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MOMENTUM AND ENERGY IN THE SCHWARZSCHILD METRIC 

By Douglas L. Weller 

 

ABSTRACT 

 Albert Einstein validated his field equations by demonstrating that they complied with 

what he called the laws of momentum and energy.  The most well-known solution to 

Einstein’s field equations is the Schwarzschild metric describing the gravitational field of a 

mass point.  Here is examined how what Einstein called the laws of momentum and energy 

are manifest in the Schwarzschild metric and how these laws limit the geometry of space-time 

that is defined by the Schwarzschild metric. 

 

INTRODUCTION 

 The laws of momentum and energy that underlie Einstein’s field equations are by 

necessity incorporated into any solution of the field equations.  Here is explored how 

momentum and energy are manifested in the Schwarzschild metric. 

 When there is no gravity field present, the Schwarzschild metric reduces to the 

Minkowski metric.  The Minkowski metric is used to explore the energy and momentum 

resulting from motion in space and time apart from the presence of gravity.  For the case 

where there is a gravity field present, but no motion through space, the Schwarzschild metric 

reduces to what is called herein a “no motion” metric.  The no motion metric is used to 

explore the energy and momentum resulting from gravity apart from the presence of motion in 
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space.  The full Schwarzschild metric is used to explore the energy and momentum resulting 

from the presence of both gravity and motion in space.  

 The discussions on the Minkowski metric, the no motion metric and the full 

Schwarzschild metric each include one or more subsections showing how conservation of 

momentum and energy necessarily results in limiting the geometry of space-time that is 

described by each metric. 

 

I.  THE MINKOWSKI METRIC  

 The Schwarzschild metric describes the gravity field surrounding a point mass.  

Where the effect of gravity vanishes, the Schwarzschild metric reduces to the Minkowski 

metric.1  Momentum and conservation are first examined in this simple case of the 

Schwarzschild metric. 

 The Minkowski metric was originally derived based on Hermann Minkowski’s 

fundamental axiom for space-time set out in an address2 given in September 1908:  

 The substance at any world-point may always, with the appropriate 
determination of space and time, be looked upon as at rest.  
 

 Minkowski’s fundamental axiom for the space-time continuum indicates that for the 

substance at a world point (e.g., a particle) there exists a local reference frame, with its own 

local space and time coordinates, in which the substance is at rest with respect to the local 

space coordinates (but not with respect to the local time coordinate). 
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 For example, assume the local reference frame for a particle has the local space 

coordinates (

€ 

ξ,η,ς ) and the local time coordinate 

€ 

τ .  For the particle, with respect to the 

local reference frame,  

 

€ 

dξ
dτ

=
dη
dτ

=
dς
dτ

= 0 . (1) 

 The Minkowski metric provides information necessary to make a coordinate 

transformation from the coordinates defining the local reference frame to reference 

coordinates (x, y, z, t) defining another reference frame. 

 The Minkowski metric often appears in Cartesian coordinates as, 

 

€ 

c 2dτ 2 = c 2dt 2 − dx 2 − dy 2 − dz2, (2) 

 arranged to provide information useful to obtain values of the time coordinate of the local 

reference frame from values of the reference coordinates (x, y, z, t).  The Cartesian coordinates 

used to express the Minkowski metric can also be converted to spherical coordinates so that 

the Minkowski metric has the form 

 

€ 

c 2dτ 2 = c 2dt 2 − dr2 − r2dθ 2 − r2 sin2θ( )dϕ2 . (3) 

  

A.  Selection of a reference frame from which to evaluate momentum and energy  

 In order to obtain information about momentum and energy within the Minkowski 

metric (and the Schwarzschild metric) it is important to select and consistently use a reference 

frame from which to make measurements.  In the Minkowski metric there are two reference 

frames to choose from.  The first is the local reference frame defined by local coordinates 
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(

€ 

ξ,η,ς,τ ).  The other is the reference frame (referred to herein as the coordinate reference 

frame) defined by reference coordinates (x, y, z, t). 

 There is a distinct disadvantage to use of the local reference frame to make 

measurements:  in its own local reference frame an object is always at rest, that is, as indicated 

by equation (1) there is no spatial velocity, i.e., no change in the values of the local space 

coordinates (

€ 

ξ,η,ς ) with respect to passage of time as measured by the time coordinate 

€ 

τ .  

When there is no motion through space, it is very difficult to evaluate momentum and kinetic 

energy. 

 In the coordinate reference frame, however, there can be a detectable motion through 

the space coordinates.  This is referred to herein as spatial velocity (  

€ 

 v S), which is a vector sum 

of the motion in three dimensions of space, i.e., 

   

€ 

 v S =
 v x +
 v y +
 v z, (4) 

and which has a magnitude 

€ 

vS  where 

 
  

€ 

vS =
 v S =

dx
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
dy
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
dz
dt
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

, (5) 

as measured by the coordinate reference frame. 

 Because of this distinct advantage of making measurements from the coordinate 

reference frame, this is the reference frame that will be consistently used herein to make 

measurements. 



Page 5 of 30  Doug Weller 
 

 

B.  Detecting the expression of momentum and energy in the Minkowski Metric 

 The Minkowski metric, shown in equation (2) is organized in a form that provides 

information useful to obtain values of the time coordinate 

€ 

τ  of the local reference frame from 

values of the reference coordinates (x, y, z, t).  In order to obtain useful information about 

momentum and energy, it is helpful to mathematically reorganize the Minkowski metric to 

make this information more apparent. 

 Since the observer is making measurements from the coordinate reference frame, 

momentum and energy will need to be measured with respect to changes in the reference time 

coordinate t.  The Minkowski metric is therefore rearranged to show this.  Specifically, 

equation (2) can be rearranged as  

 

€ 

c 2dt 2 = c 2dτ 2 + dx 2 + dy 2 + dz2, (6) 

and therefore,  

 

€ 

c 2 = c dτ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
dx
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
dy
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
dz
dt
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

, (7) 

 which can be reduced to  

 

€ 

c 2 = c dτ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+ vS
2. (8) 

 

 The term 

€ 

c dτ
dt

 is a measure of the rate of passage of time as measured by the local 

time coordinate 

€ 

τ  with respect to the rate of the passage of time as measured by the reference 
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time coordinate t.  The term

€ 

c dτ
dt

 is therefore a measure of the velocity of local time with 

respect to coordinate time and is referred to herein as time velocity 

€ 

vτ , where 

 

€ 

vτ = c dτ
dt

. (9) 

 This allows equations (7) to be rewritten as  

 

€ 

c 2 = vτ
2 + vS

2. (10) 

Since the time dimension is regarded as being orthogonal to the space dimensions equation 

(10) can be written in the form of a vector sum, i.e., 

   

€ 

c =
 v S +
 v τ . (11) 

 Equation (11) provides a very clear description of four-dimensional momentum in the 

Minkowski metric. That is, the vector sum of the velocity in the dimensions of time and space 

is always equal to the speed of light c.  

 Einstein’s field equations, the Schwarzschild metric and the Minkowski metric all 

describe distribution of momentum and energy for matterless space.3   In order to describe 

momentum and energy in more familiar terms, a particle with mass m can be placed in the 

local reference frame, in which case—from equation (11)—the momentum of particle m 

across the four dimensions of time and space can be expressed as 

   

€ 

mc = m v τ + m v S . (12) 

 Equation (10) can also be rewritten as 

 

€ 

mc 2 = mvτ
2 +mvS

2 , (13) 
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which indicates how the energy equivalence E of mass m, i.e.,  

 

€ 

E = mc 2 , (14) 

 is apportioned by the Minkowski metric into an energy component 

€ 

Eτ  in the time dimension, 

where 

 

€ 

Eτ = mvτ
2, (15) 

and an energy component in the space dimensions 

€ 

ES  in the space dimensions, where 

 

€ 

ES = mvS
2 , (16) 

so that  

 

€ 

E = mc 2 = Eτ + ES . (17)  

 

 In order to verify the concept of energy equivalence being apportioned into energy 

components, the relationship between kinetic energy and energy equivalence is explored in 

the following subsections. 

 

C.  Kinetic Energy 

 As made clear by the relationship between spatial velocity and time velocity 

€ 

vτ  set out 

in equation (10), when 

€ 

vS = 0, then 

€ 

vτ = c .  When particle m is moving in space with respect 

to reference space coordinates  (x, y, z) there is a change in momentum from the rest state not 

only in the space component of momentum   

€ 

m v S  but also in the time component of 

momentum   

€ 

m v τ .  From rest to any space velocity 

€ 

vS , there is a change in the value of the 

space component of momentum from 0 to the value 

€ 

mvS  in the direction of travel through 
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space.  That is the change in momentum, 

€ 

mvS − 0 = mvS , is the value Newtonian Physics 

recognizes as the momentum of particle m. 

 When particle m moves from rest to any space velocity 

€ 

vS, there is a change in the 

value of the time component of momentum from mc to the value 

€ 

mvτ  in the direction of time.  

This value for change in momentum 

€ 

mc −mvτ , is the momentum in the time dimension that is 

“sacrificed” to achieve space velocity 

€ 

vS  and which is restored to the time dimension when 

the space velocity is returned to 0. 

 From equation (10),  

 

€ 

vτ = c 2 − vS
2 , (18) 

so that  

 

€ 

mc −mvτ = m c − c 2 − vS
2( ) . (19) 

For the case where 

€ 

c >> vS , a good binomial approximation is made using just the first two 

terms of the Taylor expansion so that 

 

€ 

c 2 − vS
2 ≈ c − vS

2

2c
. (20) 

 

Therefore 

 

€ 

mc −mvτ ≈ mc −m c − vS
2

2c
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = m

vS
2

2c
, (21) 

which can be rewritten as 

 

€ 

mc 2 −mcvτ = c mc −mv( )τ ≈
1
2
mvS

2 = EK . (22) 
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Equation (22) shows that the speed of light times the loss of momentum in the time dimension 

is equal to the value Newtonian Physics recognizes as the kinetic energy (

€ 

EK ) of particle m.  

 

D. Mass Energy Equivalence 

 In 1905, Albert Einstein4 derived an energy equivalent for mass by calculating the 

difference in energy (

€ 

ΔL) between light in a local reference frame defined by local space 

coordinates (

€ 

ξ ,

€ 

η,

€ 

ς ) and the same light in the reference frame defined by space coordinates 

(x, y, z).  The difference in energy 

€ 

ΔL  was set equal to the Newtonian value for kinetic energy 

of a mass to produce Einstein’s value for mass-energy equivalence.  

 To obtain 

€ 

ΔL , Einstein defined a value L to represent energy of light in the local 

reference frame defined by local coordinates (

€ 

ξ,η,ς ).  Using the principle of the constancy of 

light, Einstein calculated the difference in energy (

€ 

ΔL) to be 

 

€ 

ΔL = L 1
1− vS

2 c 2
−1

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ . (23) 

Einstein assumes that 

€ 

c >> vS  (“neglecting magnitudes of fourth and higher orders”), and thus 

simplifies equation (23) to   

 

€ 

ΔL ≈ 1
2
L
c 2
vS

2 . (24) 

 Einstein compares this value to the Newtonian value for kinetic energy (EK), 

€ 

EK =
1
2
mvS

2 to derive the energy equivalence of mass.  That is, 

€ 

ΔL = EK so that 

 

€ 

1
2
L
c 2
vS

2 =
1
2
mvS

2  (25) 
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Solving equation (25) for L, Einstein obtained 

€ 

L = mc 2 the equation for the energy 

equivalence of mass, normally written in the form 

€ 

E = mc 2 . 

 

E.  Calculating Mass-Energy Equivalence without using Approximations 

 Einstein’s 1905 paper, written in the context of Newtonian physics, utilizes two 

“Newtonian” approximations.  The approximation represented by equation (24) is used to 

calculate the difference in energy of light between two time frames.  Einstein also implicitly 

utilizes the approximation represented by equation (20) to obtain the Newtonian value for 

kinetic energy resulting from the motion of a mass. 

 Einstein’s method of calculating mass-energy equivalence can also be performed 

without approximations.  In this case, the value for 

€ 

EK , calculated from equation (19) is  

 

€ 

EK = mc 2 −mcvτ = mc 2 −mc c 2 − vS
2 = mc 2 1− 1− vS

2 c 2( ) . (26) 

Setting, as did Einstein, 

€ 

EK = ΔL , and using equation (26) to give the value for 

€ 

EK  and 

equation (23) to give the value for 

€ 

ΔL  yields  

 

€ 

ΔL = EK ⇒ L 1
1− vS

2 c 2
−1

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ = mc

2 1− 1− vS
2 c 2( ) . (27) 

Simplifying this equations leads to  

 

€ 

L
1− 1− vS

2 c 2

1− vS
2 c 2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ = mc

2 1− 1− vS
2 c 2( ), (28) 

and  
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€ 

L = mc 2
1− 1− vS

2 c 2

1− 1− vS
2 c 2

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 1− vS

2 c 2 , (29) 

and 

 

€ 

L = mc c 2 − vS
2 , (30) 

and finally 

 

€ 

L = mcvτ = mc 2 dτ
dt

, (31) 

Recall that according to Einstein’s definition, L represents the energy equivalence of light in 

the local reference frame.  When the local reference frame is the same as the coordinate 

reference frame, then  

 

€ 

dτ = dt , (32) 

and therefore 

 

€ 

dτ
dt

=
dt
dt

=1, (33) 

so that 

 

€ 

L = mc 2 , (34) 

the same value obtained by Einstein, which is now typically expressed as 

€ 

E = mc 2 . 

 

E.  Apportioning Mass-Energy Equivalence 

 As discussed above, Einstein calculated mass-energy equivalence based on the 

premise that the energy equivalence of light and thus the energy equivalence of matter, varies 

based on the reference frame in which the light or mass is located.  When the mass is at rest in 
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the local reference frame, than as measured by the coordinate reference coordinates, the total 

energy equivalence E can be apportioned as 

 

€ 

E = mc 2 = mcvτ + (mc 2 −mcvτ ) . (35) 

 From equation (31), the energy component 

€ 

mcvτ  represents the equivalent energy 

€ 

EL  

of mass m in the local reference frame.  From equation (22) the energy component 

€ 

(mc 2 −mcvτ ) represents kinetic energy 

€ 

EK , so that 

 

€ 

E = mc 2 = EL + EK . (36) 

 Equations (35) and (36) demonstrate the validity of apportioning energy equivalence E 

of a mass m based on the value of time velocity 

€ 

vτ , and therefore confirms equations (13) and  

(17) fairly indicate the way the Minkowski metrics apportions energy equivalence E based on 

the value of time velocity 

€ 

vτ . 

  

F.  Discontinuity in the Minkowski metric 

 From equations (10) and (11), it is clear that the geometry of space defined by the 

Minkowski metric is limited to regions where 

€ 

vS < c .  There is a time singularity (i.e., 

€ 

vτ = 0⇒ dτ
dt

= 0) in the Minkowski metric when 

€ 

vS = c  and the Minkowski metric is 

discontinuous when 

€ 

vS > c .  

 To understand the physical reason for the time singularity, consider equation (35), 

showing the apportionment of energy equivalence based on kinetic energy.  When 

€ 

vτ = 0  the 

entire energy equivalence 

€ 

E = mc 2  is used up by the kinetic energy component 
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€ 

EK = (mc 2 −mcvτ ) = (mc 2 −mc(0)) = mc 2.   There is no available source of energy to be 

further apportioned into kinetic energy.  Kinetic energy has reached a maximum value. 

 Equations (12) and (13) are alternative ways of expressing this physical reason behind 

the discontinuity in the Minkowski metric.  For example, according to equation (12) when the 

spatial velocity 

€ 

vS = c , the entire momentum of mass m is used up by velocity in the space 

dimension.  There is no available momentum to be used for movement in the time dimension, 

so time stops progressing.  Likewise, in equation (13) when the spatial velocity 

€ 

vS = c , the 

entire energy equivalence 

€ 

E = mc 2  is used up by the energy component 

€ 

ES = mvS
2 .   There is 

no available source of energy any increase in the value of the energy component

€ 

ES .  Energy 

component

€ 

ES  has reached a maximum value. 

 The limitation 

€ 

vS ≤ c  is a well-known physical boundary that is readily seen when 

evaluating momentum and energy in the Minkowski metric from the perspective of the 

coordinate reference frame, but is not as evident when evaluating momentum and energy from 

the perspective of the local reference frame.  That is, as set out in equation (1), the particle is 

stationary when measured using the local space coordinates (

€ 

ξ,η,ς ) so there is no momentum 

in the space dimensions and there is no kinetic energy that is detectable using the local space 

coordinates.  The discontinuity is therefore detectable from the local reference system only 

from the coordinate transformation to the coordinate reference frame.  That is, when 

€ 

vS = c , 

there is a singularity in the relationship between the reference time coordinate and the local 

time coordinate (i.e., 

€ 

dt
dτ

= ∞) which can be detected from the local space coordinates.  In the 
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local reference frame the time singularity 

€ 

dt
dτ

= ∞  manifests as the momentum of coordinate 

time increasing to infinity.   

 Because the Minkowski metric is discontinuous for velocities greater than 

€ 

vS > c , any 

values obtained from the Minkowski metric become nonsensical when 

€ 

vS > c .  For example, 

in equation (2), when 

€ 

vS > c , 

€ 

dτ 2  becomes negative.  In attempt to make sense of this, 

Minkowski introduced the equation  

€ 

t −1 = s to produce what he called the “mystic 

formula”5  

 

€ 

3x105km = −1sec. (37) 

 

I. NO MOTION METRIC 

 The Schwarzschild metric reduces to the Minkowski metric where there is no gravity 

field present.  This facilitated evaluation of how, in the Schwarzschild metric, momentum and 

energy is affected by motion in the absence of a gravity field. 

 The Schwarzschild metric can also be reduced to a  “no motion” metric when the local 

reference frame is stationary in space with respect to the coordinate reference frame.  The no 

motion metric facilitates evaluation of how, in the Schwarzschild metric, momentum and 

energy are affected by gravity in the absence of motion through space. 

 The full Schwarzschild metric for a point mass M with a Schwarzschild radius R, is 

typically expressed with the reference coordinates in the form of spherical coordinates, i.e., 

 

€ 

c 2dτ 2 = c 2(1− R
r
)dt 2 − dr2

(1− R /r)
− r2dθ 2 − r2 sin2θ( )dϕ2. (38) 
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Where there is no motion through space, 

€ 

dr = dθ = dϕ = 0  and the Schwarzschild metric 

reduces to the following “no motion” metric: 

 

€ 

dτ 2 = (1− R
r
)dt 2. (39) 

 In equation (39) the effects of gravity are taken into account by the quantity 

€ 

R
r
dt 2 , 

which appears in equation (39) because when Karl Schwarzschild solved Einstein’s field 

equation to produce the Schwarzschild metric, he calculated components of the gravitational 

field using a gravitational constant, as is done in Newtonian physics.6  As a result, the 

Schwarzschild metric accounts for the affect of the gravity using the Schwarzschild radius R 

or in an equivalent form that instead includes the gravitational constant G, where 

 

€ 

R =
2GM
c 2

. (40) 

 Expressing the coordinates in the form of spherical coordinates rather than Cartesian 

coordinates has no effect on calculated values of momentum and energy because the 

coordinate reference frame does not change when the form of the coordinates change from 

Cartesian to spherical coordinates.  For example, where the origin for the Cartesian coordinate 

system is located at the center of the point mass, the no motion metric can be expressed as  

 

€ 

dτ 2 = (1− R
x 2 + y 2 + z2

)dt 2 . (41) 

 The same values for momentum and energy will be calculated whether equation (39) 

or equation (41) is used. However, because of the shape of the gravity field, calculations 
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usually appear in a simpler form when using spherical coordinates.  So spherical coordinates 

will be used in the remainder of the paper. 

 

A. Detecting the expression of momentum and energy in the no motion metric 

 As when evaluating momentum and energy in the Minkowski metric, and for the same 

reasons, measurements of momentum and energy are made from the coordinate reference 

frame. 

 To facilitate this, the no motion metric expressed in equation (39) can be rearranged as 

 

€ 

c 2dτ 2 = c 2dt 2 − c 2 R
r
dt 2 , (42) 

and 

 

€ 

c 2dt 2 = c 2dτ 2 + c 2 R
r
dt 2, (43) 

and 

 

€ 

c 2 = c 2 dτ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+ c 2 R
r

, (44) 

and 

 

€ 

c 2 = vτ
2 + c 2 R

r
. (45) 

 In order to highlight the similarities of the Minkowski metric to the no motion metric, 

it is possible to use the Newtonian definition of gravitational escape velocity 

€ 

vG , that is 

 

€ 

vG = c R
r

, (46) 
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to express equation (45) as  

 

€ 

c 2 = vτ
2 + vG

2. (47) 

 Equation (47) describes apportionment of energy in matterless space. In order to 

describe energy in more familiar terms, the particle with mass m can be placed in the local 

reference frame, so that 

 

€ 

mc 2 = mvτ
2 +mvG

2 , (48) 

which indicates how the energy equivalence E of mass m, i.e.,  

 

€ 

E = mc 2 , (49) 

 is apportioned by the no motion metric into time energy component 

€ 

Eτ , where 

 

€ 

Eτ = mvτ
2, (50) 

and a gravitational energy component 

€ 

EG , where 

 

€ 

EG = mvG
2 , (51) 

so that  

 

€ 

E = mc 2 = Eτ + EG . (52)  

 In accordance with parallel equations (where 

€ 

vG  replaces 

€ 

vK ) to those describing 

kinetic energy, gravitational potential energy 

€ 

EP  in the no motion metric can be defined as  

 

€ 

EP = (mc 2 −mcvτ ) . (53) 

allowing the total energy equivalence E in the no motion metric to be apportioned as 

 

€ 

E = mc 2 = mcvτ + (mc 2 −mcvτ ) , (54) 

so that 

 

€ 

E = mc 2 = EL + EP . (55) 
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 Momentum in the no motion metric can be modeled by treating the time dimension as 

being orthogonal to gravitational escape velocity, so that equation (47) can be written in the 

form of a vector sum, i.e., 

   

€ 

c =
 v G +
 v τ . (56) 

 Equation (56) provides a description of momentum in the matterless space described 

by the no motion metric. That is, vector sum of the velocity of time and the gravitational 

escape velocity is always equal to the speed of light c.  

 The particle with mass m can be placed in the local reference frame, in which case the 

momentum of particle m can be expressed as 

   

€ 

mc = m v τ + m v G . (57) 

 

F.  Discontinuity in the no motion metric 

 From equation (56), it is clear that the geometry of space defined by the no motion 

metric is limited to regions where 

€ 

vG < c   (i.e., r>R).  There is a time singularity 

(

€ 

vτ = 0⇒ dτ
dt

= 0) in the no motion metric when 

€ 

vG = c   (i.e., r=R) and the no motion metric 

is discontinuous when 

€ 

vG > c   (i.e., r<R).  

 To understand the physical reason for the time singularity, consider equation (55), 

showing the apportionment of energy equivalence based on gravitational potential energy.  

When 

€ 

vτ = 0  the entire energy equivalence 

€ 

E = mc 2  is used up by the gravitational potential 

energy component 

€ 

EP = (mc 2 −mcvτ ) = mc 2 .   There is no available source of energy to be 
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further apportioned into gravitational potential energy.  Gravitational potential energy has 

reached a maximum value. 

 Equation (48) is an alternative way of expressing this physical reason behind the 

discontinuity in the no motion metric.  According to equation (48) when the gravitational 

velocity 

€ 

vG = c  (i.e., r=R), the entire energy equivalence 

€ 

E = mc 2  is used up by the energy 

component 

€ 

EG = mvG
2 .   There is no available source of energy any increase in the value of 

the energy component

€ 

EG .  Energy component

€ 

EG  has reached a maximum value. 

 At r=0, gravitational velocity 

€ 

vG  and thus energy component

€ 

EG  blows up to infinity, 

indicating infinite energy would be required to, from space, reach the very center of mass M. 

 

G.  Effect of the Discontinuity on light 

 The no motion metric can be used to measure the progress of light as it travels radially 

towards a mass M.  Measured from any reference frame, light fails to reach the Schwarzschild 

radius of mass M before mass M evaporates due to Hawking radiation.7 

 For example, consider the case of a series of local reference frames through which 

light passes on the way to the Schwarzschild radius R of mass M, each local reference frame 

having a local time coordinate.  The local time coordinate 

€ 

τ  for the light is the local time 

coordinate of each of these local reference frames as the light passes through the local 

reference frame.  If there is no spatial motion between the reference frames, the no motion 

metric can be used for coordinate transformations between the reference frames.  Therefore, 

from equation (39),  
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€ 

dτ = dt 1− R
r

. (58) 

 The radial coordinates for each reference frame can be used to measure the speed of 

light as it radially passes through the reference frame on the way to the Schwarzschild radius.  

That is, the radial coordinate r is used to measure the initial speed of light (

€ 

drL
dt

) at the 

location from where the light is initially transmitted from a light transmitter located at radial 

location 

€ 

rT  toward the Schwarzschild radius R.  A local radial coordinate 

€ 

ρ  is used to 

measure the speed of light (

€ 

dρL
dτ

) as it passes through each local reference frame.  Since the 

speed of light as measured by local coordinates as it passes through a local reference frame is 

always equal to c, this means 

 

€ 

drL
dt

=
dρL
dτ

= c . (59) 

 When measured by the coordinate reference coordinates, 

€ 

drL
dt

= c  only at radial 

location 

€ 

rT ; therefore, in order to find the total time for light to reach the Schwarzschild radius 

it is necessary to find an integrand that takes into account how gravity affects the speed of 

light. 

 In order to preserve general relativity it is necessary that at every location length 

contraction is equal to the inverse of time dilation;8 therefore, 

  

€ 

drL
dρL

=
dτ
dt

, (60) 

allowing equation (58) to be rewritten as 
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€ 

dρL =
drL
1− R /r

. (61) 

 From equation (58) and equation (61),  

 

€ 

dρL
dτ

=
drL
1− R /r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dt 1− R

r

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

drL
dt

1
1− R /r

. (62) 

 Combining equation (59) and equation (62) yields 

 

€ 

c =
drL
dt

1
1− R /r

. (63) 

and therefore 

 

€ 

dt =
drL

c(1− R /r)
. (64) 

Equation (64) provides an integrand 

€ 

drL
c(1− R /r)

 that can be used to calculate the time interval 

€ 

Δt  (i.e., coordinate travel time) for light to travel from a light transmitter located at any radial 

location 

€ 

rT , 

€ 

rT > R , to the Schwarzschild radius R, i.e., 

 

€ 

Δt = dt
R

rT

∫ =
drL

c 1− R /r( )R

rT

∫ . (65) 

 The integral in equation (65) is divergent indicating time interval

€ 

Δt  is infinite.  Since 

mass M is not eternal—e.g., even a black hole will disintegrate eventually because of 

Hawking radiation--the mass will evaporate before the light can reach it.9   Assuming that 

light from the light transmitter does not disintegrate first, there exists a radial location 

€ 

rD  

reached by the light just at the time mass M evaporates, where 

€ 

rD>R. 

 Regardless of the radial starting location 

€ 

rT , provided 

€ 

rT > R , the divergence of the 

integral in equation (65) indicates the time for light to travel to the Schwarzschild radius is 
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infinite.  A convergent integral can be formed by using the series of local time coordinates 

through which the light passes to measure the total elapsed time for the light to make the 

journey from the location radial location 

€ 

rT  to the Schwarzschild radius R.  The integrand can 

be obtained by rearranging equation (59) to 

 

€ 

dτ =
dρL
c

 (66) 

 and combining the result with equation (61), 

 

€ 

dτ =
dρL
c

=
drL

c 1− R /r
 (67) 

to obtain the integrand 

€ 

drL
c 1− R /r

.  The resulting integral is  

 

€ 

ΔτR = dτ
R

rL

∫ =
drL

c 1− R /rR

rL

∫ . (68) 

 The convergent integral in equation (68) suggests that when measured using the local 

time coordinates, light can reach the Schwarzschild radius in finite time 

€ 

ΔτR .  

 However, the total elapsed time for the light to make the journey from the location 

radial location 

€ 

rT  to the radial location 

€ 

rD  reached by the light just when mass M evaporates 

can also be calculated using the same integrand.  That is,  

 

€ 

ΔτD = dτ
rD

rT

∫ =
drL

c 1− R /rrD

rT

∫ . (69) 

 Since 

€ 

rD > R , therefore 

€ 

ΔτD < ΔτR  which indicates that even when a convergent 

integral is used to calculate the time it takes light to travel to the Schwarzschild radius, mass 

M will evaporate before the light can reach the Schwarzschild radius.  This result is predicted 
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by the theory of general relativity.  That is, general relativity predicts the laws of physics hold 

equally well even when measured from different reference frames, so that the same physical 

reality is observed from different reference frames. 

 

II.  THE COMPLETE SCHWARZSCHILD METRIC 

 Within the context of the Schwarzschild metric, the Minkowski metric describes 

momentum and energy when there is no gravity present and the no motion describes 

momentum and energy when there is no motion present.  It would seem, therefore, very 

reasonable to conclude the Schwarzschild metric can be derived by a direct combination of 

the Minkowski metric and the no motion metric. 

 However, the Schwarzschild metric, as set out in equation (38) using the 

Schwarzschild coordinates as reference coordinates, has an additional multiplier in one of the 

terms.  Specifically, in the radial term 

€ 

dr2

(1− R /r)
 of the Schwarzschild metric as set out in 

equation (38), there is a multiplier 

€ 

1
(1− R /r)

  that is not contained in the Minkowski metric or 

the no motion metric.  The existence of this multiplier is the reason it has been asserted that 

there is no simple derivation of the Schwarzschild metric.10 

 The multiplier in the radial term of the Schwarzschild metric makes the radial term a 

combination motion and gravity term.  This combination motion and gravity term is usually 

treated as a curvature in space affecting the Schwarzschild metric spatial velocity 

€ 

vSS , so that 

€ 

vSS  is defined in the full Schwarzschild metric as  
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€ 

vSS =
1

(1− R /r)
dr
dt
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− r2 dθ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− r2 sin2θ( ) dϕdt
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

. (70) 

 The Schwarzschild metric in equation (38) can be expressed in simpler terms using the 

definition for 

€ 

vSS  set out in equation (70).  That is, equation (38) can be rearranged as 

 

€ 

c 2dt 2 = c 2dτ 2 + c 2 R
r
dt 2 +

dr2

(1− R /r)
+ r2dθ 2 + r2 sin2θ( )dϕ2 , (71) 

and thus 

 

€ 

c 2 = c 2 dτ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+ c 2 R
r

+
1

(1− R /r)
dr
dt
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− r2 dθ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− r2 sin2θ( ) dϕdt
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

. (72) 

 Using the definition of 

€ 

vSS  set out in equation (70), the definition of 

€ 

vτ  set out in 

equation (9) and the definition of 

€ 

vG  set out in equation (46), allows equation (72) to be 

simplified to  

 

 

€ 

c 2 = vτ
2 + vG

2 + vSS
2. (73) 

 

A.  Discontinuity in the Schwarzschild metric 

 From equation (73), the geometry of space defined by the full Schwarzschild metric is 

limited to regions where 

€ 

c 2 > vSS
2 + vG

2.  There is a time singularity (

€ 

vτ = 0⇒ dτ
dt

= 0) in the 

Schwarzschild metric when 

€ 

c 2 = vSS
2 + vG

2 and the Schwarzschild metric is discontinuous 

when 

€ 

c 2 < vSS
2 + vG

2. 
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 Equation (73) describes apportionment of energy in matterless space. In order to 

describe energy in more familiar terms, the particle with mass m can be placed in the local 

reference frame, so that 

 

€ 

mc 2 = mvτ
2 +mvSS

2 +mvG
2 = mvτ

2 +mvS
2 +mc 2 R

r
, (74) 

which indicates how the energy equivalence E of mass m, i.e.,  

 

€ 

E = mc 2 , (75) 

 is apportioned by the Schwarzschild metric into time energy component 

€ 

Eτ , where 

 

€ 

Eτ = mvτ
2, (76) 

a space energy component 

€ 

ESS , where 

 

€ 

ESS = mvSS
2 , (77) 

and a gravitational energy component 

€ 

EG , where 

 

€ 

EG = mvG
2 = mc 2 R

r
, (78) 

so that  

 

€ 

E = mc 2 = Eτ + ESS + EG . (79) 

 

B.  Effect of the Discontinuity on travelers to the Schwarzschild radius 

 The integrals to determine exactly the amount of coordinate time and local time it 

takes for a traveler composed of matter to reach the Schwarzschild radius have been 

performed, or at least approximated, elsewhere.11  The integral used to calculate coordinate 

time is divergent.  The integral used to calculate local time is convergent. However, in both 
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coordinate reference time and in local time, any mass M compacted below its Schwarzschild 

radius to form a black hole will completely evaporate before the Schwarzschild radius can be 

reached. 

 Even without performing the integrals for the full Schwarzschild metric, it should be 

clear that regardless of the measure of time used, the black hole would completely evaporate 

before any traveler could reach the Schwarzschild radius.  The time for the optimal traveler, 

light, to make the journey was previously calculated.  Light is the fastest traveler and will 

therefore travel the farthest distance before the black hole evaporates.  Since the light cannot 

traverse the distance to the Schwarzschild radius before a black hole evaporates, no slower 

moving traveler will be able to either, regardless of the time coordinate used to measure 

elapsed time for the journey. 

 However, it is highly improbable that a traveler could survive long enough to view the 

complete evaporation of a black hole.  Consider the travails of a traveler to a black hole as 

observed by a distant observer.  The distant observer will observe that during the lifetime of 

the black hole, background radiation travelling in a path that intersects the traveler will 

overtake the slower moving traveler.  Such background radiation will continue to overtake 

and impact the distant observer throughout the entire lifetime of the black hole, or until the 

traveler disintegrates, whichever first occurs. 

 If the traveler can survive the bombardment of background radiation, bigger problems 

lie ahead.   The distant observer observes the evaporation of the black hole before the 

Schwarzschild radius is reached by the traveler.  The traveler, in an accelerated time frame, 

will experience the evaporation of the black hole as it is observed from a distance.  The 
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Hawking radiation from the evaporating mass will first have to pass through the radial 

location of the traveler before reaching the distant observer.  This insures the traveler will 

necessarily observe and experience, before the distant observer, radiation emitted during the 

disintegration of the mass.  Further, the radiation passing by the traveler will continuously 

bring information to the distant observer about the location of the traveler.  Each photon of 

radiation that passes by the traveler is a progress report on the traveler’s location that will 

confirm to the distant observer that the traveler had not yet passed through the Schwarzschild 

radius when that photon of radiation passed the traveler.  Such progress reports will continue 

until the black hole completely evaporates.  

 

C.  Implication for formation of black holes 

 Assuming that Einstein’s field equations provide an accurate description of the laws of 

momentum and energy and that Schwarzschild metric is a solution to Einstein’s field 

equations, then collapsing matter cannot compact below the Schwarzschild radius of a mass.  

To do so would violate the conservation of energy. 

 If the surface of a collapsing mass were to reach the Schwarzschild radius, particles of 

mass m on the surface would each have a gravitational energy component 

€ 

EG = mc 2 .  The 

gravitational component would use up their entire energy equivalence 

€ 

E = mc 2 .  There is no 

source for the gravitational energy necessary for the particles to continue moving inward. 
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 For the surface of a collapsing mass to reach r=0 would require that particles of mass 

m on the surface each have a gravitational energy component 

€ 

EG = ∞ .  The source of this 

infinite energy has never been identified. 

 

D.  Alternative Explanation for the end point of a compacting mass 

 Particles on the surface of a compacting mass are in essence travelers to the 

Schwarzschild radius of the mass.  The closer the traveler comes to the Schwarzschild radius, 

the more accelerated the traveler’s contact with radiation, both background radiation and 

radiation from the evaporation of fellow travelers.  The temperature increase at the surface 

resulting from the presence of concentrated radiation, the pressure produced by extreme 

gravity and the shrinking volume would only serve to hasten the traveler’s own evaporation 

into radiation.  The result near the Schwarzschild radius would be an inferno of unimaginable 

proportions that would rapidly evaporate the surface of any mass compacted to a radius near 

its Schwarzschild radius. 

 Any evaporation of matter at the surface of the mass would tend to push the 

Schwarzschild radius down and away from the surface of the compacting mass, thereby 

insuring that the mass could never be compacted below its Schwarzschild radius.  

Specifically, as shown by equation (40), the Schwarzschild radius is proportional to mass M; 

however, radius r of the mass M, is related to the volume of mass M in accordance with the 

well known relationship 

 

€ 

r = V 3
4π

3 . (80) 
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 Assuming there is a rough correspondence between volume and mass, any evaporation 

on the surface of mass M, will reduce the Schwarzschild radius R much quicker than it will 

reduce radius r, as calculated in equations (40) and (80) respectively, with the result that the 

Schwarzschild radius R will shrink back down away from the surface of mass M, located at 

location r. 

 As observed from a distance, time dilation caused by gravity would tend to hide the 

intensity of the inferno at a surface of a mass compacted to a radius near its Schwarzschild 

radius R; however, a rapid retreat of the Schwarzschild radius R from the surface of a mass as 

result of disintegrating matter at the surface would abruptly change  gravitational force at the 

surface thereby diminishing the concealing effect of time dilation.  The result would be the 

sudden release of a less time dilated view of the inferno occurring at the surface. Such sudden 

changes in time dilation provides a potential explanation for the sudden appearance of 

quasars. 
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