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Abstract: In this paper, we establish finte Yang-Laplace Transform on fractal space, considered 
some properties of finte Yang-Laplace Transform.  
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1 Introduction 

Local fractional calculus  has played  an important role  in areas ranging from 
fundamental science to engineering in the past ten years [1-18]. It is significant to deal with  the 
continuous functions (fractal functions), which are irregular in the real world. Recently, Yang- 
Laplace transform based on the local fractional calculus was introduced [9] and Yang continued to 
study this subject [10]. The Yang-Laplace transform of ( )f x  is given by [9,10] 
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And its Inverse formula of Yang- Laplace’s transforms as follows 
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The purpose of this paper is to establish the finte Yang-Laplace Transforms based on the 
Yang-Laplace transforms and consider its some properties.  
 
2  The Finite Yang-Laplace Transform and its properties 
  

In the section, both finite Yang-Laplace transform and its inverse are defined from the 
corresponding  Yang-Laplace transform and its inverse . 
Definition 2.1 (The Finite Yang-Laplace Transform). If ( )f x  is a continuous or piecewise 
continuous function on a finite interval 0 x T< < , the finite local fractional Laplace transform of 

( )f x  is defined by 
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where s  is a real or complex number and T  is a finite number that may be positive or negative 

so that (2.1) can be defined in any interval 1 2( , )T T− . Clearly, ,TLα  is a linear integral 

transformation. 
The inverse finite Yang-Laplace transform is defined by the complex integral 
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where the integral is taken over any open contour Γ  joining any two points iRβ −  and 
iRβ +  in the finite complex s  plane as R →∞ . 

If ( )f x  is almost piecewise continuous, that is, it has at most a finite number of simple 
discontinuities in 0 x T≤ ≤ . Moreover, in the intervals where ( )f x  is continuous, it satisfies a 
Lipschitz condition of order 0γ > . Under these conditions, it can be shown that the inversion 
integral (2.2) is equal to. 
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where Γ  is an arbitrary open contour that terminates with finite constant β as R →∞ . This is 

due to the fact that , ( , )L
sf s Tα  is an entire function of s . 

Example 2.1 if ( ) 1f x = ，then 
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Example 2.2 if ( ) ( )f x E a xα α
α= , 
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Theorem 2.1 if ,
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Proof  
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Let y ax= ，we have  
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Theorem 2.2 (Finite local fractional Laplace Transforms of Derivatives). 
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More generally, 
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Proof. Integrating by parts, we have 
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Repeating this process gives (2.8). By induction, we can prove (2.9). 
Theorem 2.3 (Finite local fractional Laplace Transform of Integrals). If  
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so that ( ) ( ) ( )F x f xα =  for all x , then 
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More generally, 
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Similarly, we obtain （2.13）and (2.14). 
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