On $p2^n$ blocker conjecture and R2 function

Misha Bucko

24 November 2011

This paper covers a conjecture concerning the character of $p2^n$ for prime $p, n \in N$.

1 Definitions

Definition 1. For natural n > 1, we have: $n = \prod_{i=1}^{i=k} p_i^{e_i} \mu$ function is defined as $\Omega(n) = \sum_{i=1}^{i=k} e_i$. From definition we have: $\forall x, y \in N\Omega(xy) = \Omega(x) + \Omega(y)$ and $\forall x, y \in N\Omega(x^y) = y\Omega(x)$.

Definition 2. Ξ matrix is the matrix where each row contains all the numbers $i \in N$ -th column contains all consecutive numbers n of $\Omega(n) = i$.

Ξ=	[2	4	8	16	 2^k
	3	6	12	24	 $3 * 2^{k-1}$
	5	9	18	36	 $5\delta(k-1) + 9 * 2^{(k-2)}$
	7	10	20	40	 $7\delta(k-1) + 10 * 2^{(k-2)}$
	L				

Definition 3. From Ξ matrix, one can find R-sequence, i.e. sequence r(n)=3,9,10,27,28,30,... such that $\forall x \in N \exists nx = r(n), m \in N : \forall z \in N \Xi[n + z, m] = 2\Xi[n + z - 1, m]$

Definition 4. $\forall_p R2(p) = n$ such that $p2^n$ is a blocker.

2 $p2^n$ Blocker Conjecture

 $\forall_p \exists_{n \in N} p 2^n$ is a blocker and there is exactly only one such n.

3 References

[1] Misha Bucko, http://mishabucko.wordpress.com