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Introduction 

The integro-differential equation approach (IDEA) was proposed in 1984 [1] to avoid solving 

the large number of coupled differential equation of the Hyperspherical Harmonic Expansion 

Method (HHEM) needed to obtain an accurate converged solution for nuclei beyond systems 

of few bodies [2]. It already included the asymptotic expression of the projection function, 

which is the main ingredient in the equation for a large number of particles [1], and analytical 

solutions for bosons in an S-state were also derived [3]. 

In a recent paper [4] another derivation of the asymptotic equation has been published for 

bosons in the ground S-state. In order to obtain this asymptotic equation, the autor correctly 

deduced an equation (23) extracted from ref. [5]. But contrary to their allegation this equation 

cannot lead to their asymptotic equation (25). The asymptotic equation can be obtained 

directly from the asymptotic projection function already published in ref. [1], a reference 

quoted in [6] .The aim of the present paper is to establish the correct equation and to discuss 

the conditions for the validity of its utilization, as a substitute for the exact equation, for a 

large system of particles. 

The method used in this paper to solve the Schrödinger equation ( ) ( ) 0V x E x  

where 
1

A

i  is the Laplace operator in the whole 3D A  dimensional space for A 

particles, ( )V x  a function of all coordinates 1( ,..., )Ax x x  and E the eigenvalue related to the 

wave function ( )x , proceeds step by step. First by assuming V = E = 0, the solutions are 

( )x = (Harmonic polynomial in the x  coordinates [ ]( )LY x ). Since Harmonic polynomials 

are homogeneous polynomials the radial coordinate r with ² ²ir x  can be factorized and 

[ ]( ) ( ) L

Lx Y r written in polar coordinates ( , )r  where [ ] ( )LY  is a Hyperspherical 

Harmonic defined by the D-1 quantum numbers [L] including L the degree of the polynomial. 
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Introducing a Hypercentral Potential ( )V r , i. e. depending only on the radial coordinate r, 

leads to a solution ( 1)/2

[ ]( ) ( ) ( ) / D

Lx Y u r r  where ( )u r  is an eigenstate of a standard 

Schrödinger radial equation. 

In nuclear physics, more than 3/4 of the potential energy originates already from the 

Hypercentral part (invariant under rotation in the whole space of coordinates) of the nuclear 

interaction, and balances the contribution of the kinetic energy to the binding energy. To go 

further the structure of ( )V x  must be known. 

For a sum of two-body potentials 
,

( ) ( ),ij

i j i

V x V r  ij i jr x x  the wave function 

[ ]

,

( ) ( ) ( , )L ij

i j i

x Y P r r  is a sum over all pairs of two-body amplitudes ( , )ijP r r  solutions of 

an Integro-Differential Equation (IDE) [1]. 

Traditionally the many-body bound states are defined by assuming that a state can be written 

as a properly symmetrised product of individual particle eigenfunctions of a one-body 

potential well, and a Jastrov function. This Jastrov function is the product over all pairs of 

variational functions ( )ijf r , 
ij i jr x x , where the pair variational function is selected to 

gives the strongest binding energy. This procedure suffers of several defects : 

1/ Absence of an independent center of mass for a pair wise interaction. 

2/ Inability to define the wave function out of the range of the potential,  a defect of all 

variational methods. 

3/ Inaccuracy in the computation of the wave function where it is small, since only the square 

of the wave function is significant in the variational procedure. 

4/ Absence of an equation to define the correlations. 

In contrasts another method has been proposed where, assuming the analyticity of the wave 

function, the state is defined by the polynomial of the lowest degree mL occurring in an 

harmonic polynomial expansion of the wave function [1]. 

For bosons where all particles can be in 1s state this degree is 0mL . For identical Fermions 

it is given by the lowest degree antisymmetric polynomial homogeneous in the individual 

coordinates 1( ,..., )Ax x x  of the A-particle system, where the antisymmetry is provided by a 

Slater determinant. 

This polynomial is translationally invariant since any scalar symmetrical operator seeking to 

decrease the degree of a homogeneous polynomial should give zero when applied to a 

polynomial of minimal degree. 
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Since the state is defined by a translationaly invariant harmonic polynomial [9], therefore it 

can be expressed in terms of Jacobi coordinates. 

The radial equation 

Let [ ]( )
mLD x  be the antisymmetric harmonic polynomial written as a Slater determinant. 

In a polar coordinates system ( , )x r  where 
1

² 2 ( )²
A

ir x X  and X is the center of mass, 

 is a set of 1D  angular coordinates in the 3( 1)D A  dimensional space of the Jacobi 

coordinates. We can then write 

( ) ( ) / m

m m

L

L LD D x r  is a Hyperspherical Harmonic (HH).    (1) 

( 1)/2( , ) ( ) ( ) /
m m m

D

L L Lr D u r r         (2) 

The state is defined by the product of a HH and a (Hyper) radial wave solution of the radial 

equation 

[ ]

² ² ( )
( ) ( ) ( ) 0

² ² m mL L

d
V r U r E u r

m dr r

L L +1
, ( 3) / 2mL DL   (3) 

where [ ] ( )
mLV r  is a Hypercentral potential. 

When the interaction is a sum over all pairs of a two-body potential ( )ijV r ,  the Hypercentral 

potential [ ] ( )
mLV r  is a sum over all pairs of the rotationally invariant part of the pair-wise 

potential while ( )U r  is the contribution of the pairs correlation.  

[ ] [ ] [ ]( ) ( 1) / 2 ( ) ( ) ( )
m m mL L ij LV r A A D V r D d      (4) 

 

Contribution of the two-body correlations 

This contribution is the eigenpotential in a two-variable Integro-Differential Equation 

obtained by writing that, for a sum of pairwise potentials, the wave function is the product 

[ ]( , ) ( ) ( , )
m

A

L k

k

r D P r z ,         (5) 

where 
2cos 2 2 / ² 1

k k k
z r r  for / coskl klr r ,  

of the state and a sum over all pairs of two body amplitudes [1].  

Without correlations 0U  and the solution is given by (2) and (3). 



4 

 

“As A increases an important decoupling occurs between the variables ijz  and r, and a good 

approximation is obtained by taking for the solution the product 

0 0( , ) ( , ) ( )P r z P z r u r ,         (6) 

(for 22 / ² 1ijz r r ) for a reference pair (i, j), where 0 ( , )P r z  is an eigenfunction for each r (r 

is a parameter) of the Integro-Differential Equation (IDE). 

[ ] 0 0 0

[ ]

1

0 0

1

4 ² 1 1
(1 ²) ( , ) ( ( ( ))( ( , )

² ( ) 2

( , ') ( ', ) ') ( ) ( , )

L

L

d d z
z W P z r V r V r P z r

mr W z dz dz

f z z P z r dz U r P z r

    (7) 

with [ ] [ ]mL L  where 0 ( )V r  is the integral in (4), taken over all Hyperangular coordinates   

while 0 ( )u r  becomes a solution of (3). 

The projection function ( , ')f z z  projects the amplitudes 0 ( , )kP r z  in (5) on the space of the 

reference pair ( , )i j . It is given by [1]. 

2 [ ] [ ]

[ ]

0

( , ') ( ') ( 1) ( ) ( ')L L

L K K K

K

f z z W z f P z P z        (8) 

where the 
[ ] ( )L

KP z  are the normalized polynomials associated with the weight function 

[ ] ( )LW z  while the coefficient are [1] 

2 [ ] [ ] [ ]( 3)
1 2( 2)( ( 1/ 2) ( 1)) / (1)

4

L L L

K K K K

A
f A P P P      (9) 

The weight function is [7, 8] 

1/2

[ ]( ) (1 ) (1 ) ( )LW z z z Q z  with ( 5) / 2 2 mL D . [ ] 1( ) ( ) ²LQ z D d  

where the integral is taken over all Hyperangular coordinates except z  is a polynomial of 

degree 2 m  where m  refers to the last filled shell in nuclei with 0,1,2,...m     for the s, p, 

s-d… shells. 

The asymptotic equation 

For bosons in the ground state 0mL , ( ) 1Q z  and the associated polynomials are the Jacobi 

polynomials 
,1/2 ( )KP z . 

The weight function is 
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( ) (1 ² / ²) ²W x x r x          (10) 

in terms of ijx r  with 
4

²

x
dz dx

r
. where for a normalized ( )W x  the first term evolves into a 

( )x  function as . 

Analytical expressions for the sum in (8) have been already found : first in the case of three-

bodies where it leads to a Faddeev equation [9] and then for a large number of bosons when 

 [1]. 

We now look back to details that were involved of the last calculation, to analyze the quality 

of the approximations. 

The following are the main points : 

1°/ One uses the asymptotic relation 

²lim 1 ² / ZZ e         (11) 

this approximation is valid for ²Z  

2°/ The polynomials associated with the normalized weight function  

²

[0]( ) 4 / ²ZW Z dZ e Z dZ         (12) 

are the Laguerre polynomials 
1/2 ( ²)KL Z  

3°/  

It can be proved easily from the asymptotic properties of the Jacobi polynomials used in ref 

[3] for z, n and fixed ,  

, ,1 1
lim ( ) , (1)

! 2

n

n n

n nz
P z P

nn
 is a binomial coefficient, for 1/ 2z  

and 1z  in Eq. (9) that asymptotically the coefficient 
2 1Kf  become [10, Eq. (9.6)]. 

2lim 1 2( 2) / 4K

Kf A        (13) 

 

4°/ If all the asymptotic relations are valid the formula [11] 
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1/2
1 1/2

!
( ) ( )

( 1)
0

2( )
(1 ) exp ( )

1 1

n

n n

n
S L x L y z

n
n

x y xyz
z z xyz I

z z

     (14) 

can be used for 1/ 4, 1/ 2z  associated with the weight function xx e . 

Here one sets ² ²
²

Z x
r

 with 3 / 2A
A

 in (10)    (15). 

The radial function ( )u r  is concentrated around the minimum at mr r  of the effective 

potential 

[0]

² ( 1)
( ) ( ) ( )

²
effV r V r U r

m r

L L
      (16) 

in Eq. (3) where ( ) 0eff m

d
V r

dr
.  

The r.m.s. radius a is related to mr  by 

² ² 2 ²mr r Aa           (17) 

and the validity of Eq. (11) is fulfilled for 
2² 2 ²mx r Aa . In the ground state, all bosons in 

the 1s state have the tendency to stay inside the range of the potential, in such a way that the 

r.m.s. radius should be either stationary or vary very slowly with the number of particles. Eq. 

(7) when solved exactly showed a stability of the r.m.s. radius a for growing A. For instance 

with the Afnan-Tang S3 potential [12], the r.m.s. radius 1.34 .01a fm  between 6A  and 

16A  and 1.4a fm  for 40A  [7]. 

The behavior of the coefficients (9) with respect to K  must now be investigated. 

In table 1 the product 
24 ( 1) / 2( 2)K

Kf A  is exhibited for 16,40,100,500,1000A  for 

2K .  
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Table 1 

K A 16 40 100 500 1000 

2  .7808 .9149 .9663 .9933 .9966 

3  - .2789 .4771 .7901 .9580 .9790 

4  .0807 .3004 .6711 .9292 .9643 

5  -.1462 .1095 .5340 .8934 .9458 

 

For 0K  we have to deal with the weight function approximation where the projection 

function is the weight function itself, with 
2

0 ( 1) / 2.f A A  The 1K  term generates a 

spurious component which must be eliminated [13]. It is clear from the table 1 that 4 K  over 

estimates the contribution of the terms of degree K  in the projection functions. But we have 

shown previously [6] that nearly all the contributions to the binding energy originate from the 

few first terms in the expansion (8). 

Since the weight function (12) with (15) is defined in terms of ijx r  it is appropriate to use 

the Integro-Differentiel Equation in the relative coordinates version [3] i.e. with the same 

variable x . 

The sum (14) with 1/ 2, 1/ 4, ², ' ²z x Z y Z  is  

( ² '²)/34 4
sinh( ')

' 33

Z Ze
S ZZ

ZZ
        (18) 

(note that in [4] the formula (15) of ref. [5] which gives 3/4 instead of 4/3 is flawed, indeed a 

term 1/2t  is missing in the last parenthesis). 

It leads to the projection function [1] 

2

2 2

2 2 '

2(2 ' ) /3 (2 ' ) /3

2 3 3
( , ') ' 2( 2) / 3 '

3 2 2

4 1
' '

'3

Z

Z Z Z Z

f z z dz A A Z Z e

e e Z dZ
ZZ

   (19) 

which can be inserted as it is into (7) with ² (1 ) / 2Z z  (note ' 4 ' '/dz Z dZ ). 
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It can be easily transformed as well into an equation in the variable Z by using Eq. (38) of 

ref [3] which eliminates the first derivative in the variable ijx r  in the kinetic energy 

operator by writing 0 0( , ) /P z r g g  with 

/2 ²/2

0

² ²
1 (1 )

² ²

Zx x
g x Ze

r r r
     (20) 

and thus 
² /2

0 ( , ) / ( , )ZP z r e Z G Z r . By introducing this transformation together with the 

asymptotic weight function (12) in Eq. (7) one generates the asymptotic equation in the 

variable Z. 

The kinetic energy operator becomes 

²/2

0 0

0

4 ² 1 ² ²
(1 ²) ( , ) ² 3 ( , )

² ( ) ² ²

Zd d e d
z W P z r Z G Z r

mr W z dz dz mr Z dZ
 (21) 

And the wave equation (7) multiplied by ²/2²

²

Zmr
Ze  is transformed (with (19)) into 

1 '²/2
²/2

1

² ²
² 3 ( , ) ( , ) ( ) ( , )

² ²

²
( , ') ( ', ) '

² '

Z
Z

d mr
Z G Z r V Z r U r G Z r

dZ

mr e
VZe f z z G Z r dz

Z

    (22) 

One introduces ² /2Ze  inside the integral to produce an equation where the r. h. s. becomes 

0

²
( , ') ( ', ) '

²

mr
V F Z Z G Z r dZ         (23) 

The projection function  

( ² '²)/2

(5( ')² 2 ')/6 (5( ')² 2 ')/6

2 3 3
( , ') 2( 2) / 3 ( ² )( ' ² ) '

3 2 2

4

3

Z Z

Z Z ZZ Z Z ZZ

F Z Z A A Z Z ZZ e

e e

 

is symmetrical in Z and Z’, 
0( , ) ( ) ( )ijV Z r V r V r  for /ijr r Z , 0 ( )V r  is the hypercentral 

part of ( )ijV r  and the boundary conditions ( , ) ( , ) 0G o r G r  determine ( )U r . 

Applications with comments 

In the Hyperspherical Approach we obtain the wave function and binding energy from two 

semi independent equations : first from an equation where the contribution of the two-body 
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correlations to the binding energy appears as an eigen-potential ( )U r  of the radial 

coordinate. This potential is then introduced in a radial equation generating a radial wave 

function and a total binding energy. 

The Hypercentral potential [ ] ( )
mLV r  occurring in the radial equation can be easily computed 

from the original weight-function. 

But in the other equation (22) only the residual potential ( , )ijV r r  where the Hypercentral part 

of ( )ijV r  has been subtracted must occur. This Hypercentral part is calculated from the 

asymptotic weight function which differs from the exact one. 

Therefore an inaccuracy, in the calculation of the correlations, originates first from the 

asymptotic weight function and then from the asymptotic projection function itself. In the 

projection function, when the number of terms needed to reach a requested accuracy for 

( )U r  is small, only the defect of the asymptotic weight function with respect to the original 

one should have an effect. 

Here one presents a few computations for 16A  and 40  with typical nuclear potentials. 

The IDE can be easily and accurately solved numerically with a program [8] that uses the 

traditional algorithm to integrate for the Independent the Particle Model the radial 

Schrödinger equation (see ref. [14]). 

Four potentials are chosen with an increasing strength of the repulsive core: the Gogny, Pire, 

de Toureil (GPDT) [15], Brink-Boeker B1 [16], Afnan-Tang S3 [12] and Malfliet-Tjon MTV 

[17] potentials.  

First one recall a few results obtained with the Volkov [18], Afnan-Tang S3 [12] and Malfleit-

Tjon MTV [17] potential for A=16 bosons, for which the binding energy were calculated with 

the Hypercentral Approximation (HCA), the Weight Function Approximation (WFA) and the 

IntegroDifferencial Equation Approach (IDEA). 

Table 2 

Pot. S3 Volkov MTV 

Ref. [19 20] [22] [3] [7] [19 20] [3] [19 20] [22] [3] 

HCA 799 797.67 797.5 798.56 1560 1559 740 737.77 737.5 

WFA   1231.4 1231.28 1626 1625.8 1360  1363.9 

IDEA 1235 1235.13 1235 1235.45 1630 1630 1363 1362.7 1363 

 

It is clear that the contribution to the binding energy, of the polynomials for 0K  in the 

projection function, does not exceed a few Mev. Thus only the WFA, where the term 0K  

in the projection function is the weight-function itself, is actually significant. 
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Four different algorithms have been chosen to solve numerically the many body bound state 

problem. 

In ref. [19, 20] the eigenfunction ( , )P z r  is expanded in terms of some interpolating 

polynomials, thereby reducing the equation to a standard eigenvalueproblem. The B splines of 

order N have been chosen for this purpose. 

In ref. [22] the Hyperspherical Harmonic Expansion Method (HHEM) was applied using up 

to 40 coupled equations. 

In ref. [3] the solution of the I. D. E. is discretized by using a finite difference scheme and an 

appropriate inverse power method provides the requested eigenvalue by the diagonalisation of 

a large matrix. 

In ref. [7] and in the present paper the I. D. E. in the variable ijx r  of ref. [3] is solved 

numerically by generating the amplitude with a standard shooting procedure [14] : the 

solution of "( ) ( ( ) ) ( )g x W x U g x  is generated by 

( ) 2 ( ) ( ) ( ( ) ) ²g x h g x g x h W x U h , for an interval h between two successive mesh 

points with the boundary conditions (0) ( ) 0g g x r  reached for the eigenvalue ( )U r . 

The slope of the shoot ( )g h Ph  is chosen in order to normalize ( , )P x r  to unity i. e. 

( , ) 1 ( , )P x r h x r , details are available in ref. [8]. All methods agree surprisingly well. 

The variational methods of ref. [23] provide for the S3 Potential a binding energy of 1130.94 

Mev from the Translationally Invariant Configuration Interaction (TICI2) method and 

1234.86 Mev for the Translationally Invariant Coupled-Cluster (TICC2) method. In the last 

method the algebraic expression to be solved numerically covers more than one full page in 

ref. [23] while it takes one line in this paper ! 

The converged value for the binding energy is already reached with only four polynomials in 

the projection function, and the weight function approximation (WFA) for 0K  gives an 

estimate of the binding energy with an accuracy better than half percent at the level of two-

body correlations. 

The WFA with 0K  gives the largest increase of binding energy with respect to the 

Hypercentral Approximation, without correlations, where ( ) 0U r . 

On the other hand the WFA is independent of the polynomial occurring in the projection 

function since the first polynomial for 0K  is 0 1P . Whatever the weight function used 

and when the amplitude ( , )P z r  is normalized to one the integral in (7) becomes A(A-1)/2-1 

obviously independent of r. Solving then the WFA, one test first the effect of the asymptotic 

weight function (alone) on the solution of the IDEA. 
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Near the minimum, at mr  of ( )effV r  where ( ) / 0effdV r dr , the effective Hypercentral 

potential behaves like an Harmonic oscillator and the m. s. radius 
2² ² /2 ( ( )² ) / 2m ma r A r r r A .  

 

The r. m. s. radius a is given table 3 together with / 2m ma r A .  

Table 3 

A 16 40 

Pot. GPDT B1 S3 MTV GPDT B1 S3 MTV 

a 1.24 1.27 1.36 1.32 1.24 1.30 1.425 1.41 

am 1.21 1.24 1.32 1.28 1.22 1.28 1.40  

 

The very small difference between the a and am supports the estimate in eq.(17) and the 

condition for the validity of (11), assuming that the strong concentration of the radial function 

near the minimum of the effective potential is fullfilled. 

The fully asymptotic binding energy obtained from eqs (22, 23) with 3 / 2A  in the 

Asymptotic Kinetic energy and in the Asymptotic Weight Function is exhibited in table 4. 

In the first line the exact WFA is given, then the exact Hyper Central Approximation HCA 

where ( ) 0U r , and next the same for the fully asymptotic energies where 3 / 2A  in 

Eq. (22). Finally in the last line one finds the combination Test = exact HCA – Asymptotic 

HCA + ASWFA, where ASWFA is the binding energy given by the Asymptotic Eq. (22). 

Table 4. Contribution of the fully asymptotic approximation to the binding energy of 16 and 

40 bosons in the ground state, AS is for asymptotic. 

Table 4 

A 16 40 

Pot. S3 B1 GPDT MTV S3 B1 GPDT MTV 

WFA 1232.1 1682.8 1287.8 1363.4 7835.6 11726 9600 8522 

HCA 798.3 1460.6 1149.6 738.6 6315.4 10910 9043 5837 

ASWFA 1205 1658 1279 1345.6 7727.5 11605.8 9517.4 8423.8 

ASHCA 780.7 1436 1141 726.3 6218.5 10787.9 8957.7 5757.5 

TEST 1222.6 1682.6 1287.6 1357.9 7824.4 11727.9 9602.7 8503 

 

A comparison between the Test line and the exact WFA energy shows clearly that the 

asymptotic Eq. (22) provides a rather good estimate of the contribution of the correlations to 
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the binding energy but that in order to obtain a binding energy similar to the one of the WFA, 

the HCA must be calculated with [ ] ( )
mLV r  obtained from the original weight function in the 

radial equation (3). 

Nevertheless, the larger the difference between WFA and HCA, the larger is the difference 

between the test line and the exact WFA. 

As a conclusion, the asymptotic weight function can be used to calculate ( )U r , the 

contribution of the correlations to the binding energy, but in the radial equation the original 

weight function should be used to calculate [ ] ( )
mLV r . 

One must stress that the calculation of ( )U r  must be done with the asymptotic projection 

function, by starting from the residual potential 
0( ) ( )ijV V r V r  where the Hypercentral 

potential 0 ( )V r  is calculated with the asymptotic weight function. 

Nevertheless one cannot avoid keeping in mind that for systems, like bosons in the ground 

state, where all particles interact together within the range of the potential, the many body 

correlations, and at first the three and four body correlations, have to be taken into account 

[21]. 

“ For nuclear systems however, the increasing of importance of the high-order correlations is 

expected to be much less relevant, due to the role played by the Pauli principle” [21]. 

Another method can be used to generate asymptotic equations. 

Our purpose is to substitute asymptotic expressions for the original equation, in the case of a 

large number of particles. 

For this task it is easier to use the IDEA equation in term of ijx r  developed in ref. [3] and 

reproduced in Appendix. In this equation the kinetic energy term appears as 0 0"/g g  where 

0 /2

0 [ ]

²
(1 ) ( ² / ²),

² mL

x
g x P x r

r
 0 1,  

and [ ]mLP  is a polynomial occurring for Fermion systems while [0] 1P  for bosons in their 

ground state and 0 ( 3) / 2 2m mD L , with 0m mL  for bosons. 

The term  

0
0 0 0 0"/ ( 1 ( 2) / ) /

²
g g T T

r
,      (24) 

with 1T X  for ² / ²X x r  becomes a hard repulsive wall for x r , indeed with 

0x r x . 
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0 0 0 0( 2) ( 2)

² ² 4( )²x rr T x
        (25) 

behaves as a strong repulsive kinetic centrifugal barrier for x r . 

One assumes in the asymptotic approximation that the significant values of 
²

²

x

r
 occurring in 

the calculation of the wave function decreases for increasing number of particles which 

justifies the exponential approximation  

XT e          (26) 

When the first order expansion 

1
(1 ²...)X X

T
         (27) 

is used and nX  is neglected in (27) for 1n  the kinetic energy term (24) becomes 

0
0( 5) 3 ( ²)

²
X O X

r
. It is an Harmonic oscillator potential in ² / ²x r  when ²X  can be 

neglected. 

In the next table various approximations of the kinetic energy are tested for 16A  and 

40A  bosons where 0, 0, 1H AH T  and 2T  refer to Harmonic oscillator (HO), Asymptotic 

H0 where 3 / 2,A  1T  for 1 1T X  and 2T  for 1 1 ²T X X  in Eq. (24) with 

² / ²X x r  and exact without approximation. The computation is made with a space between 

mesh points of 0.1 fm for x and .05 fm for r. 

 

A  S3 B1 GPDT MTV 

 

 

16 

HO 1227.5 1673.7 1277.0 1355.9 

AHO 1230.7 1677.6 1282.8 1364.1 

T1 1230.5 1678.4 1281.6 1364.1 

T2 1231.7 1681.7 1286.4 1363.1 

Ex. 1232.1 1682.8 1287.8 1363.4 

 

 

40 

HO 7829.5 11718.8 9591.0 8523.8 

AHO 7832.8 11720.6 9593.3 8525.3 

T1 7834.5 11722.6 9595.3 8525.7 

T2 7835.1 11725.9 9599.6 8524.3 

Ex. 7835.6 11726.1 9600.0 8522.5 
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It is worthwhile to notice that the asymptotic AHO approximation is very similar to the T1 

approximation with a difference of around 1 Mev, or less, for A=16, and 2 Mev for A=40. 

The good accuracy of the numerical program, each computation being independent, enables 

one to check the regular improvement between two successive approximations. 

The next asymptotic approximation to be analyzed concerns the weight function in Eq. (A2) 

in Appendix with 
0 (1 )g T X , ² / ²X x r  for bosons.  

In the asymptotic approximation 

(1 ) ( )XX e f X           (28) 

where ( ) (1 ) Xf X X e  and ( ) 1f X  for an asymptotic exponential function. 

The polynomial expansion 

3 4(1 ) (1 ² / 2 / 3 / 8 ...)XX e X X X        (29) 

leads to an approximate formula 

2 3

²(1 ...)
2 3 8(1 )
X X X

Z

X e         (30) 

² / ²X x r , 
²

²
²

x
Z

r
 limited to the third degree term. 

The term of degree zero is for an asymptotic Gaussian weight function associated with 

Laguerre polynomials. 

In the table 5, the convergence to the exact value is exhibited in terms of N, the degree of the 

polynomial in X in Eq. (30). N=0 for a Gaussian asymptotic weight function. 
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Table 5 

Potential S3 B1 

A N WFA HCA WFA-HCA WFA HCA WFA-HCA 

 

 

 

 

 

 

16 

0 1151.01 730.16 420.85 1601.71 1370.31 231.4 

1 1221.5 790.45 431.05 1672.31 1449.24 223.07 

2 1230.5 797.15 433.35 1681.12 1458.79 222.33 

3 1231.23 797.62 433.61 1681.81 1459.51 222.3 

Ex 1232.08 798.3 433.79 1682.79 1460.55 222.24 

Pot GPDT MTV 

0 1222.32 1071.81 150.51 1282.94 679.72 603.22 

1 1279.62 1140.12 139.5 1352.45 731.79 620.22 

2 1286.54 1148.17 138.37 1362.39 737.55 624.84 

3 1287.07 1148.07 138.3 1363.14 737.96 625.18 

Ex 1287.84 1149.63 138.2 1363.4 738.56 624.84 

Potential S3 MTV 

 

 

40 

0 7674.7 6162.6 1512.1 8392.2 5706.3 2685.9 

1 7828.3 6307.7 1520.6 8521 5830.5 2690.5 

2 7835.7 6314.9 1520.6 8523.5 5836.7 2686.8 

3 7834.9 6315.1 1519.7 8523.7 5836.9 2686.8 

Ex 7835.6 6315.4 1520.2 8522.5 5837.1 2685.4 

 

The difference between the approximate binding energy for 1N  and the exact value is 

about 10 Mev i. e. less than one percent and decreasing for increasing A. 

The increase of binding energy WFA-HCA brought by the correlations is very similar for 

each potential for N > 0, in such a way that a nearly exact binding energy can be obtained by 

adding this increase to the exact HCA. When N = 0 the same procedure misses the binding 

energy by about 10 Mev, and even more for A = 16 and the MTV potential. 

The IDEA is a two variables integro differential equation with one length r and one angle  

defined by cos /ijr r , ij i jr x x  related to the description of the two-body correlations 

of a bound system of particles where pairs are in s-state. 

This equation can be reduced to two one variable equations by assuming that the amplitude 

( , )P z r  can be written as the product ( , ) ( ) ( , )P z r u r P z r  where ( , )P z r  is only 
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adiabatically r-dependent in such a way that the derivatives of P  with respect to r can be 

neglected. This approximation was first suggested for Atomic system [24] and then extended 

to Nuclei [27, 28, 29]. 

An upper and a lower bound to the binding energy can be derived in this adiabatic 

approximation [27, 28, 29]. 

The interval between upper and lower bound is less than about 1 Mev for 
4
He, decreasing to 

0.5 Mev for 16 bosons [30] and .2 Mev for A = 40, in such a way that by taking the middle of 

the interval for binding energy reduces the inaccuracy by half. It vanishes as A . 

When Eq. (7) is multiplied by r² the kinetic energy operator becomes independent of r and the 

variation with r of the kinetic energy should be adiabatic like 0 ( , )P z r . 

Therefore one could expect that the eigenpotential  ² ( )r U r  might also vary adiabatically. 

A potential where all the binding energy is generated by the correlations in nuclei was chosen 

for testing the behavior of the eigenpotential U  in terms of r. The Argonne 14 potential [31] 

has a strong repulsive core which prevents any binding for both 
16

O and 
40

Ca at the level of 

the Hyper Central Approximation without correlations (i. e. HCA > 0) . Since the equation (7) 

does not include the treatment of the tensor forces, the Afnan-Tang S1 potential [12] which is 

adjusted to give the experimental triplet even 
3
S1 Nucleon-Nucleon scattering phase-shifts is 

substituted for the 3V  tensor force of the original Arg 14 potential. For bosons in ground 

state the Afnan-Tang S3 potential [12], already used in numerous test cases, is selected. 

For the sake of comparison, the table is divided in three columns. In the first one ( )U r  is 

exhibited followed by the ratio ( ) / ( )U r Kin r , where 
²

( ) ( 1) / ²Kin r r
m

L L  is the 

Kinetic Centrifugal barrier in the radial equation, and then by the effective potential ( )effV r  in 

the radial equation. 
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Pot S3 

Bosons A = 16 A = 40 

r (fm) ( )U Mev  /U Kin  effV Mev  ( )U Mev  /U Kin  effV Mev  

4 1406 1.18 4758    

6 748 1.41 - 824    

8 437 1.46 - 1281 3191 1.49 7183 

10 288 1.50 - 1224 2306 1.68 - 5016 

12 205 1.54 - 750 1728 1.82 - 7817 

14 155 1.59 - 548 1341 1.92 - 6651 

16 122 1.63 - 406 1072 2.00 - 6651 

18 99 1.67 - 306 872 2.06 - 5560 

 

Pot. Arg. 14 

Fermions 16
O 

40
Ca

 

r (fm) ( )U Mev  /U Kin  ( )effV Mev

 

r (fm) ( )U Mev  /U Kin  ( )effV Mev  

8 524 .721 198 20 774 .542 - 127 

10 308 .664 - 102 22 636 .538 - 282 

12 205 .636 - 144 24 533 .537 - 338 

14 149 .628 - 130 26 453 .536 - 346 

16 114 .629 - 107 28 390 .534 - 330 

18 91 .634 - 85 30 338 .533 - 304 

20 74 .640 - 67 32 296 .531 - 274 

22 62 .647 - 53 34 262 .529 - 245 

24 53 .654 - 43 36 233 .528 - 217 

26 45 .662 - 34 38 208 .526 - 191 

28 39 .669 - 28 40 187 .524 - 169 

 

The ratio /U Kin  vary slowly, adiabatically, for growing r. The larger L , the better is the 

adiabatic approximation. The most significant ratio is in the vicinity of the minimum mr  of 
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( )effV r , in the domains of a few fermis where the radial function ( )u r  is not negligible, where 

it does not change by more than a few percent or less. 

In this range the effective potential can be written 

0

²
( ) (1 ( ) / ( )) ( 1) / ² ( )effV r U r Kin r r V r

m
L L   

where the ratio /U Kin  is negative and nearly constant. 

An important difference appears between bosons and fermions systems.  

While the kinetic centrifugal barrier is repulsive for nuclei with the ratio /U Kin  > -1 it 

becomes strongly attractive for bosons with a ratio < -1 generating a strong attraction in 2r  

and thus a collapse of the bosons which gather near the origin. 

The similarity between the eigenpotential  U  and an attractive 2r  potential has double 

effect. When a strong repulsive core is introduced in a potential to increase the size of a 

nucleus, it create a large amount of correlations which decrease the kinetic centrifugal barrier 

and then balance the effect of the core. 

For this reason the modified Arg. 14 Potential used in this paper which produces (without 

Coulomb potential) a IDEA binding energy of 128.5 Mev and 336 Mev for 
16

O and 
40

Ca 

respectively [20], in good agreement with the experimental data, generates a r.m.s. radius of 

2.25 fm and 2.91 fm respectively, smaller than the experimental data. 

The adiabatic property of /U Kin  suggests a change of variable where instead of ijx r  in 

Eq. (A3) a new variable defined by 0/ /x r X L  with 0 1/ 2L L  is chosen. 

The small difference 
2

0 ( 1) 1/ 4L L L  and 01 L  become rapidly negligible with 

respect to 0L  for growing A. 

The derivative 0² / ² ( / )² ² / ²d dx r d dXL  while the term T in the kinetic energy Eq. (24) 

becomes 01 ² / ²X L   independent of r. 

One renormalizes the residual potential ( , )ijV r r  and ( )U r  in Eq. (A3) according to  

( , ) ( , ) / ( )ijV X r V r r Kin rL
 

( ) ( ) / ( )U r U r Kin rL  

"

0 0 0/ ( ² 3 ) / ²g g X rL  (see Appendix) for bosons in ground state. One divides 

Eq. (A3) by 0 ² / ²rL  to obtain the asymptotic adiabatic equation. 
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0 0

0

²
( ² 3 ) / ² ( ( , ) ( )) ( , )

²

( , ) ( , ) ( , )

d
X V X r U r G X r

dX

V X r G X I X r

L L L

L L

L L

L

 

Where r is a parameter and 0 ( , )G X L  is deduced from Eq. (A2) by substitution of 0/X L  for 

/x r  with 02 ² / ² 1,z x r L  and a similar transformation for I  to obtain IL . 

The behavior in terms of r of the eigenpotential ( )U rL  is adiabatic. 

Comments and conclusion 

The asymptotic equation (22, 23) were obtained first by a transformation where the basic 

equation (7) is expressed in terms of the relative coordinate ijx r  including an elimination of 

the first derivative /d dx  [3]. Using then the asymptotic expression (1 ) XX e  , 

together with the relation (14), to sum the series of Laguerre polynomials occurring in the 

projection function, Eq. (8) leads to an analytical expression (19) [1]. 

This expression can be used directly in Eq. (7) or transformed into Eq. (22) in the variable 

/Z x r , by a change of scale. 

With respect to the calculation published in ref. [4] : the formula chosen to sum the series of 

Laguerre polynomials is taken from ref. [5] and is used correctly. It leads to a coefficient 3/4 

in Eq. (23) of ref. [4] instead of the 4/3 of ref. [11] and in our Eq. (18) and cannot lead to our 

asymptotic eqs (22,23). 

The values quoted as exact, for the S3 potential and for 16 bosons in table 2 of ref. [4], are not 

in agreement with the five published values presented in table 2 in this paper, which are in 

common agreement. 

We found, by application of the asymptotic equations, that for 16 and 40 bosons a rather fair 

binding energy can be obtained by adding the contribution ( )U r  of the correlations, 

calculated from the asymptotic equation, to the exact hypercentral potential 0 ( )V r , in the radial 

Eq. (3). 

It is, therefore, the asymptotic hypercentral potential which must be introduced in the 

asymptotic equation to calculate ( )U r . We have shown that, thanks to the adiabatic 

approximation, ( )U r  behaves like a 2r  attractive potential which reduces the strength of the 

hypercentral kinetic energy centrifugal barrier with a ratio 2 2( ) / / ( ( 1)) /U r m rL L  

which is -1 for fermions and -1 for bosons. It generates a reduction of the strength of the 

kinetic energy and of the r. m. s. radius for bosons, producing a collapse, where all bosons 

gather inside the range of the potential. 
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This difference between bosons and fermions originates from L  in Eq. (3) which grows as 

3 / 2A  for bosons in the ground state ( 0)mL  and as 
4/31/ 2(3 / 2 )A  for nuclei [8] which 

makes the ratio smaller in absolute value for nuclei, than for bosons in the ground state. 

In the asymptotic radial equation the eigenpotential energy ( )U r  behaves like an attractive 

kinetic energy term, while the kinetic energy term in the amplitude equation Eq. (A6) 

becomes an Harmonic oscillator potential. 

Finally the significative values of r stay in the neighborhood of the minimum of the effective 

hyperradial potential where 
2 2 ²mr Aa  in terms of the r. m. s. radius a. 

For bosons in ground state 3 / 2A  and 
3

/
2

r
a

 does not vary much when all 

particles stay inside the range of the potential. 

For fermions 4/31 3
( )

2 2A
. Assuming a constant nuclear density 2 2/3

0

3
²

5
a r A  for 0 1.2r  

fm leads to 1/6

0/ .8458 /mr A r  decreasing slowly for increasing A. 
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Appendix (see [3]) 

One starts from the transformation  

(A1) 0 0( , ) ( , ) / ( , )P z r g x r g x r  with 2 ² / ² 1, ijz x r x r ,  

(A2) 
0 [0]( , ) (1 ² / ²) ( )g x r N x r xW z   

(note the misprint in ref [5] Eq. (30) where z must be substituted for ²z ) where 

[0]( ) (1 ² / ²)W z x x r , ( 5) / 2D  to get the equation in the variable x : 

(A3)

"

0

0

0

² ²
( ( , ) ( )) / (1 ) ( , )

² ² ²

( , )
( , ) ( ( 1) / 2 1) ( , )

² 1 ² / ²

gd m x
V x r U r g x r

dx g r

g x rm
V x r A A I x r

x r

     

with 0( , ) ( ) ( )V x r V x V r  

(A4) 0

0

( ', ) ( ', )

1 ' ² / ²

r
g x r g x r

I
x r

[0] [0] [0](1 ( ) ( ')) 'K K Ka P x P x dx  
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[0] 2( 1) / ( ( 1) / 2 1)K Ka f A A  

(A5) Asymptotically 0

( 1) ² / (2 ²)
( , )

x r
g x r Nxe  with the normalization 

2

0

0

( , ) / (1 ² / ²) 1

r

g x r x r dx , i.e. 
3

3 / 24
²N

r
, 

0

0

( , ) ( , ) / (1 ² / ²) 1

r

g x r g x r x r dx  

and with the ratio 

"

0 0

²
/ ( 1 ( 2) / ) / ( 1) ( 1) ² / ² 3 / ², 1

² ²

x
g g T T x r r T

r r
 

One makes the slight renormalization ² ( 1) ² / ²Z x r  to obtain the kinetic energy term 

(A6) 

²/2 ² ²
( ) ( 1)(( 1) ² / ² 3) / ²

²

² ²
( 1) ² 3

² ²

Z d
Ze Kin x x r r

m dx

d
Z

mr dZ

 

(A7) with
0

² / 2( , ) ( , ) /ZP Z r g x r e Z . 
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