let U

be a normal cover of Y . Now U ∩ fX is a normal cover of fX by Lemma 5,

and hence f−1U is a normal cover of X, and thus x, x′ ∈ U ∈ ∗(f−1U). But

now ∗f(x), ∗f(x′) ∈ ∗(f)U ⊂ U ′ for some U ′ ∈ ∗U. Thus ∗f(x) ∼ ∗f(y).

Assume then that f : X → Y is such that x ∼ x′ implies ∗f(x) ∼ ∗f(x′)

for all x, x′ ∈ ∗X. Since ∗f takes each standard point of X to a standard

point of Y , we have the following: If x ∈ X, x′ ∈ ∗X, x Robinson-close to x′,

then ∗f(x) is Robinson-close to ∗f(x′). By Robinson [10], Theorem 4.2.7,

this implies that f is continuous.�

We say that B ⊂ ∗X is small, if for each normal cover U of X there is

U ∈ ∗U such that B ⊂ U .

Lemma 7 B ⊂ ∗X is small if and only for all x, y ∈ B we have x ∼ y.

Proof: only if is trivial. We prove if. Assume B is such that for all

x, y ∈ B we have x ∼ y. Let U be a normal cover of X, and let V be its

star-refinement. Let x ∈ B. Now the set B is contained in the star of x in
∗V, and hence in an element of ∗U.�

Remark 8 Let X be a completely regular space, and A ⊂ X a subspace.

Let x, y ∈ ∗A. Denote by ∼A and ∼X the infinitesimal closeness relations
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in A and X, respectively. Then it is possible that x ∼X y, but not x ∼A y.

Consider for example the case where X = N̄, the one-point compactification

of N, and A = N. If x 6= y ∈ ∗N, x, y > N, then x ∼A y does not hold, but

x ∼X y holds.

Following Mardesic [7], Remark 6.39, we say that A ⊂ X is normally em-

bedded, if every normal cover V of A admits a normal cover U of X such that

U|A refines V. According to Mardesic’s remark, if X is collectionwise normal,

then every closed subspace A of X is normally embedded. By Seebach-Steen

[12], Figure 18, each paracompact space is collectionwise normal.

However, we have the following:

Lemma 9 Let X be a completely regular space, and A ⊂ X a subspace. Let

x, y ∈ ∗A. Then

1. x ∼A y implies x ∼X y

2. If A is normally embedded in X, then x ∼A y if and only if x ∼X y.

3. If X is paracompact and A is closed in X, then x ∼A y if and only if

x ∼X y.

Proof: (1) holds, since each normal cover of X restricts to a normal cover

of A by Lemma 5.

(2) holds by the definition of normally embedded.

(3) holds by (2) and the discussion preceeding this lemma. �

Definition 10 Let X be a completely regular space, and U a ∗normal cover

of ∗X. We say that a subset A ⊂ ∗X is U-small, if there exists U ∈ U such

that A ⊂ U .

Lemma 11 We have the following:

1. A ⊂ ∗X is small if and only if A is ∗U-small for all normal covers U

of X.

2. If A ⊂ ∗X is U-small for some ∗open cover of X refining the non-

standard version of each standard normal cover, then A is small.
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3. If A ⊂ ∗X is small and internal, then there exists ∗normal cover U

refining the non-standard version of each standard normal cover of X

such that A is U-small.

4. If (Ai)i∈I is an internal collection of small subsets of ∗X, then there

exists a ∗normal cover U refining the non-standard version of each

standard normal cover of X such that each Ai is U-small.

Proof: (1) and (2) are immediate from the definitions. (3) is a special

case of (4), so it is enough to prove (4).

For every finite collection of standard normal covers U1, . . . ,Un there

exists a standard normal cover U′ refining each Uj, and each Ai is ∗U′-small.

Hence, by saturation, there exists a ∗normal cover U refining the non-

standard version of every standard normal cover such that each Ai is U-

small.�

4 The construction of the homology theory

Here we construct the homology theory. Our construction is essentially the

same as the construction of McCord homology[9], except that we use the

concept of infinitesimally close formulated above, and we do not restrict

ourselves to near-standard microsimplices.

Let G be an Abelian group.

Let X be a completely regular space. Let O′nX be the set of all ordered

n+ 1-tuples of points of ∗X, called n-simplices.

Let C ′n(X; ∗G) be the set of all hyperfinitely supported internal functions

c : O′nX → ∗G. We regard C ′n(X; ∗G) as an abelian group with pointwise

addition.

Denote by gs ∈ C ′n(X; ∗G) the function such that gs(s) = g, gs(s′) = 0,

if s 6= s′.

Lemma 12 Let H be an internal Abelian group. Let (fs : ∗G → H), s ∈
O′nX, be an internal collection of homomorphisms. Then there is a unique

internal homomorphism f : C ′n(X; ∗G) → H such that f(gs) = fs(g) for all

s ∈ O′nX.
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Proof: We define f by c 7→ ∗∑
s∈O′n

fs(c(s)). Since c is hyperfinitely

supported, f is well-defined.

Let c, c′ ∈ C ′n(X; ∗G). Now f(c) + f(c′) = ∗∑
s∈O′n

fs(c(s)) + fs(c
′(s)) =

∗∑
s∈O′n

fs(c(s) + c′(s)) = ∗∑
x∈O′n

fs((c + c′)(s)) = f(c + c′). Thus f is a

homomorphism.

One readily checks that f(gs) = fs(g).

We check that f is unique, as required. Assume that f ′ satisfies also

f ′(gs) = fs(g) for all s ∈ O′nX,, g ∈ G. Now each c ∈ C ′n(X; ∗G) can

be represented as an internal hyperfinite sum ∗∑ gisi, and f ′( ∗
∑
gisi) =

∗∑ f ′(gisi) = ∗∑ fsi
(gi) = f( ∗

∑
gisi). Thus f is unique as required.�

We define ∆′n : C ′n(X; ∗G) → C ′n−1(X; ∗G) as follows: gs 7→
∗∑n

i=0(−1)ig(ŝi), where ŝi has been obtained from s by omitting the ith

index. For for an arbitrary c ∈ Cn(X; ∗G), we extend ∆′n using the previous

lemma.

Lemma 13 ∆′n−1 ◦∆′n = 0.

Proof: By the uniqueness in Lemma 12, it is enough to check the property

for the elements of the type gs. But for these, the proof is an elementary

computation.�

Let f : X → Y . We define C ′n(f) : C ′n(X; ∗G)→ C ′n(Y ; ∗G) for simplices

by C ′n(f)(gs) = g ∗f(s), and extend to arbitrary chains by Lemma 12.

Lemma 14 If f : X → Y and f ′ : Y → Z, then C ′n(f ′f ; ∗G) =

C ′n(f ′; ∗G)C ′n(f ; ∗G).

Proof: For each simplex s of X, we have that C ′n(f ′; ∗G)C ′n(f ; ∗G)gs =

gf ′fs. Thus, by uniqueness in Lemma 12, we have C ′n(f ′; ∗G)C ′n(f ; ∗G) =

C ′n(f ′f ; ∗G).�

Lemma 15 If f : X → Y , then ∆′nC
′
n(f ; ∗G) = C ′n−1(f ; ∗G)∆′n.

Proof: Again, it is enough to check that the maps are the same for chains

of the type gs. But the image of gs for both maps is
∑

(−1)i( ∗f)(gŝi).�

10



Let OnX ⊂ O′nX be the set of those simplices whose vertices form a small

set.

Let Cn(X; ∗G) ⊂ C ′n(X; ∗G) be defined as follows: c ∈ Cn(X; ∗G) if and

only if c(s) 6= 0 implies that s ∈ OnX.

Lemma 16 ∆′n : C ′n(X;G) → C ′n−1(X; ∗G) restricts to a map

∆n : Cn(X;G)→ Cn−1(X; ∗G).

C ′n(f) : C ′n(X; ∗G)→ C ′n(Y ; ∗G) restricts to a map Cn(f) : Cn(X; ∗G)→
Cn(Y ; ∗G).

Proof: To prove the first part, we must check that if c ∈ Cn(X; ∗G), then

the support of ∆′n(c) contains only small simplices.

Let c = ∗∑ gisi. Then ∆′n( ∗
∑
gisi) = ∗∑ ∆′n(gisi), where the support

of ∆′n(gisi) contains only faces of si, which are small as subsets of a small si.

Thus we have the first part.

Then the second part. Similarly, we must check that if c ∈ C ′n(X; ∗G),

then the support of C ′n(f)(c) contains only small simplices.

If c ∈ C ′n(X; ∗G), let c = ∗∑ gisi. Then C ′n(f ; ∗G)(c) = ∗∑ gif(si). By

Lemmas 6 and 7, f(si) is small for each small si. �

Now let (X,A) be a pair of completely regular spaces, and let iA : A→ X

be the inclusion. We let

Cn(X,A; ∗G) =
Cn(X; ∗G)

Cn(iA; ∗G)Cn(A; ∗G)

.

Lemma 17 If f : (X,A) → (Y,B), then Cn(f ; ∗G) : Cn(X; ∗G) →
Cn(Y ; ∗G) induces Cn(f ; ∗G) : Cn(X,A; ∗G)→ Cn(Y,B; ∗G).

Furthermore ∆n : Cn(X; ∗G) → Cn−1(X; ∗G) induces

∆n : Cn(X,A; ∗G)→ Cn−1(X,A; ∗G).

Proof: Follows by a well-known homology theoretical argument, since Cn

commutes with maps and the boundary operator.�
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Definition 18 Let n ∈ N. We let Hn(X,A; ∗G) be the homology of the

chain complex (Cn(X,A; ∗G),∆n). Let now f : (X,A)→ (Y,B) be a map of

pairs. Since the maps Cn(f) : Cn(X,A; ∗G)→ Cn(Y,B; ∗G), commute with

∆n, they form a chain map, and induce the map Hn(f ; ∗G) in homology.

Furthermore, the connecting homomorphism ∂ of the short exact sequence

0 → C(A; ∗G) → C(X; ∗G) → C(X,A; ∗G) → 0 gives us the connecting

homomorphism of the long exact sequence commuting with maps Hn(f ; ∗G).

Corollary 19 Directly from the definitions, we get Eilenberg-Steenrod ([2],

Section I.3) axioms 1-4.

Proof: Since the homology is computed from chain complexes, and

(X,A) 7→ Cn(X,A) is functorial, also the homology is functorial. The ho-

mology is exact, since a short exact sequence of chain complexes induces a

long exact homology sequence.�

5 Excision and dimension axioms

Lemma 20 If P is a one-point space, then H0(P ; ∗G) = ∗G and

Hn(P ; ∗G) = 0, if n > 0.

Proof: In each dimension, the Cn(P ; ∗G) = ∗G, where each element is

of the type gs for the only ordered n-simplex s of P . If n is odd or 0, then

∆n = 0. If n > 0 is even, then ∆n(gs) = gs′, where s′ is the only n − 1

dimensional simplex of P . Thus, for n > 0 even, ∆n is an isomorphism.

Thus, the lemma follows.�

Lemma 21 Let (X,A) be a pair of completely regular spaces such that A

closed and normally embedded in X, and U ⊂ A such that clU ⊂ intA, and

A \ U is normally embedded in A, and X \ U is normally embedded in X.

Furthermore, we assume that the cover the cover (intA,X \ clU) is normal.

Let i : (X \ U,A \ U) → (X,A) be the inclusion. Then Cn(i) : Cn(X \
U,A \ U)→ Cn(X,A) is an isomorphism.

Hence, excision axiom holds for pairs (X,A), where X is paracompact

and A is closed in X.
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Proof: We prove that Cn(i) is a monomorphism. Assume that c is a chain

of Cn(X \ U) such that Cn(i)c = 0 in Cn(X,A). Then each simplex s in the

support of c is such that all the vertices of s are in ∗A, and s is small in
∗A. Thus, the vertices of s are in ∗A \ ∗U , and they are small in ∗A \ ∗U ,

since A \U is normally embedded in A. Thus, c is a chain of A \U , and thus

c = 0 ∈ Cx(X \ U,A \ U). Thus Cn(i) is a monomorphism.

We prove that Cn(i) is an epimorphism. Assume that [c] is a chain of

Cn(X,A), where c is a chain of Cn(X). Write c = c′ + c′′, where the support

S ′ of c′ contains only simplices with at least one vertex in ∗U , and the

support of c′′ contains only simplices with no vertex in ∗U . Since the cover

(intA,X \ clU) is normal, each simplex of S ′ is contained in ∗(intA). Hence

c′ is a chain of A. Thus [c] = [c′ + c′′] = [c′′].

Trivially, c′′ ∈ Cn(X \ U), and Cn(i)(c′′) = [c′′] = [c]. Thus, Cn(i) is an

epimorphism.�

6 Homotopy axiom

Definition 22 Let X be a completely regular space, and let V be an open

cover of X. Let T be a compact connected space. Let U be an open cover of

X × T . We say that U is stacked over V, if the following hold:

• Each element of U is of the form V × T ′, where T ′ is open in T , and

V ∈ V.

• Given V ∈ V and t ∈ T there exists an open subset T ′ ⊂ T such that

t ∈ T ′ and V × T ′ ∈ U.

For the rest of this section we assume that T is a compact and connected

space, and X is a completely regular space.

Lemma 23 Let X be a completely regular space, and U an normal cover of

X × T . Then there exists V and a normal open cover U′ of X × I such that

U′ is stacked over normal V, and U′ refines U.

Proof: Mardesic [7], Lemma 6.35, and the discussion preceeding the

lemma.�
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Lemma 24 Assume that x, y belong to a same quasi-component of X. Then,

for every open cover U of X there is n ∈ N and a sequence of points x =

t0, . . . , tn = y such that ti, ti+1 ∈ U for some U ∈ U.

Proof: Let x, y ∈ X belong to a same quasi-component and let U be an

open cover of X. Let X ′ ⊂ X be the set of points x′ for which there is n ∈ N
and a sequence x = t0, . . . , tn = x′ such that ti, ti+1 belong to a same U ∈ U.

One easily sees that the set X ′ is open, and the complement of X ′ is open.

Since (X ′, X \X ′) is a partition of X with open sets, y ∈ X ′. Hence the

required sequence exists.�

Let T0 and T1 be two points in T .

Lemma 25 Let U be a normal cover of X × T stacked over V.

Let A be another completely regular space. Let U0 be a normal cover of

A× T stacked over V0.

Let V′ be a finite subset of V and V′0 be a finite subset of V0. Then there

exists a finite sequence of points T0 = t0, . . . , tn = T1 such that each of the

sets V × {ti, ti+1}, V ∈ V′, is contained in some member of U and each of

the sets V0 × {ti, ti+1}, V0 ∈ V′0, is contained in some member of U0.

Proof: For each V ∈ V′ choose a cover TV of T such that V × T ′ ∈ U for

all T ′ ∈ TV . For each V0 ∈ V′0 choose a cover TV0 of T such that V × T ′ ∈ U0

for all T ′ ∈ TV0

Let T be a common refinement of all sets TV , V ∈ V′, and TV0 , V0 ∈ V0.

Let T0 = t0, . . . , tn = T1 be the sequence of the points given by the previous

lemma for the cover T. Note that since T is connected, T0 and T1 both lie in

the only quasi-component of X.

Now, if V ∈ V′, then V × {ti, ti+1} ⊂ V × T ′, where T ′ ∈ T, and conse-

quently V × {ti, ti+1} ⊂ V × T ′′ for some T ′′ ∈ TV . Thus V × {ti, ti+1} ⊂ U

for some U ∈ U.

The claim for A is proved in a similar fashion. �

Lemma 26 Let U be a non-standard normal cover of ∗(X × T ) refining the

non-standard version each standard normal cover, U stacked over V, which
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is a non-standard normal cover of ∗X refining the non-standard version of

each standard normal cover.

Let A be another completely regular space. Let U0 be a non-standard

normal cover of ∗(A×T ) refining the non-standard version of each standard

normal cover, U0 stacked over V0, which is a non-standard normal cover of
∗A refining the non-standard version of each standard normal cover.

Let V′ be a hyperfinite subset of V and let V′0 be a hyperfinite subset of V0.

Then there exists a hyperfinite sequence of points of ∗T , T0 = t0, . . . , tn = T1

such that each of the sets V ×{ti, ti+1}, V ∈ V′, is contained in some member

of V and each of the sets V0×{ti, ti+1}, V0 ∈ V′0, is contained in some member

of V0.

Proof: Transfer and the previous lemma.�

Lemma 27 We have the following:

• If U is a normal cover of X × T , stacked over V, then V is a normal

cover of X.

• Let W be a non-standard open cover of ∗(X × T ) refining the non-

standard version of each standard [normal] open cover such that W

is stacked over non-standard W′. Then the cover W′ refines the non-

standard version of each standard [normal] open cover of X.

Proof: (1) Lemma 5.

(2) First we prove the lemma without the normality addition.

Let W and W′ be as in the statement of the lemma. Let U be a standard

open cover of X, and let V be a cover of X × T defined so that the members

of V are the sets U × T , where U ∈ U. Now W refines ∗V, and hence for all

W ′ ∈W′ we have W ′ × T0 ⊂ U × T for some U ∈ ∗U. Hence W′ refines ∗U.

Since U was arbitrary, the first part of the lemma follows.

The rest of the lemma follows, since if U is normal, so is V, since V is the

inverse image of U in the projection X × T → X. �

Lemma 28 Let J be a hyperfinite set, and (Xj)j∈J be an internal collection

of subsets of X such that each of the sets Xj is small.
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Let A be another completely regular space, let J0 be hyperfinite set, and

let (Aj0)j0∈J0 be an internal collection of subsets of A such that each of the

sets Aj0 is small.

Then there exists an internal hyperfinite sequence of points of ∗T , T0 =

t0, . . . , tn = T1 such that each of the sets Xj ×{ti, ti+1} is small in ∗(X × T )

and each of the sets Aj0 × {ti, ti+1} is small in ∗(A× T ).

Proof: Let U be a normal cover of X × T stacked over V. Now, each of

the sets Xj is contained in some V ∈ ∗V. Given a finite set of normal covers

of X × T , by Lemma 23, there exists a stacked normal cover refining them

all. By saturation, there exists a non-standard normal cover W of ∗(X × T )

refining ∗W′′ for each standard normal cover W′′ of (X × T ) such that W is

stacked over a non-standard normal cover W′ of ∗X, and such that each Xj

is contained in some member of W′.

Similarly, there exists a non-standard normal cover W0 of ∗(A × T ) re-

fining ∗W′′
0 for each standard normal cover W′′

0 of (A × T ) such that W0 is

stacked over a non-standard normal cover W′
0 of ∗A, and such that each Aj0

is contained in some member of W′
0.

By transferred Axiom of Choice, let (Wj)j∈J be an internal collection of

elements of W′ such that each Xj ⊂ Wj. Similarly, let (W0j0)j0∈J0 be an

internal collection of elements of W′
0 such that each Aj0 ⊂ Wj0 .

Now let T0 = t0, . . . , tn = T1 be as in Lemma 26 for the collections

(Wj)j∈J , (W0j0)j∈J0 and the covers W, W0.

Now each Xj ×{ti, ti+1} is contained in Wj ×{ti, ti+1}, which, in turn, is

contained in some member of W. Since W refines the non-standard version

of each standard normal cover of X ×T , each member of W is small. Hence,

each set Xj × {ti, ti+1} is small.

Similarly, each set Aj0 × {ti, ti+1} is small. �

Lemma 29 Let (K,L) be a pair of simplicial complexes. Let {0, 1} be two

points not in K. Let (K ′, L′) be a simplicial complex such that the vertices of

K ′ are of the type (v, 0), (v, 1), v is a vertex of K, (similarly for L′), and s

is a simplex of K ′ if and only if s is contained in the set s′×{0, 1} for some

simplex s′ of K (similarly for L′).

Let c be a cycle in (K,L). If c0 is obtained from c by replacing each vertex
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v with (v, 0), and c1 is obtained from c by replacing each vertex v with (v, 1),

then c0 and c1 are homologuous.

Proof: We apply the theorem of acyclic carriers, see Eilenberg-Steenrod

[2], Theorem VI.5.8. The carrier of a simplex s of K is s × {0, 1}, which is

acyclic as a simplex.�

Let (X,A) be a pair of completely regular spaces, let [c] ∈ Cn(X,A; ∗G)

be a cycle, and let c′ ∈ Cn−1(A; ∗G) be the element ∆(c). Now the simplices

of c form a hyperfinite collection (sj)j∈J of small sets of X and the simplices

of c′ form a hyperfinite collection (s′j)j∈J0 of small sets of A.

By Lemma 28, there exists a hyperfinite sequence of points T0 =

t0, . . . , tN = T1 of ∗T such that each of the sets sj × {ti, tt+1} is small in

X and each of the sets s′j × {ti, ti+1} is small in A.

Denote by ci, [ci] ∈ Cn(X × T,A × T ; ∗G), the chain that has been

obtained from c by replacing each vertex v by (v, ti).

Denote by c′i ∈ Cn−1(A × T ; ∗G) the chain that has been obtained from

c′ by replacing each vertex v′ by (v′, ti).

Lemma 30 The cycles [ci] and [ci+1] are homologuous.

Proof: Consider the simplicial complex Ki whose vertices are (v, ti),

(v, ti+1), where v runs through the vertices of the support of ci. s is a sim-

plex of Ki, if s is contained in a set s′′ × {ti, ti+1} for some simplex s′′ of the

support of ci. Let Li be the subcomplex of Ki such that the vertices of Li are

(v′, ti), (v′, ti+1), where v′ runs through the vertices of c′i. s
′ is a simplex of

Li, if s′ is contained in a set s′′×{ti, ti+1} for some simplex s′′ of the support

of c′i.

Now [ci] and [ci+1] are cycles of ∗(Cn)(Ki, Li), and they are homologuous

by transferred Lemma 29 in ∗(C)(Ki, Li). They are homologuous in Cn(X×
T,A×T ; ∗G), since each simplex of Ki is small in ∗(X×T ) and each simplex

of Li is small in ∗(A × T ). Hence, if bi is the chain killing [ci] − [ci+1] in
∗(C)(Ki, Li), then bi is a chain of Cn+1(X × T,A× T ; ∗G).�

Lemma 31 The cycles [c0] and [cN ] are homologous.
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Proof: For each i, let bi be a chain killing [ci+1] − [ci], i = 0, . . . , N − 1,

N ∈ ∗N, given by the previous lemma.

We prove that the collection (bi)i=0,...,N−1 can be chosen to be internal.

The collection (Ki, Li)i=0,...,N1 from the proof of the previous lemma is inter-

nal, as well as the collections (ci)i=0,...,N , (c′i)i=0,...,N . Hence, the collection

(Bi)i=0,...,N−1 is internal, where Bi is the set of chains of ( ∗C)n+1(Ki, Li;
∗G)

killing ci+1 − ci. Now, use the transferred Axiom of Choice to choose the

internal collection (bi)i=0,...,N−1, bi ∈ Bi.

Now
∑N−1

i=0 bi kills [cN ]− [c0].�

Theorem 32 Let f0 : (X,A) → (X × T,A × T ), f0(x) = (x, T0), and

f1 : (X,A) → (X × T,A × T ), f1(x) = (x, T1). Then f0 and f1 induce

the same map in homology.

Proof: Let [c] be a cycle in Cn(X,A; ∗G). Choose a sequence of points

T0 = t0, . . . , tN = T1 as in the discussion preceeding Lemma 30. Now [c0] =

Cn(f0; ∗G)[c], and [cN ] = Cn(f1; ∗G)[c]. By the previous lemma, [c0] and [cN ]

are homologous, that is Hn(f0; ∗G)([c]) = Hn(f1; ∗G)([c]).�

Corollary 33 H satisfies the homotopy axiom for completely regular pairs

(X,A).

Proof: By the well-known trick, the previous theorem with T = I implies

the homotopy axiom.�

Remark 34 We actually proved the homotopy axiom in a slightly stronger

form: Instead of I, any compact and connected space can be used as the

space along which the homotopy runs.

Remark 35 In McCord’s paper[9], the proof of the homotopy axiom is cor-

rect but somewhat handwavish. Our construction above gives also a rigorous

proof for the homotopy axiom of McCord homology, once one cheks that if

the support of c consists of near-standard points, then the support of each bi

in the proof of Lemma 31 consists of near-standard points. But each point

in the support of bi is of the type (x, t), x ∈ ∗X near-standard, t ∈ ∗T , and

these points are near-standard by the next lemma. (Note that, since T is

compact, ever point of ∗T is near-standard.)
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Lemma 36 Assume that x ∈ ∗X and y ∈ ∗Y are near-standard. Then the

point (x, y) ∈ ∗X × ∗Y is near-standard.

Proof: Let x′ ∈ X such that x ∼ x′, and y′ ∈ Y such that y ∼ y′. We

claim that (x, y) ∼ (x′, y′), where (x′, y′) is standard.

Let U be a neighbourhood of (x′, y′) in X × Y . Let V = UX × UY be a

neighbourhood of (x′, y′) contained in U , where UX is open in X, and UY is

open in Y . Since x′ ∼ x, y′ ∼ y, we have that x ∈ ∗UX , y ∈ ∗UY , and thus

(x, y) ∈ ∗(UX × UY ) ⊂ ∗U .�

Remark 37 Now, we have checked that H is a homology theory for pairs

(X,A) of completely regular spaces, A closed in X, except that in the excision

axiom there are some normal embedding requirements.

7 Quasi-components

Let X be a topological space. We recall that x, y ∈ X belong to a same

quasi-component, if for every partition U, V of X with open sets, x, y ∈ U or

x, y ∈ V .

Lemma 38 Assume that x, y belong to a same quasi-component of X. Then,

there exists N ∈ ∗N, and an internal hyperfinite sequence x = t0, . . . , tN = y

of points of ∗X such that for all i, ti, ti+1 are infinitesimally close.

Proof: Let U be a non-standard normal cover refining each standard

normal cover. Then the claim is Lemma 24 transferred.�

Lemma 39 Let H be a homology theory (in the sense of Eilenberg-Steenrod

axioms) such that if H(X) has been defined, then also H(X ′) has been defined

for all clopen subsets X ′ of X together with H(i) for the inclusion X ′ → X.

Let X be a topological space, and let x, y be points of X in different quasi-

components. Let P be an one-point space, and let ix : P → X, iy : P → X be

the maps mapping the point P to x and y, respectively.

Then imH0(ix) ∩ imH0(iy) = 0.
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Proof: Let U, V be a partition of X with clopen subsets of X such that

x ∈ U , y ∈ V . From the Mayer-Vietoris sequence of the triple (X,U, V ) we

see that H0(X) = H0(U)⊕H0(V ).

Now imH0(ix) ⊂ H0(U) and imH0(iy) ⊂ H0(V ). Hence imH0(ix) ∩
imH0(iy) ⊂ H0(U) ∩H0(V ) = 0.�

Lemma 40 Assume that x, y ∈ X. Let ix, iy be as in the previous lemma.

If x, y belong to a same quasi-component, then H0(ix; ∗G) = H0(iy; ∗G).

Proof: Let s be the 0-simplex in P . Consider d = C0(iy; ∗G)(gs) −
C0(ix; ∗G)(gs), and let the points t0, . . . , tN be as in Lemma 38. Now the

chain
∑N−1

i=0 g(ti+1 − ti) kills d. Hence H0(ix; ∗G) = H0(iy; ∗G).�

Theorem 41 Our homology theory H finds quasi-components.

Proof: Combine the Lemmas 39 and 40.�

Lemma 42 Assume that X is connected. Then H0(X; ∗G) = ∗G. Further-

more, if P is the one-point space, x ∈ X, and ix : P 7→ x, then H0(i; ∗G) is

an isomorphism.

Proof: Let U be a non-standard normal cover of X refining each standard

normal cover. Let x ∈ X be a fixed point.

Let c = ∗∑ givi ∈ C0(X; ∗G). For each vi choose a hyperfinite sequence

vi = ti0, . . . , t
i
N = x such that any two consequent points belong to a same

member of U. (Such sequence exists by transferred Lemma 24.) Let ci =
∗∑

j gi(t
i
j, t

i
j+1). Now ci kills gix−givi. Thus, the support of ∂( ∗

∑
i ci)+c is

the point x. That is, any chain in C0(X; ∗G) is homologuous to a chain with

x as a support. Thus H0(X; ∗G) is generated by the chains [gx], g ∈ ∗G.

To complete the proof, we must show that if g0 6= g1 ∈ ∗G, then [g0x] 6=
[g1x]. But this is a consequence of Eilenberg-Steenrod [2], Chap 1, Theorem

7.6.

The furthermore part follows from the previous argument, since

H(ix)([gP ]) = [gx] for all g ∈ ∗G. �

Lemma 43 Assume that X is a Hausdorff space such that there exist x, y ∈
X such that x, y are not contained in any compact and connected subset of

X. Let P be the one-point space, and let ix : P 7→ x, iy : P 7→ y.
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Let H be a homology theory such that the following hold:

• If X is an admissible space then so are all clopen subsets X ′ ⊂ X,

together with the embedding X ′ ↪→ X.

• If X is an admissible space, then so are all compact subsets X ′ ⊂ X

together with the embedding X ′ ↪→ X.

• H has compact supports.

Then imH0(ix) ∩ imH0(iy) = 0.

Proof: Let X ′ be a compact subset of X containing x, y. Now the

connected component C of X ′ containing x is compact and connected, and

hence y 6∈ C. Since X ′ is compact, its connected components coincide with

its quasi-components, and hence x, y lie in different quasi-components of X ′.

Hence, by Lemma 39, imH0(iX
′

x ) ∩ imH0(iX
′

y ) = 0, where iX
′

x is obtained

from ix by restricting its target to X ′ and iX
′

y similarly from iy.

Since H has compact supports, H0(X) = colimH0(X ′), where X ′ runs

over all compact subsets of X. Thus, for H0(ix)∩H0(iy) 6= 0, we should have

imH0(iX
′

x ) ∩ imH0(iX
′

y ) 6= 0 for some compact X ′ ⊂ X, but due to the first

paragraph, this is impossible.�

Corollary 44 Our homology theory H does not have compact supports, if S

contains all Borel subsets of the plane.

Proof: There exists a paracompact connected Hausdorff space X such

that there are x, y ∈ X such that x, y do not lie in any compact connected

subset of X. See for example the Example 119 in Seebach-Steen [12] (Which

is a Borel subset of the plane).

Thus P : P 7→ x induces an isomorphism in the 0th homology by Lemma

42. However, if H had compact supports, this would be impossible by Lemma

44.�

Remark 45 We do not know whether the compactness assumption of T in

Theorem 32 is essential.
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Remark 46 For compact pairs, our homology theory is defined similarly to

McCord homology. Since McCord homology has compact supports (Korppi,

[6], Theorem 13), we see that our homology with compact supports coincides

with McCord homology.

Example 47 Let X ⊂ R2, X = {(0, 0), (0, 1)} ∪
⋃

i∈N 1/i × I and

A={(0,0),(0,1)}. Now (0, 0) and (0, 1) belong to the same quasi-component

of X, and hence i0 : P 7→ (0, 0) and i1 : P 7→ (0, 1) induce the same map

in homology. Because of the exact sequence H1(X,A; ∗G)
∂→ H0(A; ∗G) →

H0(X; ∗G), there exists [z] ∈ H1(X,A; ∗G) such that ∂([z]) = [(0, 1)−(0, 0)].

We remark that i0 and i1 induce the same map also in Cech homology,

but because of inexactness of Cech homology, the element [z] does not exist

in Cech homology.

8 Non-standard homology and lim

Theorem 48 Let (Cn,∆n) be a chain complex of inverse systems

(I, Ci, πji) and level homomorphisms. Then Hn(limi∈I
∗Cn, limi∈I

∗∆n) and

limi∈I Hn( ∗Cn,
∗∆n) are isomorphic. The isomorphism is given by the for-

mula (zi)i∈I 7→ ([zi])i∈I , where (zi)i∈I is a cycle of limi∈I
∗Cn.

Proof: Let (Zn)i be the group of cycles in (Cn)i, (Bn)i be the group of

boundaries in (Cn)i and let (Hn)i = Hn(Ci). Since ”being a cycle” and ”being

a boundary” can be expressed in the first-order logic, ∗(Bn)i and ∗(Zn)i are

the groups of cycles and boundaries, respectively, in ( ∗(Cn)i,
∗(∆n)i), i ∈ I.

Hence, we get a short exact sequence

0→ ∗(Bn)i → ∗(Zn)i → ∗(Zn/Bn)i → 0.

By Theorem 7 in Korppi[5], we have that lim1
i∈I

∗(Bn)i = 0, and thus we

get a short exact sequence

0→ limi∈I
∗(Bn)i → limi∈I

∗(Zn)i → limi∈I
∗(Zn/Bn)i → 0.

Furthermore limi∈I
∗(Zn/Bn)i = limi∈I( ∗Hn)i.

To complete the proof, we must thus show that limi∈I( ∗Bn)i equals

im limi∈I( ∗∆n)i and limi∈I
∗(Zn)i equals ker limi∈I

∗∆n.
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Consider the exact sequence

0→ ( ∗Zn+1)i → ( ∗Cn+1)i

∗(∆n+1)i→ ( ∗Bn)i → 0.

Since lim1
i∈I( ∗Zn+1)i = 0 (by Korppi [5], Theorem 7), we get an exact

sequence

0→ limi∈I( ∗Zn+1)i → limi∈I( ∗Cn+1)i
limi∈I

∗(∆n+1)i→ limi∈I( ∗Bn)i → 0.

Hence limi∈I( ∗Bn)i = im limi∈I
∗(∆n+1)i and limi∈I

∗(Zn)i =

ker limi∈I
∗∆n. the proof of of the fact that limi∈I Hn( ∗Cn,

∗∆n) and

Hn(limi∈I
∗Cn, limi∈I

∗∆n) are isomorphic is complete.

.�

9 Homology of simplicial pairs

In this section, we do not assume that the simplicial complexes are either lo-

cally finite or finite-dimensional. We assume that the geometrical realization

|K| of K is equipped with the weak topology.

Definition 49 Let K be a simplicial complex. We define the Vietoris com-

plex KV of K is so that the points of KV are the points of |K|, and s is a

simplex of KV if s is contained in the open star of some vertex v of K.

First, we observe that K and the nerve KN of the covering U of |K| with

open stars of vertices are naturally isomorphic, and hence their homologies

coincide. Furthermore, by Dowker [1], Theorem 1a and the discussion in the

beginning of Chapter 5, the homologies of KN and KV are isomorphic; the

isomorphism is natural by Dowker [1], Lemma 4a.

Lemma 50 Let K be a simplicial complex, and let U be a normal open cover

of |K|.

1. There exists a subdivision K ′ of K such that each geometrical simplex

of K ′ is contained in some member of U.

2. There exists a subdivision K ′′ of K such that the star of each vertex is

contained in some member of U.
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Proof: See Whitehead [13], Theorem 35 and the discussion in Spanier

[11], after Theorem 3.3.14. �

Let K be a simplicial complex, and K ′ a subdivision of K. We identify

|K ′| and |K|.

Lemma 51 Let K be a simplicial complex, and let K ′ be a subdivision of K.

Then i : K ′V ↪→ KV induces an isomorphism in homology.

Proof: S ′ be the set of open stars of vertices of K ′ and S be the set of

open stars of vertices of K.

Let (|K|, S ′,∈) and (|K|, S,∈) be relations as in Dowker [1]. Let

f : (|K|, S ′,∈) → (|K|, S,∈) be a map such that f(x) = x for x ∈ |K|,
and s ⊂ f(s) for s ∈ S ′. Then, by Dowker [1], Lemma 4a, Theorem 1 and

Section 1, g∗ω
′ = ωi∗, where ω : H(KV ;G)→ H(KN ;G) is an isomorphism,

ω′ : H(K ′V ;G) → H(KN ;G) is an isomorphism and g : K ′N → KN is a map

that takes s ∈ S ′ into gs such that s ⊂ gs.

Now KN and K (resp. K ′N and K ′) are naturally isomorphic, and in the

natural isomorphism, to g there corresponds a map h : K ′ → K such that for

all simplices s of K and all vertices v ∈ K ′ it holds that h(v) is a vertex of a

simplex s if v ∈ |s|. Hence h is a simplicial approximation of id : |K ′| → |K|,
and h induces isomorphisms in homology. Hence g induces isomorphisms in

homology. Since ω and ω′ are isomorphisms, also i∗ is an isomorphism. �

Let U be an open cover of a topological space X. The vietoris complex

VU of U is a simplicial complex such that the vertices of VU are the points of

X, and s is a simplex if s is contained in U ∈ U.

Lemma 52 C(|K|; ∗G) = lim( ∗C)( ∗VU; ∗G) =
⋂

( ∗C)( ∗VU; ∗G), where lim

is taken over normal covers U of |K|, the relation in the inverse system is

refinement.

Proof: C(|K|; ∗G) is the subset of C ′(|K|; ∗G) consisting of chains

with only small simplices in support. Hence, c ∈ C(|K|; ∗G) implies

c ∈ ( ∗C)( ∗VU; ∗G) for all normal covers U of |K|.
Assume then that c ∈ lim( ∗C)( ∗VU). First, we note that if V refines

U, then the map ( ∗C)( ∗i; ∗G), induced by the inclusion i : VV ↪→ VU is a
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monomorphism. To complete the proof, we must thus show that if c ∈
lim( ∗C)( ∗VU; ∗G) =

⋂
U( ∗C)( ∗VU; ∗G), then each simplex in the support of

c is small. But this holds, since each simplex s in the support of c is contained

in U ∈ ∗U for every normal cover U of |K|.�

Lemma 53 There is an isomorphism H(|K|; ∗G) → lim( ∗H)( ∗VU; ∗G),

where VU is the vietoris complex of the cover U, and lim is taken over normal

covers U of |K|. The isomorphism is given by the formula z 7→ ([z]), where

z is a cycle in C(|K|; ∗G).

Proof: By Lemma 52 H(|K|; ∗G) = ( ∗H) lim( ∗C)( ∗VU; ∗G), which is

isomorphic to lim( ∗H)( ∗VU; ∗G) by Theorem 48. By Theorem 48, he iso-

morphism is given by the formula z 7→ ([z]), where z is a cycle in C(|K|; ∗G).

�

Lemma 54 The inclusion C(|K|; ∗G) ↪→ ( ∗C)( ∗KV ; ∗G) induces isomor-

phisms in homology.

Proof: By Lemma 50 (2), covers with stars of vertices in subdivisions are

cofinal in the set of all normal covers. Thus, in Lemma 53 the limit can be

taken over the sets K ′V , where K ′ is a subdivision of K.

But, if K ′ is a subdivision of K, then the map induced by the in-

clusion ( ∗H)( ∗K ′V ; ∗G) → ( ∗H)( ∗KV ; ∗G) is an isomorphism. Hence

lim( ∗H)( ∗K ′V ; ∗G) and ( ∗H)( ∗KV ; ∗G) are isomorphic; the isomorphism is

given by the formula ([zK′V
]) 7→ [zKV

], where ([zK′V
]) is a collection of homol-

ogy classes of cycles in lim( ∗H)( ∗K ′V ; ∗G).

Hence, by Lemma 53, the H(|K|; ∗G) and ( ∗H)( ∗KV ; ∗G) are isomor-

phic; by Lemma 53 and the above paragraph, the isomorphism is the one

taking a cycle z of H(|K|; ∗G) to [z] in ( ∗H)( ∗KV ; ∗G). �

Theorem 55 The inclusion C(|K,L|; ∗G) ↪→ ( ∗C)( ∗KV ,
∗LV ; ∗G) induces

isomorphisms in homology.

Hence H(|K,L|; ∗G) = ∗(H(K,L;G))

Proof: Since both H on the left and ∗H on the right are exact, the first

result follows from the previous lemma and the five-lemma applied to the

exact homology sequences.
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The last part follows, since by Dowker [1], Theorem 1a, and the discussion

in the beginning of Chapter 5, H(KV , LV ;G) = H(KN , LN ;G) (by Dowker

[1], Lemma 4a, the correspondence is natural), and trivially, H(KN , LN ;G) =

H(K,L;G); (one easily sees that this corresponcence is natural.) �

Example 56 Let X be a disjoint union of S1
n = S1, n ∈ N. Then

H0(X; ∗Z) = ∗⊕
n∈ ∗N

∗Z, H1(X; ∗Z) = ∗⊕
n∈ ∗N

∗Z, and Hn(X; ∗Z) = 0

for n ≥ 2 by the previous theorem.

10 Non-standard characterization of resolu-

tions

Let (I,Xi, πii′) be an inverse system of topological spaces. Let X be a topo-

logical space together with maps πi : X → Xi, i ∈ I commuting with the

maps πii′ . Following Mardesic, [7], Chapter 6.2, we say that (I,Xi, πii′) is a

resolution of X, if the following hold:

• (P1) For every normal cover U of X there exists i ∈ I and a normal

cover V of Xi such that π−1
i V refines U.

• (P2) For every i ∈ I and every normal cover V of Xi there exists i′ ∈ I
such that πii′Xi′ ⊂ St(πi(X),V).

Let J = {i ∈ ∗I | i > I}. For x, y ∈ ∗Xj, j ∈ J we say that x ∼ y if and

only if πij(x) ∼ πij(y) for all i ∈ I. We say that A ⊂ Xj is small if and only

if πijA is small for all i ∈ I.

Remark 57 Let j > I. Then ∼ in Xj will, in general, be dependent on the

resolution (I,Xi, πij).

Lemma 58 Let j ∈ J , and x, y ∈ ∗Xj. We have that x ∼ y if and only if

for each i ∈ I and each normal cover U of Xi there exists U ∈ ∗(π−1
ij U) such

that x, y ∈ U .

Proof: Trivial from the definition.�
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Lemma 59 ∼ is an equivalence relation in Xj. Furthermore, a subset A in

Xj is small if and only if x ∼ y for all x, y ∈ A.

Proof: To prove that ∼ is an equvalence relation, it is enough to check

transitivity. Symmetry and reflexivity are trivial. Let i ∈ I, and let U be

a normal cover of Xi. Let V be a star-refinement of U. Now, due to the

previous lemma and considering the covers ∗(π−1
ij U) and ∗(π−1

ij V), the proofs

of the claims is similar to the corresponding proofs in Lemmas 6 and 7.�

Lemma 60 The following are equivalent:

1. (P1)

2. For all x, y ∈ ∗X we have x ∼ y if and only if ∗πi(x) ∼ ∗πi(y) for all

i ∈ I.

3. For all x, y ∈ ∗X we have x ∼ y if and only if ∗πj(x) ∼ ∗πj(y) for all

j ∈ J .

4. For all x, y ∈ ∗X we have x ∼ y if and only if ∗πj(x) ∼ ∗πj(y) for

some j ∈ J .

Proof: (2) implies (3) by the definition of ∼ for non-standard indices. (3)

implies (4) a fortiori. (4) implies (2) by the definition of ∼ for non-standard

indices.

We prove that (1) implies (2). Assume (P1). Let i ∈ I. Since πi is

continuous, we have that x ∼ y implies ∗πi(x) ∼ ∗πi(y).

Assume then that x 6∼ y. Then, by the definition of ∼ there exists a

normal cover U of X such that x, y do not belong to any same member of
∗U. By (P1) there exists i ∈ I and and a normal cover V of Xi such that

π−1
i V refines U. Hence ∗πi(x) and ∗πi(y) do not belong to any same member

of ∗V. Thus (1) implies (2).

We prove that (2) implies (1), that is, not (1) implies not (2). Let U

be an open cover of X such that for all i ∈ I and for no open cover V of

Xi the cover π−1
i V is a refinement of U. Let U′ be a normal cover that is a

star-refinement of U.

Let P be a finite set of pairs (i,V) such that i ∈ I and V is a normal cover

of Xi. Choose i′ > i for all i in pairs P , a normal cover V′ of Xi′ refining each
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π−1
ii′ V. Now π−1

i′ V′ is not a refinement of U. Hence, there exists V ∈ π−1
i′ V′

such that V is not contained in any member of U. Let x ∈ V . Now V is not

contained in st(x,U′). Hence, we can choose y ∈ V , y 6∈ st(x,U′). Hence,

x, y do not belong to a same member of U′.

Hence by saturation, there exist x, y ∈ ∗X such that ∗πi(x) and ∗πi(y)

belong to a same member of ∗V for all i ∈ I and for all normal covers V

of Xi, but x, y do not belong to a same member of ∗U′. Hence x 6∼ y, but
∗πi(x) ∼ ∗πi(y) for all i ∈ I. Hence, not (1) implies not (2), and (2) implies

(1).�

Lemma 61 The following are equivalent:

1. (P2)

2. For every i ∈ I and j ∈ J we have the following: Every point x ∈
∗πij

∗Xj is infinitesimally close to some x′ ∈ ∗πi
∗X.

3. For every i ∈ I and some j ∈ J we have the following: Every point

x ∈ ∗πij
∗Xj is infinitesimally close to some x′ ∈ ∗πi

∗X.

4. For every j ∈ J and every point x ∈ ∗Xj we have that x ∼ x′ for some

x′ ∈ ∗πj
∗X.

5. For some j ∈ J and every point x ∈ ∗Xj we have that x ∼ x′ for some

x′ ∈ ∗πj
∗X.

Proof: (4) implies (5) and (2) implies (3) a fortiori.

We prove that (1) implies (2). Let i in I and, j in J and let x ∈ ∗πij
∗Xj.

Assume (P2). Let U be a normal cover of Xi. Let i′ > i be standard such

that πii′Xi′ ⊂ St(πi(X),U). Since πij(Xj) ⊂ πii′Xi′ , we have that x is U-close

to some xU ∈ ∗πi
∗X.

Thus, given any finite family (Uk) of normal covers of Xi, they have a

common refinement U, and there exists xU ∈ ∗πi
∗X that is ∗Uk-close to x

for all k. Thus, by saturation there exists a non-standard normal cover W

of ∗Xi refining the non-standard version of each standard normal cover, and

y ∈ ∗πi
∗X such that x is W-close to y, and hence x ∼ y. Thus (1) implies

(2).
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We prove that (3) implies (5) so that the j in both claims is the same.

This will also give (2) implies (4).

Let j ∈ J , and let x ∈ ∗Xj. Let i ∈ I, and let U be a normal cover of Xi.

By (2), there exists xi,U ∈ ∗πj(X) such that x and xi,U are ∗π−1
ij U-close.

Thus, given a finite set P of pairs (i,U) such that U is a normal cover of

Xi, there exists i′ > i for all i in P , and a normal cover U′ of Xi′ such that U′

refines each π−1
ii′ U. Hence xi′,U′ and x are ∗π−1

ij
∗U-close for each (i,U) ∈ P .

Thus, by saturation, there exists x′ ∈ ∗πjX such that x and x′ are ∗π−1
ij
∗V

close for every normal cover V of Xi and every i ∈ I, and hence x ∼ x′ by

Lemma 57. Hence (2) implies (4) and (3) implies (5).

We prove that (5) implies (1). Let j ∈ J . Assume that (P2) does not

hold, that is, there exists i ∈ I and a normal cover U of Xi such that for

every i′ > i the set πii′Xi′ is not contained in St(πiX,U). For every Xi′ ,

i′ > i choose xi′ ∈ Xi′ such that πii′xi′ 6∈ St(πiX,U). Now, since (xi′) is a

standard sequence, it extends to all indices in J , and thus ∗xj exists. By

transferring the claim πii′xi′ 6∈ St(πiX,U), we see that no point of ∗πj
∗X is

∗π−1
ij
∗U-close to ∗xj. Thus, not (1) implies not (5), and (5) implies (1).

Now we have (2) implies (3), (4) implies (5), (1) implies (2), (3) implies

(5), (2) implies (4) and (5) implies (1). Hence the theorem holds. �

Lemma 62 Given j ∈ J there exists internal f : ∗Xj → πj
∗X such that

1. x ∼ y if and only if f(x) ∼ f(y).

2. x ∼ f(x)

3. If x ∈ πj
∗X, then f(x) = x.

Proof: Let P be a finite set of pairs (i,U), where i ∈ I, and U is a normal

cover of Xi. Let I0 be the set of i such that (i,U) ∈ P for some U.

Let i′ > I0, and let V be a normal cover of Xi′ such that V refines p−1
ii′ U

for each U in P . Let now fP : Xj → πj
∗X be a retraction (no continuity

assumptions) such that x and fP (x) belong to a same element of p−1
i′j
∗V.

That is, x, fP (x) belong to a same element of p−1
ij
∗U for all (i,U) ∈ P . Such

fPU exists by the transferred Axiom of Choice and the fact that for each

element x of Xj there is an element yx of πj
∗X such that x ∼ yx; hence x

and yx belong to a same element of p−1
i′j
∗V.
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By saturation there exists f : Xj → πj
∗X such that f is a retraction, and

for each standard i and U a normal cover of Xi, f(x) and x are ∗π−1
ij
∗U-close.

Hence f(x) ∼ x. Now we have (2) and (3), and (1) follows by transitivity of

∼. �

11 H is continuous with respect to resolu-

tions for single spaces

Let (I,Xi, πij) be a resolution of X like in the previous section. Now the

maps πi induce a map p : H(X; ∗G) → limH(Xi;
∗G). In this section we

prove that p is an isomorphism.

Our proof exploits ideas in the proof of the continuity of McCord homol-

ogy for compact pairs in Garavaglia [3].

For j ∈ J , we denote by C ′n(Xj;
∗G) the group of hyperfinite sums of n+1-

tuples (called simplices) of points of Xj, and by Cn(Xj;
∗G) the subgroup

of C ′n(Xj;
∗G) such that all the simplices are small. We easily see that the

maps πij induce maps Cn(πij;
∗G).

We denote by CU
n (Xi;

∗G) the subgroup of C ′n(Xi;
∗G) such that all sim-

plices in CU
n (Xi;

∗G) are U-small. If c, c′ ∈ CU
n (Xi;

∗G) are homologous by a

boundary in CU
n+1(Xi;

∗G), we say that c, c′ are U-homologous.

Remark 63 Assume that each Xi is polyhedral and j > I. We remark

that the homology of C(Xj;
∗G) is in general different from the simplicial

( ∗H)(Xj;
∗G).

Lemma 64 Given a collection of cycles (ci)i∈I , ci ∈ Cn(Xi;
∗G) such that

Cn(πii′)(ci′) and ci are homologous for all i < i′ ∈ I, there exists j ∈ J and

c ∈ Cn(Xj;
∗G) such that Cn(πij)(c) and ci are homologous for all i ∈ I.

Proof: Let P be a finite set of pairs (i,U), where i ∈ I and U is an open

cover of Xi. Let I ′ be the set of indices i such that (i,U) ∈ P for some U.

Then there exists i′ ∈ I such that i′ > i for all pairs i ∈ I ′. Consider ci′ .

There exists a bi ∈ Cn+1(Xi;
∗G), i ∈ I ′ such that ∂bi = πii′c

′
i − ci. Thus,

bi ∈ CU
n+1(Xi;

∗G) for all U such that (i,U) ∈ P . Furthermore, πii′ci′ ∈
CU

n (Xi;
∗G) for the same U.
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Thus, by saturation, there exists j ∈ J and cj ∈ C ′n(Xj;
∗G) such that all

simplices of πijcj are small for all i ∈ I, and for every normal cover U of Xi a

bUi ∈ CU
n+1(Xi;

∗G) such that ∂bUi = πijcj− ci. Fix i. By using the saturation

principle for the collection (bUi )U one finds bi ∈ Cn+1(Xi;
∗G) killing πijcj−ci.

�

Lemma 65 Assume that c ∈ Cn(X; ∗G) such that for all i ∈ I, πi(c) = ∂bi

for some bi ∈ Cn+1(Xi;
∗G). Then there exists j ∈ J and c′ ∈ Cn+1(Xj;

∗G)

such that ∂(c′) = πjc.

Proof: Let P be a finite set of pairs (i,U), where U is a normal cover of

Xi. Then there exists i′ > i, i in P , and bi′ such that ∂bi′ = πi′c, and the

simplices of bi′ are ∗π−1
ii′
∗U small for all (i,U) in P .

Hence, by saturation, there exists i0 > I and bi0 such that ∂bi0 = πi0c

and each simplex of bi0 is ∗π−1
ii0
∗U-small for all (i,U).�

Lemma 66 Let j ∈ J .

Given a cycle c in Cn(Xj;
∗G) there exists a homologous cycle in

Cn(πjX; ∗G).

Given a cycle c′ in Cn(πjX; ∗G), that bounds in Cn(Xj;
∗G) then it bounds

in Cn(πjX; ∗G).

Proof: Let c be as in the statement of the lemma. Let f be as in Lemma

62. Let K ′′ be a hyperfinite simplicial complex such that the vertices of K ′′

are vertices of simplices of c, and the simplices of K ′′ are the sets contained

in the simplices of c. Let K ′ be the hyperfinite simplicial complex fK ′′. (I.e.

the vertices of K ′ are fv, v a vertice of K ′′, and s is a simplex of K ′ iff s is

contained in a set fs′, s′ a simplex of K ′′.)

Let K be a hyperfinite simplicial complex such that the set of vertices of

K is K ′vert∪K ′′vert, and s is a simplex of K iff s is contained in a set s′∪fs′,
s′ a simplex of K ′′. One readily checks that all the simplices of K are small.

Now idK′′ : K
′′ → K and f | : K ′′ → K are a pair of maps with an acyclic

carrier (the carrier of a simplex s is s∪fs). Hence, by transferred Eilenberg-

Steenrod [2], Theorem VI.5.8, the maps are ∗chain homotopic, and they

induce the same map in homology. Hence c and fc are homologuous cycles.

Hence we got the first part.
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Then the last part. Let c′ be as in the statement of the lemma, and let c′′ ∈
Cn+1(Xj;

∗G) be such that ∂c′′ = c′. Now fc′′ is a chain of Cn+1( ∗πjX; ∗G)

such that ∂fc′′ = c′. Hence we got the last part.�

Lemma 67 Let K, L be hyperfinite simplicial complexes and f : K → L an

internal simplicial map such that f−1s is a simplex of K and f maps f−1s

onto s for each simplex s of L. Then f induces isomorphisms in homology.

Proof: Let K, L be finite simplicial complexes, and f : K → L a simplicial

such that f−1s is a simplex of K and f maps f−1s onto s for each simplex s

of L. We prove that f induces isomorphisms in homology.

We prove the claim by induction w.r.t. the number n of simplices in L.

If n = 1, K and L are contractible, and the claim holds.

Assume then that the claim is true for n− 1, and let L have n simplices.

Let s′′ be a maximal-dimensional simplex of L, let s be a simplicial complex

consisting of s′′ and its faces, and let s′ be the simplicial complex corre-

sponding to the simplicial boundary of s′′. Let L′ be the simplicial complex

L minus s plus s′. Let K ′ be the simplicial complex K minus f−1s plus f−1s′.

Now, by the inductive assumption, f | induces isomorphisms in homology

for K ′ → L′, f−1s′ → s′ and since f−1s and s are contractible, f | induces

an isomorphisms in homology for f−1s → s. Hence, by the exactness of

Mayer-Vietoris -sequences of K ′, f−1s and L′, s and the five-lemma, f induces

isomorphisms in homology.

The lemma follows by transfer. �

Corollary 68 We have the following:

1. Given a cycle c in Cn(X; ∗G) such that πjc bounds in Cn(πjX; ∗G),

then c bounds in Cn(X; ∗G).

2. Given a cycle c′ in Cn(πjX; ∗G) there exists a cycle c in Cn(X; ∗G)

such that c′ and πjc are homologous.

Proof: We prove first (1). Let c be as in the statement of the corollary. Let

K be a simplicial complex consisting of all the simplices and their faces that

have a non-zero coefficient in c. Let b kill πjc. Let L be the simplicial complex
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consisting of all simplices and their faces that have a non-zero coefficient in

b. Now πj|K is a simplicial map K → L.

Let K ′ be a simplicial complex defined as follows: For each vertex vertex

v in L \ πjK, choose an arbitrary vertex v′ in X such as π−1
j v = v′. By the

transferred Axiom of Choice, the set of vertices v′ can be chosen internal. Let

the vertices of K ′ be the union of vertices of K and the vertices v′. The set

s ⊂ K ′ is a simplex of K ′ if it is contained in the inverse image of a simplex

of L. Since K ′ is hyperfinite, each simplex of K ′ is hyperfinite-dimensional.

One readily checks that K is a subcomplex of K ′, and by Lemma 60 (4),

each simplex of K ′ is small in ∗X. Now πj| : K ′ → L is as in the statement

of Lemma 67, and thus, by Lemma 67, c bounds in ( ∗C)n+1(K ′; ∗G), and

hence in Cn+1(X; ∗G).

Then, we prove (2). Let c′ be as in the statement of the lemma. Let

L be the simplicial complex consisting of all simplices and their faces that

have a non-zero coefficient in c′. For each vertex v of L choose an arbitrary

πj-inverse image v′, and let K be the complex whose vertices are the points

v′, and s is a simplex of K, if s is contained in a πj-inverse image of a simplex

of L. Similar to point (1), K can be chosen internal, each simplex in K is

small and hyperfinite-dimensional. Now πj| : K → L is as in the statement

of Lemma 67, and thus, by Lemma 67, the required c exists in ( ∗C)n(K, ∗G),

and hence in Cn(X, ∗G).�

Theorem 69 H is continuous with respect to resolutions for single spaces.

Proof: Combine the lemmas in this section: By Corollary 68,

H(πj) : H(X, ∗G) → H(πjX,
∗G) is an isomorphism for all j ∈ J .

By Lemma 66, the inclusion k : ∗πj
∗X → Xj induces an isomorphism

H(k) : H(πjX,
∗G)→ H(Xj,

∗G) for all j ∈ J . Now, by Lemmas 64 and 65,

the maps πi induce an isomorphism H(X; ∗G)→ limH(Xi;
∗G). �

12 Example

Since our homology coincides with McCord homology and hence with Cech

homology (with non-standard coefficients) for compact spaces, interesting

examples are non-compact.
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Let X ′ be the disjoint union of unit intervals Ij, j ∈ N. Let X = X ′/ ≡,

where the zero points are glued together. Let X have otherwise the weak

topology, but let all neighbourhoods of 0 contain all but finite of the 1-points

of the intervals.

One easily sees that if H ′ is a homology theory with compact supports,

then H ′n(X) = 0 for n > 0.

We let for i ∈ N, Xi = X/ ≡i, where x ≡i 0, if x is a 1-point of Ij, where

j > i.

One easily sees that Xi, with the natural projections, form a resolution of

X. Since each Xi is simplicial, by Theorem 55, H(Xi;
∗G) = ∗(Hs(Xi;G)),

where Hs is the simplicial homology functor.

Hence H0(Xi;
∗G) = ∗G, H1(Xi;

∗G) = ∗(
⊕

i′>iG) and Hn(Xi;
∗G) = 0,

n > 1.

Since H(X; ∗G) = limH(Xi;
∗G) by Theorem 69, we have that

H0(X) = ∗G, H1(X) = {x ∈ ∗(
⊕

j∈NG) | xj = 0 for all standard j} and

Hn(X; ∗G) = 0, n > 1.

13 Continuity for pairs

Let (X,A) be a pair of spaces, and let (Xi, Ai), i ∈ I, (πii′), i
′ > i, be an

inverse system of pairs of spaces. Let πi : (X,A)→ (Xi, Ai), i ∈ I, be maps

such that πi : X → Xi, i ∈ I, is a resolution of X, and πi| : A→ Ai, i ∈ I, is

a resolution of A.

Lemma 70 The homology sequence,

· · · → limHn+1(Xi, Ai;
∗G)

lim ∂→ limHn(Ai;
∗G)

lim a∗→ limHn(Xi;
∗G)

lim b∗→

limHn(Xi, Ai;
∗G)→ . . .

is exact, where a is the inclusion of Ai to Xi, and b is the projection of Xi

to (Xi, Ai).

Proof: Obviously, the composition of any two maps in the sequence is

zero.
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We show the exactness at the place limHn(Xi, Ai;
∗G). The other two

places are similar.

Let ([xi]) ∈ limHn(Xi, Ai;
∗G), ∂([xi]) = 0, where each xi is a chain in

Cn(Xi;
∗G). Let P be a finite set of elements (i,U,V), where i ∈ I, U is a

normal cover of Xi and V is a normal cover of Ai. Now there exists i′ > i

for all i in P . Furthermore, there exists a cycle x′i′ in C(Xi′ ;
∗G) such that

x′i′ − xi′ = a+ ∆(x) for some a ∈ C(Ai′ ;
∗G), x ∈ Cn+1(Xi′ ;

∗G).

Hence, the following holds: Given P , there exists i′ > i for all i in P and

a cycle x′i′ ∈ C ′(Xi′ ;
∗G) such that all simplices of πii′x

′
i′ are U-small for all

U such that (i,U,V) ∈ P , and xi − πii′x
′
i′ = ∆(x) + a for x ∈ CU

n+1(Xi;
∗G),

a ∈ CV(Ai;
∗G).

Hence, by saturation, there exists i0 > I and a cycle x′i0 ∈ C
′(Xi0 ;

∗G)

such that all simplices of πii0x
′
i0

are small for all i ∈ I, and for all i ∈ I

and for all normal covers V of Ai, U of Xi there exist a ∈ CV(Ai;
∗G),

x ∈ CU
n+1(Xi;

∗G) such that xi − πii0x
′
i0

= ∆(x) + a.

Let i ∈ I be fixed. Let P be a finite collection of pairs (U,V), where U

is a normal cover of Xi and V is a normal cover of Ai. Let U′ be a normal

cover of Xi refining each U in P and V′ be a normal cover of Ai refining each

V in P . Now there exist a ∈ CV′
n (Ai;

∗G) and x ∈ CU′
n+1(Xi;

∗G) such that

πii0x
′
i0
− xi = a + ∆(x). Then a ∈ CV

n (Ai;
∗G) and x ∈ CU

n+1(Xi;
∗G) for all

(U,V) in P .

Hence, by saturation, there exist a′ ∈ Cn(Ai;
∗G), x′ ∈ Cn+1(Xi;

∗G) such

that πii0x
′
i0
− xi = ∆(x′) + a′. Hence, (πii0x

′
i0

), i ∈ I, is the chain required to

show that the homology sequence is exact at the place limHn(Xi, Ai;
∗G).�

Theorem 71 limH(Xi, Ai;
∗G) = H(X,A; ∗G).

Proof: By Theorem 69, limH(Xi;
∗G) = H(X; ∗G) and limH(Ai;

∗G) =

H(A; ∗G). Now, the theorem follows by a five-lemma argument applied to

exact sequences; by Lemma 70, the lim-sequence is exact. �

14 Strong Excision

Let (X,A) be a pair of spaces such that X is paracompact and A is a closed

subset of X.
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Let (X,Ai) i ∈ I, be an inverse system, where Ai runs through closed

neighbourhoods of A, and the system projections are inclusions.

The inclusions A → Ai form a resolution of A: (P1) is satisfied, since

A is normally embedded in Ai, and (P2) is satisfied, since if U is an open

cover of Ai, St(A; U) is a neighbourhood of A, hence it contains a closed

neighbourhood of A.

Similarly, (X/A,A) has a resolution (X/A,Ai/A), i ∈ I.

Lemma 72 The space X/A is paracompact.

Proof: Let U be an open cover of X/A. Without loss of generality we may

assume that A ⊂ U for only one U ∈ U. Let p : X → X/A be the natural

projection. Let V be a locally finite refinement of p−1U. Let W ⊂ V be the

subset consisting of those W that intersect A. Now U′′ = V \W ∪
⋃

W is a

locally finite cover of X, and pU′′ is a cover of X/A refining U. Let U ′ be a

neighbourhood of A such that the closure of U ′ is contained in p
⋃

W. Now

U′ is formed so that p
⋃

W is a member of U′, and for the sets U ′′ ∈ p(V\W),

the sets U ′′ \ clU ′ are members of U′. Now U′ is a locally finite refinement

of U.�

Theorem 73 The projection p : (X,A) → (X/A,A) induces isomorphisms

in homology.

Proof: By Theorem 71, it is enough to show that limH(X,Ai;
∗G) =

limH(X/A,Ai/A; ∗G) but to show that, it is enough to show that the pro-

jection p : (X,Ai) → (X/A,Ai/A) induces isomorphisms in homology for

each i.

Let U be a neighbourhood of A such that clU ⊂ intAi. Now, by Lemma

21, H(X,Ai;
∗G) = H(X \ U,Ai \ U ; ∗G) = H(X/A,Ai/A; ∗G).�

15 Shape invariance

For the notation and terminology used in this section, we refer to Mardesic-

Segal [8].
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Let S be the set of mathematical objects we are interested in, as discussed

in Korppi, [5], Section 2. Let Sh|S be subcategory of Sh consisting of those

objects that lie in S. We may assume that Sh|S is a full subcategory of Sh.

Lemma 74 The k-th homology pro group pro-Hk(−; ∗G) is a functor

Sh|S → pro-Ab for every k ∈ N and every Abelian group G. Here H is

the homology theory developed in this article. (For the pro- -notation, see

Mardesic-Segal [8], discussion preceeding Theorem II.3.1.)

In particular, the pro-groups pro-Hk(X; ∗G) are shape invariants.

Proof: Mardesic-Segal [8] Theorem II.3.1, is a similar result, but for sin-

gular homology instead of our homology. Exactly the same proof (the proof

is in the the discussion preceeding Mardesic-Segal [8] Theorem II.3.1) works

in our case, when one replaces references to singular homology with refer-

ences to the homology theory developed in this article, and one handles only

HPol-expansions in S. It can be assumed that for each space in S, S contains

at least one HPol-expansion. �

Hence the group lim pro-Hk(X; ∗G) = limHk(Xi;
∗G), where (Xi), i ∈

I is a HPol-expansion of X, is shape invariant. In particular,

lim pro-Hk(X; ∗G) is independent of the HPol-expansion used.

By Mardesic-Segal, Theorem I.6.2, resolutions are HTop-expansions. By

Mardesic-Segal [8], I.6.7, every topological space X admits a polyhedral res-

olution, which is a HPol-expansion. We may assume that S contains a poly-

hedral resolution for each space in S.

Let (Xi), i ∈ I be a polyhedral resolution of X in S. Then

lim pro-Hk(X; ∗G) = limHk(Xi;
∗G) = Hk(X; ∗G) (the last equality follows

from Theorem 69) is shape invariant.

Thus, we have proved:

Theorem 75 H is shape invariant.
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16 Relationship with Čech homology

Theorem 76 Let (X,A) be a pair such that X is paracompact and A

is closed in X. Then there exists a monomorphism Ȟ(X,A;G) →
H(X,A; ∗G).

Proof: Since X is paracompact, all of its open covers are normal and A

is normally embedded in X.

Let (U,V) be a pair such that U is an open cover of X and V is a subset

U covering A. Denote by VU the simplicial complex such that the vertices of

VU are the points of X, and s is a simplex if s is contained in U ∈ U. Let

VV be the simplicial complex such that the vertices of VV are the points of

A, and s is a simplex of VV, if s is contained in V ∈ V.

Let i = ∗() : H(VU, VV;G) → ∗(H(VU, VV;G)) be the map [
∑
kjsj] 7→

[
∑
kjsj]. Now i is a monomorphism, in fact, it is an elementary embedding.

Hence, i induces a map lim i : limH(VU, VV;G) → lim ∗(H(VU, VV;G)),

where (U,V) runs through pairs such that U is an open cover of X, and

V ⊂ U covers A. The <-relation in the inverse systems is refinement.

One sees easily that lim i is a monomorphism.

By Dowker [1], Theorem 2a, Ȟ(X,A;G) = limH(VU, VV;G).

By Theorem 48, lim ∗(H(VU, VV;G)) = H lim ∗(C(VU, VV;G)). But

lim ∗(Cn(VU, VV;G)) =
⋂ ∗(Cn(VU, VV;G)) = Cn(X,A; ∗G), the last equality

follows, since each cover of X is normal, and A is normally embedded in X.

Hence lim ∗(H(VU, VV;G)) = H(X,A; ∗G).

With these identifications, lim i : Ȟ(X,A;G)→ H(X,A; ∗G).�
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