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Abstract

The most recent notifications from OPERA Collaboration of
CERN Geneva report highly probable existence of faster-than-light
neutrinos. Such a state of affairs has been also detected earlier in
radio galaxies, quasars and recently in microquasars. The usual
scenario explaining superluminal speeds is based on a black hole
contained in these sources producing the high speed mass ejection.

Superluminal speeds are, however, plainly and efficiently ex-
plainable within the framework of Special Relativity, in which the
Einstein postulates, the Minkowski energy-momentum space, and
both the Poincaré and the Lorentz symmetries remain unchanged,
but the energy-momentum relation is deformed. In this paper su-
perluminal deformations of Special Relativity, complementing the
Einstein theory at faster-than-light speeds, are studied in the con-
text of CERN neutrinos. For full consistency we propose to apply
the non-parallelism hypothesis, the deformation derived ab initio,
and the concept of measured speed of light which can be higher
than c. We show that such a theory is able to explain both super-
luminal speed as well as mass of neutrino.
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1 Introduction
22nd September 2011 was truly revolutionary day for high energy par-
ticle physics. Then the OPERA Collaboration, experimental project
of CERN Geneva, has announced that their results based on high-
statistics experimental data demonstrate superluminally traveling neu-
trinos [OPERA Collaboration, 2011]. Similar situation is well-known
in modern astronomy since the early 1980s, when faster-than-light
motion was suggested to contradict the quasars having cosmological
distances. Presently, superluminal travels are seen in radio galaxies,
quasars and microquasars. It is usually believed that a black hole con-
tained in these sources provokes the high speed mass ejection. Mostly
believed opinion about superluminal speeds, which do not use expla-
nations wrecking Special Relativity, are the optical illusions. By this
reason the speculations about time travels and other hypothetical pos-
sibilities of Special Relativity arising from a faster-than-light motion,
are cordially propagated. It should be noticed that even Einstein never
excluded possibility of superluminal speeds. His account is the postu-
late of Special Relativity saying that the speed of light c is the maxi-
mal speed, what does not mean that measured speed of a moving object
must be less c. In this manner the speed of light postulate is the only
internal restriction of Special Relativity, but not the limitation of Na-
ture, so the sceptics are forced to accept the state of affairs in which
Special Relativity is a consistent physical theory.

In this paper we present the complement of Special Relativity for
faster-than-light speeds. We show that superluminally moving objects
can be efficiently described with using of Special Relativity. A whole
mathematical structure of the Minkowski space, four-vector formalism,
as well as the fundamental Einstein’s postulates remain unchanged,
while the energy-momentum relation expressing the Einstein equiv-
alence principle is deformed due to certain additional arguments. It
should be emphasized that the original Einstein’s energy-momentum
relation has nothing to the postulates of Special Relativity, and by this
reason its modification does not lead to inconsistencies. The problem
is, however, to complement Special Relativity in such a way that the
Poincaré invariance, as its special case the Lorentz invariance, remain
preserved. For creating of such an appropriate model we show general
consequences due to deformed energy-momentum relations for Special
Relativity, which include motion with superluminal speeds.

For consistency we propose to the non-parallelism hypothesis, ex-
pressing lack of parallelism between momentum and velocity vectors
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of a moving body. The deformation of Einstein’s energy-momentum re-
lation is derived ab initio from definition of the velocity. We introduce
also the measured speed of light which can be higher than c. These as-
sumptions taken together lead to superluminal speeds within Special
Relativity and preserve both the Poincaré and Lorentz symmetries of
the Minkowski energy-momentum space. Finally, we discuss this the-
ory in the context of CERN neutrinos, and show that both faster-than-
light speed and nonzero mass of neutrinos are consistently described
within the our framework.

2 Deformed Energy-Momentum Relations
Let us consider Special Relativity, in which the Hamiltonian constraint
called the Einstein energy-momentum relation is modified by the con-
stituent ∆ arising due to certain additional arguments. This extra-
term has physical dimensionality of squared energy, and in general is
a function of momentum vector and energy of a moving object, and also
another non-dynamical parameters

E2 = p2c2 +m2c4 +∆(E, pi;m, . . .). (1)

We assume that energy is a function of momentum value, i.e. E = E(p).
It is obvious that for the trivial case ∆≡ 0 one has to deal with the sit-
uation described by Special Relativity and its all consequences among
which the key one is the Standard Model of particles and fundamental
interactions. In this manner, existence of a deformation ∆ leads to a
new physics which is manifestly beyond the Standard Model.

The origins of the deformation ∆(E, p;m, . . .) can have diverse na-
ture. In case of Doubly Special Relativity such a deformation is purely

algebraic. Another particular situation is ∆ =
p4c4

ε2 , where ε =
}c√
α`

is a maximal energy constructed from a minimal scale `, for example

the Planck scale where ` = `P =

√
}G
c3 , and a dimensionless small con-

stant α ∼ 1 which value can be established as 1/(2π)2 [Glinka, 2011].
This deformation arises from the Snyder non-commutative geometry of
phase-space (p,x) of a moving particle, and its consequences for physics
at the Planck scale were primarily studied by Sidharth. Among many
essential changes due to the Snyder–Sidharth deformation of Special
Relativity, possibly the most essential one is its exceptional usefulness
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for generation of nonzero neutrino mass and the new physics, for in-
stance consistent description of the Compton scattering and the Comp-
ton effect [Glinka, 2011]. All hitherto known models, including Dou-
bly Special Relativity and the Snyder–Sidharth deformation, preserve
the structure of the Minkowski space and the Einstein postulates, but
manifestly violate both the Poincaré and the Lorentz (CP) symmetries.

In this manner, it is reasonable to suspect that the most general
Hamiltonian constraint (1) also leads to consistent description of the
new physics, including superluminal speeds. We shall call the extra-
term ∆ by superluminal deformation. The problem is to establish the
concrete form of a superluminal deformation, and for the derived for-
mula of ∆ to deduce the physical content of the corresponding deformed
Special Relativity. The first way for construction of ∆ is the phenomenol-
ogy of an experiment, and the second way is a theoretical proposal
based on any reasonable arguments. In this paper we shall to apply
the second way.

3 Superluminal Speeds
Let us examine velocity and speed of a particle characterized by any
energy-momentum relation of the form (1). According to the usual def-
inition, which is particularly valid for Special Relativity, classical me-
chanics and other well-known cases, the velocity vector is

vi =
∂E
∂ pi

. (2)

Using of (1) leads to the relation

∂E
∂ pi

=
1

2E

(
2pic2 +

∂∆

∂ pi
+

∂∆

∂E
vi
)

. (3)

For consistency ∆ should be a scalar quantity, and therefore one can
suggest that ∆ depends on the powers of momentum value p =

√
pi pi.

Hence the pi-derivative can be transformed into the p-derivative

∂∆

∂ pi
=

∂∆

∂ p
∂ p
∂ pi

+
∂∆

∂E
∂E
∂ pi

=
∂∆

∂ p
pi

p
+

∂∆

∂E
vi, (4)

applied to the relation (3) leads to

vi
(

1− 1
E

∂∆

∂E

)
=

1
2E

(
2pic2 +

∂∆

∂ p
pi

p

)
. (5)
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If
1
E

∂∆

∂E
6= 1 then the velocity of a moving object has the form

vi = v
pi

p
, (6)

where v =
√

vivi is the speed of a moving object

v =
pc2 +

1
2

∂∆

∂ p

E− ∂∆

∂E

. (7)

Both sides of the relation (6) can be multiplied by vi or by pi what gives

vp = vi pi = vi pi. (8)

Applying the definition of a scalar product one has vi pi = vpcosα, where
α = (vi, pi) is the angle between the vectors vi and pi, and consequently
(8) gives identically cosα = 1, i.e. α = 0.

The speed formula (7) can be presented in the equivalent form

v = vr +δv, (9)

where vr is the speed, which does not contain the derivatives of a su-
perluminal deformation ∆ and in the trivial situation ∆≡ 0 leads to the
speed computed from standard Special Relativity

vr =
pc2

E
, (10)

and δv is the speed correction due to a superluminal deformation

δv = v− vr =
vr

∂∆

∂E
+

1
2

∂∆

∂ p

E− ∂∆

∂E

. (11)

In the usual sense of smallness of the speed correction must be∣∣∣∣δv
v

∣∣∣∣� 1, (12)

what means that

− 1
2pc2

∂∆

∂ p
6

1
E

∂∆

∂E
� 1, for − 1

2pc2
∂∆

∂ p
6 1, (13)

1� 1
E

∂∆

∂E
�−1− 1

pc2
∂∆

∂ p
, for − 1

2pc2
∂∆

∂ p
� 1. (14)
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Let us consider the approximation∣∣∣∣ 1
E

∂∆

∂E

∣∣∣∣� 1, (15)

which in the light of the relation (32) means that

cosα � 2
∣∣∣1− vr

v

∣∣∣−2, (16)

which together with the condition −1 6 cosα 6 1 means that

v ∈
[

2
5

vr,
2
3

vr

]
∪ [2vr,∞] . (17)

We shall call (15) Ultrahigh Speed Approximation (USA). It can be seen
straightforwardly that USA satisfies the smallness condition (12), i.e.
is a particular case within the conditions∣∣∣∣ 1

2pc2
∂∆

∂ p

∣∣∣∣6 ∣∣∣∣ 1
E

∂∆

∂E

∣∣∣∣� 1, for
∣∣∣∣ 1
2pc2

∂∆

∂ p

∣∣∣∣6 1, (18)

1�
∣∣∣∣ 1
E

∂∆

∂E

∣∣∣∣� ∣∣∣∣1+
1

pc2
∂∆

∂ p

∣∣∣∣ , for
∣∣∣∣ 1
2pc2

∂∆

∂ p

∣∣∣∣� 1. (19)

In the region of speeds (17), which is defined by USA (15), the speed
correction formula (11) becomes

δv =
vr

1
E

∂∆

∂E
+

1
2E

∂∆

∂ p

1− 1
E

∂∆

∂E

. (20)

Let us look on this formula for really small values of
1
E

∂∆

∂E
. Then one

can take into account the Taylor power series expansion of (20)

δv =
1

2E
∂∆

∂ p
+ vr

(
1+

1
2pc2

∂∆

∂ p

)
∞

∑
n=1

1
En

(
∂∆

∂E

)n

, (21)

in which the leading terms are

δv≈ 1
2E

∂∆

∂ p
+

pc2

E2
∂∆

∂E
+

1
2E2

∂∆

∂E
∂∆

∂ p
+

pc2

E3

(
∂∆

∂E

)2

+
1

2E3

(
∂∆

∂E

)2
∂∆

∂ p
+ . . .

(22)
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If, moreover, additionally the condition
∂∆

∂E
6= 0 holds then the speed

correction can be presented in the form

δv =
vr +

1
2

∂E
∂ p(

1
E

∂∆

∂E

)−1

−1

, (23)

and in the appropriate Taylor power series expansion

δv =
(

vr +
1
2

∂E
∂ p

)
∞

∑
n=1

1
En

(
∂∆

∂E

)n

, (24)

the leading terms are

δv≈ pc2

E2
∂∆

∂E
+

1
2E

∂E
∂ p

∂∆

∂E
+

pc2

E3

(
∂∆

∂E

)2

+
1

2E2
∂E
∂ p

(
∂∆

∂E

)2

+ . . . (25)

In the region of speeds opposite to USA∣∣∣∣ 1
E

∂∆

∂E

∣∣∣∣� 1, (26)

the expansions (22) as well as (24) are not still valid. Then the as-

sumption
∂∆

∂E
6= 0 is obligatory because of otherwise the region of speed

opposite to USA does not exist. Dividing both sides of the fraction in

the speed formula (11) by
∂∆

∂E
one obtains the speed correction formula

δv =−
vr +

1
2

∂E
∂ p

1−
(

1
E

∂∆

∂E

)−1 , (27)

which shows that in such a case the speed correction contributes purely
negative constituents, so that the speed is always lower than vr. In such
a situation the appropriate Taylor power series expansion

δv =−
(

vr +
1
2

∂E
∂ p

)
∞

∑
n=1

En
(

∂∆

∂E

)−n

, (28)
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has the leading terms as follows

δv≈ vr +
1
2

∂E
∂ p

+ vrE
(

∂∆

∂E

)−1

+ vrE2
(

∂∆

∂E

)−2

+
E
2

∂E
∂ p

(
∂∆

∂E

)−1

+ . . . (29)

In this manner, any deformation ∆ of Special Relativity can be used
for generation of the complement for superluminally moving objects. In
other words, within the presented approach for nontrivial ∆’s the speed
of a moving object can be higher than the speed of light c.

4 The Non-Parallelism Hypothesis
Let us consider the elementary formula

∂E
∂ p

=
∂E
∂ pi

∂ pi

∂ p
= vi pi

p
= vcosα, (30)

where α = (pi,vi) is the angle between momentum and velocity vectors
of an moving object. In the light of the relation (6) this angle is iden-
tically 0, i.e. cosα = 0. However, such a state of affairs must not be
sufficient for description of a motion with superluminal speeds. By this
reason we propose

Proposition (The Non-Parallelism Hypothesis). In a motion with su-
perluminal speed parallelism of the momentum and the velocity vectors
of a faster-than-light traveling object is lost.

Applying ad hoc the non-parallelism hypothesis within the formula
(27) one receives the speed correction in the form

δv =
vr +

1
2

vcosα(
1
E

∂∆

∂E

)−1

−1

. (31)

In such a situation, using of the definition (9) leads to another form of
the speed formula

v =
vr

1−
(

1
E

∂∆

∂E

)(
1+

1
2

cosα

) , (32)
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which can be expanded around the non-deformed case, i.e. cosα = 1

and
1
E

∂∆

∂E
= 0, as follows

v
vr

=
∞

∑
n=0

∞

∑
m=0

m

∑
k=0

(−1)k2−n3n−mΓ(m−n)Γ(n+1)(cosα)k
(

1
E

∂∆

∂E

)n

Γ(k +1)Γ(m+1)Γ(m− k +1)Γ(−n)Γ(n−m+1)
, (33)

or around α = 0

v
vr

=
1

1− 3
2E

∂∆

∂E

−

1
E

∂∆

∂E

4
(

1− 3
2E

∂∆

∂E

)2 α
2 +

1
E

∂∆

∂E

(
1+

3
2E

∂∆

∂E

)
48
(

1− 3
2E

∂∆

∂E

)3 α
4 +O[α6].

(34)
The essential effect is that in absence of the deformation, i.e. in the
trivial case ∆ ≡ 0 which corresponds to Special Relativity, the correc-
tions due to the Non-Parallelism Hypothesis vanish identically. In this
manner, the momentum-velocity non-parallelism has a sense if and
only if Special Relativity is superluminally deformed.

Calculating cosα from the relation (32)

cosα = 2
(

1
E

∂∆

∂E

)−1(
1− vr

v

)
−2, (35)

and taking into account the fact that −1 6 cosα 6 1 one obtains the
upper and the lower bounds for the speed v

vr

1− 1
2E

∂∆

∂E

6 v 6
vr

1− 3
2E

∂∆

∂E

. (36)

5 Ab Initio Deformation
Usually the deformation ∆ os the energy-momentum relation follows
from an algebraic deformation or non-commutative geometry of phase
space. However, also usually in such scenarios deformations are high-
order polynomials in momentum value and energy violating the Poincaré
symmetry of the Minkowski energy-momentum space, which is the cru-
cial and fundamental feature of Special Relativity. In this section we
shall to deduce the deformation which, as it will be shown in the next
parts of this paper, allows to preserve the Poincaré symmetry.
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Let us consider a superluminal deformations which are functions of
time t hidden within the dynamical parameters E and p, i.e.

∆ = ∆(E(t), p(t)) = ∆(t). (37)

In such a situation the partial derivatives with respect to p and E can
be transformed as follows

∂∆

∂ p
=

∂∆

∂ t
∂ t
∂ p

=
∆̇

ṗ
=

∆̇

F
, (38)

∂∆

∂E
=

∂∆

∂ t
∂ t
∂E

=
∆̇

Ė
=

∆̇

P
, (39)

where F = ṗ is a value of force acting on a particle, and P is a power. It
is easy to see that application of the relations (38) and (39) within the
formula (7) lead to the following speed formula

v =
P
F

pc2F +
1
2

∆̇

EP− ∆̇
, (40)

which allows to establish the differential equation for the deformation

∆̇ = 2FP
Ev− pc2

P+2Fv
. (41)

This equation is not hard to straightforward integration

∆ = 2
∫ t

t0
dt ′F(t ′)P(t ′)

E(t ′)v(t ′)− p(t ′)c2

P(t ′)+2F(t ′)v(t ′)
(42)

= 2
∫ t

t0
dt ′

d p
dt ′

dE
dt ′

E(t ′)v(t ′)− p(t ′)c2

dE
dt ′

+2
d p
dt ′

v(t ′)

= 2
∫ t

t0
dt ′

d p
dt ′

dE
dt ′

E(t ′)v(t ′)
dE
dt ′

+2
d p
dt ′

v(t ′)
−2c2

∫ t

t0
dt ′

d p
dt ′

dE
dt ′

p(t ′)
dE
dt ′

+2
d p
dt ′

v(t ′)

= 2
∫ E(t)

E(t0)
dE(t ′)

d p
dt ′

E(t ′)v(t ′)
dE
dt ′

+2
d p
dt ′

v(t ′)
−2c2

∫ p(t)

p(t0)
d p(t ′)

dE
dt ′

p(t ′)
dE
dt ′

+2
d p
dt ′

v(t ′)

= 2
∫ E(t)

E(t0)
dE(t ′)

E(t ′)v(t ′)
dE(t ′)
d p(t ′)

+2v(t ′)
−2c2

∫ p(t)

p(t0)
d p(t ′)

p(t ′)

1+2
(

dE(t ′)
d p(t ′)

)−1

v(t ′)

,

(43)
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and with using of the non-parallelism hypothesis

dE(t ′)
d p(t ′)

=
dE(t ′)
d pi(t ′)

d pi(t ′)
d p(t ′)

= vi(t ′)
pi(t ′)
p(t ′)

= v(t ′)cosα(t ′), (44)

its solution takes the following form

∆ = 2
∫ E(t)

E(t0)
dE(t ′)

E(t ′)
2+ cosα(t ′)

−2c2
∫ p(t)

p(t0)
d p(t ′)

p(t ′)cosα(t ′)
2+ cosα(t ′)

. (45)

Let us evaluate the deformation for the case when the angle α and
the energy E, as well as the angle α and the momentum value p are
independent variables. In fact, such a state of affairs is generally true,
because of angle α is the only free parameter. In such a situation one
obtains the formula

∆ =
2

2+ cosα(t ′)

∫ E(t)

E(t0)
dE(t ′)E(t ′)− 2c2 cosα(t ′)

2+ cosα(t ′)

∫ p(t)

p(t0)
d p(t ′)p(t ′), (46)

in which the integrals can be derived straightforwardly, and conse-
quently the superluminal deformation derived ab initio has is a second-
order polynomial in the momentum value and the energy

∆ =
E2−E2

0
2+ cosα

−
(p2− p2

0)c
2 cosα

2+ cosα
, (47)

where E0 = E(t0) and p0 = p(t0) are the initial data.

6 Ab Initio Energy-Momentum Relation
Applying the ab initio deformation (69) within the energy-momentum
relation (1), one receives the ab initio energy-momentum relation

E2 = p2c2 +m2c4 +
1

2+ cosα
E2− cosα

2+ cosα
p2c2−∆0, (48)

where ∆0 is the constant deformation

∆0 =
1

2+ cosα
E2

0 −
cosα

2+ cosα
p2

0c2, (49)

which after minor algebraic manipulations becomes

E2 =
2p2c2

1+ cosα
+m2

e f f c4, (50)
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where me f f is the effective mass arising from the ab initio superluminal
deformation

me f f =

√
m2 +

1
c4(1+ cosα)

(
m2c4 + cosα p2

0c2−E2
0
)
. (51)

In this manner, the necessary and the sufficient conditions for exis-
tence of the new mass in the deformed theory are

cosα 6= 1, (52)

cosα 6=
E2

0 −m2c4

p2
0c2 . (53)

The first condition is the only the non-parallelism hypothesis, while the
second one is exclusion of the specific value of the angle.

The effective mass (51) must not be a real number. It is a real num-
ber if and only if m2

e f f > 0, i.e. the expression under the square root is
positive. It leads to the condition

E2
0 6 (2+ cosα)m2c4 + p2

0c2 cosα, (54)

which can be understood as the lower bound for the mass parameter

m >
E2

0 − p2
0c2 cosα

(2+ cosα)c4 , (55)

or equivalently as the lower bound for the angle α

cosα >
E2

0 −2m2c4

p2
0c2 +m2c4 . (56)

Let us focus on the case when the effective mass is identically equal
to zero, i.e. me f f = 0. In such a situation if α is known from experiment
then the mass parameter m is established as

m =
E2

0 − p2
0c2 cosα

(2+ cosα)c4 , (57)

or if m is known from experimental data then

cosα =
E2

0 −2m2c4

p2
0c2 +m2c4 . (58)
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If, moreover, the initial data are constrained by the Special Relativity
energy-momentum relation

E2
0 = p2

0c2 +m2c4, (59)

then one receives

cosα = 1− 2m2c2

E2
0

=
2p2

0c2

E2
0
−1. (60)

Because of the bounds −1 6 cosα 6 1 one obtains the bounds

E2
0 > m2c4 > 0 and E2

0 > p2
0c2 > 0, (61)

what is consistent with (59).
Using of the ab initio deformed energy-momentum relation (50) for

calculation of the velocity of a moving object gives the result

vi =
∂E
∂ pi

=
2pc2

E(1+ cosα)
pi

p
, (62)

and consequently the speed of such an object is

v =
2pc2

E(1+ cosα)
. (63)

It is visible that for broken non-parallelism hypothesis, i.e. cosα = 1,
the speed of a moving object (63) becomes

v =
pc2

E
, (64)

where energy is usual relativistic energy

E2 = p2c2 +m2
e f f c4, (65)

with the appropriate effective mass

me f f =

√
m2 +

1
c4

(
m2c4 + p2

0c2−E2
0
)
. (66)

which together with the Special Relativity condition for initial data

E2
0 = p2

0c2 +m2c4, (67)
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becomes the non-deformed mass of Special Relativity

me f f = m. (68)

In this manner, the case of cosα = 1 under specific condition (67) for the
initial data can be resulting in Special Relativity despite the fact that
than the ab initio superluminal deformation (69) is still present

∆ =
E2− p2c2

3
−

E2
0 − p2

0c2

3
. (69)

One sees that the most important result of the non-parallelism hy-
pothesis is the deformed speed (63). It is easy to check that this formula
can be presented in the form

v =
2c√

1+ cosα +
1
2

(
me f f c

p

)2

(1+ cosα)2

. (70)

If the effective mass vanishes me f f = 0 then

v =
2c√

1+ cosα
, (71)

and in this manner in such a situation the speed of a moving has a
superluminal value if and only if

2√
1+ cosα

> 1−→ cosα 6 3, (72)

what is always true because of the natural bounds of cosinus function.
The case of non-vanishing effective mass if a little bit difficult. In such
a situation, the speed of a moving object is superluminal if and only if(

me f f c
p

)2

cos4 α

2
+ cos2 α

2
−2 6 0, (73)

where of course cos2 α

2
=

1+ cosα

2
∈ [0,1]. This inequality can be easy

solved straightforwardly

cos2 α

2
>

1
2

(
p

me f f c

)2
√1+8

(
me f f c

p

)2

−1

 , (74)
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and gives the lower bound

cosα >

(
p

me f f c

)2
√1+8

(
me f f c

p

)2

−1

−1 (75)

and because of the bounds cos2 α

2
∈ [0,1]

me f f >
p
c
. (76)

In the light of the energy-momentum relation (50) the result (76) leads
to the lower energetic bound

E >

√
3+ cosα

1+ cosα
pc, (77)

or equivalently the lower bound for the cosinus

cosα >

(
E
pc

)2

−3

1−
(

E
pc

)2 . (78)

Because of the bound cosα 6 1 one receives the upper energetic bound

E 6
√

2pc. (79)

In this manner the deformation jointed with the non-parallelism hy-
pothesis formally enables the values higher than the speed of light c.

7 Energy-Momentum Interval
Let us focus our attention on the energy-momentum interval

s2 = ηµν pµ pν =−E2

c2 + p2, (80)

where pµ =
[

E
c
, pi
]

is a momentum four-vector and ηµν = diag(−1,1,1,1)

is the metric of the Minkowski space. Direct calculation gives

s2 =
cosα−1
cosα +1

p2−m2
e f f c2. (81)

Let us perform the sign analysis of the energy-momentum interval (81).
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1. The case m2
e f f > 0 for which

cosα >
E2

0 −2m2c4

p2
0c2 +m2c4 . (82)

Then the energy-momentum interval (81) is

(a) light-like if and only if s2 = 0, i.e.

p =

√
cosα +1
cosα−1

me f f c, (83)

and E = pc.
(b) energy-like if and only if s2 < 0, i.e.

p <

√
cosα +1
cosα−1

me f f c, (84)

and E > pc.
(c) momentum-like if and only if s2 > 0, i.e.

p >

√
cosα +1
cosα−1

me f f c, (85)

and E < pc.

For consistency of all these cases, however, must be

cosα 6−1 or cosα > 1, (86)

what is manifestly wrong condition.

2. The case m2
e f f < 0 for which

cosα <
E2

0 −2m2c4

p2
0c2 +m2c4 . (87)

Then the energy-momentum interval (81) is

(a) light-like if and only if s2 = 0, i.e.

p =

√
1+ cosα

1− cosα
|me f f |c, (88)

and E = pc.

16



(b) energy-like if and only if s2 < 0, i.e.

p <

√
1+ cosα

1− cosα
|me f f |c, (89)

and E > pc.

(c) momentum-like if and only if s2 > 0, i.e.

p >

√
1+ cosα

1− cosα
|me f f |c, (90)

and E < pc.

All these cases are consistent if and only if

−1 6 cosα < 1, (91)

what is equivalent to

1
3

(
E2

0
c4 −

p2
0

c2

)
< m2 6

E2
0

c4 +
p2

0
c2 . (92)

Otherwise the momentum value are purely imaginary, i.e. non-
physical.

3. The case m2
e f f = 0 for which

cosα =
E2

0 −2m2c4

p2
0c2 +m2c4 . (93)

We assume that always p2 > 0. Then the energy-momentum in-
terval (81) is

(a) light-like if and only if s2 = 0, i.e.

cosα = 1, (94)

and E = pc. In this case

m2 =
1
3

(
E2

0
c4 −

p2
0

c2

)
. (95)

However, for consistency with the non-parallelism hypothe-
sis must be p = 0 and E = 0.
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(b) energy-like if and only if s2 < 0, i.e.

cosα <−1 or cosα >−1, (96)

and E > pc. This case is manifestly nonphysical.
(c) momentum-like if and only if s2 > 0, i.e.

−1 < cosα 6 1, (97)

and E < pc. In this case

1
3

(
E2

0
c4 −

p2
0

c2

)
6 m2 <

E2
0

c4 +
p2

0
c2 . (98)

8 Violated Poincaré Invariance
The problem is that the ab initio deformed energy-momentum relation
(50) leads to breakdown of the Poincaré symmetry, which is the funda-
mental feature of Special Relativity. Such a state of affairs can be seen
by the straightforward calculation. The Poincaré invariance

s′2 = s2, (99)

demands preservation of the energy-momentum interval (81) under ac-
tion of the Poincaré transformation in the energy-momentum space

p′µ = Λ
µ

ν pν +Pµ , (100)

where p′µ =
[

E ′

c
, p′i
]
, Pµ is a constant momentum four-vector, and Λ

µ

ν is

a constant matrix satisfying the condition

ηµνΛ
µ

κ Λ
ν

λ
= ηκλ , (101)

which after contraction of both sides with ηµνηκλ leads to

Λ
αµ

Λ
ν

λ
= η

α

λ
η

µν , (102)

and the particular relation is

Λ
αµ

Λ
ν
α = η

µν . (103)

Contracting of the equation (102) with ηαβ ηµκ leads to

Λκβ Λ
ν

λ
= ηβλ η

ν
κ , (104)
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and particular case ν = κ gives

Λαβ Λ
α

λ
= ηβλ . (105)

Application of the Poincaré transformation (100) to the interval (81)
gives the result

s′2 =
cosα−1
cosα +1

(
ηikΛ

i
jΛ

k
i p j pi +PiPi +Pi

ηikΛ
k
i pi +PiΛ

i
j p

j
)

+m2
e f f c2 (106)

=
cosα−1
cosα +1

(
η ji p j pi +PiPi +2PiΛ

i
j p

j)+m2
e f f c2 (107)

= s2 +
cosα−1
cosα +1

Pi
(
Pi +2Λ

i
j p

j) , (108)

which breaks the Poincaré invariance (99) manifestly. The situations
preserving the Poincaré symmetry are defined by the trivial momen-
tum vector Pi = 0 or by the following vector

Pi =−2Λ
i
j p

j. (109)

Contracting both sides of the relation (109) with δkiΛ
jk and taking into

account the equation (103) for all spatial indexes one receives the result

p j =−1
2

Λ
j
i Pi, (110)

which allows to establish the form of spatial part of the Lorentz matrix

Λ
j
i =−2

p jPi

P2 . (111)

The constant vector Pµ can be identified with the initial data vector

Pµ =
[

E0

c
, pi

0

]
. (112)

In such a situation PiPi = p2
0, and by this reason the matrix Λ

j
i can be

presented in following the form

Λ
j
i =−2

p j p0i

p2
0

. (113)

The covariant momentum vector can be established by contraction of
the contravariant momentum vector (110) with the unit matrix

p j = δ jk pk =−1
2

Λ jiPi, (114)
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and in this manner one can calculate the square of momentum vector

p2 ≡ p j p j =
1
4

Λ jkΛ
j
i PiPk =

1
4

δikPiPk =
1
4

p2
0, (115)

where we have applied the relation (105), what gives

p =
p0

2
. (116)

In this manner, with using of the result (116) the matrix (113) becomes

Λ
j
i =− p j

p
p0i

p0
, (117)

or after using the constraint (116)

Λ
j
i =− p j p0i

2p2 . (118)

In this manner the matrix Λ
j
i possesses three representations (113),

(117) and (118) which are nonequivalent from the point of view of de-
pendence on the momentum vector p j.

Finally one can apply the matrix (118) to the fundamental relation
(101) for the Lorentz transformation. The result is nontrivial

p0i p0 j = p2
0δi j = 4p2

δi j = 2pp0δi j, (119)

and allows to find three nonequivalent forms of the unit matrix

δi j =
p0i

p0

p0 j

p0
=

1
2

p0i

p
p0 j

p0
=

1
4

p0i

p
p0 j

p
. (120)

Because, however, the unit matrix should be a constant matrix the rep-
resentation involving the only initial data p j

0 is the only justified form.
Another two representations of the unit matrix can not be used in the
analysis because of they were obtained by involving of the constraint
(116) relating values of the momentum vector p j and the initial data
momentum vector p j

0.
Let us consider the Taylor power series expansion around the initial

data point p j = p j
0 of the matrix Λ

j
i in all the representations (113),

(117), and (118). Such a power series can be presented in the form

Λ
j
i =

∞

∑
n=0

a j
i (n)

(
1−

p j p0 j

p2
0

)n

=
∞

∑
n=0

a j
i (n)

(
1+

1
2

Λ
j
j

)n

, (121)
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where the coefficients a j
i (n) are constant matrices dependent on n and

initial data momentum vector p j
0

a j
i (n) =

(−1)n(p j
0)

n

n!
∂ nΛ

j
i

∂ p jn (p j = p j
0). (122)

For simplicity we shall apply also the notation

Λ
j
i (p j = p j

0) = Λ
(0) j

i , (123)

and this quantity depends on the choice of the representation.
The matrix Λ

j
i in the representation (113) is linear in p j

Λ
j
i =−2

p0i

p2
0

p j. (124)

so that its analysis is simple. The only non-vanishing are n = 0 and
n = 1 coefficients of the Taylor series, and in this manner

Λ
j
i = Λ

(0) j
i −2

p0i

p2
0

(
p j− p j

0

)
, (125)

where Λ(0) j
i =−2δ

j
i =−2

p0i p
j
0

p2
0

.

The representation (118) of the matrix Λ
j
i is more difficult in the

analysis. This formula can be presented in more convenient form

Λ
j
i =− p j p0i

2δ jk p j pk =− p0i

2δ jk

1
pk , (126)

which shows that now one has to deal with non-linear (reciprocal) de-
pendence on p j. In such a situation the nth derivative of the matrix Λ

j
i

can be established straightforwardly

∂ nΛ
j
i

∂ p jn = Λ
j
i
(−1)nn!
(p j)n , (127)

so that the coefficients of the series are

a j
i (n) = Λ

(0) j
i , (128)

where now Λ(0) j
i has the form

Λ
(0) j

i =−1
2

δ
j

i . (129)
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In this manner, the corresponding Taylor series is

Λ
j
i = Λ

(0) j
i

∞

∑
n=0

(
1+

1
2

Λ
j
j

)n

. (130)

This series, having the form of a geometric series, can be summed up
straightforwardly to the result

Λ
j
i =−2

Λ(0) j
i

Λ
j
j

, (131)

which after using of (118) leads to (119), what confirms its correctness.
Similar procedure can be performed in the case of the representa-

tion (117) of the matrix Λ
j
i . Then the matrix Λ

j
i

Λ
j
i = − p j√

p j p j

p0i

p0
=− p j√

δ jk p j pk

p0i

p0
(132)

= − 1√
δ jk

√
p j

pk
p0i

p0
=− 1√

δ jk

p0i

p0
(p j)1/2(pk)−1/2, (133)

is also nonlinear in p j, and in such a situation one has

Λ
(0) j

i =−δ
j

i . (134)

Applying the Leibniz product formula one obtains

∂ nΛ
j
i

∂ p jn =− 1√
δ jk

p0i

p0

n

∑
l=0

(
n
l

)
dn−l

d p jn−l (p j)1/2 dl

d p jl
(pk)−1/2. (135)

Derivation of the derivatives can be done immediately

dn−l

d p jn−l (p j)1/2 =
1

2n−l (p j)1/2 (−1)n−l−1

(p j)n (p j)l(2(n− l)−1)!!, (136)

dl

d p jl
(pk)−1/2 =

δ k
j

2l (pk)−1/2(−1)l(pk)−l(2l +1)!!, (137)

and by this reason one receives

∂ nΛ
j
i

∂ p jn = Λ
j
i
(−1)n−1

2n
1

(p j)n

n

∑
l=0

(
n
l

)
(2(n− l)−1)!!(2l +1)!!. (138)
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Using of the relations for the double factorials

(2k +1)!! =
(2k +1)!

2kk!
=

2k+1
√

π
Γ

(
k +

3
2

)
, (139)

(2k−1)!! =
(2k)!
2kk!

=
2k
√

π
Γ

(
k +

1
2

)
, (140)

and the Newton binomial symbols(
n
l

)
=

n!
l!(n− l)!

=
Γ(n+1)

Γ(l +1)Γ(n− l +1)
, (141)

one receives

n

∑
l=0

(
n
l

)
(2(n− l)−1)!!(2l +1)!! =

2n+1n!
π

n

∑
l=0

Γ

(
l +

3
2

)
Γ(l +1)

Γ

(
n− l +

1
2

)
Γ(n− l +1)

,

(142)
or after summation

n

∑
l=0

(
n
l

)
(2(n− l)−1)!!(2l +1)!! =

2n+1n!
π

π(n+1)
2

= 2nn!(n+1). (143)

In this manner one obtains finally

∂ nΛ
j
i

∂ p jn = Λ
j
i

1
(p j)n (−1)n−1n!(n+1), (144)

and by this reason the series coefficients are

a j
i (n) =−Λ

(0) j
i (n+1). (145)

The Taylor power series for this case takes the form

Λ
j
i =−Λ

(0) j
i

∞

∑
n=0

(n+1)
(

1+
1
2

Λ
j
j

)n

, (146)

and can be summed up immediately

Λ
j
i =−Λ

(0) j
i

1(
1+

1
2

Λ
j
j−1

)2 =− 4Λ(0) j
i(

Λ
j
j

)2 . (147)

It is easy to check by direct using of the representation (117) that the
formula (147) leads to the result

p j =−1
2

p j
0, (148)

which is relevant in the light of the constraint (116).
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9 Restoration of Poincaré Invariance
In the light of the fact that Pi is a constant vector and Λi

j is a constant
matrix, the solution (110) means that the Pincare invariance in the
ab initio deformed Special Relativity is preserved if and only if p j =

−1
2

p j
0 is a constant vector. Such a state of affairs is in general against

the dynamical nature of motion because means that an object is at
rest. on the other hand the alternative trivial solution Pi = 0, which
is equivalent to p0i = 0, only in the case P0 = 0, which is equivalent
to E0 = 0, allows to restore the Lorentz (CP) symmetry while then the
Poincaré symmetry is not the symmetry of the theory. By this reason
in general the ab initio energy-momentum relation violates both the
Poincaré symmetry and the Lorentz symmetry. The only standard case
cosα = 1, which does not assure superluminal values of speeds and is
against the assumptions of the proposed theory, automatically leads to
preserved both the Poincaré invariance and the Lorentz invariance.

However, both the Poincaré invariance and the Lorentz invariance
can be restored straightforwardly by application of the appropriate
reinterpretation of the speed of light. Interestingly, it is easy to see
that the ab initio energy-momentum relation (50) can be transformed
into the Einsteinian form

E2 = p2c2
N +(mN

e f f )
2c4

N , (149)

which naturally preserves both the Poincaré symmetry and the Lorentz
symmetry with exchanged speeds of light c→ cN . Such a situation has
the place if one introduces ad hoc the new (N) speed of light as the
effect of a motion with superluminal speeds

c→ cN =

√
2

1+ cosα
c =

c

cos
α

2

, (150)

which is superluminal, i.e. higher than c, if

cos
α

2
∈ (0,1]−→ α ∈ [0,π). (151)

For this one must express the effective mass me f f in terms of cI instead
of c and obtain the new effective mass mN

e f f in the form

mN
e f f =

√
m2 +

1
1+ cosα

(
m2 +

2p2
0 cosα

(1+ cosα)c2
N
−

4E2
0

(1+ cosα)2c4
N

)
. (152)

24



The new energy-momentum interval

s2
N =−E2

c2
N

+ p2 =−(mN
e f f )

2c4
N , (153)

is independent on energy and momentum values. In this manner if one
considers the energy-momentum space of the four-vectors

pµ =
[

E
cN

, pi
]
, (154)

then action of both the Poincaré transformation as well as its special
case the Lorentz transformation remains unchanged the new energy-
momentum interval (153), and consequently both the Poincaré group
and the Lorentz group are symmetries of the theory.

Let us analyze the new energy-momentum interval (153) in some
detail with respect to its sign. The interval is

1. light-like when s2
N = 0, i.e.

m2 = 2
2E2

0 − p2
0c2

N cosα(1+ cosα)
c4

N(2+ cosα)(1+ cosα)2 . (155)

This parameter must be a real number. For this must be satisfied
the inequality

2cos4 α

2
− cos2 α

2
−
(

E0

p0cN

)2

6 0, (156)

which solution

cos2 α

2
∈

1
4

1−

√
1+8

(
E0

p0cN

)2
 ,

1
4

1+

√
1+8

(
E0

p0cN

)2
 ,

(157)
must satisfy the natural bounds cos2 α

2
∈ [0,1], i.e.

1
4

1−

√
1+8

(
E0

p0cN

)2
6 0, (158)

1
4

1+

√
1+8

(
E0

p0cN

)2
6 1, (159)

having the unique solution

0 6 E0 6 p0cN . (160)
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2. energy-like when s2
N < 0, i.e.

m2 > 2
2E2

0 − p2
0c2

N cosα(1+ cosα)
c4

N(2+ cosα)(1+ cosα)2 . (161)

3. momentum-like when s2
N > 0, i.e.

m2 < 2
2E2

0 − p2
0c2

N cosα(1+ cosα)
c4

N(2+ cosα)(1+ cosα)2 . (162)

In the cases 2 and 3 the bounds (157) and (160) are still valid.

10 Vanishing Effective Mass
Among many situations within the proposed complement to Special
Relativity, the particular and interesting for this paper considerations
case is the vanishing effective mass, i.e.

me f f = 0. (163)

In such a situation the energy of a moving object is

E = pcN =
pc

cos
α

2

, (164)

so that the value of the cosinus is

cos
α

2
=

pc
E
∈ (0,1]. (165)

Then the energy-momentum interval s2
N is light-like, and the mass pa-

rameter m is

m =
p2

0
E0

√√√√√√√√
1−
(

p0c
E0

)2( pc
E

)2
(

2
( pc

E

)2
−1
)

(
2
( pc

E

)2
+1
)( pc

E

)4
. (166)

When cosα = 1 then also cos
α

2
= 1, and in this manner it is useful to

find the Taylor power series around the point
pc
E

= 1. It is not difficult
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to see that for p0c 6= E0 the leading terms are

m =
p2

0√
3E0

(√
1−
(

p0c
E0

)2

−
8+
(

p0c
E0

)2

3

√
1−
(

p0c
E0

)2

( pc
E
−1
)

+ (167)

+

(
7+2

(
p0c
E0

)2
)(

7
(

p0c
E0

)2

−4

)

6

(
1−
(

p0c
E0

)2
)3/2

( pc
E
−1
)2
)

+O
[( pc

E
−1
)3
]
,

while for p0c = E0 the series has purely imaginary coefficients, so that
it is better to show the behavior around the point

pc
E

= 0. In such a
situation the series is

m =
E0

c2

((
E
pc

)2

− 1
2
− 1

8

( pc
E

)2
− 1

16

( pc
E

)2
+O

[( pc
E

)5
])

, (168)

and all the contributions after the first term are negative, so that

m <
E0

c2

(
E
pc

)2

, (169)

or in terms of the momentum value

p <

√
p0

mc
E
c
. (170)

In the light of the energy-momentum relation (164) one obtains the
lower bound for the initial datum p0

p0 > mccos2 α

2
, (171)

or in terms of the new speed of light cN

p0 > mcN cos3 α

2
. (172)

The case of vanishing effective mass has another nontrivial conse-
quence. Namely, in such a situation the speed of a moving object

v = cN =
c

cos
α

2

, (173)

in the region α ∈ [0,π) is always higher than the speed of light c, but
equal to the new speed of light cN .
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11 Conclusion: CERN Neutrinos Explained
In September 2011 the OPERA Collaboration of CERN publicly dis-
closed the computations which showed that in their experiments speed
of 17 GeV and 28 GeV neutrinos is higher than the speed of light
[OPERA Collaboration, 2011]. This result was absent in the previous
attempts, and manifestly contradicts to another ones. The OPERA re-
sult is that neutrino speed is 1.0000248(28)c. Let us accept this result as
the verified one. Its explanation is impossible within the frameworks
of modern high energy physics, i.e. the Standard Model, its extensions,
SUSY, etc. However, it is possible to explain the OPERA result with
using of the Superluminally Deformed Special Relativity with the ab
initio deformation calculated in this paper.

From the point of view of the theory proposed in this paper we know
that the new speed of light is cN =

c√
cosα

and the speed of the moving

neutrino is v =
pc2

N
E

, where α is the angle between the momentum vec-
tor and the velocity vector of a moving neutrino, p is the momentum
value and E =

√
p2c2

N +(mN
e f f )2c4

N is the energy of the neutrino. For con-
sistency there is needed the value of the momentum of neutrino and
the value of the effective mass mN

e f f .
Let us involve the Standard Model point of view, which says that

neutrinos are massless, i.e. are the Weyl neutrinos. This is, of course,
incorrect point of view because of the nonzero neutrino mass has been
detected in several experiments. However, we want to give the hypoth-
esis claiming that the superluminal neutrinos are massless, i.e. are
the Weyl neutrinos, i.e. the effective mass of such neutrinos is exactly
equal to zero. In this manner, in our point of view the Standard Model
is the effective theory. In such a situation the momentum value is de-

termined as p =
E
cN

. Such a hypothesis leads to

cosα = 2
c2

v2 −1 = 0.9999006(92), (174)

and in this manner one obtains the unique value of the angle between
velocity and momentum vectors of a superluminal neutrino

α ≈ 0.01409325(69)rad≈ 0.80748414(10)◦. (175)

This value is a little bit more than 0◦ - the value of the angle in Special
Relativity.
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Finally, let us summarize the our approach to explain neutrinos. We
have build the theory on base of

1. Deformed energy-momentum relation within Special Relativity,

2. Ab initio derivation of the deformation,

3. The non-parallelism hypothesis,

4. New speed of light restoring the Poincaré invariance,

5. Vanishing effective mass.

Such a collection consistently complements Special Relativity for the
case of superluminally moving neutrinos and, possibly, with the last
point removed can be useful for description of any objects moving with
superluminal speeds.
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