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Abstract: 

The Abstraction theory is applied in landscaping. A collection of objects may be made to be vast or 
meager depending upon the scale of observations. This idea may be developed to unite the worlds of 
the great vastness of the universe and the minuteness of the sub-atomic realm. Keeping constant a 
scaling ratio for both worlds, these may actually be converted into two self-same representatives with 
respect to scaling. The Laws of Physical Transactions are made use of to study Bose-Einstein 
condensation. As the packing density of concerned constituents increase to a certain critical value, there 
may be evolution of energy from the system. 

 

 

Introduction: 

Be it the large vastness of the universe or the delicate smallness of the sub-atomic world, by choosing a 
suitable constant scaling ratio for both, we may obtain their representations. These representations 
following a certain constant scaling ratio, will be self-same. In previous papers on the subject, I have 
mentioned the chaotic behavior in the quantum world. Choosing suitable scaling ratios, we may turn the 
universe itself into such a chaotic quantum system, having its own necessary quantum states and 
trajectory behaviour. In that case, the study of the universe reduces to the study of some sort of a 
quantum chaotic system. On the other hand, choosing some other necessary scaling ratios, the atomic 
and the sub-atomic realm may be extended to become the universe itself, complete with its own 
macroscopic trajectory behaviour. Instead of formulating different ways of looking at worlds of different 
sizes, if we adjust the way of viewing i.e., the scaling ratio in such a fashion that the representations of 
the world merge, we will be looking at representative worlds of study which are practically self-same. 
The Laws of Physical Transactions formulated in previous papers of the subject may then be applied in 
order to study such self-same representations of the worlds of various scales. Unification of the ways of 
studying at different ranges of scaling may thus be achieved by suitable landscaping (adjusting different 
scales to a suitable scaling-ratio, in order to make all the scales of study similar in size). Further, a similar 
approach may be applied to study the Bose-Einstein Condensation. A certain critical packing density of 
the constituents of each world of a certain landscape must ensure a condensation of similar sort. The 
quantum states (or some similar states) of each such landscape will merge and give spikes for that 
critical scaling ratio in their respective representations. 



The quantum chaotic behavior may be of interest to study if we are to learn about the universe as a 
whole. The astronomically large distances separating clusters in the universe supports a study of such 
sorts. Quantum chaotic behaviour, on the other hand will give rise to something similar to the Bose-
Einstein condensation at some critical packing density. The study of such condensation states too will be 
of interest here. 

 

 

Scaling The Universe: 

Looking at a large enough part of the universe, we may draw an analogy to a system of scattered 
particles in motion or rest relative to each other. These particles may or may not be similar to each 
other, if we look at a given locality. Our idea, however, is that we can always represent even the whole 
of the universe on a piece of paper of our desired size. We can very well do the same with localities of 
sub-atomic sizes. 

We may represent both the worlds, viz. the microscopic and the macroscopic, within any desired 
standard size. Theoretically, we are only to diminish the snaps of the universe and magnify the snaps of 
the microscopic world in order to put both into representations of a definite scaling-size. Looking at such 
a representation of the macroscopic world (due to the large number of constituents and the large 
distances separating them involved) we will find it to be a complex mixture of various kinds of particles. 
On the other hand, looking at such a representation of the microscopic world, (due to the small 
distances separating the constituents) it will be like the actual universe itself, with various types of 
constituent parts involved. Such a representation of the microscopic and the macroscopic worlds will 
bring out hidden properties and behaviours of both worlds, as well as providing for a similar basis of 
studying them both. 

Let us consider a given representation with fractal dimension ��. The fractal dimension is purely 
geometrical, i.e., it only depends on the shape of the representation. A suitable probability measure ��, 
according to the particular phenomenon considered is assigned to the given representation. A coarse 
grained probability density, as the mass of the hypercube �� of size � is defined as, 
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where �� # ��. 



The number of boxes containing the dominant contributions to the total mass and thus relevant part of 
the information, is, �$	�
 % �&'( ��������������� 	�
� 
For each box ��, �� � �� for a uniform distribution. When �� ) ��, the measure itself may be called 
fractal since it is singular with respect to the uniform distribution, 
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for each box ��.Thus, 
,�,�* can diverge in the limit of vanishing �. 

Simulations of the mass-moment scaling yields, 
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The �. are the Renyi dimensions which generalize the information dimension �� � �!as well as the 

fractal dimension �� � �7. If the �.’s are not constant, anomalous scaling is to be employed and, as the 

order 8 varies, the amount of the difference �. 9 �� gives a first rough measure of the heterogeneity of 

the probability distribution. 

The moment generic observables : computed on scale � is such that, -:	�
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Anomalous scaling, i.e., a non-linear shape of the function <	8
 is the more common situation, where 
one does not require unnecessarily to consider only a finite number of scaling components. In some 
cases one may observe strong time variations in the degree of chaoticity. This intermittency 
phenomenon involves an anomalous scaling with respect to time-dialations identifying the parameter =&> wit the parameter � used in spatial dialations. A measure of the degree of intermittency requires the 
introduction of infinite sets of exponents which are analogous to the Renyi dimensions and can be 
related to a multifractal structure given by the dynamical system in the functional trajectory space. 

The Grassberger-Procaccia correlation dimension ? is defined by considering the scaling of the 
correlation integral, 
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where H is the Heaviside step function and @	�
 is the percentage of pairs 	��� �J
 with distance I�� 9 �JI # �. 
In the limit � D L, @	�
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N is a more relevant scaling index than �� since it is related to the point probability distribution on the 
attractor, while �� cannot take into account an eventual homogeneity in the visit frequencies. 

Let us define the number of points in an O-dimensional spherical representation of the world, with 
radius � and centre at �� as, 
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We must introduce a whole set of generalized scaling exponents 
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where R	�
 � ?. 

Considering a uniform partition of phase space into boxes of size � it is convenient to introduce the 
probability �T	�
 that a point �� falls into the U>V box. In this case, the moments of �T can be estimated 
by summing up the boxes, 
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A moment of reflection shows R 	8
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because of the ergodicity P�	�
Y�T	�
� if  �� belongs to the U>V box and since one can use either an 
‘ensemble’ average (weighted sum over the boxes) or a ‘temporal’ average (sum of the time evolution �	�
). 
The fractal dimension for 8 � 9� is, �� � �7 � 9R	9�
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while the correlation dimension is, ? � �G � R	�
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Statistical laws at small scales have to depend not only on the average energy dissipation density \] but 
also on the fluctuations of energy dissipation density \	�
. 
According to the Theory of Physical Abstraction, each point � should have the same singularity 
structure, 

^_̀ 	a
 % aV � b � ���������� 	c
 
In other words \	�
 tends to be smoothly distributed in a region of de. The eddy turn-over time and the 
kinetic energy per unit mass at scale a are defined as, f	a
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the transfer rate of energy per unit mass from the eddy at scale a to smaller eddies is then given by 
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 is a cube of edge a around �] we have, 

� � \	n
�en

o	j


Yae ������ 	��
 
a D L means a in the initial range and the regions containing a large part of \	�
 are a physical 
approximation of a fractal structure. In this p 9model approach, 
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in an equivalent way 
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At scale a,there is only a fraction, 
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occupied by active eddies. 

The transfer energy from the eddy at scale �x (active eddy) to the scale �x1! is, 
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Since, the energy transfer rate is constant in the cascade process, for p � �'+&e, we have, 
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Iterating, we have, ?x % �x! eX 	�x �7X 
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Each eddy at scale �x is divided into eddies of scale �x1! in such a way that the energy transfer for a 

fraction p of eddies increases by a factor 
!y, while it becomes zero for the other ones. 

In order to generalize the p-model, we have at scale �x� �x active eddies. Each eddy �x	z
 generates 
active eddies covering a fraction of volume px1!	z
. z labels the mother-eddy and z � ��� ��x� 
Since the rate of energy transfer is constant among mother-eddies and their effects, we have, 
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The iteration of ?x gives an eddy generated by a particular history of fragmentations {p!� � � px|, such 
that, 
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The fraction of volume occupied by an eddy generated by {p!� � � px| is � p�x� ! , 
such that, 
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With no correlation among different steps of the fragmentation, i.e., with �	p!� � � px
 � � �	p�
x� ! , 
the exponent concerned, 
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Let us now consider a given representation of the universe. Let the packing density of the constituents 
be R. This packing density function R will affect any given constituent point inside it in accordance with 
the Laws of Physical Transactions. The given constituent point concerned will in turn affect R while 
interacting. For a given critical state of study of the total effects, we therefore are going to have a shear 
stress R and a mean effective stress r. The critical state line is the loci of critical state conditions in the \ 9 r 9 R space. Its projection on the r 9 R space defines a strength parameter, 
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The second equality applies to axis-symmetric, axial compression and it is a function of the constant 
volume critical state packing density function R. 

The small-strain stiffness of a given representation is measured by imposing a smaller strain than the 
elastic threshold strain concerned. In this range, deformations localize at inter-point contacts and the 
granular skeleton deforms at constant fabric of spacetime. The nonlinear load-deformation response 
determines the stress-dependent shear wave velocity 
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Inside a given cluster, we may have various growth patterns. The growth may occur mainly at an active 
zone on the surface of the cluster. For a one-dimensional interface, a fluctuation-dissipation theorem 

exists, leading to an exact dynamic exponent � � eG. This is in excellent agreement with numerical 

simulations of ballistic aggregation and Eden clusters. For two-dimensional interfaces, �Y��Q. 



The interface profile is described by a height b	�� f
. The simplest nonlinear Langevin equation for a 
local growth of the profile is, �b�f � ��Gb � �� 	�b
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The first term on the right-hand side describes relaxation of the interface by a tension term �. The 
second term is the lowest -order nonlinear term that can appear in the interface growth equation. 
Higher-order terms may also be present, but they are irrelevant and will not modify the scaling 
properties concerned. The noise �	�� f
 has a Gaussian distribution with -�	�� f
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There is also a velocity term, but it is removed by choice of an appropriate moving coordinate system. 
Equation 	��
 is invariant under translation b D b � ��P�f�Pf, and obeys the infinitesimal 
reparametrization, b D b � �� �� � D � � ��f� 
which describes the tilting of the interface by a small angle. When a given constituent point is added, 
the increment projected along the b-axis is, �b � ��{� � 	�b
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which is a diffusion equation in a time-dependent random potential. �	�� f
 is the sum of Boltzmann 
weights for all static configurations of a flow in a 	� � �
-dimensional space from 	L�L
 to 	�� f
. The 
noise term describes a quenched random potential 	� ��X 
�	�� f
exerted by the environment. The 
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which is the Burger’s equation for a vorticity-free velocity field for � � �. In the Burger’s equation, 
further evolution of the pattern proceeds through the larger parabolas growing at the expense of the 
smaller ones, and parallels the evolution of shock waves. 

If the initial profile is b	�� L
 � b7	�
, its evolution is given by, 
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Let a given representation have bonds within itself, occupied by a resistance generated inside it due to 
its packing density R, with probability W. Let it have a support towards the concerned flow with 
probability � 9 W. In such a representation, we have, 
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where -¬ \§x§ / refers to the average over the sample realizations, © is the system-size © ­ � and � % 	W 9 W®
 is the correlation length. \§ is the energy dissipated in the branch z. 

For a finite size scaling behaviour, 
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(� is the rescaling parameter) equation 	�S
 implies, 
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In disordered representations, the fluctuations of the free energy among different replicas may be 
regarded as the analogue of the temporal intermittency in a chaotic signal. Considering a spin-model of 
the �-dimensions, the Hamiltonian, °±�²�J�³ � 9�²�J �́ J́	��J
 � 
where �́ � µ� is the of the spin on the site � and the coupling ²�J is an independent random variable 

distributed according to a probability distribution W¶²�J·. Given a coupling realization ¸²�J¹, the partition 

function of an � spin system is the trace of the Boltzmann weight =	&y�º»
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The free energy per spin in the limit � D « is, 
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The free energy per spin of a coupling realization ¸²�J¹ of a � spin system is, 
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For a unidimensional system with first neighbor interactions and uniform field b, we can write the 
partition function as the trace over � Á � random transfer matrices product. The Hamiltonian is now ° � 9¬ 	²� �́ �́1! � b �́
� , such that, 
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The moments of the partition function can be estimated as an integral over the spectrum of the possible 
free energies {ÀÅÆÇ� ÀÅÈÉ|, -¼�	p
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The Kolmogorov entropy is related to the sum of the positive Lyapunov exponents which measure the 
divergence rate along the expanding directions, in accordance with the Theory of Physical Abstraction. 
For an ergodic measure with a compact support (as proved by Pesin) is, 
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 where � is the number of exponents, �� Ë L. In Hamiltonian systems, 
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A record of measures of a signal �	f
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Clustering: 

Since the number of eddies at scale � with singularity b is proportional to �&2	V
, the number of grid 
points that have to be considered for resolving the set t	b
 is �V	dÎ
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Ñ  and � is the dissipative Kolmogorov length. 

Integrating over b, the total number of degrees of freedom is, 
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The estimate ���x � �	b��x
 assures that all the sets t	b
 are taken into account. The number of 
equations which allows us to get such a fully accurate description is thus; 
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which may be obtained by considering flows in the required number of directions or dimensions. 



 Let us define an effective mass dimension �Ø of the point on which the energy dissipation is 
concentrated by, 
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average active eddies are still present. 

The minimum separation �W between disturbances, with difference ��, is such that ^W � Ü^������� � 	��
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Thus any number of points P inside a given representation will form a cluster point if they sufficiently 
close, as described by equation 	��
. The total information inside such a cluster is, 
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where ÞÏ� is the energy dissipation information inside the constituent points. As the constituent points 

must be sufficiently close in order to form a cluster point, they may be considered to be a continuous 
energy dissipation information function, such that, 
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As ÞÏ is a function of \, we can write, 
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where Pb � P 9 �, such that, b � x&!x . 

As P D «� b D L. 

A corollary to the Laws of Physical Transactions suggest that the individual constituent points of the 
cluster point will tend to be in the lowest effective dissipation energy state \h. Thus, the total energy 
dissipation information that the cluster point will tend to reach is, ÞÏØ � PÞÏß  
The total loss in energy dissipation energy information by the cluster point is therefore, 
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Let the individual energy dissipation information states of the constituent points be, ÞÏ� � à�ÞÏß � 



such that the loss in dissipation energy information is, 
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Taking a continuous distribution, 
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A close enough representation of the constituents of the universe therefore will be affected by this loss 
in dissipation energy information �ÞÏ inside its various clusters. This in turn will give rise to seemingly 
anomalous behaviour inside the representation. The clusters will seem to move away from each other 
with greater velocities than anticipated values. On the other hand, the clusters themselves will seem to 
be bound with greater strengths than is anticipated. The existence of dark energy and dark matter that 
we feel may be linked to the loss �ÞÏ.   
 

 

Conclusion: 

Choosing a suitable scaling ratio we may represent the microscopic and the macroscopic worlds on the 
same scale, enabling us to study and compare their various hitherto hidden properties. A large enough 
packing density ensures formation of cluster points inside the representations. These cluster points will 
tend to be in their lowest energy dissipation states. The whole universe being considered as a cluster 
when its constituents are close enough, as in the moment of the Big Bang, it tends to be in its lowest 

energy state (theoretically a zero energy state). �ÞÏ, i.e., the difference in dissipation energy 
information which tends to infinity as the number of constituent points inside it tends to 
infinity, however establishes itself as Big Bang takes place. Yet, as the universe can expand 
further as its constituents move away from each other, with respect to a further expanded 
state it at any given present representation its clustered. Thus a hidden amount of energy 
dissipation information is present at any moment we look at the universe. This hidden energy 
dissipation information will make the clusters to move away from each other and the clusters 
themselves to be bound within themselves with greater hidden strengths than is anticipated.   


