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Abstract : Limit analysis and minimum weight design of stepped spherical shells is studied. The caps have 
piece wise constant thickness and are subjected to the uniform external pressure. The shells are made of an 
inelastic material obeying an approximation of the Tresca yield surface. The aim of the paper is to develop a 
procedure for minimum weight design for given limit load. Necessary optimality conditions are derived with 
the aid of variational methods of the theory of optimal control. Numerical results are presented for a simply 
supported spherical cap. 
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1. Introduction 
Various approaches to the limit analysis of 
axisymmetric plates and shells and solutions of 
problems of load carrying capacity of spherical 
caps can be find in books by Hodge [3], [4]; 
Chakrabarty [2]. 
Inelastic spherical cap with a central hole was 
studied by Lellep and Tungel [7] assuming that 
the thickness was piece wise constant and the 
material obeyed generalised square yield 
condition. Minimum weight designs for 
shallow shells are obtained by Lellep and Hein 
[5]. The shell under consideration is pierced 
with a central hole and it is subjected to the 
initial impact loading. Optimal designs of 
shells of piece wise constant thickness are 
established under the condition that  the 
maximal residual deflection attains the 
minimum value for given total weight. 
Spherical shells of Mises material were studied 
by Lellep and Tungel [8] whereas conical 

shells were considered by Lellep and Puman 
[6]. 
In [8] an optimization procedure is developed 
for spherical shells of piece wise constant 
thickness made of an inelastic material obeying 
the Mises material and associated flow law. 
The designs of spherical shells corresponding 
to maximal load carrying capacity are 
established for given material volume or 
weight of the shell. 
In the present paper stepped spherical caps 
with cracks at re-entrant corners of steps are 
considered making use of an approximation of 
the Tresca yield condition. The aim of the 
paper is to establish minimum weight designs 
of the shell for given load carrying capacity. 
 
 
2. Formulation of the problem 
Let us consider a spherical cap of radius A 
simply supported at the edge with central angle 
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βϕ =  (Fig. 1). The shell is subjected to the 
uniform external pressure of intensity P. The 
pressure loading is assumed to be quasi-static, 
inertial effects will be neglected. 
Let the thickness of the shell be piece wise 
constant, e.g. jhh = , for );( 1+∈ jj ααϕ  
where nj ,...,0=  and βα =+1n . Thicknesses 

),...,0( njhj =  and angles ),...,1( njj =α  will 
be treated as design parameters to be defined 
so that a cost function attains its minimal 
value. It is wellknown that sharp corners in 
structures generate stress concentration which 
entails cracks. It is assumed herein that at 

),...,1(, njj ==αϕ  circular cracks are 
located.  

 
Fig. 1: Geometry of the shell. 
 
We are looking for the minimum weight design 
of the spherical cap for the fixed limit load. 
The other problem we are dealing with consists 
in the maximization of the limit load for given 
material consumption. 
Since the middle surface of the cap is a sphere 
of radius A the cost criterion for the problem of 
minimum weight can be presented as  
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If the problem is to maximize the ultimate load 
to be sustained by the cap then the volume V  
is considered as a given constant. 

 
 
3. Basic equations 
In the case of rotational symmetry the 
equilibrium equations of a shell element can be 
presented as (see Chakrabarty [2], Lellep and 
Tungel [7], [8]) 
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In (2) θϕ NN ,  stand for membrane forces and 

θϕ MM ,  for bending moments in the two 
principal directions, respectively, and S  is 
the shear force. Here and henceforth prims 
denote the differentiation with respect to ϕ . 
We shall use a simple approximation of the 
exact yield surface is obtained assuming that 
the stress state of the shell corresponds to the 
ridge 
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of the exact yield surface (Hodge, [3], [4]). 
whereas bending moments θϕ MM ,  satisfy 
the yield condition (hexagon) on the plane of 
moments. Here jM 0  and jN0  stand for the 
limit moment and limit force for a portion of 
the shell with thickness jh , e.g.  
 

4/2
00 jj hM σ= , jj hN 00 σ= , 0σ    (4) 

 
being the yield stress of the material. 
In the limit analysis as well as dynamic 
plasticity of axisymmetric shells it is usual that 
the bending moment θM  attains its limit 
values. Thus it is reasonable to expect that  

jMM 0=θ                                    
(5) 
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and according to (3) 0=θN  for 
[ ]1, +∈ jj ααϕ ; nj ,...,0= . The latter means that 

0=θN  throughout the shell. 
Let ∗h  be the thickness of a reference shell of 
constant thickness and *N , ∗M  - yield force 
and yield moment for the reference shell. It 
seems to be reasonable to introduce following 
non-dimensional quantities 
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Variables (6) admit to present the equilibrium 
equations (2) with (5) as 
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for [ ]1, +∈ jj ααϕ ; nj ,...,0= . 
 
Boundary conditions for equations (7) are 
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In the case of simply supported spherical caps 
it is expected that the optimal shape of the shell 
is such that  
 

1+> jj γγ      (9) 
 
for each .1,...,0 −= nj  
Since we are looking for statically admissible 
solution of the problem we have to check if 
 

2
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for ),( 1+∈ jj ααϕ ; nj ,...,0=  and if  
 

jn γϕ ≤)(1               
(11) 

 
It can be shown that the moment 1m  and 
membrane force 1n  are monotonic functions 
of the angle ϕ . Thus the admissible values of 

1m  and 1n  are exceeded at boundary points 

jϕ  of intervals [ ]1; +jj αα , if any. 
This means that we have to check the 
admissibility of stress components at 

).,...,0( njj ==αϕ  We must bear in mind that 
the sections jαϕ =  of the cap are weakened 
by cracks of depth jc . These sections are able 
to sustain bending moments with maximal 

value 20 )(
4 jjm chM −=
σ

ϕ  at jαϕ = . 

Similarily, the maximal admissible value of the 
membrane force ϕN  is )(0 jjm chN −=σϕ  
for jαϕ = . 
Therefore, the constraints (10) and (11) can be 
replaced by equalities 
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and  
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provided (9) holds good and .,...,1 nj =  In 
(12), (13) 21, jj θθ  stand for so-called slack 
variables and  

j

j
j h

c
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(14) 
for .,...,1 nj =  
The problem posed above will be treated as a 
problem of the theory of optimal control (see 
Bryson, [1]). 
 
 
4. Optimality conditions 
In order to derive necessary conditions of 
optimality for the problem with cost function 
(1) and state equations (7) with boundary 
conditions (8) and constraints (10)-(12) we 
compile an extended functional (see Bryson 
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and Ho, [1]; Lellep and Hein, [5]; Lellep and 
Puman [6]; Lellep and Tungel, [7], [8]) 
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In (15) 321 ,, ψψψ  stand for co-state 
(conjugate) variables and 

321021 ,,,);,...,1(, μμμμϕϕ njjj =  are unknown 
Langrange’ian multipliers. It is worthwhile to 
emphasize that the co-state variables 

321 ,, ψψψ  are certain functions of ϕ  whereas 
Lagrange’ian multipliers are treated as 
unknown constants. 
When calculating the total variation of the 
extended functional (15) one has to take into 
account the distinctions between ordinary 
(weak) variations of state variables and total 
variations at boundary points of intervals 

);( 1+jj αα . We call )( ±Δ jz α  the total 
variation of a variable z at jαϕ =  and 

)( ±jz αδ  the value of the ordinary variation 
zδ  at jαϕ = . 

It is known that (see Bryson and Ho [1], Lellep 
and Puman [6], Lellep and Tungel [7,8]) 
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Note that when deducing the last relations the 
continuity of state variables ..,,, 11 gemsn  
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is taken into account. 
Guiding by the considerations given above it 
can be rechecked that the equation 0=Δ ∗J  
yields the co-state system 
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also equations for determination of parameters 
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for nj ,...,1=  and 
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(18) 
for 0=j  and  
 

0,0 2211 == jjjj θϕθϕ             
(19) 
 
for nj ,...,1= . 
The transversality conditions at boundary 
points are  
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(20) 
and 
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whereas jump conditions for co-state variables 
have the form 
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where nj ,...,1= .  
Finally, variation of (15) yields 
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for each nj ,...,1= . Making use of (7), (22) 
the equations (23) can be put into the form  
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for nj ,...,1= . In (24) square brackets denote 
finite jumps, ).0()0()]([ −−+= jjj αψαψαψ  
It is easy to recheck that the general solution of 
the system (16) is 
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for );;( 1+∈ jj ααϕ  nj ,...,0= . 
In order to solve the posed problem up to the 
end one has to integrate (7) making use of (8) 
and to solve equations (17)-(24) making use of 
(25). 
It appears that equations (7) can be integrated 
in each region );( 1+jj αα ; nj ,...,0= . The 
result is 
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(26) 
for ),( 1+∈ jj ααϕ ; nj ,...,1= , where 

jjj FED ,,  are arbitrary constants.  
Unknown constants jjj FED ,,  in (26) can be 
defined from the continuity of state variables 

11 ,, msn  at jαϕ = , making use of boundary 
conditions (8). 
 
 
5. Numerical results and discussion 
The detailed analysis shows that finally we 
obtain 33 +n equations for determination of 
arbitrary constants jjj CBA ,,  ),...,0( nj = . 

 

Fig. 2: Bending moment 1m . 
This set of equations is solved numerically. 
Results of calculations are presented in Fig. 2 
and Table 1 for the spherical cap with single 
step. In Fig. 2 the distributions of the bending 
moment 1m  are presented. 
 Solid line corresponds to the optimized 
stepped shell whereas dashed line is associated 
with the reference shell of constant thickness. 
It can be seen from Fig. 2 that bending moment 

1m  monotonically decreases from its limit 
value 2

0γ  at the pole until zero at the 
supported edge. It is somewhat surprising that 
the distributions of the bending moment 1m  
corresponding to the optimized shell and to the 
reference shell of constant thickness, 
respectively, are quite close to each other. 
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Calculations showed that the stress state of the 
shell is statically admissible.  
In Table 1 optimal values of parameters 1α  
and 1γ  are presented for different values of 
the intensity of the external pressure. Here V  
stands for the the optimal value of the material 
volume whereas 0V  is the material volume of 
the reference shell of constant thickness and 

0P  is the collapse pressure of the shell of 
constant thickness. Table 1 corresponds to 
shells with 9.0;001.0 == νk .  
Note that the material volume of the reference 
shell with thickness *h  can be expressed as 

).1(cos*0 −= βhV  
For the sake of simplicity in the Table 1 are 
accommodated the data corresponding to the 
case when .0* hh =  
 
Table 1: Optimal design for 2.0=β . 
p α 

1γ  0/VVe =  
0.99P0 0.1979 0.1950 0.9832 
0.98P0 0.1956 0.2782 0.9687 
0.97P0 0.1931 0.3440 0.9557 
0.96P0 0.1903 0.4017 0.9438 
0.95P0 0.1872 0.4550 0.9328 
0.91P0 0.1666 0.6752 0.9007 
 
Calculations carried out showed that the 
efficiency of the design 0/VVe =  depends on 
the shell parameters β  and k , on the 
loading p  and on the crack length ν . For 
instance, if 001.0;2.0 == kβ  and 

091.0;9.0 Pp ==ν  one has 1666.01 =α , 

1γ =0.6752 and 9007.0=e . It means that in 
this case the material saving is 9.93%. 
 
 
6. Concluding remarks 
The behaviour of inelastic spherical caps under 
uniformly distributed external pressure loading 
was studied. The material of the cap obeys an 
approximation of the Tresca yield surface in 
the space of membrane forces and bending 
moments. Necessary optimality conditions for 
the posed problem are derived with the aid of 
variational methods of the theory of optimal 

control. Numerical results are presented for a 
simply supported cap with unique step. 
In the study it was assumed that the stepped 
caps had circular cracks at re-entrant corners of 
steps. It was established that the depth of a 
crack had relatively weak influence on the 
optimal design of the shell. 
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