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Preface

This book contains a collection of interrelated papers. The title of the book
equals the title of the main paper. The main paper (part 2) describes a
research project whose target it is to uncover the origin of dynamics. As a
starting action, cracks in the fundaments of physics are detected and
suggestions are given for the repair of these deficiencies (part 1).

Part 3 concerns the origin of physical fields. It is essential for
understanding why quantum logic must be extended.

Part 4 seeks the origin of mass in the presence geo-cavities. In that way
minuscule geo-cavities may replace Higgs particles in bringing mass to
elementary particles.

The Hilbert book model (part 10) is the name of a comprehensible paper
that describes the new fundament in simple wording.

The last paper (part 11) describes in the form of a fairytale how the
universe works.

The other parts have a lesser connection with the main subject of the
book.

The paper that describes how the brain works (part 5) gives information
on how the visual trajectory of vertebrates optimizes the perception of
low light level signals. It indicates how this system during a billion years
has helped vertebrates to survive low light level conditions. The observed
radiation is generated by Poisson processes. The conclusion is that
information comes to us in the form of clouds of quanta, rather than in
waves.

The paper that introduces a new law of nature (part 6) explains that
nature has a built-in tendency to reduce complexity via the procedure of
modularization. As a result it establishes the construction of very
complicated items that include intelligent species.

Two other papers (part 7 and 8) describe what happens when the merits
of this new law are neglected and how that annoying situation can be
cured.
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The next paper (part 9) treats the relation between physics and religion.
The last two papers are light weight descriptions of the main subject.

The new model of physics that is introduced in this book is called “The
Hilbert book model”. It holds strictly to its fundament, which is
traditional quantum logic. It extends that basic model such that physical
fields and dynamics also fit. Despite its simplicity the model explains a
large part of the results of current physics.
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Logic model

It is always possible to build a potentially usable theory and a
corresponding model by starting from a consistent set of axioms. Classical
logic represents such a set. It is a theory on itself. However, in the realm of
quantum physics nature cheats with one of the axioms of classical logic.
So it is sensible to adapt classical logic and change the corresponding
axiom such that this adapted logic fits better. The adapted version of the
theory and the corresponding model build on this new logic. The adapted
logic is known as traditional quantum logic.

Traditional quantum logic and as a consequence the new model still do
not fit most of the features that we know from physical phenomena. The
reason is that the new model cannot handle physical fields and it cannot
treat dynamics. So, as a next step, the traditional quantum logic must be
extended to a new version of quantum logic that can cope with fields. The
trick required for this extension blurs a subset of the propositions. The
blur represents the sticky resistance of these propositions against change.
It can also be explained as a stochastically inaccurate coupling to the
value domain of these propositions.

In practice this extension is achieved via the isomorphic companion of
traditional quantum logic, which is the set of closed subspaces of an
infinite dimensional separable Hilbert space for which the inner product
is defined by the elements of the division ring of the quaternions. The new
logic does not yet have a generally accepted name. So, we leave the name
at extended quantum logic. The Hilbert space enables the application of
mathematics.

Still the extended quantum logic and its isomorphic companion can only
handle static situations. Thus the obtained model is not a dynamic model.
This situation can be cured by taking a sequence of these extended
quantum logics such that each subsequent element represents a static
status quo of the dynamic universe that the final model is aimed to
describe.
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The result is called the Hilbert book model. In this model the progression
is made in universe wide steps.

The attached fields are quaternionic probability amplitude distributions.
The sign flavors of these fields will be used to explain the large diversity
of particles that occur in nature.

The gravitation field will be treated as a descriptor of the local curvature
rather than as the cause of that curvature. In this way a local geometric
anomaly can also act as the cause of curvature.

Due to its foundation on adapted and extended classical logic and by

including guidance from physical concepts the resulting model can be
considered as an abstraction of physical reality.
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Part one

Cracks of Fundamental Quantum Physics
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Cracks of fundamental quantum
physics

Abstract

The fundaments of quantum physics are still not well established. This
paper tries to find the cracks in these fundaments and suggests repair
procedures. This leads to unconventional solutions and a new model of
physics. One of the innovations is the derivation of a curvature field from
the cause of the curvature. The most revolutionary introduction is the
representation of dynamics by a sequence of separable Hilbert spaces.
Together, this embodies a repair of fundaments that does not affect the
building.

History

In its first years the development of quantum physics occurred violently
(1. As a consequence some cracks sneaked into the fundaments of this
branch of physics. A careful investigation brings these cracks to the
foreground. The endeavor to repair these cracks delivers remarkable
results.

In the early days of quantum physics much attention was given to
equations of motion that were corrections of classical equations of motion.
The Schrodinger approach was one and the Heisenberg approach was
another. Schrodinger used a picture in which the state of a particle
changes with time. The operators that act on these states are static.
Heisenberg uses a picture in which the operators change with time, but
the states are static. For the observables this difference in approach has no
consequences. This fact is important. It shows that time is just a parameter
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instead that it acts as a property of physical items”. Later Garret Birkhoff,
John von Neumann and Constantin Piron found a more solid foundation
that was based on quantum logic. They showed that the set of
propositions of this logic is isomorphic with the set of closed subspaces of
an infinite dimensional separable Hilbert space, whose inner product is
defined with the numbers taken from a division ring. The ring can be the
real numbers, the complex numbers or the quaternions. Since then many
physicists do their quantum physics in the realm of a Hilbert space.
However, the Hilbert space has no operator that delivers eigenvalues for
parameter time.

Cracks in the fundaments

Fist scratches

These physicists quickly encountered the obstinate character of the
separable Hilbert space. Its normal operators have countable eigenspaces.
This can still correspond to a dense coverage of the corresponding hyper
complex number space. However, this eigenspace is no continuum. Thus,
functions defined using these eigenspaces as parameter domains cannot
be differentiated. In order to cope with this defect, most physicists
resorted to other types of Hilbert spaces than the separable Hilbert space,
but in doing so they neglect that in this way the stringent relation with
quantum logic gets broken.

Severe defects

Further, it appears that the separable Hilbert space cannot represent
physical fields and cannot represent dynamics. This is a severe drawback
and it looks as if the switch to the other Hilbert spaces becomes
mandatory. For example quantum field theory represents fields as
operators that reside in a non-separable Hilbert space. In this paper the

! Later this fact is used in order to apply the progression step counter as a parameter that
characterizes the members of a sequence of Hilbert spaces.
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strategy is to hold strictly to the link with traditional quantum logic. So
the road that is taken by quantum field theory is not followed.

Back to the future

On the other hand there are more and more signals that nature is
fundamentally granular and the non-separable Hilbert spaces do not
provide that feature. This guides backwards to the separable Hilbert
space. But in that case we must learn to live with this separability. In
addition we must find other ways to represent fields.

Dynamic way out

The non-separable Hilbert spaces including the rigged Hilbert space gave
similar problems with representing dynamics as the separable Hilbert
space does. There is no place for time as an eigenvalue of an operator
neither in separable Hilbert space nor in the other Hilbert spaces. For that
reason, it is better to accept that the separable Hilbert space can only
represent a static status quo.

Granularity

Nature is fundamentally granular. The so called Planck units 2are
designed using dimension analyses, but it is generally accepted that
below these limits (Planck-length, Planck-time, Planck constant = unit of
action and Boltzmann’s constant = unit of entropy) no discerning
observation is possible. One could say that below these limits nature does
not exist or that nature just steps over these regions. The Planck-length
and Planck-time are related to the Planck constant, the speed of light ¢
and the gravitational constant G. It is not said that nature’s granularities
have exactly these sizes. The Planck units are derived by dimensional
analysis. The Planck unit sizes rather form an order of magnitude
indication, but these measures are useful and we do not have a better
estimate. The mutual relation between these units is important. For
example, the ratio between the Planck-length and the Planck-time equals

2 http://en.wikipedia.org/wiki/Planck units
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the speed of light c. If you reckon that at every time step a physical item
can at the utmost take one space step, then the maximum speed of all
physical items is automatically set at the speed c.

This paper will not exploit the fact that eigenspaces are granular. We will
rather start from the assumption that the eigenspace is not a continuum.

Coping with granularity

A solution must be found for the fact that GPS-like normal operators in
separable Hilbert space do not possess continuum eigenspaces. A GPS
operator with a granular eigenspace would have a lattice-like eigenspace
of densely packed granules. The lattice would possess preferred
directions. This does not correspond with physical reality. Such situations
can occur in condensed matter, but that is an exceptional condition.

A dense packaging of granules may occur in horizons. For example,
horizons of black holes appear to be covered by a dense package of
granules.

Apart from these exceptions the exclusion holds for any multidimensional
subset of eigenvalues, even if it contains a countable number of values
that are taken from a continuum.

This consideration means that it is impossible to define in the separable
Hilbert space a granular operator that acts like a proper global positioning
system (GPS), which is required in the positioning of field values or when
we want to relate Hilbert vectors with position.

The separable Hilbert space can provide a GPS-like operator that offers a
dense coordinate system as its eigenspace. An eigenspace consisting from
all rational quaternionic numbers would be countable and thus it can be
an eigenspace of a normal operator in separable Hilbert space.
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However this eigenspace is no continuum and as a consequence it does
not support differentiation.

We can still maintain that the set of positions is a set of granules that have
the size of the order of the Planck-length, which is 1.6 - 1073° m.
However, this set does not have densely packed subsets that have a
dimension larger than one.

The required separability is special. It is a granularity of differences rather
than a granularity of values. This might guide the way to a solution.

Background coordinates

The separable Hilbert space H, is connected with its Gelfand triple H,
which is called a rigged Hilbert space. The Gelfand triple is not a regular
Hilbert space. In fact the rigged Hilbert space H is only named after its
generating member H.

A background coordinate system exists in rigged Hilbert space as the
eigenspace of a GPS-like operator Q, but it cannot be directly used in the
separable Hilbert space in order to locate Hilbert vectors in a regular way.
So, we must find an indirect way. This is delivered by the strand operator
@3, which resides in separable Hilbert space H, and has an equivalent @ in
the rigged Hilbert space H. There it can be coupled to the background
coordinate system. Apart from horizons, the eigenspace of the strand
operator does not contain multidimensional sets of eigenvalues. Instead, it
contains chains of granules. Thus, in separable Hilbert space it avoids the
mentioned problems.

Strand operator
The strand operator only makes sense for localizable particles. Pure plane
wave “particles” are not localizable along the direction of the wave, but

3 The name strand operator is related to the strand model of Christoph Schiller that
brought me the idea to use chains as a solution.
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spherically oscillating particles are localizable. In a similar sense a wave
package may be localizable.

The mentioned coupling between the eigenspace of the strand operator @
in separable Hilbert space and the eigenspace of the GPS-like operator Q
in the rigged Hilbert space is not precise. It cannot be so. It is like the
situation that the number of observations in an experiment overwhelms
the number of underlying variables. The usual way to solve such a
situation is to suppose the presence of a stochastic inaccuracy. The
observations are supposed to be blurred. The blur makes the coupling to
the underlying variables inaccurate. Their spread of the observations has
a minimal value. So the observations can be seen as granules.

Nature solves this problem in a similar way. However, it does not use a
simple probability distribution. Nature gives the inaccuracy of the
coupling the form of a quaternionic probability amplitude distribution
(QPAD). The squared modulus of the QPAD is a probability density
distribution. The real values of the QPAD can be interpreted as a charge
density distribution and its imaginary value will then be the
corresponding current density distribution. The eigenvector of @ that
belongs to the resulting eigenvalue acts as the anchor point of the
distribution. The charge represents a load of properties of the item for
which the eigenvector provides the location. The granule can be
considered as the “ground state” of the QPAD.

When the past and the future of the eigenvalues are kept in sight, then the
eigenspace of the strand operator contains a set of chains that are put
together from granules. In the chain the granules are ordered. In each
chain one granule is exceptional. We call it the current granule. The part
of the chain that ends just before the current granule is called the past
sub-chain. The part that starts just after the current granule is the future
sub-chain.
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One could ask whether having only the current granule could be
sufficient. For the model, the direct neighborhood of the current granule
is the most relevant part of the chain. The rest of the chain is hardly used.
It only gives a reflection of a possible past and a possible future which is
derived from the current field configuration. However, the step to the
next version of the “current granule” is taken inside the chain. At a given
progression step maximally one space step is allowed. When that step is
taken, then on the average that step has the size of one granule.

The step to the next granule is controlled by a probability density
distribution (PDD). The extent of this PDD is set by the properties of the
stochastic coupling between the background coordinate system and the
position of the granule. In its minimal format the stochastic coupling has
characteristics that to a certain extend are similar to the characteristics of
the ground state of a quantum harmonic oscillator. This minimal extent is
of the order of the Planck-length. However, the shape of the probability
density distribution must be such that it is zero in a region of the size of
the Planck length. This is why the granules appear to have a basic size of
the order of the Planck-length and seem to be surrounded by a nonzero
QPAD that can take a wider extent. The quantum harmonic oscillator is
only mentioned as an example. The actual form of the wider extent of the
QPAD may depend on the particle type. It depends on the characteristics
of the particle that makes use of this granule as its anchor point. Due to
the analogy we will call the central part of the QPAD its ground state.

At each actual step a space analog to the space covered by the ground
state is inaccessible. Nature steps over this space and lands in the middle
of a new current granule.

One might ask why this restriction exists. The reason must be sought in

the combination of stochastic inaccuracy with the atomicity of quantum
logic. This restriction goes further than countability.
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Chains can split and they can merge. The corresponding creation and
annihilation occurs during a progression step and is controlled by
QPAD’s that are attached to the current granules.

The chains in the eigenspace of the strand operator are causal chains.

Statistics

The QPAD is a constituent of the field that surrounds the granule. The
creation and annihilation operators of fields have eigenfunctions that are
Poisson distributions. Such distributions are produced by Poisson
processes. A Poisson process can be combined with a subsequent
binomial process in order to form a generalized Poisson process that has a
lower efficiency than the original Poisson process. The efficiency is
weakened by the weakening that is introduced by the binomial process.
The spatial spread introduced by the QPAD can be interpreted as a
binomial process with a spatially varying weakening factor. The spread
function is equal to the squared modulus of the QPAD.

Canonical conjugate

Depending on the type of the particle that anchors on the granule there
may be many types of QPAD’s. Near the anchor point the basic shape of
the QPAD’s are all equal. Apart from a factor (1, i, -1 or —i) they are
invariant under Fourier transformation. This means that near the anchor
point the eigenspace of the canonical conjugate of the strand operator has
the same basic format as the eigenspace of strand operator. It also anchors
on similar granules.

Strand space

The strand operator has an outer horizon. Outside this horizon its
eigenspace does not contain granules. It might also have inner horizons
such that inside these inner horizons no granules exist.

Most inner horizons are borders of black holes. These horizons are
bubbles that consist of densely packed granules. The QPAD’s that are
attached to these granules have taken their minimal possible size. Each
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granule is connected to a Hilbert vector which is eigenvector of the strand
operator. That Hilbert vector represents a quantum logical proposition. It
carries a single bit of information that indicates its membership of the
eigenspace of the strand operator. The inner horizons form an exception
to the rule that the granules must not form a multidimensional subset.

Other horizons

Since light transports all information and has a limited speed, the
eigenspace of the strand operator may feature information horizons.
Every object in space has its own private information horizon. This
horizon is in fact the image of a start horizon that occurred at the start of
the universe. The start horizon is a special kind of inner horizon that was
at the same time an outer horizon. It can be interpreted as a bubble that
existed in empty space and that suddenly converted into matter*. From
that moment the granules that formed this special horizon spread over
space and their QPAD folds out, such that it takes more space than just
the size of the granule. This occurrence must be unique or its probability
must be very low. There is no indication that it happened more often
during the lifetime of the universe.

Affine space

Since the unit sphere of the separable Hilbert space is an affine space and
all eigenvectors of the strand operator are represented in that space, the
strand operator can be considered to have no origin or the origin is just
arbitrarily selected. The same consideration holds for the GPS-like
operator in the rigged Hilbert space.

Types of chains

The chains may be closed or they start and end at a horizon. Further they
may split and merge. This corresponds with creation and annihilation of
particles that anchor on these chains. Actually, only the direct
environment of the current granule of the chain is relevant. The granules

4 See Birth of the universe
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in short closed chains may represent the anchors of virtual particles.
These granules are virtual granules.

The generation and annihilation of particles occurs for example in field
configurations that are locally invariant under Fourier transformation,
such as linear and spherical harmonics.

The chains have things in common with the strands in Schiller’s strand
model. However, they are not the same.

Vacuum

The inaccuracy in the coupling between the background coordinate
system and the granules also plays a role in the space where no current
granules exist. In this space virtual granules may exist during a very short
period, for example during a single progression step. These virtual
granules form the content of vacuum.

Virtual granules only occur inside the outer horizon and outside the inner
horizons of the strand operator. The virtual granules can be interpreted as
the ground state of harmonic oscillators. This ground state corresponds
with the minimal extend that the QPAD can take. The vacuum is
supposed to have constant density p,,.0f virtual granules.

In the Hilbert book model the space between horizons is supposed to be
stochastically, but on the average uniformly covered with virtual
granules. At every progression step these virtual granules are
redistributed. The actual granules exist in between these virtual granules,
but they possess a wider spread of the corresponding QPAD’s. These
wider QPAD’s tend to last longer at (nearly) the same location.

Fields

Fields do not fit inside a separable Hilbert space. Any field would cover
the whole Hilbert space. Every Hilbert vector would touch a value of the
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tield. Which value is touched, depends on the functionality of this vector.
When the vector is one of the eigenvectors of a normal operator and when
the field can be expressed as a function of the eigenvalues of this operator
taken as the parameter of the function, then the field value would
correspond with the parameter value that equals the eigenvalue that
corresponds to eigenvector. In that case, the considered field value will be
connected to the considered vector.

In superposition, field values may compensate each other. That is possible
when they have opposite sign.

Function of the field

The function of the physical fields is to take care of minimizing changes
during dynamical steps. This function becomes evident when dynamics is
implemented. Fields keep the shape of the chains of the strand operator
smooth. In first instance the private fields influence the chain at their
anchor point. Due to their extent, the fields also influence other chains.

Basic field constituent

A QPAD that is attached to the current granule takes care of the fact that
the chain in the neighborhood of the current granule stays sufficiently
smooth. This becomes important when dynamics is implemented because
with each dynamic step the current granule either stays at its current
position or it moves one place ahead in the chain.

It must be noticed that exactly this restriction is the reason why speed has
a maximum! The ratio of the space step and the time step equals the speed
of light.

The squared modulus of the QPAD is a probability density distribution
(PDD). It determines the probability of the position of the current granule.
The probability is large when the position is close to the position of the
previous current granule.

Via its wave function a particle is identified with its private field. (They

are one and the same thing). The notion of private field transfers quantum
theory into quantum field theory.
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Fields influence the chain

The private fields overlap and because they are all QPAD’s their
superposition causes an interaction between the particles that anchor on
these fields.

Taken over a sequence of dynamic steps, the chain appears to fluctuate.
The fluctuation determines the probability distribution and vice versa the
dynamic changes of the probability density distribution determine the
fluctuations of the chains. This relation is instantaneous. There is no
causal relation. (The granules are ground states of field constituents).

If the chains would be observable, then the probability distribution could
be determined by averaging the fluctuations over some period. However,
neither the chains, nor the probability amplitude function are directly
observable items. Only their effects become observable.

Particles

The Hilbert book model leaves open whether depending on its type, an
elementary particle relates to one or more of these chains. In any way the
current granules of these chains are related to the current section of the
path of the particle.

Elementary particles can be identified by an ordered pair of coupled sign
flavors of the same field. That field forms the private field of the particle.
Four some particles the coupling factor is zero. The switch from one sign
flavor to the other sign flavor can be considered as the charge of the field.
The sign flavors determine the kind of charge that is involved. A
continuity equation® describes the dynamics. In this equation the first
member acts as the transported part of the field. The second member of
the pair acts as source/drain. The event and location of the sign flavor
switch is the observable of the field. It will be perceived as a quantum.

For massive particles the location of the sign flavor switch may go
together with the location of a local spherical geometric anomaly (SGA).

5 Part two; Hilbert field equations; Continuity equation for charges
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Strands, curvature, torsion and chirality
The idea to attach more than one strand to a particle is taken from
Christoph Schiller’s strand model™.

In contrast to torsion, curvature relates to mass. For example, according to
Schiller’s strand model, the strand that represents a massless photon has
a helix shape. The strands that represent the massive W bosons have the
shape of an overhand knot. Since this knot shows chirality, it possesses
electric charge. The strands that represent the massive Z bosons have the
shape of a figure eight knot. Because the figure eight knot features no
handedness, it does not possess electric charge. In a similar way
Christoph Schiller attributes properties to all elementary particles.

The Hilbert book model does not use the strand concept of Schiller’s
strand model. Strands and chains are both one dimensional and both
interact with fields. The Hilbert book model relates particles to ordered
pairs of field sign flavors. The sign flavors decide how the particles are
charged. That is how far the resemblance of the two models goes.

Extended Hilbert space

The addition of QPAD’s to the Hilbert vectors that are attached to the
current granules extends the separable Hilbert space to a new construct.
For that reason we call this new construct an extended separable Hilbert
space.

Extended quantum logic

Via the relation between the separable Hilbert space and traditional
quantum logic we can extend quantum logic to an extended quantum
logic that includes physical fields in a similar way as the extended
separable Hilbert space model does. It means that a subset of the
propositions is afflicted with a stochastic inaccuracy that can be
characterized by a probability amplitude distribution.
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Covering field

The QPAD that is connected to the current granule is a basic field
constituent. The superposition of all these basic constituents forms a
covering field. With respect to the dynamics of the picture, it must be
reckoned that the elementary particles form a combination of two sign
flavors of the same field in which one sign flavor acts as the transported
part and the other acts as the source/drain part. Apart from that, the
configuration of the covering field depends on the configuration of the
elementary particles. When the configuration of chains changes, then the
configuration of particles changes and the covering field changes
accordingly.

Curvature field

According to Helmholtz decomposition theorem, the static version of the
covering field decomposes into a rotation free part and one or two
divergence free parts. The local decomposition depends on the local field
configuration and in general it does not run along straight coordinate
lines. The local decomposition into a one dimensional longitudinal part
and a transverse part defines a local curvature. This curvature can be used
to define a local metric. This metric is a tensor and on its turn it can be
used to define a derived tensor field. We will call this the curvature field.
It has all aspects of the gravitation field. When split back into curvature
fields that are private to the particles the private curvature field can be
used to attach the property “mass” to the corresponding particle.

What is curvature?

In order to comprehend quantum physics, it is sometimes sensible to step
one dimension down. Optics is in many respects similar in 2D to quantum
physics in 3D.

When optics is studied, then it is often done by following the live path of
a point object. This can be done by ray tracing and it can be done by

applying Fourier optics. When the quality of imaging equipment must be
specified in an objective way, then it is often done in terms of the Optical
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Transfer Function® (OTF). The OTF is defined as the Fourier transform of
the 2D spatial spread of the point object. This definition supposes the
presence of a projection surface. In practice the analyzed area is kept
rather small. Further the energy contained in the point image is
insufficient to activate the measuring equipment. For that reason the
measurement is done by analyzing the image of a short thin slit object.
Provided that the point image is spatially invariant in the area of the slit
object, the analyzed image is the convolution of the Point Spread
Function’ (PSF) and the slit object. After taking the Fourier transform the
analyzed image is the product of the OTF and the Fourier transform of the
slit object. This last function is a two dimensional sinc function that
extends in the direction across the slit in which the slit is small and is thin
in the direction in the direction along the slit. The result corresponds
closely to a vertical 1D cut through the OTF. When the PSF is rotationally
symmetric, then the result is independent of the direction of the slit. The
Modulation Transfer Function is the modulus of the MTF. Any vertical
cut through the MTF is symmetric. Thus when the PSF is not rotationally
symmetric usually two measurements of the MTF are specified. The first
result is the one with maximal extent and the other has minimal extent.
When the imaging system is a rotationally symmetric lens, then on-axis
the PSF is rotationally symmetric, but off-axis the Seidel aberrations take
their toll and the PSF is no longer rotationally symmetric. In that case a
radial (longitudinal) OTF and a lateral (transverse) OTF are specified.

We only traced one ray. Actual images are constituted of the combined
PSF’s of an extended object. In this way the PSF is a constituent of a scalar
field. The divergence and the curl of that scalar field form a vector field.
According to Helmholtz theorem the vector field can be split in a rotation
free component and a divergence free component. In the above situation
these components are the longitudinal and the transverse components.

6 http://en.wikipedia.org/wiki/Optical transfer function
7 http://en.wikipedia.org/wiki/Point spread function
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Now exchange the lens against an arbitrary but smoothly shaped glass
body. The direction of the longitudinal component no longer runs along a
straight line. The curvature of the decomposition defines a local
curvature. This 2D situation looks more like the situation that we have in
3D quantum physics.

In short: In optics the actual field configuration corresponds to a
curvature of the coordinate system in which the PSF is spatially invariant.

Geometric anomalies

Spherical geometric anomalies (SGA’s) are regions of coordinate space
that are not occupied by physical objects and that are surrounded by a
horizon such that information cannot enter that region. This means that
the local curvature is such that information carrying particles cannot enter
the region. Large black holes are examples of such geometric anomalies.
However, such SGA’s may also occur at very small sizes. Inside the
region the value of the probability density distribution (PDD) of any
particle is zero. The PDD is the modulus squared of the QPAD. If we take
the covering field, then its modulus squared is zero inside a SGA.

The center of an SGA acts as a center of virtual mass.

Combining the sources of curvature

Thus two sources of local curvature exist. One source is located in the
local curvature that is due to the configuration of the covering field. The
other source is located in the existence of local SGA’s. We can also see the
SGA'’s as special forms of local field configurations.

About the field concept

It is common practice to treat the EM fields and the gravitation field as
different and independent subjects. In this interpretation, the gravitation
field generates the curvature of the coordinate system in which the other
fields must operate.

The Hilbert book model takes a different approach. It puts the reason for
the curvature of the coordinates in the properties and configuration of the
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covering field. This includes the existence of local SGA’s. The curvature
that exists in this way is used to derive the total curvature field. On its
turn the curvature field determines the values and locations of actual or
virtual masses. The wave function is also interpreted as a constituent of
the covering field. In this way it also contributes to the curvature field.
This picture unifies all fields.

The QPAD’s can be seen as a reflection of the stochastic inaccuracy of the
coupling between the eigenspace of strand operator and the eigenspace of
the GPS-like operator that resides in rigged Hilbert space and acts as
background coordinate system. In the same way the curvature field can
be seen as an administrator of the deficiency of this coupling as is marked
by the local curvature.

The start horizon
With this concept of the curvature field the field configuration near the

origin of the expanding universe can be interpreted as to be generated
completely by the curvature that corresponds with the local geometry.
This curvature determines the field values of the local curvature field.
This curvature field corresponds to a virtual mass that represents the
influence of that local geometry. This virtual mass does not correspond to
the presence of actual matter. It just represents the particular geometry
that is present near the origin of the universe.

In the Hilbert book model the universe starts with a bubble shaped
horizon, which is at the same time an inner horizon and an outer horizon.
This start horizon® consists completely out of densely packed granules. At
the start the size of these granules is quite large. These granules do not
represent ground states of a corresponding QPAD. They represent a much
higher state. Like the ground state this state offers the capability to form
bubbles. The start horizon is instable. Its granules collapse into a new
format whose size is many orders of magnitude smaller. As a

8The idea of the existence of a start horizon is a speculation. Inner and outer horizons
exist.
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consequence the space that was taken by the start horizon gets filled with
a diffused set of the smaller granules that can move around freely. As a
consequence, part of these granules recombines into new smaller bubbles.
These smaller bubbles are black holes. These new inner horizons contain a
lower amount of granules and the granules are much smaller than in the
start horizon. They represent the ground state of the QPAD. Other
granules form loosely connected assemblies. Still others keep moving free.
For the free and loosely packed granules the QPAD’s unfold. This
unfolding results in a large multitude of different private field types.

The result of this procedure is that the original geometry converts partly
into matter. Some of it converted back into geometry. This happening is
then the start of a new expanding universe. However, after this first
implosion the expansion can be described as a metric expansion.

This also indicates what happens when a large mass collapses into a black
hole. The matter disappears and converts into a strongly curved
geometry.

The most important message is that the geometry determines the
curvature field, rather than that the curvature field determines the
geometry. This can go so far that the geometry not only determines a
virtual mass, but under the proper circumstance it can also generate
actual matter that corresponds to the virtual mass. What happens during
the collapse of a large mass into a black hole is not only the generation of
the horizon. It is also the folding together of the private fields that existed
in the surround of the anchor points until they reach their smallest
possible extent.

What also becomes clear is that the configuration of the anchor points in

combination with the type of the private fields determines the curvature
of the geometry.

49



In this picture the gravitation field only acts as an administrator. The real
actors are the Hilbert vectors that correspond to the anchor points and the
corresponding private fields.

Canonical coordinates
We start with the situation in which we can select ideal coordinates. What
that means will become clear soon.

Ideal coordinates

The inner product of the Hilbert space can be used to relate two
orthogonal bases that are each-other’s canonical conjugate. In a
quaternionic Hilbert space this is not a straightforward procedure.
Luckier wise, the quaternionic number space can be divided into a series
of complex number spaces. We just chose one imaginary direction and do
as if we are in complex Hilbert space. However, this singles out that
particular direction. We may choose the direction in which the local
longitudinal direction of the covering field runs. The definition of
longitudinal is in fact taken in the canonical coordinate space of the
current configuration space. It can be any radial direction taken from the
origin of that space. This may give problems when the original
configuration space is curved, thus when the longitudinal direction
changes with location.

The fact that space is curved follows from the fact that when this space is
covered with shapes that should all have the same form; the form of the
shape in fact changes with the location of that shape’.

For the moment we assume that we have selected a coordinate system for
which the selected longitudinal field direction runs along a straight line
and stays that way. We do not bother about granularity, because we will
base our investigations on fields that are specified using a continuum
background Global Positioning System coordinates. In Fourier spaces we

9 See: What is curvature.
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need the corresponding Global Momentum System coordinates. So we
pick the eigenspace of a normal GPS-like operator Q that resides in rigged
Hilbert space as our coordinate system. It has an equivalent GPS-like
coordinate operator Q in separable Hilbert space whose eigenspace lays
dense in the eigenspace of the rigged Hilbert space GPS. The operator Q is
selected such that the selected longitudinal direction of the field runs
along one of the imaginary base vectors of the eigenspace. The set of
eigenvectors {|q >} of operator Q forms an inner product with another
normal operator P which is the canonical conjugate of Q. The eigenvector
|q > corresponds to an eigenvalue q and similarly the eigenvector |p > of
P corresponds to an eigenvalue p. The inner products are now given by:

< plq > = exp(ihgp)

The constant h in h = 2mth is Planck’s constant. The imaginary 3D base
vector i of the quaternionic number space is the imaginary base number
of the selected complex number space.

This procedure can be performed for the two operators and three
mutually perpendicular imaginary base vectors of the eigenspace. We
have defined the procedure for the operators P and Q that reside in
separable Hilbert space, but with respect to its application to Fourier
transforms, it makes also sense for the equivalent operators P and Q in
rigged Hilbert space. Their eigenspaces form a continuum.

Fourier transform

It can easily be seen that the specified inner product also defines a
complex Fourier transform. We start with the separable Hilbert space. By
taking all three dimensions the specified inner product defines the
imaginary part of a quaternionic Fourier transform.

<glf>=<flg>"= f*(q) = Z(< qlp >-<plf>)
p
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And reversely:

<plf>=F@ = Y (<pla><alf>) @)
q

It must be reckoned that these are discrete transforms. Here the Hilbert
function

f(q) = <flg> 3)

is a sampled function and is transformed in formula (2) into its Fourier

partner f().
In rigged Hilbert space the sum becomes an integral.

Use of the Fourier transform

In separable Hilbert space, Hilbert functions are sampled functions and
are constructed from the eigenvectors and eigenvalues of a normal
operator and a selected Hilbert vector. See formula (3).

The discrete transform and the Hilbert functions do not have many
usages. In practice the Fourier transform is applied to Hilbert fields™
rather than to Hilbert functions.

The Fourier transform of a quaternionic field must be performed with a

quaternionic Fourier transform that acts in a continuous number space ..
The Fourier transformation of a private field"! of a particle does two

things. It shifts from a GPS-like coordinate system to its canonical
conjugate GMS-like coordinate system. Apart from that it transforms the
private field from a quantum cloud into a wave package. This new
probability distribution tells about momentum rather than about position.

Fourier transform habits
A Fourier transform keeps inner products invariant. Thus it is a unitary
transformation. It has no eigenvectors and as a consequence it has no

10 Distributions and fields: Hilbert fields
11 Distributions and fields: Hilbert fields: Private field

52



eigenvalues. However, in rigged Hilbert space functions exist that apart
from a multiplication factor are invariant under Fourier transformation.
Examples of these are the functions that describe linear and spherical
quantum harmonic oscillators. The multiplication factor can be 1, i, -1, or -
i.

In separable Hilbert space, the Fourier transform converts an orthogonal
base into another orthogonal base, which is completely distinct from the
original base. Any member of the second base is a linear combination of
all members of the first base. The modulus of all coefficients in this linear
combination is equal to unity. In rigged Hilbert space the function

exp (i p q h) and the Dirac delta function 6(q) form Fourier transform
pairs. In separable Hilbert space the Kronecker delta replaces Dirac’s delta
function.

The existence of canonical conjugation is the reason of the weakening of
the modular law that makes the difference between classical logic and
quantum logic.

A very important property of Fourier transforms is that it transforms a
differentiation into a multiplication with the canonical conjugated
coordinate. This only works in rigged Hilbert space. In the Hilbert book
model it is applied to Hilbert fields'”.

Actual coordinates

In practice the ideal conditions are seldom valid and if they are valid, they
are only valid locally and with reduced accuracy. It means that the inner
product that defines the canonical conjugate has only local validity and
the same holds for the Fourier transforms that are specified with the aid
of that inner product.

In actual situations depending on the field coordinates the coordinate
system gets curved locally. Only an appropriate coordinate
transformation can bring us back to the ideal situation. This is a purely
mathematical activity and the required transform changes with the field

12 Distributions and fields: Hilbert fields
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configuration that resides in the current static status quo. It does not affect
physical reality. So if we know how to perform this coordinate
transformation then physics in this static status quo becomes trivial. This
is the reason why particles move along geodesics. However, in another
static status quo the field configuration will be different. This requires a
separate coordinate transformation for every static status quo. The
alternative is that we accept a curved coordinate system.

The presented picture supposes that nowhere the field excitations are so
violently that it becomes impossible to define a local curvature.

Coherent state

A coherent state is a specific kind of state of the quantum harmonic
oscillator whose dynamics most closely resemble the oscillating behavior
of a classical harmonic oscillator system.

The coherent state |a> is defined to be the 'right' eigenstate of the
annihilation operator A. Formally, this reads:

|Aoa>= aa>

Since A is not Hermitian, « is a hyper complex number that is not
necessarily real, and can be represented as

a = |al exp(k 6)

where
0 is a real number.
|af is the amplitude and
0 is the phase of state |o>.

This formula means that a coherent state is left unchanged by the
annihilation or the creation of a particle. The eigenstate of the annihilation
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operator has a Poissonian'® number distribution. A Poisson distribution

is a necessary and sufficient condition that all annihilations are
statistically independent. (Shot noise is characterized by a Poisson
distribution. See information detection.)

The coherent state's location in the complex plane ( phase space“) is

centered at the position and momentum of a classical oscillator of the
same phase 0 and amplitude. As the phase increases the coherent state
circles the origin and the corresponding disk neither distorts nor spreads.
The disc represents Heisenberg’s uncertainty. This is the most similar a
quantum state can be to a single point in phase space.

Distributions and fields
The concepts that have been introduced so far invite the introduction of
Hilbert distributions and Hilbert fields.

Hilbert distributions

Hilbert distributions are sets of Hilbert vectors, in which each vector
corresponds to the current granule of a member of a set of chains. Thus,
these vectors are eigenvectors of the strand operator in the current Hilbert
space. All past and future granules in a chain correspond with a Hilbert
vector in their corresponding Hilbert spaces, but the vectors of a Hilbert
distribution correspond with the corresponding current granule, thus
with a Hilbert vector in the current Hilbert space.

Also the granules that compose a horizon are eigenvectors of the strand
operator. An elementary Hilbert distribution is a set of Hilbert vectors
that belong to an elementary particle.

13 http://en.wikipedia.org/wiki/Poissonian
14 http://en.wikipedia.org/wiki/Phase space
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Hilbert field

A Hilbert field is a superposition of the QPAD’s that are attached to the
Hilbert vectors in a Hilbert distribution. In principle all Hilbert
distributions are Hilbert fields.

A private Hilbert field is a Hilbert field that belongs to an elementary
Hilbert distribution. However, if a complicated particle consists of a set of
elementary particles, then we consider the superposition of the private
fields of the elementary particles as the private field of the complicated
particle. The Hilbert field is a skew field. The Hilbert book model only
considers Hilbert fields whose values are taken from a division ring.

The covering field is the superposition of all private fields. It is a Hilbert
field

Optics and quantum physics

If all QPAD’s would be similar, then the Hilbert field can be considered as
the convolution of this QPAD and a distribution of Dirac delta functions
that correspond to the Hilbert distribution. This picture resembles (ideal)
ray optics and if we take the Fourier transform then it resembles (ideal)
Fourier optics. This is the reason that wave mechanics has so much
similarity with optics. The characterization “ideal” indicates the
restriction that all blurs are equal. In practical optics the blurs are not
equal and change with position in the image surface. In quantum physics
the same happens?’, but the blur may also change with the type and
properties of the particle.

The Optical Transfer Function characterizes the information transfer
capability of an imaging system. In the image plane this OTF has only a
local validity and it changes with the angular and chromatic
characteristics of the light beam. Also the phase homogeneity of the light
plays an important role. In similar way the Fourier transform of the

15 See: What is curvature
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QPAD characterizes the information transfer capability of a physical
system.

Nothing is said yet about detecting the information that is carried by the
particles. That will be treated later'®.

Dynamics

The extended separable Hilbert space model can only represent a static
status quo. By using this ingredient, dynamics can be implemented by a
model that consists of an ordered sequence of such extended Hilbert
spaces. It corresponds to an equivalent sequence of extended quantum
logics.

In order to give this model a name, we can call it the Hilbert book model.
Passing through the sequence is like glancing through a book, where each
page describes a static status quo.

The chains of the strand operator pass through a range of Hilbert book
pages. A loop must be interpreted as a pair of chains that split at the start
and merge at the end. The split and the merge occur between pages.

What is important is that each static status quo holds both the current
state and ALL preconditions for the next static status quo. Thus in
principle the duration of the progression between subsequent static status
quos is unimportant. The Hilbert book model takes all progression steps
to be of equal length.

Spacetime

This procedure introduces a new parameter that acts as a global
progression step counter. This parameter must not be confused with our
common notion of time, which only has local validity.

The dynamic model implies that space is not the only granular quantity. It
also means that progression occurs in discrete steps. Further, it indicates
that against general acceptance, fundamentally, space and progression

16 Information detection
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have little to do with each other. With other words, no support exists for a
fundamental physical spacetime quantity.

That does not say that no relation between the fundamental space step
and the fundamental time step can exist. The Minkowski signature is a
clear prove of such relation. It can already be understood from the ratio
between the Planck-length and the Planck-time. A further more complex
relation is set by the properties of space and the properties of the
displacement group.

When the smallest possible space step

lPl =4/ hG/C3

and the smallest possible coordinate time step

tpl = 4/ hG/C5

are put into the Minkowski signature,
AT? = At? — Ag?/c?

then the corresponding proper time step At is zero.

The number of Planck-time steps equals the number of global progression
steps. The number of Planck-length steps must always be equal to or
lower than the number of Planck-time steps. A free photon never takes a
non-zero At step. The number of its space steps always equals the number
of its time steps.

Any particle that does not travel with light speed skips some of its space
steps. Any particle can take a space step in a direction that differs from
the direction of a previous step.

Relativity

Wiki states: “One Planck-time is the time it would take a photon
travelling at the speed of light to cross a distance equal to one Planck-
length. Theoretically, this is the smallest time measurement that will ever
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be possible, roughly 10~*3 seconds. Within the framework of the laws of
physics as we understand them today, for times less than one Planck-time
apart, we can neither measure nor detect any change.”

Nothing occurs in that period. It is as if universe does not exist in that
period. Nature just steps over this period. The steps need not be exactly
equal to the Planck units, but they have the same order of magnitude. In
the model these steps are taken in synchrony. This follows from the fact
that a separable Hilbert space can only represent a static status quo. It also
holds for a Hilbert space that is extended with static fields. In the Hilbert
book model dynamics is implemented via universe wide progression
steps. A progression step occurs when an extended Hilbert space is
followed by a subsequent extended Hilbert space.

The origin of the existence of the space step follows from the inaccuracy
of the coupling between the strand operator and the GPS operator. It
shares this origin with the existence of physical fields.

The Hilbert book model uses the concept that the state of the universe can
be considered as a sequence of static status quos. With respect to
Einstein’s special relativity this might at first sight seem an odd idea. This
holds especially with respect to the relativity of simultaneity. However, as
will be shown?, special relativity perfectly fits the Hilbert book model.

The unit sphere of the Hilbert space is an affine space. It houses all unit
length eigenvectors. This also holds for the eigenvectors of the position
operator. This means that between two realizations of the Hilbert space
the eigenvector that corresponds to the origin of position can be freely
selected. Or with other words the origin of position can be selected freely.

Differences between positions in subsequent members of the sequence of
extended separable Hilbert spaces can be interpreted as displacements.

17 See “On the origin of physical dynamics; Dynamics; Relativity
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The displacement is a coordinate transformation. For the properties of this
transformation it does not matter where the displacement starts or in
which direction it is taken.

The same holds for displacements that concern sequence members that
are located further apart. The corresponding displacements form a group.
The displacement is a function of both the position and the sequence
number. The displacement z,t — z',t' can be interpreted as a coordinate
transformation and can be described by a matrix.

=[5 L ‘”

The matrix elements are interrelated. When the displacement concerns a
uniform movement, the interrelations of the matrix elements become a
function of the speed v. The group properties together with the
isomorphism of space fix the interrelations.

£]- e, g @

If k is positive, then there may be transformations with kv? > 1 which
transform time into a spatial coordinate and vice versa. This is considered
to be unphysical. The Hilbert book model also supports that vision.

The condition k = 0 corresponds to a Galilean transformation

1=15 L @

The condition k < 0 corresponds to a Lorentz transformation. We can set
kc? = —1, where c is an invariant speed that corresponds to the maximum
of v.

(4)
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The Lorentz transformation corresponds with the situation in which a
maximum speed occurs.

Since in each progression step photons step with a non-zero space step
and both step sizes are fixed, the speed of the photon at microscopic scale
is fixed. No other particle goes faster, so in the model a maximum speed
occurs. With other words when sequence members at different sequence
number are compared, then the corresponding displacements can be
described by Lorentz transformations.

Lorentz transformations introduce the phenomena that go together with
relativity, such as length contraction, time dilatation and relativity of
simultaneity that occur when two inertial reference frames are
considered.

At, = (At, — Azy v/c?) /1 —v?/c?

The term Az, v/ c? introduces time dilatation. If At, = 0 then depending
on v and Az, the time difference At, is non-zero.

These phenomena occur in the Hilbert book model when different
members of the sequence of Hilbert spaces are compared. Usually the
inertial frames are spread over a range of Hilbert book pages.

Since the members of the sequence represent static status quos, the
relativity of simultaneity restricts the selection of the inertial frames. Only
one of the inertial frames can be situated completely in a single member of
the sequence. In that case the other must be taken from a range of
sequence elements.

It means that when proper time is taken to be directly related with the
progression parameter, thus when the corresponding inertial frame is
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fully located in a single sequence member, then coordinate time must
differ from the progression parameter.

Continuity equations
All equations of motion are in fact continuity equations that treat the local
information generation, annihilation and transfer.

Total change within V = flow into V + production inside V (1)
d v )
—prdV=fnp0—dS+fSOdV
dt s c

v v
jvop0 dv = j(V,p) dv + jso dv 3
v v v

Here 71 is the normal vector pointing outward the surrounding surface S,
v(q) is the velocity at which the charge density p,(q) enters volume V and
So is the source density inside V. p stands for pyv/c .

The combination of ¢ and p(q) is a quaternionic skew field p(q) and can
be seen as a probability amplitude distribution (QPAD).

pP=ptp (3)

p(q)p*(q) can be seen as a probability density distribution (PDD).
Depending on their sign selection, quaternions come in four sign flavors.
In a QPAD the quaternion sign flavors do not mix. So, there are four
QPAD sign flavors. They differ in one or more signs of their imaginary
base vectors.

@D, @ and p®; p = P©; y* = y®@ 4)

The field 1 is supposed to have the same sign flavor as the non-curved
background coordinate system.
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These sign flavors can combine in coupled pairs. Ordered coupled pairs
characterize elementary particles. A continuity equation describes the
distribution of the sign flavor switch.

The field p(q) contains information on the distribution py(q) of the
considered charge density as well as on the current density p(q), which
represents the transport of this charge density.

Where p(q)p*(q) can be seen as a probability density of finding the center
of charge at position g, the probability density distribution p(p)p*(p) can
be seen as the probability density of finding the center of the
corresponding wave package at location p. p(p) is the Fourier transform

of p(q)-

The two independent sign selections of quaternions lead to four different
tield sign flavors. In the equations below the field sign flavors y* and ¥
can be any of 1/)@, 1/;@, w@ or w@. The numbers indicate the number of
imaginary base factors that differ with respect to the local coordinate
system. In its most basic form the continuity equation that describes the
dynamics of the charges of elementary particles is given by:

Vip* = my”
For the antiparticle:
V*d)x* =m lljy*

m is the coupling factor. For some particles m is zero. The sign flavors

l,l)® and l,b@ occur in three different forms that are indicated by the colors
r,g and b.

Elementary particles for which y* equals »Qor @ and m is non-zero are
fermions. Other elementary particles are bosons.

The above equations do not yet show the effect of interactions. Thus they
describe free moving particles.
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Lagrangian density

The Hilbert book model prefers to derive the equations of motion of
elementary particles from continuity equations.

In physics the Lagrangian appears to be a very powerful instrument. With
respect to the Hilbert book model (HBM) it appears to be not the proper
entry point. A single Hilbert book page contains a complete description of
the current static status quo. That means a complete description of the
tield configuration, which includes a description of the anchor points to
the fields. These anchor points correspond to Hilbert vectors. When the
fields are known, then also their Fourier transforms are known. This
means that not only the probability distributions of positions are known,
but also the probability distribution of momentums. Thus these data in
fact comprise the complete description in terms of the Hamiltonian
density rather than the description in terms of the Lagrangian density.
Luckily enough the Hamiltonian density of the private field of each
particle can be converted in a corresponding Lagrangian density, but
curvature may hamper easy conversion. However, in general, locally the
situation can be solved without much trouble. In this way the behaviour
of a single private field in the environment constituted by all other private
fields can be studied.

The consequence of this structure is that the Hamiltonian of a private field
Y of a free elementary particle does not explicitly contain the parameter
t18 and that this private field 1 becomes its time dependence by adding a
phase:

Y(q,t) = x(q) exp(—iE t)
P(q,t) = ¥(q) exp(—iE t)

Hy = Ey

18 See: Eliahu Comay:, “Physical Consequences of Mathematical Principles”, (Progress in
Physics, October 2009 Vol 4), http://www.tau.ac.il/~elicomay/MathPhys.pdf
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Y(p) is the Fourier transform of ¥(q). #(p) is the Fourier transform of
x(@).

The Hamilton density Hy gy ((q),P(p), t) in the Hilbert book model is
then a function of ¥(q), ¥(p)and t, while its representation

Hy(x(q), ¥(p)) in the Hilbert space H, is a function of x(q) and #(p). This
Hilbert space represent a single page of the book.

The coupling factor

The generalized equation of motion for elementary particles can be
transformed to an equation that looks like the Lagrangian and that
enables the computation of the coupling factor from the field .

VY = my’
YrVPE = VTP = my” = m [y
L l,l)?* lex _mlp?* 1,11?

fvop?* ) dV =m f [W?|*dv = mg
%4 |4

g is a real constant.

Information detection
All information that is transmitted by nature is carried by clouds of
information carrying quanta (see figure 1).
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Figure 1: Intensified low dose image of the moon

The clouds themselves carry secondary information in their shape and
their movement characteristics. It looks as if all quanta are generated by a
series of Poisson processes. These facts become apparent when
observations or measurements are done at very low dose rates BI. The
shape of the cloud is set by the corresponding QPAD’s.

As indicated before, coherent states act as Poisson processes. The same
holds for other QPAD’s that support creation and annihilation of
substates.

Rigged Hilbert space

The rigged partner H of a separable Hilbert space H is not a separable
Hilbert space, but a Gelfand triplet. It is an ordered set (@, H, ®* ), where
H is the Hilbert space used to generate @ and @*. The eigenspaces of
normal operators in a Gelfand triplet need not be countable. They can be
continuous spaces such as the full set of quaternions. The name of Hilbert
is misused to identify the Gelfand triplet as a rigged Hilbert space. This
paper uses the Gelfand triplet H in order to provide a background GPS
system and to couple the equivalent of the separate Hilbert space strand
operator to the corresponding GPS operator. Both the equivalent strand
operator and the GPS operator reside in the rigged Hilbert space H. In
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this way the granules of the chains that reside in separable Hilbert space
get their position. Another use of the background GPS operator is the
coupling of field values to a position value. For that purpose the field
values must be attached to the corresponding eigenvectors in rigged
Hilbert space H.

Discussion

The Hilbert book model

This model of physical reality does not contain singularities. Nor does it
contain infinities. The only infinity it uses is the infinity of the dimension
of the separable Hilbert space.

The model is fundamentally granular. The only continuities that the
extended Hilbert space uses are the continuity of the background
coordinate system that it borrows from its rigged partner and the
continuity of the shapes of the QPAD’s.

Gravity and inertia

In the Hilbert book model, the gravitation field is treated as a derived
field. It has long range effects due to the fact that its charges (the local
metric tensors that describe the local curvature) do not get compensated
by opposite charges as happens with electric charges’. Prove is given by
the existence of inertia, which can only be explained by analyzing the
influence of the universe of particles on a local particle B 4. Locally this
influence causes an enormous potential @, which according to Sciama can
be related to the gravitational constant G. Uniform movement of a particle
does not raise other field activity than a field reconfiguration, but any
acceleration of the particle goes together with an extra vector field ©I.

1 However Mendel Sachs describes a way to also include the curvature caused by EM
fields into account.
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Quantum clouds

The notion of quantum cloud needs clarification. The quantum cloud that
corresponds to the private field of an elementary particle only contains
the current granules of that particle as information carrying quanta. A
field that consists of a superposition of the private fields of a set of
elementary particles corresponds to a quantum cloud that contains quanta
that correspond to the current granules of these particles. Not only the
quanta carry information. Also the shape of the cloud that contains the
quanta contains interpretable information.

When the cloud consists of emitted particles, then the process that
controls the emission can be considered as a Poisson process. Upon
detection an elementary particle is fully absorbed or it is converted into
other particles from which at least one is absorbed. A detected particle
was emitted by some body. During its travel it may have been reflected
against or deflected by other bodies. The corresponding quantum clouds
are affected correspondingly.

A quantum cloud can gain and lose quanta. An emission generates
quanta and the corresponding private fields, which then form the shape
of the cloud. The quantum cloud that corresponds to a private field
disappears with its last quantum.

Testing theories

You can falsify a theory when its conclusions according to a selected logic
are not consistent with its presumptions. If you take classical logic as a
criterion then QM is a wrong theory. If you take quantum logic as a
criterion, then more of quantum physics will pass, but you will have
difficulty in checking quantum field theory. Only after extending
quantum logic, such that it includes fields, you can handle quantum fields
as well. Still this equipment does only reach to test static situations.
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Strand model

The main difference between the Hilbert space approach that is taken here
and Schiller’s approach lays in the interpretation of the source of the
observable data. The principle fundamental postulate of Schiller’s strand
model is that the crossing switches of strands deliver the observable data.
In the Hilbert book model the switch of private field to another sign flavor
of the field carries the observable data.

Further, Schiller’s strand model derives fields from strand tangles. In the
Hilbert approach the shape and the dynamics of the chains are controlled
by fields.

In both pictures the described concepts may form the basis of a consistent
model. Both models claim to deliver the proper equations of movement.
(2B, The reason of this conformance lays in the similarity of the basic field
constituents.

Both Schiller’s strand model and the Hilbert book model take their claims
still further. Both models claim that the model fully explains the standard
model and that no further particles than those specified by the standard
model exist.

Apart from the difference with respect to the main postulate of strand
model, an important difference exists between the approach presented in
the Hilbert book model and Schiller’s strand model. Schiller presents the
gravitation field as a separate field that is mainly determined by distant
fluctuations of tangle tails. The Hilbert book model treats the gravitation
field as a field that is derived from the superposition of all fields that are
private fields of particles.

Summary of scratches
The following scratches have been treated here.
1. Due to its link with traditional quantum logic quantum a model of
physics must be based on separable Hilbert spaces, but quite often
it is based on a non-separable Hilbert space.
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. Neither the separable Hilbert space nor the rigged Hilbert space

can represent dynamics. They can only represent a static status
quo.

. The separable Hilbert space cannot represent physical fields. It

must be extended in order to cope with fields. In models based on
a non-separable Hilbert space fields are often represented by
operators.

. Nature is fundamentally granular. The usual GPS-like operators do

not support granularity.

. Itis impossible to represent a continuum GPS-like operator in

separable Hilbert space.

. Gravitation field is usually seen as an independent field.
. Identifying elementary particle types via quantum field theory is a

burden and not transparent.

Summary of repairs
The following repairs have been suggested.
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1. Base quantum physics on a book of Hilbert spaces, where each

page is an extended infinite dimensional separable Hilbert space
that represents the current static status quo. The extension is done
by blurring a subset of the Hilbert vectors.

. Introduce a strand operator whose eigenspace consists of one

dimensional chains of granules, where each granule gets its
position from a background GPS coordinate system that is
generated by a GPS operator that houses in rigged Hilbert space.
a. One of the granules of each chain is special. It is blurred. A
corresponding eigenvector gives it its position.
b. The blur is a QPAD. It anchors on the granule and on the
corresponding Hilbert vector.
c. The granule corresponds to a ground state of the QPAD.

3. During dynamic steps the QPAD keeps the chain smooth.



4. Flementary particles are anchored on the special granules of one or
more chains. The corresponding QPAD’s together form the
particle’s private field, which is also its wave function.

5. Together the private fields form an overall covering field.

6. The static covering field can be decomposed into a rotation free
longitudinal part and a divergence free transverse part.

a. This decomposition runs along curved lines.

b. The curvature can be used to define a derived curvature
field.

c. The private curvature field of a particle enables the
determination of the mass of the particle.

7. Glancing through the pages of the book of Hilbert spaces reveals
the dynamics of the system. Dynamics couples the static parts of
the fields.

8. The elementary particles that make up the standard model are
identifiable by an ordered pair of quaternionic field sign flavors
that together form the private field of the particle.
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Part two

On the Origin of Physical Dynamics
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On the Origin of Physical
Dynamics

Abstract

When physics must be based on an axiomatic foundation then the law set
of traditional quantum logic is a valid candidate. However, at first sight,
these axioms do not treat physical fields and they do not treat dynamics.
It only prescribes the static relations that exist between quantum logical
propositions that treat static subjects. These subjects are considered to be
physical subjects or their properties. Amongst these propositions
statements exist that describe everything that can be said about the static
condition of a given physical item. Such propositions represent that item.

Traditional quantum logic is lattice isomorphic to the set of closed
subspaces of an infinite dimensional separable Hilbert space H. That is
why quantum mechanics is usually done with the aid of Hilbert space
features.

The representation of a physical field does not fit in a separable Hilbert
subspace. Physical fields have a universe wide range and their
presentation would cover all of a whole Hilbert space.

Piron has shown that a candidate Hilbert space can be defined by using
one of three division rings for the specification of the inner products. The
choice comprises the real numbers, the complex numbers and the
quaternions. The choice for the quaternions means that manipulations of
the Hilbert space, such as Fourier transforms, in general use such multi-
dimensional numbers.

According to Helmholtz decomposition theorem, the quaternionic Fourier
transform can be divided in a complex longitudinal Fourier transform and
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a transverse Fourier transform. For quaternionic functions this means that
they can be locally split into a one-dimensional rotation free part and a
two-dimensional divergence free part. This also holds for the static
versions of vector fields.

This e-paper indicates that traditional quantum logic can be expanded to
extended quantum logic, which includes the influences of physical fields
in the form of potential propositions that concern virtual items. Dynamic
extended quantum logic is lattice isomorphic with the set of subspaces of
a set of Hilbert spaces. The fields take care of the coherence between these
Hilbert spaces.

In this complicated way the axioms of traditional quantum logic form the
constraints of the dynamics of quantum physics. When the dynamics of
the universe would be put to a hold, then the axioms of extended
quantum logic would describe all static constraints and the preconditions
that are put to that universe. In the developed model, dynamics means
that universe steps from one static status quo to the next. After the step
the conditions are changed and the static constraints are reestablished. If
we find the laws that control the steps, then we have found a complete
axiomatic foundation of physics. Classical physics forms another
constraint of dynamical quantum physics. This e-paper studies what
happens during the step.

Solutions are given for coping with the inherent countability of the
eigenspaces of operators in the separable Hilbert space and for coping
with the apparent graininess of some physical quantities. A classification
of skew Hilbert fields will be generated that corresponds closely to the
Maxwell fields. Further, this e-paper investigates what happens in the
infinitesimal steps that nature takes in order to arrive at the next static
status quo. In this way the origin of dynamics and the origin of special
and general relativity may be revealed.

The e-paper unifies particle states with physical fields and treats the
equivalent of the gravitation field as a derived curvature field.
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Introduction

The aim of this paper is to build upon a fundament consisting of a
minimal set of axioms and then derive as much as is possible from
fundamental physics by using only purely mathematical methods.

Observations and measurements at low dose rates learn that ALL
information that we receive comes to us in small packages that we call
quanta. The distribution of the probability of these information carrying
quanta determines the picture that we get from reality.

The development of quantum physics in its early days went violently. The
consequence is that many of the fundaments of this theory are not
constructed carefully. Fundamental repair is required.

This e-paper repairs the fundaments without disturbing the building. All
equations of motion keep their validity.

The fundament
This e-paper builds on the following postulates:

1. The rock fundament of physics is an ordered sequence of instances
of traditional quantum logic.

2. All physical information is transferred in the form of clouds of
information carrying quanta.

3. The shape of this cloud is determined by a QPAD that generates a
tendency to keep these quanta together.

The first point suggests the name Hilbert book model for the model that
is described in this paper. Each next page of the book describes a
subsequent static status quo.

Equations of motion
All equations of motion are in fact continuity equations that treat the local
information generation, annihilation and transfer.
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Total change within V = flow into V + production inside V

The logic of the model
This e-paper is not about reality. It is about a model that could be a
reflection of part of reality.

When reasoning about physical reality, it is safe to follow the rules of
classical logic. If one starts with a true statement and these rules are
followed, then the path of reasoning stays with truth. Classical logic is
based on about 25 axioms®. A significant part of these axioms defines the
structure of the logic as a half-ordered set and some other axioms expand
this to define the set as a mathematical lattice. The other axioms have
more to do with the rules that must be followed in order to reason
logically. May be it is a good starting point to use logic itself as a
fundament of physics.

In the first decades of the last century it was discovered that nature itself
cheats with classical logic. Numerous observations of the behavior of
small particles revealed that some of the interrelations between these
observations are in conflict with classical logic. Birkhoff and von
Neumann interpreted this conflict and came to the conclusion that nature
obeys its own kind of logic. They named this logic quantum logic.

The model that is discussed here builds its foundation on traditional
quantum logic. This e-paper is not about quantum logic. It uses quantum
logic because traditional quantum logic* defines the static framework in
which quantum dynamics takes place. Traditional quantum logic
prescribes the potential relations that may exist between quantum logical
propositions. Amongst these propositions statements exist that describe
everything that can be said about the static condition of a given physical

20 Appendix: Quantum logic
21 Appendix: History of quantum logic

77



item. Such propositions represent that item. These propositions form the
top of a hierarchy of propositions that treat the current values of the
properties of the considered item. It means that traditional quantum logic
can represent physical items.

Traditional quantum logic is lattice isomorphic to the set of closed
subspaces of an infinite dimensional separable Hilbert space H,. That is
why quantum mechanics is usually done with the aid of Hilbert space
features. The representation of a physical field does not fit in a Hilbert
subspace. Physical fields have a universe wide territory and their
presentation would cover all of a complete Hilbert space.

Piron has shown that a candidate Hilbert space can be defined over one of
three division rings. The choice comprises the real numbers, the complex
numbers and the quaternions. The choice for the quaternions means that
manipulations of the Hilbert space, such as the Fourier transforms, in
general operate on these multi-dimensional numbers. In the model the
representations of physical fields are Hilbert fields. Hilbert fields are
blurred Hilbert distributions. Hilbert distributions are sets of Hilbert
vectors that are eigenvectors of a special position operator that we will
call strand operator. The blur is a local field excitation that is attached to
the corresponding Hilbert vector. The blur is characterized by a
continuous spread function. This spread function represents a QPAD. The
territory of this function may reach all Hilbert vectors. In this way these
fields not only cover the whole separable Hilbert space, but because these
functions are smooth the Hilbert fields also become differentiable.

The eigenspace of a quaternionic normal operator may consist of a
number set that is everywhere dense in the quaternionic number space.
For example it may consist out of all rational quaternions. Apart from
Hilbert fields the much simpler Hilbert functions exist. Hilbert functions
can be defined with the help of a normal operator. Using the eigenvalues
and the inner products of the eigenvectors with a selected Hilbert vector
that vector can be converted in a hyper complex function. Hilbert
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functions can be interpreted as sampled versions of continuous functions.
They are not differentiable.

When the eigenspace of a normal operator is granular it can still cover the
whole quaternionic number space, but it will have a lattice structure and
this lattice will show preferred directions. These preferred directions are
incompatible with the isotropy that characters the spaces that are found in
nature.

Another example is the eigenspace of the strand operator. It does not
cover the whole quaternionic number space. It possesses inner horizons
and outer horizons. Within the outer horizon and outside the inner
horizons its eigenvalues can be distributed freely through the imaginary
part of the quaternionic number space. However, these eigenvalues have
a stochastic inaccuracy.

All these operators can be used to construct Hilbert functions. The strand
operator can be used to construct Hilbert fields. In order to represent the
anchors of physical particles Hilbert fields seem to be better suited than
Hilbert functions. By using suitable blurs the Hilbert fields are
differentiable. The Hilbert functions are not differentiable. At the utmost
they are quasi differentiable.

As a consequence, the theory that is derived here is largely based on the
properties of these multidimensional transforms and on the properties of
Hilbert fields. Any Hilbert field can be split in a rotation free longitudinal
part and a divergence free transverse part. The direction in which a field
is rotation free may change with the values of the local coordinates. As
long as the direction stays stationary, the corresponding coordinates can
be considered as belonging to a complex plane that is embedded in a
quaternionic space. Selection of another coordinate system gives a
different topology of the field decomposition.
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The blurs that constitute the Hilbert fields do not fit inside the realm of an
infinite dimensional separable Hilbert space, but their values can be
temporary attached to Hilbert vectors. The separable Hilbert space H, can
be embedded in a rigged Hilbert space H. This Gelfand triple can be
extended to a Hilbert sandwich that apart from the Gelfand triple
consists of a GPS coordinate system and a covering field. The combination
of GPS coordinate system and the covering field decomposes the static
covering field into dubble cover. The decomposition defines a curvature.
That curvature defines a derived field which is also part of the

sandwich??. The sandwich consists of six layers and represents a static
status quo.

Fourier transforms can be defined in a separable Hilbert space, but there
they expose sampling characteristics that do not occur in a corresponding
rigged Hilbert space H. Similarly the notions of differentiation and
integration are easily implemented in a rigged Hilbert space H, but do not
fit in the corresponding separable Hilbert space H,. Without the blurring
trick, differentiation is impossible in the realm of a separable Hilbert

space H.

The set of closed subspaces of a rigged Hilbert space H is no longer lattice
isomorphic with the set of propositions in a traditional quantum logic
system. We do not want to offer the isomorphism with quantum logic in
order to achieve differentiability of functions. This differentiability is
already introduced by the blurs that are attached to the Hilbert vectors.
This approach delivers a cleaner model that becomes even better
comprehensible when we interpret the blur as a QPAD. Further, nature
has a fundamental granular character, which fits naturally to a separable
Hilbert space.

In a three dimensional vector space a Fourier transform of a vector field
can locally be divided in a one-dimensional longitudinal, (locally)

2 In this way the sandwich starts to resemble a club sandwich.
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complex Fourier transform and a two-dimensional transverse Fourier
transform. The longitudinal transform works only on the longitudinal
part of the field that is being transformed. The transverse transform
works only on the transverse part of the field that is being transformed.
This also applies to the case where this vector space is formed by the
imaginary quaternions and the fields have quaternionic values.

The division in a longitudinal part and a transverse part of a function or a
tield has only a local validity. It holds as long as the longitudinal direction is
sufficiently (= within accepted inaccuracy) stationary. The split is the
subject of the Helmholtz decomposition theorem. Multi-dimensional
Dirac delta functions show the same decomposition as the multi-
dimensional Fourier transform. The splits lose their significance when the
field gets too wild.

The fact that this field categorization has only local validity and that it is
related to an imaginary direction causes that the quaternionic Fourier
transform must be considered to operate in a curved coordinate space.
The differentiability of quaternionic functions and Hilbert fields also
offers this categorization. Interestingly, Fourier transformation converts
differentiation into multiplication with the canonical coordinate.

For a given field this situation can be solved by using two coordinate
systems. One in which the coordinates show a curvature of the field that
is set by the longitudinal direction and one in which the field has no
curvature. The field values stay the same, but the coordinates that act as
parameters change. This concept can be extended to a covering field,
which is the superposition of all Hilbert fields that exist in the Hilbert
space. Using the coordinate system for which the covering field has no
curvature the universe wide Fourier transform can be taken. However, if
the field configuration changes, then the coordinate system that delivers
the universe wide Fourier transform changes as well.
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For a given field and a given coordinate system it is possible to define a
decomposition related local curvature. That curvature can be used to
define a derived field. We will call this partner field the curvature field of
that combination.

In a given coordinate system the fields can be categorized according to
their symmetry properties. These categorizations must also cope with the
curvature that is related to that coordinate system.

In the described way, traditional quantum logic and the Helmholtz
decomposition theorem together form a set of laws that define the
relational static status quo that would exist in nature when dynamics
could be put to a hold. This paper points out that traditional quantum
logic can be expanded such that it includes the representation of static
physical fields.

The indifference of the properties of physical items for which picture is
used, the Schrédinger picture or the Heisenberg picture?® indicates that
time is not a property of physical items but instead it is a parameter that
characterizes the progress of dynamics. This is the reason why dynamics
can be included into the model by representing nature by a sequence of
such extended quantum logics. The fields regulate the coherence between
subsequent quantum logics. This also means that the model can include
dynamics by representing nature by a sequence of Hilbert spaces. The
blurs in the Hilbert fields regulate the coherence between subsequent
Hilbert spaces. It means that the blurs are smooth functions of the
progression step counter. The progression step counter is a global
parameter! It differs from our common notion of time. The blur acts as a
probability density distribution. When the parameter is a position
coordinate, then the probability density specifies the chance that during
the next change the current position changes to this new coordinate. The
form of the probability density distribution is such, that this change is has

2 Dynamics: Schrédinger or Heisenberg picture
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a tendency to be minimal. The probability density is the squared modulus
of the hyper complex probability amplitude. This last value contributes to
the local field value.

As a consequence of these blur properties, the subsequent Hilbert spaces
do not differ much. The same holds for the configuration of the fields in
sub-sequent stages of the static status quo. In fact the fields can be seen as
a storage place for the conditions that determine the relation between the
past, the current and the future static status quo.

In this view the fields represent relations between sets of potential
propositions. These propositions are statements that say everything that
can be said about the static condition of virtual items. The extension of the
logic with blurs means that some of the propositions are not precise.
These propositions possess a stochastic inaccuracy.

The set of propositions in dynamic extended quantum logic is no longer
isomorph with the set of closed subspaces of a single extended separable
Hilbert space. It is isomorphic with the closed subspaces of a series of
extended separable Hilbert spaces. One member of this set of Hilbert
spaces is the currently actual Hilbert space. It contains the representatives
of actual physical items. The other members are past or future Hilbert
spaces. They contain the representations of non-actual physical items.

Each past or future extended separable Hilbert space corresponds to an
instance of a past or future (extended) quantum logic. These non-actual
quantum logics represent potential replacements of the actual traditional
quantum logic. A non-actual quantum logic differs from other non-actual
quantum logics in the fact that their propositions have a different
configuration in terms of their atomic predicates or in terms of their sub-
ordered propositions. In a similar sense they will differ from the actual
quantum logic.
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The replacement will be made between logics that have a great
resemblance with each other and the values of the predicates within
equivalent propositions will be the same or close to each other. In fact,
each extended quantum logic contains the preconditions for the next
extended quantum logic in the sequence. A replacement can be seen as a
combined annihilation and creation. Annihilation must not be followed
by creation and creation must not be preceded by annihilation. With other
words annihilation and creation is done during progression steps.

A redefiner, which steps from the actual Hilbert space to a future one,
implements dynamics. The redefinition step exchanges the actual Hilbert
space against a future Hilbert space whose selection is determined by the
current extended Hilbert space. The previous actual Hilbert space
becomes the nearest past Hilbert space.

In order to be able to control the coherence between subsequent Hilbert
spaces, the blurs that constitute the Hilbert fields act as probability
density distributions (PDD’s). In fact, they are QPAD’s whose squared
modulus is a PDD. These distributions have a form that minimizes change
during the step from the current Hilbert space to its successor. As a
consequence physical quantities do not become observable as continuous
objects. Observables become available in the form of information carrying
quanta that form the outcome of stochastic processes. The form of the
clouds of information quanta is described by the QPAD’s that together
form the Hilbert fields.

Dynamics can be interpreted as a sequence of steps in which each step
leads nature from the conditions of one static status quo to the conditions
of the next static status quo. The laws that define the static status quo are
fairly clear. During the steps several things happen. The laws that govern
the dynamics are rather obscure. The steps couple the static ingredients
into a dynamic mixture. For example, the step couples the longitudinal
part of the field with its transverse part. The steps are taken universe
wide. A redefiner with a universe wide domain controls these steps. The
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step counter presents a universe-wide progression parameter. This
parameter must not be confused with our common notion of time, but it
cannot be denied that it has some relation with it.

During the step particles move forced by their own momentum and by
the surrounding covering field to their new position. As a consequence
their private fields get redistributed in space. Thus the covering field and
its derived partner the curvature field will change. This delivers the
preconditions for the next step. These activities are all infinitesimal.

Inertia represents the influence of the whole universe on the condition of
a local physical item. In fact it is a bilateral relation. The distant particles
together deliver the largest contribution. Only the curvature field takes
part in inertia. The primary fields have charges that compensate each
other’s universe wide contributions. Inertia shows that distant field
sources do not interfere with uniform movement. However, due to
inertia, acceleration goes together with an extra local field contribution. The
words "goes together with" mean that no causal relation exists.

Thus, acceleration of particles goes together with changes of the local
curvature field. This causes a small change in the local metric. It is already
indicated that uniform movement of particles causes a reconfiguration of
the covering field. The local field influences the steps that are taken by the
particles. This is all that happens during the infinitesimal progression
step.

We must now analyze what change of curvature, acceleration and field
reconfiguration does during an infinitesimal progression step.

Inertia* can guide part of the way. Roughly, the driving force comes from
the difference AE(r,t) between the current curvature field and the

2 Influence: Inertia
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previous curvature field. It is contained in an equivalent of the stripped
version of one of Maxwell's equations®.

(1)
v

AE(r,t) = G E

G is the gravitational constant.
During the progression step, the described infinitesimal adventure
happens to all particles.

Please notice the switch from covering field to curvature field. It is
essential!

Recapitulation and extrapolation

In summary: Traditional quantum logic is usually defined via its structure
as an orthomodular lattice. This logic only defines part of the static
skeleton of the frame in which quantum physics operates. It does not state
anything about physical fields. The primary fields are the consequence of
the stochastic inaccurate coupling between the position operator in
separable Hilbert space and the GPS-like operator in rigged Hilbert space.
The Helmholtz/Hodge decomposition theorem defines the structure of
static physical fields. In that way this theorem plays a similar role as
traditional quantum logic. However, the decomposition has only local
validity, where quantum logic has global validity. Extended quantum
logic encompasses both law sets. These law sets do not specify or even
touch the source of dynamics. Dynamics couples the static fields. The
coupling not only applies to parts of the same field. It also concerns
different fields. For example dynamics couples electrostatic fields with
magnetostatic fields into dynamical electromagnetic fields. The
gravitation field administrates the curvature of observable space that is
caused by the decomposition properties of the primary fields. Thus,
instead of a separate field the gravitation field can be considered as the

% Dynamics: Unitary transform: Inertia and the progression step
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result of the properties of the other fields. Inertia* reveals the importance
of the gravitation field.

Both the propositions about a quantum physical system and physical
fields are closely related. However, this relation only gets relevant when
dynamics comes into play. Dynamics causes a continuing redefinition of
the propositions. This converts the current static status quo into the next
one. When one proposition is changed it interchanges its constituting
atomic predicates with other predicates. The change can even involve the
exchange of atomic predicates against atomic predicates that are of
another type. It is also possible that the configuration of a complex system
that consists of simpler components is altered.

The static physical fields can be interpreted as storage of the
preconditions for the next step. The physical fields are the representatives
of the influences that go together with the sticky resistance of the set of
propositions against the changes that occur due to the redefinitions of the
propositions that describe physical items. This sticky resistance also
occurs in propositions that are sub-ordered to other propositions. Inertia
is a feature that shows this resistance explicitly.

The propositions about quantum physical items can be represented by
closed subspaces of a Hilbert space. The presence of dynamics means that
the relations between these subspaces are not stationary. They change
between subsequent Hilbert spaces. It is also possible to give the physical
fields a “representation” in Hilbert space by attaching their anchor points
to Hilbert vectors. However, it must be clear that quantum physical items
and physical fields are not the same stuff. Physical fields cannot be
represented by closed Hilbert subspaces. They cover the whole universe
and as a consequence they cover the whole Hilbert space. However, the
strength of individual fields may be concentrated around separate excited
places that are represented by single Hilbert vectors or a small set of

26 Influence: Inertia
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Hilbert vectors. Such private fields diminish with distance. Together the
private fields form a covering field. For a given coordinate system that
covering field has a partner curvature field that can be interpreted as
gravitational field.

The actual physical items are distributed in space and are surrounded by
potentials that act as a kind of blur. This is why quantum physics has
much in common with optics?”. The superposition of the separate blurs
characterizes the information transfer quality of the corresponding field.
For each particle a separate blur characterizes the quantum generation
properties of that particle. At not too short distances the electromagnetic
fields have the same shape as gravitational field. Locally, the EM fields
and the gravitation field are based on the same Hilbert distributions. As is
indicated above, the gravitation field is a derived field. The main
difference lays in the fact that the charges of electromagnetic fields have
the same size but may have different sign such that they may partly
compensate each other’s influence. The charge (mass) of the gravitational
field is always positive, but it may differ in size. Another difference is that
the gravitation field is the consequence of the decomposition properties of
the other fields. Mass appears to be an expression of space curvature and
on its turn this curvature is an expression of the rotation properties of the
non-gravitational fields. The curvature fields that correspond with private
fields do not compensate each other’s influence. The masses of all
physical items work together in order to create the immense potential that
causes inertia.

GPS coordinates
One of the most intriguing facts is that a GPS operator?® that resides in the

separable Hilbert space H, cannot be used to define the position of
particles. Due to the granularity of its eigenspace it would immediately
introduce unnatural preferred directions. In contrast its equivalent, the

27 Optics
28 The Hilbert GPS
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GPS operator that resides in rigged Hilbert space H is very useful as a
coordinate system for determining the location of field values. In this way
it can be used to locate the field excitations that go together with particles.
This continuous GPS operator cannot be used directly in order to locate
the Hilbert vectors that represent particles. Thus there exists no GPS like
operator that can be used to locate particles in Hilbert space. An
alternative is formed by the strand operator®. The strand operator uses
the continuous GPS operator as a background coordinate system. Its
eigenspace depends on the configuration of the covering field.

Test proposition

It is an elucidating experience to try to implement a complicated quantum
logical proposition in the representation of quantum logic in Hilbert
space. In that way we may discover how dynamics emerges in this static
skeleton. For that reason, we choose as an example a predicate with
quantifiers rather than a clean proposition.

The selected example proposition (#) is
“All items in universe influence each other’s position”.

We will already give the final conclusion of this experiment here: A well-
ordered replacement of atomic predicates in an enveloping proposition
appears to occur without extra field activity, but any deviation of a well
ordered replacement causes an extra field activity in the form of a local
influence of the complete set of all propositions.

This explains the interaction between fields and physical items. A local
deviation of the uniformity of the distribution of physical items can still
cause a slight influence of neighboring items. At small distances the
influences can be large. The influence of fields can be implemented in the

2 Hilbert spaces: Strand operator
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separable Hilbert space. Via an action = reaction game the interaction
between fields and Hilbert subspaces form the source of dynamics.

What further happens during the implementation of our example
proposition (#) is completely governed by mathematics. Thus, for our
example no further extension of quantum logic is needed to transform it
into a useful version of dynamic quantum logic. However, nothing is said
yet of what occurs during the infinitesimal progression steps. During this
step one static status quo is converted to the next static status quo. This
will be the main subject of this e-paper.

Numbers

As number spaces we use the 2"-ons of Warren Smith rather than the
hyper complex numbers based on the Cayley-Dickson construction. Up to
the octonions the corresponding number spaces are similar. (See
http://www.math.temple.edu/~wds/homepage/nce2.pdf*). For higher n
the 2"-ons behave in a nicer way. They keep more of their number
characteristics. We use the quaternions (n=2) as the number space that is
used to define the inner product of the Hilbert space. However, we

tolerate operators to have eigenvalues that are higher dimensional 2"-ons.
We also use 2"-ons in order to set the values of physical fields.

When we use these numbers as eigenvalues or as field values, then we
apply their number characteristics as well as their storage capacity. A 2n-
on contains 2" real numbers. We also tolerate that eigenvalues of
operators and values of fields support multiple sign selections, such as the
inversion of the real axis and the handedness (chirality) of external vector
products for their eigenvalues. 2"-ons contain n independent imaginary
base numbers. Each new independent base number introduces a new sign
selection. The sign selections translate into 2" different skew fields.

3 Appendix: 2”*n-on construction
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With n > m, the 2"-ons act like 2™-ons in their lower m dimensions.
Further, the 2"-ons contain several subspaces of 2m-ons. We may use
smoothly curved manifolds that are crossed by curves which form trails
of 2"-on numbers and that are locally touched by tangent spaces that can
be interpreted as 2"-on number spaces.

When the members of a set 2"-ons approach zero, then in their mutual
arithmetic actions they are getting more and more the characters of lower
dimensional 2™-ons. In the same sense, when two 2"-ons approach each
other, their mutual arithmetic actions are getting more and more the
characteristics the arithmetic of lower dimensional 2™-ons.

The implementation of the proposition (#) leads to a story of manipulators
and manipulated observables. The number waltz feature (c=ab/a) of the 2"-
ons that becomes a noticeable effect for n>1 seems to play a significant
role in our model. If this model applies to quantum physics, then it may
reveal why special relativity exists and brings clearness in the different
notions of time that exist in quantum physics. The curvature introduced
by the spatial variance of what the longitudinal direction is reveals how
the mentioned influences can be implemented as component fields which
are defined on a curved coordinate system. This holds for gravitational
tields as well as for the other fields such as electromagnetic fields.

Implementing quantum physics in a complex Hilbert space hides these
interesting features and diminishes the insight that higher dimensional 2n-
ons can reveal.

Prospect

The article shows that there is a need to extend traditional quantum logic
such that it not only includes the representations of fields but also
includes axioms, which specify the dynamic underpinning of quantum
physics.
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In the course of this project several fundamental aspects of physics get
uncovered.

Comments

Version 5

Version 5 builds on the content of previous versions. This new version
stands on itself, but it reorganizes and extends the contents of previous
versions. One reason is that the text in some paragraphs relies on the text
of a series of other paragraphs, so that it is impossible to configure the
paragraphs in a streaming order without repeating much of the content.

Project

This project is far from finished. Most parts I have rewritten several times.
Some ingredients are already included before they are finalized and
before they are put at the proper position in the context. I try to make the
whole paper consistent with its parts and I try to keep my goal to include
nothing that did not follow directly or indirectly from the axioms of
traditional quantum logic. I only tolerate mathematics as a valid tool and
ingredient. I will not use or accept intuition as a reason to include a
subject in the text. An exception might be the treatise of horizons.
However, I will use indications retrieved from previous experiences. I
will also not tolerate the usefulness of a concept or its acceptance in the
physical community as a valid argument to include that concept. If you
encounter places where I did not succeed in that goal, then you may
conclude that I still have to work on that section. When the paper gets its
final version, then no deviations of my goal should result. However,
partly due to my progressed age (~70), I might never reach that condition.
Then, you reader might take over and finish the job. But first think of the
possibility that we will succeed. What does it mean that all of fundamental
physics is based on mathematics and on the ~25 axioms of traditional quantum
logic?! Well, another input is the observation that ALL information about nature
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arrives in the form of clouds of information carrying quanta. The cloud as a whole
carries secondary information.

References

This e-paper contains no lengthy reference list. References to other
documents are usually presented inline and are mostly put in the form of
hyperlinks. The appendix and a sometimes referenced toolkit® contains a
collection of stuff that otherwise must be grasped from internet. As is
done in this article, much of the contents of the toolkit are directly or
indirectly obtained from Wikipedia or from publicly accessible
publications. In that case the text is adapted to the requirements of the
papers that use this information. Most texts on internet are based on
complex Hilbert spaces, so where necessary I have converted these texts
into quaternionic versions.

Equation editor

This paper is prepared with MS Word 2010. This word processor version
contains a rather capable equation editor and a large series of fonts
including Cambria Math. However, the equation editor does not
cooperate with the paragraph indexing in order to automatically
enumerate the out of line equations. For that reason equations are
enumerated manually and relative to the current paragraph header.
References inside that paragraph just use the equation number.
References from outside of the paragraph are hyperlinks that refer to the
paragraph header. The hyperlink text may then include the equation
number. In that case, you must move manually to the referred equation
inside the target paragraph.

EM fields

This paper draws significantly from the book on electromagnetic field
theory of Bo Thidé. That book has a different goal and uses different
premises. The book does not use the quaternionic field approach as is
done here, but its contents easily translate to quaternions. Further its

31 http://www.crypts-of-physics.eu/Toolkit.pdf
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formulation is very precise, it links formulas to physical concepts and
most of all it is online:
http://www.plasma.uu.se/CED/Book/EMFT Book.pdf*.

Strands

I took some ideas from the research of Christoph Schiller as it is presented
in his online book http://www.motionmountain.net/research.html .

If the strand model is a valid approach to a model of physical reality and
if the Hilbert book model that is presented here is also a valid approach,
then strands have essential correspondences with the chains in the
eigenspace of the strand operator of the Hilbert book model. At least the

basic constituents of fields correspond in both models.

Notation note

This paper uses {} in order to indicate a set or a function.

Depending on the context {|fs>}s means an ordered set of vectors |f>
where s is the ordering index. In other contexts {|f>>}s means a vector
function |{(s)> where s is the (discrete or quaternionic) parameter.
Continuous functions are presented in the normal way.

f({gi}j) is a function f(q1, g2, g3, g4,... gn,) of the set of parameters ({gj}; where
j=1,2, ..., n. The index constraint n might be infinity. Nature itself is
finite, however it lives in a model that has an infinite scope.

The appendix and the toolkit contain information about other notation
and naming conventions that are used in this paper.

We use the symbols @ and @ for operators whose eigenspace is a
coordinate system that is curved with respect to the eigenspace of the
respective idealized operators Q and Q.

32 Hilbert field equations
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Acquired indications
Several indications stimulated the development of the theory that is
presented in this paper. They are listed in this section.

Studying physics
When I was studying physics I was triggered by two facts that have
significant influence on my current insights.

Classical versus quantum physics

After finishing the semesters that treated classical physics I started taking
lessons in quantum mechanics and I was immediately amazed by the
large difference in the way that classical mechanics was handled and the
way that quantum mechanics was done. Questioning the teachers did not
bring much relief. Their explanation was that the difference is due to the
superposition principle. Investigating this reply reveals quickly that this is
an alternative description of the different way of working, but no
explanation. So, I dived into the library and into scientific bookshops until
I finally found a booklet from P. Mittelstaedt: (Philosophische Probleme der
modernen Physik, Bl Hochschultaschenbiicher, Band 50, 1963) that
contained a chapter on quantum logic. I concluded that this produced the
answer that I was looking for. Small particles obey a kind of logic that
differs from classical logic. As a result their dynamic behavior differs from
the behavior of larger objects. I searched further and encountered papers
from Garret Birkhoff and John von Neumann that explained the
correspondence between quantum logic and Hilbert spaces. In those years
C. Piron wrote his papers that finalized my insight in this subject, but first
I must explain the other fact that triggered me.

The rediscovery of quaternions

Quantum physics appeared to be done in the realm of Hilbert spaces.
Operators in those spaces delivered the eigenvalues that played the role
of values of observable quantities.

I had problems with the fact that according to the in those days
commonly accepted theory the operators, which deliver observable values
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as their eigenvalues or as their expectation values, had to be self-adjoint
and as a consequence these operators could only deliver real valued
eigenvalues. Nature has a clear 3+1 dimensional structure and there was
no logical indication in the quantum theory that was lectured in those
days that explained why four observable values must cling together. I
started searching for a number system that could deliver this extra
connectivity and I quickly discovered a number system with 3+1
dimensions that supported addition, multiplication and division. It took
me more time to discover that this number system was already
discovered more than a century before by William Rowan Hamilton3
when he was walking with his wife over a bridge in Dublin. He was so
glad about his discovery that he carved the corresponding formula into
the sidewall of the bridge. The inscription has faded away, but it is now
molded in bronze and fixed to the same wall. When an assistant professor
told me the story I started to read papers on quaternions and discovered
the work of Constantin Piron.

Birkhoff and von Neumann already discovered that the set of
propositions in a traditional quantum logic system is lattice isomorphic
with the set of closed subspaces of an infinite dimensional separable
Hilbert space H. Piron proved that the inner product of this Hilbert space
must be specified with members of a division ring. There are only three
suitable division rings: the real numbers, the complex numbers and the
quaternions. I went for the widest choice and started studying
quaternionic Hilbert spaces.

Representation restriction

After discovering that traditional quantum logic can be represented inside
an infinite dimensional separable Hilbert space, it is a disappointment to
discover that this presentation does not cover physical fields and does not
cover dynamics.

33 http://nl.wikipedia.org/wiki/William Rowan Hamilton
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Extended quantum logic

However, it appears that it is possible to expand traditional quantum
logic in a way that corresponds to adding blurs to a subset of the Hilbert
vectors. The blurred subsets may represent the anchor points of particles.
In this way the superposition of the blurs may represent the physical
fields. This leads directly to the existence of Maxwell-like fields in the
realm of such an extended Hilbert space. This also leads to an extended
quantum logic that covers physical fields.

Dynamic quantum logic

Dynamics can be implemented by representing dynamic quantum logic as
a sequence of extended traditional quantum logics that each represents a
static status quo. This dynamic stepping can be detailed further. See
Progression step details*. With respect to the Hilbert space the dynamic

model uses a sequence of extended Hilbert spaces. It can be compared to a
book, where each page represents a static status quo.

Curved space

When quaternions are taken as the division ring, then Fourier transforms
become quaternionic Fourier transforms. The ideal Euclidean formulation
of the multi-dimensional Fourier transform cannot cope with a variable
direction in which the Fourier analyzed function or field is rotation free.
This can be circumvented by converting the parameter domain of the field
by a coordinate transformation such that the resulting field has a
stationary direction in which it is rotation free. This corresponds with
accepting the existence of a curved coordinate space. This curved space is
subject of general relativity. With other words, extended quantum logic
supports general relativity.

Intensified imaging

After finishing my study I started my career in the development
laboratory for high-tech electronic appliances of a big electronics
company. My task consisted of the analysis and measurement of the

3 Acquired indications: Progression step details

97



visual trajectory, starting from the radiation source and ending after
interpretation of the image in the brain of the observer. At those times
(~1975) this was fundamental research, because both the measuring
methods and the modeling methodology in this area were still in their
childhood. The target products for the laboratory were night vision
devices and X-ray image intensifiers.

Intensified imaging is required at low radiation dose rates and in
situations where the radiation detection capability of the human eye is
unsuitable. This occurs with starlight scene imaging and with X-ray
shadow imaging of patients. The low dose rate is necessary due to the fact
that no active scene lightning can be supplied or due to the fact that
hazardous gamma ray effects must be avoided.

When the snowing image produced by image intensifying equipment is
observed, then it becomes immediately clear that this image is built up
from a large number of separate spots that together form a rather noisy
picture of the object. The impression is that clouds of quanta are detected
rather than waves of radiation.

The research not only concerned perception experiments and
measurement. We also had to devise the standards for the measurements
as well. So we took part in the establishment of develop worldwide
standards for the specification and measurement of the Optical Transfer
Function (OTF) and its modulus the MTF. We also took part in the
committees that created the standards for the Detective Quantum
Efficiency (DQE).

The fact that these standards were not only required but were also
successful is in itself very astonishing. We needed these standards
because we could model the visual trajectory as a chain of which the first
elements consisted of a set of Poisson generators. The generators are
characterized with their efficiency and a spatial, angular and chromatic
distribution.
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Next in the chain are attenuating binomial processes. Statistically a blur
can also be considered as a binomial process. The information is spread
over a larger area. A Poisson process can be combined with a subsequent
binomial process into a generalized Poisson process that has a lower
efficiency.

The chain also contains light lenses and particle lenses. Further, the
equipment aided chain contains detection surfaces that convert radiation
quanta into electrons or electrons into radiation. This chain might also
contain scintillation layers that convert high energy X-ray quanta in large
series of low energy light quanta. It might contain fiber optic plates that
just transport images, usually from a curved to a flat surface. It might
contain channel plates that convert single electrons into clouds that
contain about hundred thousand electrons. It might contain image
receivers that convert the image into an electric signal or into a
photographic plate.

The equipment aided chain may and the unaided chain will also contain
the eye of a human observer. Intensified images are detected by the cones
in the fovea. At very low light levels the adapted eye detects the images
via the rods in the fovea. Rods have a much lower acuity than cones.
Therefore they have a much longer integration time. In general, measures
that reduce noise have both positive and negative effects on the
information content of the signal. There is an optimum condition. My task
was to find that condition.

After the detection in the fovea the received signal is handled by a large
series of preprocessors that act in parallel as well as in sequence. The
preprocessors associate the signals that are received by receptors that lay
in each other’s neighborhood. The association tests a detail pattern that is
typical for the considered preprocessor. The associated signal is only
passed further when its signal to noise ratio surpasses a given boundary
level. In this way the higher regions of the information processing are not
disturbed by unnecessary noise.
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All preprocessors work in this way as noise filtering decision centers. The
association results in a categorization of the encoded image. The signal
that reaches the folded fourth layer of the visual cortex represents the
completely coded version of the received image. In the human brain, a
folded surface of about four square millimeters is devoted to each image
receptor in the fovea. This code is interpreted further in the brain. As
early as possible the filtering process stops noise and details of the image
that do not carry useful information from proceeding further in the chain.

Due to this design, already the unaided brain-eye combination is well
suited to perceive and interpret images in a very large dynamic range of
circumstances. Apart from the fact that the visual channel can adapt from
somewhat above starlight conditions until bright daylight conditions, the
visual trajectory appears to be optimized for handling signals that enter
the eye in the form of clouds of quanta that are generated by Poisson
processes.

All vertebrate visual trajectories work according to the sketched
principles. Over billions of years evolution has exploited the fact that
information that comes to living species is generated by Poisson
processes. The visual trajectory of vertebrates is optimized for handling
this information for the benefit of the survival of the owner of this
channel. See: http://www.crypts-of-physics.eu/Howthebrainworks.pdf® .

This fact is a strong indication that all visual information comes to us in
the form of clouds of quanta. When looking at low dose rates through an
intensified viewer, it becomes clear that this assumption is valid. The
perceived noisy image is built from separate dots that represent the
detected quanta. No radiation wave is visible. What you see is just a
streaming cloud of quanta.

The fact that visual information is generated by Poisson processes
indicates a more general feature of physics. ALL information that is

35 Part three: How the brain works
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transferred by electromagnetic radiation can be considered to be
generated by Poisson processes. This becomes apparent when
measurements are done at very low dose rates. In the static model the
Poisson processes represent a lateral distribution. In addition, taken over
a sequence of Hilbert spaces the Poisson processes represent a temporal
distribution.

Granular GPS

In separable Hilbert space a normal operator has a countable eigenspace.
This allows to the usage of the rational quaternions as the eigenspace of a
normal operator. However, nature appears to support a minimum for the
distance between two positions. This renders a position related operator
granular. In separable Hilbert space H, the granularity of the eigenspace of
a GPS-like coordinate operator presents problems with the fact that a
dense packaging of the granules generates unrealistic preferred
directions. Its non-granular equivalent in the corresponding rigged
Hilbert space H does not suffer this restriction. It can be used as
coordinate system for fields, but it cannot be used to locate particles
inside the separable Hilbert space H. Inside the separable Hilbert space
the fields are attached via anchor points to a subset of the Hilbert vectors
and all Hilbert vectors touch their values.

Progression step details

After the former indications the theory reaches the stage that it becomes
sensible that the model of nature, which takes its foundation on quantum
logic, steps from one static status quo to the next. It dawns that this is the
way that dynamics is implemented. What happens during these steps is
still mysterious. The Hilbert space itself only suggests a Euclidean
signature of observable space time. However, Einstein and others proved
that observable spacetime has a Minkowski signature. This discrepancy
has its origin in the group properties of displacements. For uniform
movements this leads to the Lorentz displacements group. An early
conclusion is that coordinate time does not play the role of the fourth
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dimension in the quaternionic eigenspace of a spacetime-like operator. It
also differs from the role of the counter of the progression steps.

Both inertia and Feynman'’s approach of the path integral may guide what
happens during an infinitesimal dynamical step®.

Release and removal of quanta

During the step interactions take place and particles are emitted or
absorbed. The information is carried by clouds of quanta. The quanta
carry the information that they collect during the dynamical step from
GPS and GMS related data.

An indication for this fact houses in the structure of the creation and
annihilation operators. These operators consist of a part that relates
directly to the GPS operator and a part that directly relates to the GMS
operator.

Fields and QPAD'’s

Some subsets of Hilbert vectors represent elementary particles. It means
that these vectors are blurred. The blur is a QPAD whose form is typical
for the elementary particle type. Elementary particles combine to form
more complex particles.

The superposition of all QPAD’s that correspond to the separate particles
forms the covering field.

A repositioning of a particle means a reconfiguration of the covering field
and vice versa.

A detailed list of indications and considerations
1. All information comes to us in the form of clouds of quanta.

2. These clouds get their shape via a combination of QPAD’s.
3. Each type of elementary particle is characterized by a set of Hilbert
vectors and a particular kind of QPAD.

3% Dynamics: Unitary transform: Infinitesimal dynamical step
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10.

11.

12.

13.

14.

15.

16.

The information contained in the quanta and in the cloud is the
only information that becomes observable.

This information consists of the information that is carried by the
separate quanta and by the probability distribution that describes
the cloud.

Each quantum in the cloud carries a set of information data.

This set contains a 3D position, a 3D momentum and chirality
qualifiers.

The information that is carried by the quanta becomes available via
an interaction process.

The information is measured in Planck units, eventually related via
physical constants, such as the speed of light.

The QPAD that characterizes a particle becomes part of the field
that exists in the surroundings of the particle.

Physical fields consist from the superposition of the QPAD’s of the
separate particles.

Curvature and torsion of the path of the particle are secondary
characteristics, which are introduced via the probability
distributions that make up the field that exists in the direct
environment of the particle.

In contrast to torsion, curvature appears to be linked with gravity.
The photon path has a helix structure. The photon has no mass.
Curvature in the path of a particle is caused by the local rotation
that exists in the surrounding field(s).

The rotation properties of the field determine the local
decomposition of the static field.

This local decomposition determines a curvature of observable

space.



17. On its turn this local curvature specifies a metric and the local
metric specifies a curvature field.

18. The curvature field has all the characteristics of the gravitation
field.

19. The generation of a given kind of quantum has a typical
probability.

20. There exist anti-quanta. The generation of an anti-quantum is
equivalent to the annihilation of the corresponding quantum.

21. Creation and annihilation operators have QPAD’s as their
eigenfunctions.

22. In their simplest form these probability distributions are Poisson
distributions.

23. The generation of shot noise is characterized by Poisson
distributions.

24. At high dose rates the Poisson distributions become Gaussian
(normal) distributions.

25. For more complicated configurations the QPAD must be
considered rather than its squared modulus: the probability
density distribution (PDD).

26. Bosons are characterized by QPAD’s that remain invariant under a
rotation of 2.

27. The QPAD of a two boson system is invariant under perturbation
of the bosons.

28. The creation and annihilation operators of bosons are characterized
by a non-zero commutator.

29. Photons form the simplest boson type. Their paths have a helix
form.

30. The probability distribution of the corresponding quanta resembles

a Poisson distribution.
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31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.
42.

43.

44.

Fermions are characterized by QPAD’s that change sign under a
rotation of 2.

The QPAD of a two or more fermion system changes sign under
perturbation of the fermions.

With each fermion type an anti-type exists.

A quaternionic QPAD can also contain chirality information.
When chirality is taken into account then a QPAD must be used
rather than a PDD.

Electric charge is related to the chirality properties of the
corresponding particle.

The creation and annihilation operators of fermions are
characterized by a non-zero anti-commutator.

Creation and annihilation operators can be split in a part that
resides in configuration space and a part that resides in Fourier
space.

A quant can be emitted (created), absorbed (annihilated) and it can
be virtual, which means that it is annihilated shortly after its
creation.

Non-actual quanta belong to previous or future events.

Only actual quanta deliver observable information.

Emitted and absorbed actual quanta belong to the current version
of events.

During each dynamical step information is collected both from
configuration space related sources and from momentum space
related sources.

The part of the collected information that resides in configuration
space delivers the 3D position information to the

emitted/absorbed/virtual quant.



45.

46.

47.

48.

49.

50.

51.

The part of the collected information that resides in Fourier space
delivers the 3D momentum information to the
emitted/absorbed/virtual quant.
The sum of an even function and its Fourier transform is invariant
under Fourier transformation.
The difference between an odd function and its Fourier transform
is invariant under Fourier transformation.
Apart from a scale factor, the functions that characterize linear and
spherical harmonics are invariant under Fourier transformation.
a. The scale factoris 1, i, -1 or —i.
The harmonic functions are also related to creation and
annihilation operators.
The harmonic functions contain a factor that equals a Gaussian
probability distribution.
Strand model
a. Any knot can be represented topologically by equations in
Cartesian coordinates x, y, z of the form: x = f(t),y =
g(t),z = h(t), where f(t), g(t) and h(t) are Fourier series
with finitely many terms.
b. Only in 3D space knots cannot all be unknotted.
There exist three basic types of elementary particles that can
be distinguished via the number of strands® / Hilbert
vectors involved. These basic types are the bosons, the
quarks and the leptons.
d. The bosons can be distinguished in four categories:
i. The photons have a helix form and no chirality. They

have no mass and are involved in EM interaction.

37 Strands
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52.

53.
54.

55.

56.

ii. the W* bosons have a knotted form (overhand knot)
and possess chirality. They have mass and are
involved in weak interaction.

iii. the Z bosons have a knotted form (figure eight knot)
and no chirality. They have mass and are involved in
weak interaction.

iv. The gluons have rectangle loop shape (<) and no
electric, but color charge. They have no mass and are
involved in strong interaction.

e. The quarks and the leptons can be distinguished in three
generations.

f. The particles are distinguished via the QPAD of the
corresponding quanta and the kind of information that is
carried by these quanta.

g. There exist three basic forms of interaction that are
distinguished via the number of strands/Hilbert vectors that
are involved in the interaction event.

h. These basic forms of interaction can be related to
Reidemeister moves.

Particles become observable via their interactions, thus via the
quanta that are generated due to these interactions.

All motion observed in nature minimizes action.

Uniform motion preferably occurs via a geodesic and obeys the
geodesic equation.

The visual trajectory of vertebrates is devised in order to cope with

a huge dynamical range of light conditions ranging from starlight
conditions up to bright daylight conditions

Over billions of years, evolution has exploited the fact that
information that comes to living species is generated by Poisson

processes. The visual trajectory of vertebrates is optimized for



handling this information for the survival of the owner of this
channel.

57. The Banach—Tarski theorem states that a spherical surface can be split in
five pieces that can form two spheres of the same volume. The statement

does not hold in the eigenspace of a coordinate operator that resides in
separable Hilbert space.

58. In separable Hilbert space, at least one coordinate operator has lattice
sampling properties. Its eigenspace shows preferred directions.

59. At the lowest scale it is not clear how the granules of an eigenspace of a
Hilbert position operator are geometrically arranged. On a larger scale
they appear to be influenced by fields.

60. The geometric sampling of normal operators between subsequent Hilbert
spaces may differ.

61. Particles can be considered as sources and drains of information carrying
quanta.

62. These sources and drains play their role in a continuity equation that treats
information carried by quanta.

63. The concept of measurement has no significance at Planck scales.

The indications and considerations that are treated in this chapter will

steer the development of the theory that is subject of this e-paper.

First conclusion
The standard model can be retrieved via categorization of the particle

types and their interactions. This comes down to categorizing QPAD’s
and categorization of information packages that are carried by generated

quanta.
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Logic

Logics

Quantum logic differs from classical logic in one of its axioms. The set of
propositions in classical logic is isomorphic with the set of Venn
diagrams3. The set of propositions of traditional quantum logic® is far
more complex. This significant difference is due to the weakening of just a
single one of the set of more than 25 axioms. It is lattice isomorphic with
the set of closed subspaces of an infinite dimensional separable Hilbert
space? H. The isomorphism means that quantum logical propositions can
be represented by closed subspaces of a Hilbert space. The inner products
of that Hilbert space can be defined by using numbers of a 2"-on number
space. Taking n>2 for that purpose raises numeric problems with the
closure of the subspaces. Traditional quantum logic does not include any
axioms that treat dynamics and it does not treat the influences of physical
fields. It only specifies stationary relations that are possible between
physical items and their properties.

Example proposition

In order to discover the emergence of dynamics we will implement a
quantum logical proposition in Hilbert space and test its truthfulness. We
will introduce in this example proposition physical fields as well as
dynamics.

The example proposition(#) is:
All items in universe influence each other’s position. (#)

It can be answered with either yes or no. And, if we succeed, it can be
implemented in Hilbert space. So, in that case it is a valid quantum logical
proposition.

3 http://en.wikipedia.org/wiki/Venn Diagram
% Appendix: Quantum logic
% Appendix: The separable Hilbert space
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Proving “yes’ is cumbersome, but the ‘no’ is hardly less difficult. It
requires finding an item of which the position is not influenced by at least
one of the other items. For this purpose it is necessary to implement
notions of items, the universe, influences and position in Hilbert space.

The statement includes quantifiers (position) and dynamic operational
elements (influence). The set of axioms of traditional quantum logic does
not treat dynamic operational elements. At least it does not do that in a
realistic way. As we will see, the influence of the universe of propositions
(items) will put particular restrictions to the extension of quantum logic
into the realm of an extended dynamic logic. This restriction is manifested
in the occurrence of physical fields* and inertia®.

Translated in physical terms inertia means that in contrast to a uniform
movement, the acceleration of an item will go together with the action of a
physical field. Notice that we use the words “goes together with” instead of
“generates” or “causes”.

Translated in logical terms a conclusion of the analysis of inertia runs:
“During a redefinition of a proposition the exchange of atomic predicates
in that proposition must be done in well-ordered and controlled steps.
Otherwise the community of propositions will influence the considered
proposition.”

Again it must be noticed that there is no causal relation between the event
of being well-ordered and the event of influencing. With other words, the
inertial interaction is instantaneous.

When nature’s logic is put in axioms, then influences that correspond to
physical fields must follow from the axioms. Together with the

41 Functions and fields
42 Influence: Inertia
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specification of the origin of dynamics this will then result in a dynamic
version of quantum logic.

I assume that this category of logic does not yet exist in mathematics.
There exists a version of dynamic operational quantum logic®, but it does
not cover or mention the effects of the representation of physical fields in
logic and it does not specify the origin of dynamics.

Atomic predicates

Atomic propositions are statements that are either true or false and which
cannot be broken down into other simpler propositions. When an atomic
proposition concerns a property, then it may contain the value of that
property. We will call that kind of atomic propositions atomic predicates.
For example “The speed is 5.” The identity or the category of the property
is “speed”. The value of the property is 5 with a certain inaccuracy. The
inaccuracy is typical for the category of the atomic statement. Only
discrete properties can be observed without inaccuracy. The dimension of
the value is “meter per second”, but that is another atomic statement and
it is a fixed statement. Both the dimension and the inaccuracy form extra
information that is part of the type definition of the atomic predicate
category “speed”.

In fact there exist no continuous properties that relate to Hilbert vectors.
The smallest inaccuracy is set by Planck units. On the other hand the
granularity of the properties must not cause a regular lattice structure of
the property space. This need not lead to contradictions, but it leads to
special solutions* for the operators that deliver the value of the
observable properties.

The atomic predicates form a set with a particular lattice structure. In this
set we only consider atomic predicates that are independent of all other

# Discussion: Dynamic logic
# Hilbert space: Limitedness: Investigating a special operator
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atomic predicates. Several choices of such sets exist. A subset consisting of
members of a chosen set may be canonical conjugates® of members of
another set. However, canonical conjugates are always dependent. So
they cannot be member of the same selected set.

In Hilbert space the type definitions of atomic predicates that concern
numeric variables are represented by operators. The values of the
properties in the atomic predicates correspond to the eigenvalues of the
operators or they are expectation values. Expectation values are
statistically determined via a probability characteristic that characterizes
both the operator and a physical item. See Wave function*.

In separable Hilbert space H, the eigenspaces of all normal operators are
granular. The granularity is a result of the stochastic inaccurate coupling
between its eigenvalues and corresponding eigenvalues of a
corresponding operator in rigged Hilbert space that has a continuum as
eigenspace.

This stochastic inaccuracy also afflicts the corresponding atomic
predicate.

Type definitions

Type definitions are propositions that describe and categorize subjects
without specifying their variable values. An atomic predicate type is the
type definition of a category of atomic predicates and specifies the type of
property that these propositions treat. The definition also contains the
physical dimension (unit) of the property, the inaccuracy and the allowed
range of the potential values of this property. For example, if that category
is “speed”, then the definition contains the physical dimension meters per
second. The minimum of the absolute value is zero and the maximum of
the absolute value is c. Speed is an imaginary quaternion.

4 Functions and fields: Canonical conjugate
46 Functions and fields: Characteristic function
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When the type definition concerns a more complex object that can act as
an individual the definition will be called an item type definition. Item
type definitions use atomic predicate types.

When that item cannot be broken into simpler objects that still can act as
an individual, then the type definition is an elementary type definition.
Elementary type definitions are constructed of type definitions of atomic
predicates.

The elementary types form (a rather small) subset of the whole set of type
definitions. Elementary types appear to divide into two categories:
bosons and fermions. The fermions can be divided in leptons and
quarks. The bosons can be divided in photons, W-bosons, Z-bosons and
gluons.

The private field determines the elementary particle type and the basic
properties of the particle. These include spin, rest mass and charge
Several types of charge exist. Electric charge, isospin, color charge and
hyper charge are types of charges. In fact rest mass is one of them, but
since the gravitation field is an administrator its value must follow from
the spin and the other charges. Variable properties are position,
momentum and angular momentum,

If the item is not an elementary type, then its type specification is a
system or sub-system type definition. A (sub)-system type definition is
constructed of elementary item type definitions and atomic predicate

types.

The type definitions form a set with a different lattice structure. Its
structure is isomorph with the structure of classical logic.

In Hilbert space no representation for item type definitions exists.

However, in Hilbert space atomic predicate types are represented by
operators.
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Strands as type definitions

The notion of strand” is introduced by Christoph Schiller. Apart from its
crossing switch events, a strand is not observable. In the strand model the
boson types are all represented by a single strand. Reversely a strand is
nearly equivalent to the type definition of the simplest boson, which is the
photon. A photon has a helix shape. A strand does not need to have that
shape.

The Hilbert book model defines a strand operator*® that has an eigenspace
in which chains of granules reside. These chains come close to Schiller’s
strands. In each chain one granule is special and is called the current
granule. Only the current granule and its immediate neighborhood can
deliver observable values. If operators are type definitions, then the
notion of a strand comes close to that type definition.

The shape of a chain has a direct relation with the configuration of the
current covering field. Taken over an ordered sequence of Hilbert spaces
the strand fluctuates under the influence of the changing field
configuration. The current granule separates the chain in a “virtual past
sub-chain” and a “virtual future sub-chain”. The words “past” and
“future” are misleading while these parts do not really correspond to the
actual past or future of the chain. They depend on the current field
configuration, rather than on the past or future configuration.

Items

The first problem that is raised by constructing the representation of
proposition (#) is to determine what in this representation stands for an
item. The simplest solution is to attach a subspace of the Hilbert space to
the item. The corresponding proposition can be phrased as: “This is the
item”. Something either belongs to the subspace or it is outside that
subspace. Everything that can be attributed to the item can also be
attributed to this subspace. Each of these propositions belongs to a

47 Strands
48 Hilbert space: Limitedness: Strand operator
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hierarchy for which the mentioned proposition forms the top. All sub-
ordered propositions correspond to subspaces of the item’s subspace. In
this way the universe of items can be represented by a set of mutual
orthogonal subspaces of the Hilbert space. Rays that are spanned by a
single Hilbert vector and that are connected with a numeric value can be
considered as atomic predicates. Subspaces spanned by such rays that are
related to the same type of value can be considered as statements with a
wider scope. The rays can be subspace of an items subspace. The subspace
that corresponds to a conglomerate of elementary items also represents
that conglomerate as an item. The configuration of the subspace that
represents an item will change as a function of the parameter that
measures the progression of the dynamic behavior of the item. It is
possible that not only the values of the atomic predicates change. The
types of these atomic predicates may change as well. This happens for
example with atomic types that are each other’s canonical conjugate. It is
also possible that the configuration of the subspace changes more
drastically.

In a set of subsequent Hilbert spaces the subspace that represents the item
can be moved around with respect to a selected base consisting of
eigenvectors of a normal operator. In this way it may be possible to
implement the dynamics of items. This moving around does not mean
that the vectors are moved around. It means that at each step of the move
the set of vectors that span the considered subspace is redefined. The
redefinition corresponds to a redefinition of the corresponding
proposition. Alternatively, it is also possible to redefine the selected
normal operator. Thus, redefinition and the laws that govern redefinition
convert the static quantum logic into a dynamic version of quantum logic.
It will be shown that physical fields play a significant role in this
redefinition.

With his bra-ket notation Dirac has provided us with a marvelous
symbolism for vectors and even for operators. He did not provide us with
symbols for subspaces. However, it is easy to extend his symbolism and
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indicate a subspace with a set of vectors that spans that subspace. For
example {|f>}s indicates a set of element vectors |fs> with enumerator s
that span a closed subspace. This set identifies the subspace. Different sets
may identify the same closed subspace.

It is sensible to have one vector inside the item’s subspace that is
considered as characteristic for the location of the representation of the
item in Hilbert space. We reserve the name locator for this vector. When
the item is redefined, that vector may be redefined as well. This
characteristic vector can be used to obtain a precise location of the
subspace in Hilbert space. The process via which the locator is
determined depends on the requirements. The requirements may be set in
relation to an operator. For example the vector that corresponds with the
expectation value of the operator for that subspace can be chosen as the

locator. In that case the state vector® that corresponds with that operator
may play the role of the locator. Two or more bosons can share the same
locator. Fermions that possess the same property values cannot share the
same vector as a locator.

Atomic predicates are not considered to be statements that fully describe
a physical item. The statement “This is the item” forms the top of a
hierarchy of statements that all say something about the item. The
hierarchy contains statements that define the item’s type. Other members
of the hierarchy specify the items constituents. Still other statements
concern the item’s atomic variables that together with the type definition
specify the item’s identity. For atoms the variables of the subsystems are
hidden from the outside of the atom. This means that atoms can be
considered as modules®.

49 States
50 Part four or http://www.cryps-of-
physics.eu/ThereExistsATendencyInNatureToReduceComplexity.pdf
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Representation of items

A subspace in a single separable Hilbert space H, cannot represent all
properties of a physical item. The fact that the position of the item is
known means that an eigenvector of the position operator resides within
the subspace that represents the item. Say that this subspace covers
position values in a certain region. Heisenberg’s uncertainty principle
now states that the value of the momentum of the item is uncertain. Any
values of this property must correspond with eigenvectors of the
momentum operator that also reside in this subspace. For elementary
particles the subspace will be too small in order to guarantee sufficiently
sure property values. Sufficient information could be collected when the
Hilbert space also contains past and future data, such that the momentum
can be derived/estimated from those data. The physical fields contain
such preconditions. For a free elementary particle the momentum can be
derived from the Fourier transform of the QPAD that controls the
position of the particle. This QPAD is the wave function of the particle.
Together with the subspace that represents the particle, the wave function
represents all information that can be retrieved from the particle. Since all
particles have such QPAD’s these private fields get intermixed. Thus in
the neighborhood of other particles the superposition of the private fields
must be reckoned rather than a single private field.

Via its wave function a particle is identified with its private field. The
notion of private field transfers quantum theory into quantum field
theory. The dynamics of the particle are represented by the dynamics of
their private field.

Vacuum

Multidimensional subspaces exist that do not represent a dynamical item.
They can be considered as vacuum. It is still possible that the subspace
represents a ground state>!. We will assume that on the average the ‘filled’

51 Functions and fields: Quaternionic Fourier transform split: Ladder operator: Ground
state
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and the vacuum subspaces are evenly distributed over a connected part of
the Hilbert space. The phrase “evenly distributed” means that the
distance between the representations of items makes sense. Here we do
not mean the distance related to the norm of Hilbert vectors, but the
coordinate related distance.

“Vacuum” does not say that these subspaces are empty. It is rather an
indication that the subspace does not represent a dynamical object.
Instead the subspace may represent a ground state.

Vacuum does not generate observable information quanta. In vacuum
the clouds of quanta are empty. (However the combined vacuum states
can cause an observable effect. The Casimir effect is an observable
phenomenon.)
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Hilbert spaces

Dual views of a Hilbert space

We only consider infinite dimensional separable Hilbert spaces® and their
Gelfand triple®, the rigged Hilbert space, which is not a Hilbert space, but
just got its name.

In Hilbert space normal operators exist whose eigenvectors form an
orthonormal base of the Hilbert space. The canonical conjugate of that
normal operator has a set of eigenvectors that is completely disjoint of the
former orthonormal base. This fact defines pairs of views of the same
Hilbert space that are related via canonical conjugation.

The corresponding orthogonal bases do not touch. Every base vector is a
linear combination with non-zero coefficients of all members of “the other
base”. All coefficients have the same modulus.

Position

The original proposition (#) speaks about the position of the item. The
position must be related to something that is available in the separable
Hilbert space. This Hilbert space is defined over a number space. Thus we
might attach a number of this number space (or a higher 2n-on) to the
Hilbert subspace that represents the item. That number must represent
position. The natural way of attaching numbers to subspaces of a Hilbert
space is via the concept of eigenvalues of normal operators. Any
symmetry transform of a selected normal GPS coordinate operator might
meet the requirements.

However, there exists a significant drawback. The eigenspaces of all

normal operators that reside in a separable Hilbert space H, are countable.
In addition the eigenspace of the position operator in H must be granular.
The granularity means that the difference between two different positions

%2 Appendix; The separable Hilbert space
5 Appendix; Gelfand triple
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must be equal to or larger than the Planck-length. A GPS coordinate
system that is constructed from a dense package of fixed size granules
generates preferred directions. If we want to avoid this, then we must use
a position operator whose eigenspace does not contain multidimensional
sets of granular eigenvalues. Still each of the eigenvectors must have
eigenvalues that deliver position values as eigenvalue. Thus there must be
a relation with a background coordinate system. That background
coordinate system must form a continuum. This background coordinate
system can be delivered by a GPS-like operator that resides in the
corresponding rigged Hilbert space H. That operator has the continuum
of the quaternionic number system as its eigenspace. Apart from the real
axis of this hyper complex number system it shows no preferred
directions. So for position values we must take rescue in rigged Hilbert
space H. The eigenspace of the GPS-like operator does not show a natural
granularity. The continuum GPS operator is not a part of the separable
Hilbert space H, but an equivalent operator with a countable eigenspace
exists in H. It cannot be used to locate the vectors of the separable Hilbert
space. However, we can use it to give field values an approximate
location. What we have obtained are two GPS-like operators. One resides
in separable Hilbert space and has a countable eigenspace. The other
resides in rigged Hilbert space and has an continuum eigenspace. This
continuum is at least usable as a background coordinate system. The
eigenspace of the first GPS-like operator forms a dense coverage of the
second GPS-like operator. Both GPS-like operators do not support
granularity.

For a given field we may choose a GPS-like operator @, which resides in
separable Hilbert space and has an equivalent Q in rigged Hilbert space,
such that for that field we can work with the ideal form of the
quaternionic Fourier transform. That means that by using these
coordinates as parameters, the field that will be analyzed has
decompositions that run along straight lines in the eigenspaces of Q and
Q. Q introduces a new coordinate system that is curved with respect to the
original GPS-like coordinate system that is eigenspace of operator Q.

120



The new coordinates are characterized by the fact that the considered
tield when formulated using these coordinates shows a decomposition
into static parts that runs along straight coordinate lines. A Fourier
transform taken in these coordinates has universe wide validity. The
canonical conjugate P of operator Q also shows a similar behavior for the
Fourier transform of the analyzed field that was first stated in Q
coordinates and after transformation is specified in P coordinates. The
same relation holds for operator Q and the canonical conjugate P.

Physical coordinates

Coordinates are not necessarily physical quantities in the way that they
can be considered as properties of physical items. The physical
coordinates of identifiable physical items are granular. The granularity
means that at a given progression step they can only change with a step
that either is zero or is equal to a Planck-length. Coordinates that are
eigenvalues of normal operators in separable Hilbert space H, are
countable. The set of rational quaternions is countable, but this set is not
granular. In rigged Hilbert space H the eigenspace of a normal operator
may be uncountable. It means that this space forms a continuum. The set
of all imaginary quaternions forms a continuum. In a given static status
quo, only a countable and granular subset of these eigenvalues can be
physical quantities.

We took the Planck-length here as THE minimum distance between
positions. The Planck-length is derived via dimensional analysis. The
important thing is that a minimum exists. Planck-length is a proper name
for it and the exact size is less important.

Generating a Hilbert space GPS

The first step is the introduction of a suitable GPS system in Hilbert space.
This can be done by taking an orthonormal base of Hilbert vectors and
add quaternion values to them. Due to the separability of the Hilbert
space this number set must be countable. Let us take the rational

121



quaternions as an example. This construction defines a normal operator Q
with countable infinite number of eigenvectors | ¢>and corresponding
eigenvalues 9. We will use the name coordinate space for the eigenspace
of the coordinate operator Q.

The quaternions clearly have an origin. In contrast, the unit sphere of the
Hilbert space, which contains all eigenvectors of Q is an affine space. The
eigenvectors of Q form an orthonormal base. This singles out the
eigenvector that belongs to the origin of the eigenspace. It indicates that Q
must only be used for relative locations. Also the real axis has no
equivalent in the isomorphism between the unit sphere of the Hilbert

space and the eigenspace of Q. So, we will neglect this part of the eigenspace
of Q during the specification of a GPS-like operator. (It appears that nature does
the same). We will only look at the imaginary part of the eigenspace of Q.

When we speak about the (Q) coordinate distance between two vectors
|£>and |g>in Hilbert space, then we mean the numerical distance
between the values of <f|Q f>/<f|f> and <glQ g>/<glg>.

Q has an infinite but countable number of eigenvalues. A location in
coordinate space represents a location on the unit sphere of Hilbert space.

The fact that Q must be bounded means that Q has a boundary 9 at a finite
distance from its origin.

Take the polar decomposition of the normal coordinate operator Q in a
unitary part UJ and a positive operator N. The eigenspace of U is the uni-
coordinate space. Like the unit sphere of the Hilbert space, the uni-
coordinate space is an affine space. Besides of that also no preferred
direction should exist in this unit sphere. But that is not the case!

The eigenspace of Q consists of all eigenvalues of Q. The eigenspace is not a
closed set and it does not include infinity. If the eigenspace of Q) was granular,
then in order to be able to act as a kind of GPS the granules must have a fixed
size. A dense packing of the granules would create preferred directions. It means
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that in that case Q is not isotropic. In contrast, the unit sphere of the Hilbert space
is isotropic. This sphere contains all eigenvectors of Q. With granularity spread in
a regulated order, the granularity raises preferred imaginary directions. As a
consequence the size of an infinitesimal step will depend on direction. This does
not generally correspond with physical reality. Only in condensed matter such
conditions may occur. We can conclude that regulated spread granularity of the
eigenspace of Q leads to unphysical eigenvalues. Thus, let us restrict to
countability. However, this restriction prohibits the use of sets of eigenvalues as
parameters in differentiation operations.

With artificial means the eigenspace of the coordinate operator may be closed by
adding all limits of converging rows of eigenvalues. In this away a closed set of
quaternions results. However, most members of this closed set are not
eigenvalues of the coordinate operator Q. The set is eigenspace of a
corresponding coordinate operator Q in a rigged Hilbert space H. Still, the use of
the separable Hilbert space H, coordinate operator Q will always prevent
differentiation. Thus, for realistic physical conditions an alternative for this
coordinate operator Q must be sought. The coordinate operator @ that has its
residence in the rigged Hilbert space H does not suffer from preferred imaginary
directions and has an eigenspace that is a continuum. For that reason we can use
it as a background coordinate operator. In the future we will indicate the
background operator @ as the (background) GPS operator. We will use the
name GPS like operator for any operator that has an eigenspace that can be
obtained via an invertible continuous transform or a reflection from the
eigenspace of operator Q.

Canonical conjugate
The four dimensions of the quaternions enable the split of Q into one Hermitian
and three anti-Hermitian components. Via the inner product of the Hilbert space,

each of these components gets a canonical conjugate. This creates a GMS-like
operator.

<Qulpy >= ﬁi(Wﬂ) =< puloy >"= fu*(‘?u)
= exp (nu “Pu Qu/h)

u=0,1,2,3 is the index of the dimension.

n, =i, i, j, k are imaginary base numbers.
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n; = —1 (2)

The Hilbert vector |¢, > is eigenvector of operator @, and corresponds with
eigenvalue ¢,,.
The Hilbert vector |p, > is eigenvector of operator £, and corresponds with
eigenvalue p,,.

The constant h relates to the size of the granules.
For each dimension index u holds:

<Qu|P.f > Do, = my,-h-A<qu|f >=n, -h-Af(g,) 3)
[P,9] = P.Q—-9Q,P, =n,-h (4)

The definitions of the four canonical conjugates also define four (decoupled)
complex Fourier transforms. The granularity decouples the Fourier transforms.

The Hilbert space GMS

The GMS operator P of the rigged Hilbert space H is the canonical
conjugate of the rigged Hilbert GPS operator Q. Both operators reside in
the Gelfand triple that corresponds to the separable Hilbert space H. The
canonical conjugate P of Q is formed from the combination of the four 7,
operators. The same reasoning that is used for the @ operator also holds
for the P operator. It means that also the P operator has a countable
eigenspace and it has a boundary C. Both boundaries have a one to one
correspondence with the unit sphere O of the Hilbert space, but none of
the eigenvectors of the @ operator coincides with an eigenvector of the P
operator.

GPS stands for Global Positioning System.

GMS stands for Global Momentum System.

For positioning purposes only the imaginary part of the eigenspaces are
used. The real part is ignored.
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Like with positions, in a given static status quo not all momentum
eigenvalues of the GMS operator are physical quantities. Only a countable
subset deserves that qualification.

The fourth dimension

Often time is perceived as the fourth dimension. However, Piron and
Einstein prove that when space is occupying the imaginary part, our
common notion of time is unfit to act as the fourth dimension of the hyper
complex number space. Einstein’s special relativity indicates that a
Minkowski signature characterizes the common spacetime concept. It
means that a rectangular triangle relation exists between the spacetime
step, the space step and the coordinate time step, where the coordinate
time steps acts as the hypotenuse. Thus the coordinate time step is not
perpendicular to the space step as the fourth dimension in quaternion
space would be.

In combination with Garret Birkhoff and John von Neumann, Constantin
Piron proved that the values of inner products of Hilbert vectors must
belong to a division ring. When observables must stay expressible in such
numbers, then they can maximally be quaternions. In that case, the real
part of the quaternion of which the imaginary part represents a space
coordinate, cannot be coordinate time.

Another argument is the following. Neither traditional quantum logic nor
the corresponding separable Hilbert space H, can represent dynamics.
Thus, time is not an observable that fits in this separable Hilbert space H.
However, both traditional quantum logic and the corresponding Hilbert
space may contain items that represent the precondition of change.

Due to the fact that the Hilbert space is separable, the observable
quantities must be countable. In fact many physical quantities are
granular. For example the granularity of space is characterized by the
Planck-length lp). The fourth dimension is supposed to be granular as
well.
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Two quantities, other than space and time that are known to be granular
are action and entropy. The granularity of action is characterized by the
Planck constant. The granularity of entropy is characterized by the
Boltzmann constant. Both are valid candidates for the fourth dimension.
Energy is not a valid candidate, because it represents action per unit of
time. Thus, it would introduce a notion of time via this backdoor. Action
represents change. Entropy represents potential change. Field values
represent preconditions of change.

Another possibility is to use the spacetime step as the fourth dimension.
This step is perpendicular to the space step. This interpretation
immediately poses the question what then the physical significance is of
this spacetime step.

Until we encounter the requirement to fill it, the gap of the fourth
dimension can be left open. One thing is for sure; coordinate time does
not fit in that gap.

Time and dynamics

Dynamics and its progression parameter time do not fit in a Hilbert space
that can only represent a static status quo. That also means that this
Hilbert space does not support the corresponding operator. However, the
static representation of the preconditions of change is represented in this
Hilbert space. Its interpretation is then as the precondition for the change
that will be applied in the next dynamical step.

For example potential displacement is characterized by momentum,
which is the canonical conjugate of space. A progression step is required
in order to determine the actual displacement. The progression step
occurs between the instants of validity of subsequent Hilbert spaces. As a
consequence the displacement gets its significance by comparing
subsequent Hilbert spaces.
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This means that the duration of the progression step is unimportant.

When the smallest possible space step lp; = 4/ hG/c3 and the smallest

possible coordinate time step tp; = /hG/c5 are put into the Minkowski
signature, At*> = At? — Aq?/c? then the corresponding spacetime step
ATt is zero.

The number of Planck-time steps equals the number of global progression
steps. The number of Planck-length steps must always be lower than the
number of Planck-time steps. The photon never takes a non-zero
spacetime step. The number of its space steps always equals the number
of its time steps.

Any particle that does not travel with light speed skips some of its space
steps. Any particle can take a space step in a direction that differs from
the direction of a previous step.

According to the Minkowski signature of spacetime the proper time step
of information transfer is zero. The Hilbert book model takes the duration
of the progression step equal to the proper time step of information
transfer.

Displacement goes together with a reconfiguration of the fields. An
acceleration of an item goes together with an extra field component.

Action is change. In this respect its role is similar to the role of
displacement. Also the action step gets its significance by comparing
subsequent Hilbert spaces. Fields represent the preconditions for the next
action step.

Hilbert functions

Coordinate operators enable the definition of a special type of functions.
Take a coordinate operator Q. Next take an arbitrary Hilbert vector |f >.
Construct the inner products of this vector with all eigenvectors {|¢ >}. of
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Q. Use the eigenvalues {¢} of Q as variable. Now we have defined Hilbert
function f(9) as

f(@) =< flo>;forallgin {9}

Now the Fourier transform f(p) of f(¢) is defined using the canonical
conjugate P of Q via:

fp) =< flp >;forall pin {p}

This is again a Hilbert function, but it uses a different coordinate operator
(P).

Hilbert functions are sampled functions. They are not differentiable. They can be
approximated by a corresponding continuous function, which may be
differentiable.

The continuous approximation of f(¢) is indicated as ? (’6) Both the function
and its parameters are smooth.

The components of Hilbert functions are always decoupled. The same holds for
their Fourier transforms. For Hilbert functions no divergence and no curl exists.

The components of (quaternionic) continuous functions are always coupled. The
same holds for their Fourier transforms. For continuous functions divergence and
curl may exist. However, inside a separable Hilbert space H, continuous functions

only can act as Hilbert vectors. This is the case in £2 space™.

Limitedness

Countability
The separable Hilbert space H, has a countable dimension. It means that

the eigenvalues of normal operators may offer a dense coverage of a
connected part of the number space, but it is not a closed coverage. The
number space is a continuum. The eigenspace does not include all limits

54 http://en.wikipedia.org/wiki/Lp space#Hilbert spaces
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of all convergent rows. At least a closed subset of the whole number space
is densely covered by the set of eigenvectors. An eigenvector represents
an atomic predicate that represents the corresponding attribute of the
considered item. The eigenvector lies inside the subspace that represents
the item. The corresponding atomic predicate states that the
corresponding attribute of the item lies inside the environment that is
represented by the eigenvector.

Granularity

The fact that the separable Hilbert space H, has a countable number of
orthonormal base vectors does not on itself render the eigenspace of every
normal operator granular. We could cover a closed subset of the whole
quaternionic number space with a countable number of rational
quaternions. However, the Planck-length sets a minimum difference for
positions and this renders the corresponding position operator granular.
The way this granularity is distributed may cause particular features. For
example dense packing causes preferred directions. Preferred directions
do not commonly occur in nature. Such directions occur in condensed
matter. Thus, dense packing or any other kind of organized packing does
not generally occur in nature. It may occur in horizons. (It happens in the
horizons of black holes). This means that the physical use of a granular
coordinate operator is restricted to specific situations. However, from the
Q operator a corresponding background GPS operator @ can be derived
that resides in the corresponding rigged Hilbert space H. The set of closed
subspaces of this rigged Hilbert space H is not lattice isomorph with
traditional quantum logic. Thus, it is not a proper model of that logic. This
conflicts with our primary goal.

Both Q and Q are not suitable as granular position operator. We must find
a possible realization of a granular position operator that resides in the
separable Hilbert space.

Investigating an alternative operator

In order not to generate preferred directions the alternative operator must
not support an eigenspace that contains multidimensional subsets that are
not horizons. Still it must deliver positions as eigenvalues. Part of the
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solution is that this new operator relates to a background GPS coordinate
system.

A corresponding continuous GPS coordinate operator that can deliver
such a GPS background coordinate system can only reside in the rigged
Hilbert space H that corresponds to the considered separable Hilbert
space.

The eigenspace of the target operator may consist of

e aset of separate points (granules)

e aset of curves (chains of granules)

e aset of horizons (surfaces consisting of granules)
These elements are located with respect to the mentioned background
coordinate system.
It must be possible to locate the current position of ALL physical particles
with the eigenvalue set of the new operator.

The operator must exhibit the granularity of the position attribute. At the
same time, the position must not be related to a fixed lattice. As a
consequence: Any position difference must be equal or larger than the
Planck-length.

Further, a sensible reason must be found for the existence of the granules.
They must not just fall from heaven.

Between subsequent Hilbert spaces the position may stay stationary.
However, when a difference occurs, it must again be equal or larger than
the Planck-length. On its turn this means that between subsequent Hilbert
spaces the eigenspaces of the target operator must be related.

Apart from the horizons the solution may be given by a set of chains of
granules. Each chain has a sub-chain of past granules, a current granule
and a sub-chain of future granules. The space step may be zero.

Otherwise, during the step to the next Hilbert space, the first granule in
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the future chain of the current Hilbert space becomes the current granule
in the subsequent Hilbert space. At the same instance the current granule
turns into the last granule in the past chain.

In each chain only the current granules will deliver observable values.
Fields take care that in each chain sufficient smoothness exists around the
current granules. For that reason the field in the surrounds of the current
granules acts like a QPAD that regulates the position of that granule. The
result of this investigation is a strand operator.

The reason behind granules

The fact that the QPAD’s anchor on the granules can be solved quickly
when we can find a reason for the granules to be part of the
corresponding quaternionic probability amplitude distribution (QPAD).
This reason is fully supplied when the granule is the ground state of the
QPAD.

Now the quest changes to the reason why the QPAD exists. This reason
can be found in the coupling of the eigenspace of the position operator
that houses in separatable Hilbert space and the eigenspace of the GPS-
like operator in the rigged Hilbert space that delivers the background
coordinate system. This coupling is inaccurate in a stochastic sense. The
QPAD reflects this stochastic relation.

Several types of QPAD’s exist. Every type of QPAD corresponds with a
type of elementary particle. The types can be grouped in categories. This
diversity and partitioning is the secret behind the standard model.
However, no great diversity exists with respect to the ground states. All
localizable types feature nearly the same ground state.

The scale of the extent of the ground state is of the order of the Planck-
length. This sets the size of the granules that represent the eigenvalues of
the new position operator.

When the Fourier transformation of the full QPAD is taken, then the
result gives information on the displacement that will be performed in the
next progression step.
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Apart from a constant, the ground state of the QPAD is invariant under
Fourier transformation. This constant is one of (1, i, -1 or -i). This means
that the momentum operator that corresponds to the new position
operator has also a granular eigenspace.

Strand operator

With exception of its horizons, the eigenspace of the strand operator does
not cause preferred directions. Thus, its eigenvalues do not suffer the
anomalies of the eigenspace of the Q operator. The elements in its
eigenspace have a direction, but that direction is related to local physical
conditions.

A strand operator @ can be defined along the following steps:

e Take a chain of granules.

e All granules have the same size.

e Each granule in this chain can be given an integer ordering
number.

e The background coordinate GPS operator can be used to give each
granule in a chain a unique position.

e The coupling of the granule with the position in the background
coordinates is not precise. The inaccuracy is stochastic and is of the
order of the Planck-length. This effect determines the size of the
granules.

e Each chain consists of a past sub-chain, a current granule and a
future sub-chain. The ordering number of the current granule is
zero.

o If the set of Hilbert spaces steps to the subsequent Hilbert space,
then the position of the current granule stays stationary or it
becomes the position of the last granule in the past sub-chain. In
that case the current granule becomes the place of what was the
first granule in the future sub-chain.

e A QPAD that extends beyond the size of the granule takes care that
in each chain sufficient smoothness exists around the current
granules.
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The granule is the ground state of this QPAD.

Define a set of such chains.

These measures leave a freedom that corresponds to a fluctuation
of the chains over subsequent Hilbert spaces.

Each separate QPAD in the chain contains information on the
displacement in the next progression step.

Taken over a small set of subsequent Hilbert spaces, the movement
of the current granule reflects the influence of the QPAD that
controls the smoothness of the chain in the surround of the current
granule.

This distribution describes the properties of a moving, rotating and
diffusing cloud of virtual information carrying quanta.

Depending on how the distribution is viewed, the QPAD describes
the probability density of the information carried by these quanta.
In any case the squared modulus of the QPAD describes the
probable position of the current granule.

Taking the Fourier transform of the distribution reveals similar
information about the canonical conjugated coordinate.

Further:

1.

AL N

The eigenspace of the strand operator can only house a finite
number of chains.

The eigenspace of the strand operator does not house volumes.
The eigenspace of the strand operator houses horizons.

These horizons have the shape of bubbles.

The bubbles consist of densely packed granules.

In this configuration the granules take their minimal (ground state)
shape.

Chains can split and they can merge. The corresponding creation and annihilation
occurs during a progression step and is controlled by the combined effect of
Poisson distributions and spatial QPAD’sthat are attached to the current granules.
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Horizons

Because the normal strand operator is bounded, a boundary surface exists at a
finite distance from the origin of the background GPS coordinate system. We will
call this boundary the outer horizon.

The covered space has an outer horizon, but it may also contain closed inner
horizons. Outside the outer horizon and inside the inner horizons no strands
exist.

Black holes

Most inner horizons are borders of black holes. These horizons are
bubbles that consist of densely packed granules. The QPAD’s that are
attached to these granules have taken their minimal possible size. Each
granule is connected to a Hilbert vector which is eigenvector of the strand
operator. That Hilbert vector represents a quantum logical proposition. It
carries a single bit of information that indicates its membership of the set
of eigenvectors of the strand operator. The inner horizons form an
exception to the rule that the granules must not form a multidimensional
subset.

When a large piece of matter collapses into a black hole, then the QPAD’s
that are attached to the anchor points of particles collapse into their
smallest possible shape. They take the shape of the granule and all
granules group at the horizon such that they form the horizon.

When matter falls onto the horizon of the black hole then the QPAD’s of
these particles are forced into their smallest possible extent, which is their

ground state. Next these granules are added to the horizon of the black
hole

Start horizon

Inner horizons and outer horizons exist. In the Hilbert space that describes
the first element in the sequence of static status quos, the eigenspace of the strand
operator may consist of a start horizon. It is at the same time an inner and an
outer horizon.
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The idea that at the start of the universe an inner horizon coincides with
the outer horizon is speculation. Still the concept of a start horizon is an
intriguing possibility and it fits well into the Hilbert book model..

The start horizon can be interpreted as a bubble that existed in empty
space and that converted into matter®. It is at same time an inner horizon
and an outer horizon. Its inner side is empty. Outside its outer side
nothing exists. The start horizon is a bubble that is densely covered with
granules. In the start horizon the “granules” were huge. As a consequence
that bubble was instable. The huge “granules” granules collapsed into
their ground state. Despite the fact that the former state offered the
capability to form bubbles, the ground state that also offers this capability
is much more stable. After the implosion the new more stable granules
spread over the space that came available and their QPAD folded out,
such that it took more space than just the size of the granule.

After the implosion, the preconditions for forming the start horizon are
gone. There is no indication that during the lifetime of the universe a
similar implosion happened more often.

Information horizons
Information horizons exist in different types.

A black hole has its own particular type of information horizon. Information
cannot pass through that horizon. Due to the strong curvature, in the
neighborhood of the horizon of a black hole the speed of information carrying
light particles goes to zero. This information horizon is an event horizon. Not
only information cannot pass. In fact any particle cannot pass the horizon. Instead
the particle or debris of that particle are transferred into their ground state and
added to the horizon. Some of the debris may escape.

Any physical item has its own private information horizon. Since light
transports all information and has a limited speed, the private
information horizon is in fact the image of the start horizon. This differs

55 See Birth of the universe
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from the outer horizon. That private information horizon is set by the most
distant items from which light can reach the observing item.

The private information horizon depends on the position of the observer.
In a universe, a multitude of such private information horizons may exist.
They might even be disjoint. This type of information horizon is
determined by the reach of light since the start of the universe.

Configuration space

Since the unit sphere of the Hilbert space is an affine space and all
eigenvectors of the GPS operator are represented in that space, the GPS
can be considered to have no origin.

The chains may be closed or they start and end at a horizon. Further they
may split and merge. This corresponds with creation and annihilation of
particles that anchor on these chains.

Vacuum is not empty. It is the space in between horizons where chains
may exist. Very short closed chains are spread all over vacuum. The
granules in very short closed chains may represent the anchors of virtual
particles.

Only the direct environment of the current granule of the chain is
relevant. The QPAD that guides the current granule becomes part of the
surrounding fields. It forms the basic constituent of the field. Its
introduction extends the concept of separable Hilbert space. In a similar
way it extends the concept of quantum logic.

Statistics

The QPAD is a constituent of the field that surrounds the granule. The
creation and annihilation operators of fields have eigenfunctions that are
Poisson distributions. Such distributions are produced by Poisson
processes. A Poisson process can be combined with a subsequent
binomial process in order to form a generalized Poisson process that has a
lower efficiency than the original Poisson process. The efficiency is
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weakened by the weakening that is introduced by the binomial process.
The spatial spread introduced by the QPAD can be interpreted as a
binomial process with a spatial varying weakening factor. The spread
function is equal to the squared modulus of the QPAD.

Canonical conjugate

The ground states of the QPAD’s that determine the spatial spread
functions are all (nearly) equal. Apart from a factor (1, 7, -1 or —i) they are
invariant under Fourier transformation. This means that the canonical
conjugate of the strand operator has the same basic format. It is also
constituted of granules.

Chain interpretation

In a single Hilbert space a chain may represent a piece of a potential past,
present and future path of a particle. The present part of the path is
formed by the direct surround of a single granule that acts as the current
granule. In this single Hilbert space the granule corresponds to a Hilbert
vector which is an eigenvector of the strand operator. The local path is
determined by the current configuration of the field(s) that influence(s)
the path. As a consequence, when taken over a sequence of Hilbert spaces,
the chains fluctuate. This gives chains a place in the Hilbert book model.
It must be noticed that the chains do not reflect the actual path. That only
holds for the direct neighborhood of the current granule.

Taken over a sequence of Hilbert spaces the granules that represent the
actual state of the chain represent the actual path of the corresponding
particle.

Vacuum

The inaccuracy in the coupling between the background coordinate
system and the eigenvalues of the position operator also plays a role in
the space where little or no actual current granules exist. In this space
virtual granules may exist during a very short period, such as single
progression step. In fact the granules are part of a chain that forms a very
short loop. These virtual granules form the main content of vacuum.
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Virtual granules only occur inside the outer horizon and outside the inner
horizons of the strand operator. A virtual granule can be interpreted as
the ground state of the corresponding QPAD and may come close to the
ground state of a linear or spherical harmonic oscillator. This ground state
corresponds with the minimal extend that the QPAD can take.

In the Hilbert book model, the vacuum has a constant density p,,q.0f
virtual granules.

In the Hilbert book model the space between horizons is stochastically,
but on the average uniformly covered with virtual granules. At every
progression step these virtual granules are redistributed. The actual
granules exist in between these virtual granules, but they possess a wider
spread of the corresponding QPAD’s. These wider QPAD’s tend to last
longer at a (nearly) stationary location.

Fundamental measures and units

Events are instants of creation or annihilation of quanta. After creation the
quantum becomes observable. After annihilation the quantum is no
longer observable.

A change is the stepwise variation of the information carried by a
quantum.

The information carried by a quantum is its position, its momentum its
chirality and other characteristics of the corresponding particle.

The distance between two items equals the number of granules that fit
between them.

The progression time between two events equals the number of
progression steps between them.

The action in a progression interval equals the number of progression
steps in that interval during which a change took place.

The entropy of a system equals the number of steps during which a
change can take place in that system. It equals the number of granules in
that system.
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In relation to the covering field*, a QPAD provides secondary
information.

The basic measures of physics are:
The Planck-length, Ip; = /hG/c3 = 1.6 - 1073 m
The Planck (coordinate) time, tp; = \/hG/c5 = 5.4 - 10™*s
The unit of action is the constant of Planck, h = 1.055-1073*

The unit of entropy is the constant of Boltzmann, k = 1.38 X
10—23

Numbers

Sign selections

Four possibilities exist due to the sign selections of the quaternions. One
sign selection is covered by the conjugation a—a*. This selection switches
the sign of all three imaginary base vectors. The other is caused by
switching the sign of a single binary base vector a—a®. For this sign
selection one of the three available base vectors is selected. When
relevant, then these choices are indicated by colors (r, g or b). Both
methods switch the handedness (chirality). When both sign selections

combine then the superscript a—a® is used. This combination does not
switch handedness. Also this selection is colored.

It is also possible to use the extended quaternionic conjugation concept:
a*=a®

a® = a®

% Functions and fields; Hilbert field; Covering field
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a® =a*® =a®

The encircled number stands for the number of switched base vectors. For
the single sign switch a®, three independent direction selections are
possible. We indicate these choices with r, g and b.

Similarly for the double sign switch a®, three independent direction
selections are possible. We indicate these choices also with r, g and b. This
direction belongs to the non-switched direction.

Without closer description the value of a@®@ is a®. It means that the
colors are suspected to be the same.

The change from a to aQor a® cause a switch of the handedness of a.

a**=a@®=(a®)®=a
a0 = ;0@ = 4
a®@ = ;00 = ;&

The effects of the quaternionic conjugation are visible in the base numbers
1,1, k

1"=1

)

The blue colored sign selection is given by

i@ = —j;j® = —j; k@ = +k;
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In the blue colored sign selection, k follows the rules of complex
conjugation. This renders its direction to a special direction.

The selected color direction is called the longitudinal direction. The the
perpendicular directions are the transverse directions. Apart from that
they are mutual perpendicular and perpendicular to the longitudinal
direction, they have no preferred direction.

Sign selections and quaternionic distributions

Quaternionic distributions are supposed to obey a distribution wide sign
selection. Thus, the distribution is characterized by one of the eight
quaternionic sign flavors.

1/)@’ lp@, w,b@, 1/)@, 1/)@, w(@‘ 1,0@, or 1/,@

Many of the elementary particles are characterized by an ordered pair of
two field sign flavors. These fields are coupled with a coupling strength
that is typical for the particle type. These particles obey a characteristic
continuity equation®.

Product rule
We use the quaternionic product rule.

ab:a0b0_<a,b)+a0b+ab0+a><b (1)

(a, b) = a1b1 + azbz + a3b3 (2)

ax b = i(a;b; — azb,) + j(asb, — ayb3) + k(a,b, — azby) 3)
Operators

The sign selections of operator V = (V,, V) depend on the sign selections
of position operator Q, which determines the sign selections for its
eigenvalues g = (qo,q).

57 Hilbert field equations; Continuity equation for charges
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Normally we consider the sign selection for operators Q and Ffixed to

operators Q@ and V. Sometimes we chose V* instead of operator V.

Quaternionic sign selection are directly connected with the concepts of
parity and spin.

For quaternionic functions symmetry reduces the differences that are
produced by conjugation and anti-symmetry stresses the differences. The
same holds for operators.

Matrices
Another possibility is to present sign selections by matrices®.

=[1 ol =l Gl wsl 2

The o, matrix switches the complex fields that together form the
quaternion field.

(ol =1 ol

The o, matrix switches the real parts and the imaginary parts of the
complex fields that together form the quaternion field and it switches
both fields.

=10 51l

The o3 matrix switches the sign of the first complex field.

[el=10 1l

58 http://www.vttoth.com/gt.htm
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of = —io 0001 =1

The Pauli matrices are involutory.
The determinants® and traces® of the Pauli matrices are:

det(gy,) = —1
Tr(ak) =0
_ [ 0 O
T = | — Oy 0
10 i
@ =[5 ol
_[0 J
2= O]
10k
=k o]
10 1
p=[; of

The aj matrices together select the imaginary base vectors. The f matrix
exchanges the sign of all imaginary base vectors. Thus the  matrix
implements the quaternionic conjugate. The conjugation also exchanges
right handedness against left handedness.

Another way of exchanging right handedness against left handedness is
the exchange of the sign of one of the imaginary base vectors.

=1 ol

5 http://en.wikipedia.org/wiki/Determinant
60 http://en.wikipedia.org/wiki/Trace of a matrix
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v -0 v

The gamma matrices®! translate directly from complex fields to fully
featured quaternionic fields. In this way four sign flavors of quaternionic
fields are constructed from four complex fields. This is represented by
four dimensional matrices and four dimensional spinors. The equivalent
of the f matrix is the yg matrix.

PLa 0 0 1 0 PRa (7)
<PLb] _ lO 0 0 1‘ [QDRb
PRra 1 0 0 0||%La
Prb 0 1 0 0lLPwp

It is false to interpret the matrices as vectors. They form a shorthand for
handling spinors.

The Pauli matrix o, represents the sign selection a—a®, while the f matrix
represents the sign selection a—a". The other Pauli matrices and the a
matrices implement the resulting part of the quaternion behavior for
spinors.

Construction
The Cayley-Dickson construction formula enables the generation of a
quaternion from two complex numbers:

p = a0+ aik +i(bo + bik) (1)
q=co+ cik +i(do + dik) )
(a,b) (¢, d) = (ac — db’; a'd + cb) (3)

(4)

¢ Appendix; Gamma matrices
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r=pq

ro= aoco — aic1 — bodo — bid: (5)
= aoc1 — ai1co — bod1+ bido (6)
ri= aodo + aid1 + boco — bici (7)
1= —aido + aod1 + boci+ bico (8)

Apart from the Cayley-Dickson construction the 2"-on construction
exists.®?

Colored signs

In the following text, the consequences for the product of the sign choices
of the conjugate ® is indicated by blue color +. The extra consequence (1)
for the product of the choice of the handedness of the cross product is
indicated by red color +. The mixed sign selection (2) acts on both sign
colors.

The handedness can be switched by changing the sign of all imaginary base
vectors.

ij=k - (-)(-j)=ij=-k (1)

The sign selections split the ring of quaternions in four different
realizations.

Path characteristics
The Frenet-Serret frame is devised for describing curved paths of particles

6 Appendix; 27-on construction.
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Let {aqt}t = a(q,t) describe a curved path consisting of infinitesimal steps
through a landscape {aq}q = a(q) of imaginary quaternions aq, such
that ||a(q(t))|| = 1forallt.

The 3D Frenet-Serret frame for the above path is given by:

d
T(q(0)) = a(%(t)) =T(t) = a(t)
k() = ||[T@)|
k(t) - N(t) == T(t)
B(t) := T(t) X N(t)
HT@II = [IN®OIl = [[B@®I] = 1

T(t) is the tantrix of curve a(g(t)) at instance t.

N(t)is the principal normal of curve a(g(t)) at instance t. It is only
defined when «(t) # 0.

B(t) is the binormal of curve a(g(t)) at instance t.

T(t), N(t) and B(t) are imaginary quaternions.

K(t) is the curvature of curve at a(g(t)) at instance t.

r(t) = 1/ x(t) is the radius of curvature at instance t.

t(t)is the torsion of curve a(g(t)) at instance t.

T(t) 0 k() 0 |[T®
NO|=|-xk® 0 T@®||NQ®
B(t) 0 —-t® 0 ][B®

The Frenet-Serret curves have particular characteristics. The path may be
curved and curled. The path is completely determined by its tantrix,
curvature and torsion given by functions of t. Each coordinate of the
quaternionic function a(g(t)) has its own set of characteristics. This means
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that for a given quaternionic function these characteristics are quaternions
rather than real numbers and they are all functions of parameter t.

Path equations
The path equations are given by

T(t) = x(t) - N(t)
N(t) = —x(t) - T(t) + t(t) - B(t) = —x(t) - T(t) + t(t) - T(t) X N(¢t)
B(t) = —t(t)N(@t) =T(t) x N(t) + T(t) x N(¢t)

= 1(t) - T(t) X B(t)

Curve length
The curve length [(a, b) is defined by:

x=b
@b = | la@e)]dx

xX=a

The integration over the square of the modulus delivers the action S of the

curve.
x=b
s@b) = [ laqe)Idx
Reparameterization

The path characteristics x(t) and t(t) together with the curve length and
the curve action are independent of any reparameterization s(t) of the
progression parameter t.

A natural reparameterization is given by s(t) = (¢, t).

This turns the curve a(q(t)) into a natural curve y(q(s)):

v(9(9) = a(q(v)
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Curves on a surface which minimize length between the endpoints are
called geodesics.

The natural curve corresponds to a geodesic®.

The consequence is that in three-dimensional space the corresponding
movement obeys the geodesic equation®. The Lagrangian is an equivalent
of this equation.

63 http://en.wikipedia.org/wiki/Geodesic
¢ Equations of motion; Lagrangian
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Functions and fields

Distributions in quaternionic Hilbert space

Using a compact normal operator ¢gand a second distribution operator p
with the same eigenvectors {| g>}q but with eigenvalues {p;} we can
generate a Hilbert distribution®®.

p@) = <glpg>
(D
Operator pneed not be a compact normal operator. Its spectrum of
eigenvalues may be confined to a discrete set of points. Its eigenvectors are
used. Its eigenvalues need not be used. . If they are used, the eigenvalues may
consist of any kind of hyper complex number.

A Hilbert distribution is not differentiable. It can be seen as a combination of
a set of Dirac delta functions that are multiplied with hyper complex
numbers. If all numbers are quaternions, then it is a linear combination of
Dirac delta functions that each represents a Hilbert vector.

The Hilbert space is separable. This means that the set of eigenvalues of an
operator is countable. Thus a Hilbert distribution p(g) is always discrete:

C )
p@) = ) 45,54 —ay)
i=1

The factors g, are hyper complex 2"-ons.

A Hilbert function is also a Hilbert distribution. (The reverse is not true).
A special form of Hilbert distribution is the representation of a QPAD as a
Hilbert function.

As stated before, every (quaternionic) Hilbert function can be split into four
decoupled components. And every Hilbert function has a Fourier transform
that consists of four decoupled Fourier transforms.

65 http://en.wikipedia.org/wiki/Distribution (mathematics)
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As in the case of a Hilbert function, a Hilbert distribution can represent a
very dense coverage. In that case the distribution may become quasi
differentiable.

Convolution of a Hilbert distribution with a blurring spread function can
render the result (mostly) differentiable. In fact in the convolution the
distribution is represented by a set of Dirac delta functions. Depending on
the blur, the result may still be singular for example on the definition
points of the Hilbert distribution. The blur may represent a probability
distribution. Those blurs are well-formed.

A convolution means that every member of the Hilbert distribution is
blurred with the same blur. It may also be done with a different blur, but
then the result is no longer a convolution.

A special kind of Hilbert distributions is formed by the elementary Hilbert
distributions. These distributions contain a single or only a few Hilbert
vectors. They form the anchor points under the private fields, which
represent elementary particles. Private fields are special kinds of Hilbert
fields.

The Hilbert book model uses Hilbert distributions that consist of
eigenvectors of the strand operator. The eigenvalues of the strand operator
are taken from a continuum background coordinate system. In the Hilbert
book model every elementary particle anchors on one ore more eigenvectors

of the strand operator. Each elementary particle type has its own type of
blur.

Hilbert field

By blurring the Hilbert distribution with a suitable spread function, the
distribution can be transformed into a mostly continuous function. When the
blur is the same for every element of the Hilbert distribution, then this
converts the Hilbert distribution p(q) into a skew Hilbert field®® ¢»(q) via the
convolution:

66 http://en.wikipedia.org/wiki/Skew field
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#(q) = f(q) °p(q) (1)

With a given Hilbert distribution p(q), each blurring function f(q) causes in
this way a corresponding Hilbert field that is characterized by the blurring
function f(q).

Mathematically this convolution is impossible in a separable Hilbert space,
but the corresponding rigged Hilbert space H is a suitable alternative. The
vectors in an orthonormal base consisting of eigenvectors of the normal
operator ¢that resides in the separable Hilbert space H, are represented in
the rigged Hilbert space H by corresponding Dirac delta functions. We only
use the vectors that belong to the Hilbert distribution p(q). The values of the
result of the convolution can be attached to the same orthonormal base
vectors of the separable Hilbert space H. This procedure attaches the field
onto the separable Hilbert space H. In principle the field covers all vectors of
the separable Hilbert space.

When the blurs differ per element of the Hilbert distribution, then the Hilbert
field can still be interpreted as the superposition of the contributing blurs, but it
can no longer be considered as a convolution. Like with the convolution, the
location of the blur must be reckoned in this superposition.

When there are only a few types of blurs, then each type constitutes via
convolution with a corresponding Hilbert distribution a type specific Hilbert field.
The covering Hilbert field can then be interpreted as the superposition of the
(blur) type specific Hilbert fields.

The blurs are not hanging as a lose substance in the separable Hilbert space H.
The blurs are spread over the Hilbert vectors. Each Hilbert vector in the domain
of a blur touches this blur and carries the local value of that blur.

Via superposition the Hilbert fields that correspond to the same Hilbert
distribution form a covering Hilbert field.

A Hilbert field or type specific subfield can be categorized according to its:
e Symmetries
e (Conjugation
e Corresponding blur function

151



e Corresponding Hilbert distribution

Hilbert fields are differentiable. The dimension related components of a
Hilbert field are coupled. The differential of a symmetric field or field part is
anti-symmetric.

The differential of an anti- symmetric field or field part is symmetric.

Sampled Hilbert field

In separable Hilbert space, a sampled Hilbert field consists of its values
attached to the eigenvectors of a normal operator, whose eigenspace acts as
a coordinate system. A sampled Hilbert field is NOT differentiable. Its
dimension related components are decoupled. It closely approximates a
corresponding Hilbert field. The countable eigenspace of the normal
operator closely matches the corresponding continuous eigenspace of a
coordinate operator that resides in rigged Hilbert space H.

It can be interpreted as the distributed superposition of a number of Hilbert
functions.

Blur function

The blur is a spread function. It is the reason of the significant similarity
between optics and quantum physics. On the other hand, the blur is a
probability distribution. This is the source of quantum noise. The probability
distribution can be a probability amplitude distribution or its squared
modulus, which is a probability density distribution. A quaternionic QPAD
has the advantage that its squared modulus can specify the probability and
the parameter can specify the full location, while the resulting factor
represents related data in the form of a unitary quaternion. This quaternion
can also carry its sign selection data, which includes its chirality, its spin and
its parity. Compared to a complex amplitude distribution, this is a wealth of
extra information. The shape of the blur contains secondary information. For
example the Fourier transform of the blur offers momentum related data
and the rotation of the blur represents angular momentum related data.

The simplest kind of blur that belongs to a particle relates to its ground
state®’.

¢ Functions and fields; Quaternionic transform split; Ground state
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Hermite functions, which are eigenfunctions of the Fourier transformation,
have a Gaussian blur. Coherent states®8, which are eigenfunctions of creation
or annihilation operators have a Poissonian blur.

Quantum shot noise® produces a Poisson distribution. When large numbers
of quanta are produced the distribution approaches a Gaussian distribution.
A binomial process that follow a noise generating Poisson process can be
combined with that binomial process into a generalized Poisson process
with a lower efficiency. The binomial process represents a weakening effect.
Spatial blur can be interpreted as a binomial process. This is because it
represents a spatial diffusion effect. In the static model the Poisson
processes only represent a lateral distribution. Taken over a sequence of
Hilbert spaces the Poisson processes represent an additional temporal
distribution. The efficiency of the detection of quanta is characterized by the
detective quantum efficiency’? (DQE) of the detector. Together with the
Fourier transform of the spatial spread function this determines the signal to
noise ratio in the information stream. The spread has an integrating
(smoothing) effect. A sharper spread improves the signal, but also increases
the noise. Any temporal integration reduces the noise. The effect of the
lateral spread can be characterized by the Optical Transfer Function (OTF).

When the quanta are given a direction, then the blur becomes the equivalent
of a QPAD. In the strand model the observable values of crossing switches of
strands form QPAD’s. See: http://www.motionmountain.net/research.html .

The blur plays a role when canonical conjugate operators occur together or
in sequence. An extra blur is caused by the inaccuracy of the combination of
these operators.

The blur has many functions and interpretations:

e Convolution with a smooth spread function makes a Hilbert
distribution differentiable.

e The spread ensures the compactness of corresponding operators. It
also reduces the frequency range that is covered by its Fourier
transform.

% Functions and fields; Quaternionic transform split; Coherent state
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The spread function represents a probability density distribution or
more in detail a quaternionic QPAD.

Each elementary blur has a Fourier transform

The probability distribution is characteristic for the inaccuracy of the
expectation value of a category of operators, such as the GPS
operator, the GMS operator, the Fourier transform, the
creation/annihilation operators, the ladder operators and the number
and ladder operators.

The ground state is characterized by a typical spread function.

The spread represents the probability that non-actual items exchange
roles with actual items.

The non-actual items represent subspaces of non-actualHilbert
spaces that are ready to exchange roles with the currently valid
Hilbert space.

The non-actual items represent non-actual quantum logical
propositions that may exchange roles with currently actual
propositions.

The non-actual quantum logical propositions are elements of a non-
actual traditional quantum logic that is ready to exchange roles with
the currently actual traditional quantum logic.

The blur can be interpreted as a spatial quantum noise distribution.
The blur can be interpreted as a spatial distribution of crossing
switches of strands.

The blur can be interpreted as a spatial distribution of generations or
annihilations of quanta.

The annihilation of a quant is equivalent to the generation of the
corresponding anti-quant.

The blur works as storage of past, present and future conditions.

The blur can be squeezed in order to reflect the importance of
momentum versus position.

A ground state blur has in each direction a symmetric cut.

An odd-times differentiated ground state blur has in one direction an
asymmetric cut.

An even-times differentiated ground state blur has in each direction a
symmetric cut.



e The blur represents the sticky resistance of the universe against
unordered changes (= changes of uniform movement in a geodesic).
This is proved by the existence of inertia’.

e The blur represents the sticky resistance of the collection of all
propositions against unordered redefinitions.

e Blurs can be categorized according to the corresponding particle type.

e The superposition of blurs forms a field.

e A particle can be interpreted as the local excitation of this field.

e During a progression step the blur may get distorted.

In short: Without blur (quantum) physics is impossible!

Bypassing granularity

The fact that the Hilbert space is separable means that normal operators
have a countable number of eigenvalues. That may still be an infinite
number, but it means that the eigenspace of these operators is a countable
set. It is not a continuum. It is possible to define a procedure that attaches
an increasing natural number to each eigenvector and to each eigenvalue.
It means that functions that are defined using such eigenvalues as
parameters or as function values cannot be differentiated.

This does not mean that differentiable functions cannot exist in Hilbert
space. For example, £%is isomorphic with a separable Hilbert space H, and
consists of integrable and differentiable functions, but, as with any
separable Hilbert space, the eigenvalues of operators in £2 do not form a
continuum. The mentioned functions act as Hilbert vectors. They are NOT
Hilbert functions.

It is possible to use a trick that enables differentiation of fields that are
defined as functions with eigenvalues of a normal operator as their
parameter values. The trick consists of blurring all or a subset of the
corresponding eigenvectors. When the blur is differentiable, then the field
becomes differentiable as well. Still, if the blur extends wide enough, all
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members of an orthonormal base of Hilbert vectors touch a value of this
field.

The blur does not fit IN the considered separable Hilbert space H,. It
anchors onto a vector of this separable Hilbert space H. In addition, all

members of an orthonormal base of the Hilbert space touch a value of the
blur.

The fact that differentiable quaternionic functions have an isotropic multi-
dimensional parameter space (in the imaginary part of the quaternions)
means that in contrast to the eigenspaces of coordinate operators in
separable Hilbert space H, this parameter space is continuous. All its
dimension related components of the quaternionic functions are coupled.
Instead in the canonical conjugated coordinate space a decoupling exists
along not necessarily straight radial lines that decompose rotation free
and divergence free parts of the quaternionic functions.

In our model the real part of quaternions that are applied as parameters
appears to play a rather minor or at least a quite different role. For that
reason, in most cases the results of differential geometry are more
applicable than the theory of regular quaternionic functions.

Differential geometry also decomposes local space into three independent
coordinate directions. These dimensions are selected according to the
divergence and rotation properties of the analyzed functionality. This is
similar to the approach in the Helmholtz or Hodge decomposition
theorem. For example, the Frenet-Serret frame’ features three mutually
perpendicular directions.

The basic constituent and private field
There is only one basic constituent to Hilbert fields. That constituent is a
QPAD. A small subset of Hilbert vectors forms an elementary Hilbert
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distribution”. Basic constituents exist in different forms. A corresponding
private field is formed from the superpositions of the basic constituents
that are attached to this elementary Hilbert distribution. In the rigged
Hilbert space the corresponding Hilbert vectors in this distribution are
represented by Dirac delta functions. These Dirac delta functions are
convoluted with the corresponding basic constituent. In this
superposition the Hilbert vectors form the anchor points of the basic
constituents. The ground state of the basic constituent corresponds to a
granule.

The basic constituent covers the whole separable Hilbert space. In
separable Hilbert space a normal operator has a set of eigenvectors that
forms an orthonormal base of the separable Hilbert space. The
corresponding eigenvalues can be taken as parameters of functions that
have values of the basic constituent as their function values. This means
that every member of an orthonormal base of the separable Hilbert space
touches a value of the constituent. Via linear combination of the
eigenvectors any Hilbert vector can be reached and the corresponding
value of the basic constituent can be closely approximated.

Via the anchor points and via the touching values the private fields are
embedded in separable Hilbert space H,. The private field represents an
elementary particle and the physical fields that belong to that particle. The
anchor points are eigenvectors of a strand operator. The corresponding
eigenvalues are taken from a background coordinate system, which is in
fact the eigenspace of a GPS-like operator that resides in the rigged
Hilbert space that belongs to the separable Hilbert space. The strand
operator resides in separable Hilbert space and has an equivalent in
rigged Hilbert space.

In this rigged Hilbert space the eigenvectors of the strand operator get
their GPS-value. However, this coupling is inaccurate in a stochastic
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sense. The blur that is attached to the eigenvector reflects this inaccuracy.
Its ground state defines a granule.

Via its wave function a particle is identified with its private field. The
notion of private field transfers quantum theory into quantum field
theory. The dynamics of the particle are represented by the dynamics of
their private field. The fact that the private field anchors on a Hilbert
vector also identifies the particle with that Hilbert vector.

In some cases the private field is wide spread. That happens when the
private field has the shape of a wave. In that case the anchor Hilbert
vector is an eigenvector of the momentum operator rather than an
eigenvector of the position operator. Also in that case the coupling with
the background coordinate system is inaccurate in a stochastic sense. The
background coordinate system in this case is the continuum canonical
conjugate GSM system of the continuum GPS coordinate system.
(Without further notice we will always assume that the anchor Hilbert
vector is an eigenvector of the position operator).

The eigenspace of the strand operator contains a set of chains of granules.
In each chain one granule is singled out and represents the current
granule. It forms the anchor point of the chain’s basic constituent. In fact
the granule represents the ground state of the blur. It represents the
central part of the QPAD and it equals zero over a region of the size of the
Planck length.

Depending on its type each elementary particle owns one or more of these
anchor points. Also depending on the type of the elementary particle the
QPAD might have typical characteristics, but the ground states of these
different QPAD’s must all have nearly the same format and the same
characteristics.

The strand operator possesses an outer horizon. This guarantees its
compactness.
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The private field is a continuous function with parameters that are taken
from a selected coordinate system. The field itself is independent of the
selection of this coordinate system. Thus, only the when the field is taken as a
function of the coordinates it depends on the coordinate selection. The
selected coordinate system is related to a corresponding orthonormal base
of the Hilbert space. That base consists of eigenvectors of a normal
operator that resides in separable Hilbert space. Its eigenvalues are spread
dense in the background coordinate system. That background coordinate
system corresponds to the eigenspace of a GPS-like operator, which
resides in rigged Hilbert space. This last eigenspace is a continuum.

We assume that in the context of the Hilbert book model all basic
constituents are differentiable with respect to a selected coordinate
system. This means that the basic constituents have a local divergence and
a local curl. This corresponds to two vector fields. These vector fields are
formed by imaginary quaternions. One is divergence free and the other is
rotation free. This divides the imaginary part of the differential of the
basic constituent locally in two components, a divergence free part and a
rotation free part. Fourier transformation converts differentiation into a
product of the original Fourier transform with the argument.

By redistributing the eigenvalues of the coordinate system a new
coordinate system can be established for which the decomposition runs
along straight coordinate lines. An appropriate reorientation of this
coordinate system puts the decomposition in the canonical conjugated
coordinate system along straight radial lines. In this coordinate system the
ideal form of the Fourier transform can be applied to the considered
configuration of the field. In this idealized condition the Fourier
transform can be considered as three independent complex Fourier
transforms. This trick can only be done for a static status quo, thus for a
single separable Hilbert space and the static fields that are attached to it.
Each static status quo has its own field configuration and asks for a
adapted coordinate system in order to reach the idealized condition.
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When subsequent Hilbert spaces are considered, the private fields move”
together with the corresponding elementary Hilbert distribution. Apart
from a linear movement the private fields may rotate. When a given
Hilbert distribution contains just one Hilbert vector, then the constituent
can rotate free around that point. If the Hilbert distribution contains
multiple Hilbert vectors, then apart from these anchor points a center of
movement exists. If it contains two vectors, then one axis is fixed with
respect to the anchor points. If it contains three independent vectors, then
the private field can only rotate together with these anchor points.

The movements are stochastic and have average characteristics such as
position, speed, rotation axis, rotation phase and chirality. At each
position within the private field these data may differ. Also the relative
position of the carrying Hilbert vectors with respect to each other may
change.

The basic constituent can be interpreted as the QPAD whose squared
modulus describes the probable location of the carrying Hilbert vector.
The private field does that for all its anchor points.

The granularity of the eigenspace of the position operator determines the
minimal distance that can exist between the carrying vectors. It also
describes the maximal change in average position that can occur during a
single progression step. Apart from zero it also describes the minimal
change.

It is sensible to select the coordinate system such that the members of the
elementary Hilbert distribution are eigenvectors of the corresponding
position operator. When a Fourier transform is taken, then this can no
longer be valid. In that case the members of the elementary Hilbert
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distribution must be linear combinations of the eigenvectors of the
canonical conjugate of the original coordinate operator.

The Hilbert vectors that are member of a given elementary Hilbert
distribution can be interpreted as eigenvectors of a strand operator. The
corresponding eigenvalue is the position value of a granule that is the
current granule of the chain.

The private fields overlap and because they are all QPAD’s their
superposition causes an interaction between the particles that anchor on
these fields.

Covering field
Physical fields are not identifiable physical items. In the Hilbert book
model, physical fields are represented by Hilbert fields”. For each Hilbert

field, every member of an orthonormal base of the Hilbert space
corresponds to a value of the field. If for this base the set of eigenvectors
of a normal operator is selected, then in this way this field can be coupled
to a parameter system that is formed by the corresponding eigenvalues of
the normal operator.

These parameters are not necessarily physical quantities. The physical coordinates of
identifiable physical items are granular. They can only change with steps that are equal
to a Planck-length. Coordinates that are eigenvalues of normal operators in separable
Hilbert space are countable. The set of rational quaternions is countable, but this set is
not granular in the sense that a difference has a minimal step size. In rigged Hilbert
space the eigenspace of a normal operator may be uncountable. It means that this space
forms a continuum. The set of all imaginary quaternions forms a continuum. In a given
static status quo, only a countable and granular subset of these eigenvalues can represent
physical quantities.

Each elementary particle corresponds to a private field. A covering field
is formed by the superposition of these private fields. Each private field
that belongs to an elementary particle is characterized by a complicated
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blur function whose characteristics are typical for the particle type. That
blur function can be interpreted as a complicated QPAD. This blur
function anchors on a small number of Hilbert vectors, which together
span a Hilbert subspace. These vectors form an elementary Hilbert
distribution. The number of Hilbert vectors on which this elementary
Hilbert distribution is based depends on the type of the elementary
particle. The anchor points correspond to current granules of chains that
reside in the eigenspace of the strand operator. The granules are ground
states of basic field constituents.

The blurs of elementary particles are smooth and fade out at long
distances. As a consequence the covering field is smooth as well and its
squared modulus can be considered as a single - very wide spread -
QPAD.

Taken over a series of static status quos the simplest form of blur is a
Poisson distribution. Thus, dynamically, the covering field can also be
seen as a series of parallel Poisson processes.

Depending on the type of the constituting particles the covering field can
be divided in subfields. Each type has its own subfield.

Depending on the coordinate operator that is selected for the background
coordinate system, the parameters of the probability distributions are GPS
related or GMS related.

Decomposition
The imaginary part of a Hilbert field can be decomposed in a rotation free
part and a divergence free part.

The Helmholtz decomposition splits the static vector field F in a

(transversal) divergence free part F; and a (one dimensional longitudinal)
rotation free part F;.
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F=F,+F, =VxA—-Vgp

Here ¢ is a scalar field and A is a vector field. In quaternionic terms ¢ and
A are the real and the imaginary part of a quaternionic field. F is an
imaginary quaternion.’®

The significance of the terms “longitudinal”and “transversal” can be
understood by computing the local three-dimensional Fourier transform
of the vector field F, which we call F. Next decompose this field, at each
point k, into two components, one of which points longitudinally, i.e.
parallel to k, the other of which points in the transverse direction, i.e.
perpendicular to k.

F(k) = Fi(k) + F,(k)
k x Fl(k) =0

The Fourier transform converts gradient into multiplication and vice
versa. Due to these properties the inverse Fourier transform gives:

F=F,+F,
(V,Fp)=0
VXFI=0

so this split indeed conforms to the Helmholtz decomposition.

This interpretation relies on idealized circumstance in which the
decomposition runs along straight lines. This idealized condition is in
general not provided. In normal conditions the decomposition and the
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interpretation via Fourier transformation only work locally and with
reduced accuracy.

If we take the covering field as the subject, then the above idealized
picture no longer fits. The covering field is a superposition of a very large
number of constituents that each bear on their own anchor point. These
anchor points disturb the ideal picture. As a result the k lines are no
longer straight lines but they get curved in the neighborhood of anchor
points. The curvature of these lines can be used to define a local curvature
value.

The decomposition depends on the choice of the selected coordinate
system. In general such decomposition runs along curved lines. However,
for a fixed field configuration it is possible to select a coordinate system
for which the decomposition runs along straight lines. For this coordinate
system it is possible to define a globally valid multidimensional Fourier
transform that consists of a set of complex Fourier transforms. With
respect to this coordinate system, other coordinate systems possess a
locally defined curvature. In the idealized coordinate system all typical
shapes are spatially invariant.

Decomposition and quaternionic Fourier transform

The above relations are the consequence of the properties of the
quaternionic Fourier transform with respect to differentiation in an
idealized coordinate system. The quaternionic differentiation of a
quaternionic field runs;

g(q) = Vf(q) B
= Vofo(q) T4V, f(q)) £ Vof(q) + Vfo(q)
+ (+V x f(q))

The colored + and = signs refer to the sign selections of quaternionic
multiplication.

In Fourier space differentiation becomes multiplication with the canonical
conjugate coordinate and therefore the equivalent equation becomes:
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U0 =kf() ) ) )
= Kofo (k) F (I, F(K)) £ koF (k) + Kfy(k)
+ (+kx Fo)
For the imaginary parts holds:
g(q) = £Vof () + Vfo(@) + (£V x f(@))
B(k) = +kof (k) + kfy (k) + (+k x F(k))
For the static part (Vof (q) = 0) holds:
g(q) = Vfo(q) + (£V x f(q))
8(k) = kfy(k) = (kx F(k))
Since

VX Vf(q) =0

and

(V,Vx f(q))=0

this conforms to the previous paragraph?”.

Curvature field
The decomposition properties of the covering field determine the
curvature of a secondary coordinate system with respect to the original

77 http://www.plasma.uu.se/CED/Book/EMFT Book.pdf ;Formulas:F.104,
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GPS coordinate system. That curvature on its turn defines a local metric
and this metric defines a secondary tensor field which we will call
curvature field. In this view the curvature field is derived from the
covering field, which is built via superposition from the private fields of
the separate particles.

The curvature that is caused by the blur of an elementary distribution
represents a private curvature field and is independent of any electric
charge (or other charges) of the elementary distribution. The curvature of
the private curvature field is non-negative. It can be thought of being
distributed over the domain of the private curvature field or its equivalent
“charge” value being located at a center point. This “charge” is called
mass and the center point is the center of mass.

At each location the local curvature can also act as a guide for the local
direction of chains in that environment.

About the field concept

It is common practice to treat the EM fields and the gravitation field as
different and independent subjects. In this interpretation, the gravitation
field generates the curvature of the coordinate system in which the other
fields must operate.

This paper takes a different approach. It puts the reason for the curvature
of the coordinates in the properties and configuration of the covering
field. The curvature that exists in this way is used to derive the curvature
field. The wave function is interpreted as a private field that is part of the
covering field. In this way it also contributes to the curvature field. This
picture unifies all fields.

Functions in quaternionic Hilbert space

Due to their definition the Hilbert functions are only defined for an
infinite but countable number of parameter values that lay dense in
quaternion space. The Hilbert functions are close to a corresponding
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differentiable function that resides in the corresponding rigged Hilbert
space H. In contrast to what holds for the Hilbert function, the dimension
related components of the differentiable function are coupled.

A locatable probability distribution can be described by the convolution
of a Dirac delta function that corresponds to the Hilbert vector, which
represents the location of the weighted center of that distribution and a
function f(q) that describes the distribution relative to that location. In this
way a blurred Hilbert vector is defined. This means that a blurred Hilbert
vector can be closely approximated by a Hilbert function that is defined
by the combination of a sharp locator Hilbert vector and a sharp shape
Hilbert vector. We will use the addition “Hilbert” to the name of a
continuous function for the Hilbert function that closely approximates
that continuous function.

Thus, in Hilbert space the representative of the blurred locator Hilbert
vector by a Hilbert function is a Hilbert blur or more specifically a
Hilbert QPAD.

It is also possible to use an elementary Hilbert distribution” as the anchor
of the continuous QPAD. This construct may represent an elementary
particle. It is closely approximated by a private Hilbert field that is
formed by the superposition of the Hilbert functions that are formed by a
small set of locator Hilbert vectors and a single shape Hilbert vector.

Pure states” are characterized by blurred elementary Hilbert
distributions.

Elementary Hilbert distribution
An elementary Hilbert distribution is a discrete distribution in which a
single or a small number of Hilbert vectors participate. Together these

78 Functions and fields; Elementary Hilbert distribution
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Hilbert vectors span a closed subspace that represents an un-blurred
elementary item.

A unary distribution uses only one Hilbert vector that is eigenvector of
the position operator.

A binary distribution uses two Hilbert vectors that are different
eigenvectors of the position operator.

A ternary distribution uses three Hilbert vectors that are different
eigenvectors of the position operator.

If the eigenvectors are selected such that they belong to mutually
perpendicular imaginary (base) eigenvalues, then the elementary
distributions are restricted to the mentioned three classes.

Characteristic functions

Now the position is connected to eigenvectors of the strand operator. The
physical item is connected to a subspace rather than to a single vector.
This subspace is spanned by the eigenvectors. So we can use a localizer
that represents the (weighted) average position as a more precise
indicator of the position of the physical item. On the other hand physical
items are characterized by a state.

A state is either a wave function® or a probability density operator. Both
use background coordinate position as their parameter. The wave
function is a QPAD. Each wave function can be approximated by a
Hilbert function. The squared modulus of the wave function indicates the
probability of finding the position of the localizer.

The probability density operator is a weighted projection operator that is
related both to the subspace that represents the item and to the position
operator. It represents the probability that after measuring the position
the parameter of the density distribution is found as the result.

80 States
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Differentiation

Let Q be the selected coordinate operator.

The nabla operator V is directly related to operator Q. Thus, the sign
selections for @ transfer to the sign selections for operator V. Due to sign
selection four nabla operations exist. With a fixed nabla operator there may

exist four results. Normally we reduce the use of the nabla operator to
V and V*.

g(q) =Vf(q)
= Vofo(@) F (V. F(@)) = Vof (@) + Vfo(q) + (xV x f(q))
() = Vf(q)

= Vofo(q) +(V, f(@)) + Vof (@) — Vfo(q) = (FV X f(q))

V turns a symmetric field f(g) into an anti-symmetric field Vf(g) and an
anti-symmetric field into a symmetric field.

The fact that Vf(q) = 0 means that f(q) is constant or that at location g

function f(q) is in a maximum, a minimum, a saddle point or an
asymmetric plateau. The consequence of this restriction is:

Vofo(q) = FV, £(@)) £Vof (@) + Vfo(q) = F(£V x f(q))
The fact that V& f(g) = 0 leads to different equations.
Vofo(@) = £V, £(@)) +Vof () = Vfo(q) = £(£V X f(9))
The quaternionic Laplace operator A is defined by
h(q) = Af(q) = VOVf(q) = VWS () = Vo*f(q) + V*f(q)
A quaternionic function that fulfills Af (q) = 0 is a harmonic function.
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A quaternionic function that fulfills V2f(q) = 0 is a spatial harmonic
function.

For quaternionic functions in general:

V(f(@g@) = (VF(@)g(@) + f(@Vg(q) (6)
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Covariant derivative

The covariant derivative plays a role in the Lagrangian and in the
equation of motion.

The covariant derivative D is defined as

Df(q) = Vf(q) — A(q) f(a)
This is interesting with respect to a gauge transformation of the form
fll@ =6 fl@
G*(q) G(g) =1
VG(q) = H(q)G(q)
where with a corresponding vector potential transformation
A'(q) = A(q) + H(q)
D'=V—-A(q) —H(q)

The following step is in general not valid for quaternionic functions.
However, we assume that it is valid for G(q) and f(q).

V(G(@f @) # (V6(@)f (@) + G@Vf (@)
D'f"(q) = H(q) G(q) f(q) + G(q) Vf(q)
—A(q)G(q)f (@) —H(@)G(9)f (q)
= G(@)(Vf(@) - A f(@)
D'f'(q) = G(@)Df (q)
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Thus with that transformation pair not only the modulus of the function
stays invariant but also the modulus of the covariant derivative stays
invariant. Further

f*(@D'f'(q) = f*(q) G*(q) G(q) Df(q)
= f"(q) Df(q)

Above the right sided covariant derivative D is defined

Df(q) = Vf(q) — Aq) f(9)
The left sided covariant derivative is defined as:
f(@D = f(@)V - f(q) B(q)

We will use D for both left sided and right sided covariant derivative:

Vf(q) + f(@V
2

Df(q) = —A(q) f(@) — f(q) B(q)

Canonical conjugate

Remember that the operator Q that resides in rigged Hilbert space H is
defined such that the decomposition of the covering field runs along
straight lines. At least we suppose that for the environment that we
investigate an operator exists that does this with sufficient accuracy. First
we restrict to a selected longitudinal direction. This restricts to a complex
subspace of the full quaternionic number space.

The canonical conjugate of the operator Q is the operator P. It is defined
by using a complex subspace of a quaternionic number space that is used
to specify inner products. It is defined by specifying the function that
defines the inner products of the eigenvectors |g> of Q and |p> of P with
real eigenvalues g and p.

172

(10)

(11)

(12)

(13)



<qlp>= f(p)=<plg>=f"(q) = exp (k-p-q/h) (1)

The imaginary base number k belongs to a complex subspace of the
quaternionic number space. The constant h is Planck’s constant and
relates to the granularity of the eigenspaces. If the Fourier transform of
the ground state of a chain’s QPAD is taken, then apart from a factor
(1,k,—1 or - k) the same function results. The average spread of the
granule in phase space is characterized by h.

Due to its specification, the canonical conjugate operator P can be
interpreted as a generator of displacement of the eigenvalues of Q. For
this purpose the considered function f(q) must be differentiable.

5 pon. D 2)
P=k-h 3

o _ d (3)
<qlPf>= k- heg f(@

This interpretation of the operator P shows that the complex canonical
conjugate shown here corresponds with the imaginary direction in
which the differentiated function f(q) is rotation free.

The definition leads to the commutator:
[P,0] = PQ—QP = k-h (4)

The sign selections of P depend on the sign selections of Q.

Complex Fourier transform
The specification of the complex canonical conjugate also defines a
complex Fourier transform.
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Also here the imaginary direction must correspond to the direction in
which the analyzed function is rotation free.

Let |f>be the generator of a quaternionic function that is generated with
the help of the eigenvectors and eigenfunctions of operator Q with
canonical conjugate P.

The Fourier transform F; = Ug converts the base {|g>}q into the base
{Ip>}p. The inverse Fourier transform Upq does the reverse. These
transforms reside both in separable Hilbert space H, as well as in rigged
Hilbert space H.

<qlf >=<flg>"= f'(q) = Z(< qlp ><plf >) (1)

p

Xp <p(<plg>)If >

= Zp<pqu|f>

Z<p|quf>

p

<plf >= ) (<pla><alf > @
q

= > <altyg f>
q

When summation is replaced by integration the Fourier transformation is
confined to the rigged Hilbert space. There it can be applied to continuous
functions.

The complex Fourier transform of a symmetric (complex) function is a
cosine transform. It is a real function.
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The complex Fourier transform of an anti-symmetric (complex) function is
a sine transform. It is an imaginary function.

Through complex Fourier transformation the operators P and @ exchange
roles.

The Hilbert function f(p) =< f|p > denotes the Fourier transform of the
Hilbert function f(q) =< f|q >

Heisenberg’s uncertainty

The Heisenberg’s uncertainty principle is a consequence of the definition
of the combination of the canonical conjugate and the definition of the
Hilbert field. It means that a small spread of g values goes together with a
large spread of p values and vice versa.

Ag-Ap 2h/2

A squeezed coherent state®! is any state such that the uncertainty
principle is saturated. That is:

Ag-Ap =h/2

See: http://en.wikipedia.org/wiki/Squeezed coherent state.
For animations: http://gerdbreitenbach.de/gallery/.

The ground states of the basic field constituents are squeezed coherent
states.

The quaternionic displacement generator
The formula that defines P as a complex displacement generator:

81 Functions and fields: Quaternionic Fourier transform split: Functions invariant under
Fourier transform: Coherent states
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5o .. 0 (1)
<qlPf>=k haqﬂw

can more generally be written as a quaternionic displacement generator
for eigenvalues of operator Q.

<qPf>=h-Ve<q|f>=h-Vf"(q) 2)

=hf%<mp><Mf>=f<qm>p<Mf>
P P
This means that for all g and its canonical conjugated p holds:

Ve<qlp>=<gqlp>p (3)

Here |q > is the eigenvector belonging to eigenvalue q and |p > is the
eigenvector belonging to eigenvalue p. V, represents quaternionic
differentiation with respect to eigenvalues of operator Q.

It is shown® that locally the operator V, splits field f*(q) in a longitudinal
rotation free part and a transverse divergence free part.

Idealized field conditions
Only in a complex subspace of the quaternionic number space the relation
(3) between the canonical conjugates p and q can be simplified to:

<q|p>=exp(k-p-%)) (1)

The longitudinal direction runs in p space. The above simplification can
only be valid when the longitudinal direction runs along straight radial
lines. This simplification also enables the specification of a complex
Fourier transform that is based on this formula (1).

8 Decomposition: Decomposition and quaternionic Fourier transform
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It behaves as if the analyzed function is constant in dimensions that
belong to other quaternionic imaginary directions. It is well-known that
the Fourier transform of a constant delivers a Dirac delta function. Thus,
the complex longitudinal Fourier transform equals a cut through the
quaternionic Fourier transform of the full 3D imaginary quaternionic
function or field.

This is similar to the cut through the 2D optical transfer function that is
obtained when the Fourier analysis of the imaging device is confined to
the image of a thin slit.

The configuration of the analyzed field determines whether the
conditions are sufficiently ideal. Otherwise the field configuration induces
at every location a local curvature of the actual background coordinate
system that is defined using operator Q The eigenspace of the actual
operator @ is curved with respect to the eigenspace of the idealized
operator Q.

The position operator @ is defined such that when the analyzed function
or field is specified with Q coordinates the longitudinal direction is
stationary. It runs along straight radial lines. The construction of such an
idealized position operator is possible for a given configuration of the
analyzed field. When the analyzed field is the static covering field, then it
holds for that field and not for a part of this field or the covering field that
belongs to another static status quo.

In this paper, when nothing else is indicated, we confine Fourier analysis
to the ideal quaternionic Fourier transform. When nothing is indicated we
presume Q coordinates and analysis of the covering field.

The formula below specifies the local relation between canonical
conjugated coordinates when field conditions are not idealized.

Ve<qlp>=<qlp>p
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Affine space

The eigenvectors of a normal operator form an orthonormal base of the
separable Hilbert space H,. This orthonormal base defines an affine unit
sphere. Apparently, the correspondence with a @ type GPS operator that
is equipped with an origin in its eigenspace is not a natural mapping for
this affine Hilbert unit sphere. On the other hand, like this Hilbert unit
sphere, the imaginary eigenspace of the @ type GPS operator has no
preferred direction. When viewed from a particular Hilbert vector the
mapping becomes more natural.

If a field covers all vectors of an orthonormal base, then it covers all of
Hilbert space. The orientation along the longitudinal direction of the
(covering) field is not natural for the Hilbert space, but it is natural for the
combination of the field and a position operator that keeps the
longitudinal lines straight. Thus apart from a shift of the origin, the
position operator Q is fully determined by the properties of the field.

The origin of the eigenspace of the Q operator may be interpreted as the
position of the observer. That selection would consume the last freedom
for this operator.

There exists a point to point relation between an arbitrary @ type GPS
operator and the Q operator. This point to point relation defines the
curvature field.

Quaternionic Fourier fransform split

The longitudinal Fourier transform represents only part of the full
quaternionic Fourier transform. It depends on the selection of a radial line
k(q) in p space that under ideal conditions runs along a straight line.

Fi(9(@) = F(g(q), k(q))
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Fi(9(@) & 7 (91()

It relates to the full quaternionic Fourier transform F
Flo@) = 3@

The inverse Fourier transform runs:

FHGgwp) = 9@

The split in longitudinal and transverse Fourier transforms corresponds to
a corresponding split in the multi-dimensional Dirac delta function.

We consider a field g(g) that equals the quaternionic differentiation of
another field f with respect to a selected (ideal) coordinate system Q.

9(q) = qu

We use the results of the paragraph on decomposition. We only use the
static and imaginary version of field g(q).

For the static imaginary part g(q) holds:

g(q) = V(@) = (£ X f(@) = 9:(D) + 9:()

In Fourier space differentiation becomes multiplication with the canonical
conjugate coordinate p and therefore the equivalent equation becomes:

&) = pfo(@) £ (£p X F®)) = 1) + Gu(p)
Since

VxVf(@) =0-Vxg,(q)=0
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and

(VVXf(@)=0-(V,g,(9))=0 9)

Now we take

<qlPf>=h-Vu<q|f >=h-Vof"(q) = g(q) (10)

= f<q|p ><plg>
p

The static imaginary part is

<qPf>=hV,<q|f>=h-V,f(@= g (11)

Im f<q|p >-<plg > =f1m(< qlp >-<plg >)
p |4

flm(< qlp ><plg;>) + f Im(<qlp ><plg:>)
P P

= f]m(< qlp > §:(p)) +f1m(< qlp > g+(p))
P 14

The left part is the longitudinal inverse Fourier transform of field g(p).
The right part is the transverse inverse Fourier transform of field g(p).
For the Fourier transform of g(q) holds the split:

G = f Im(< plg > gu(@) + f Im(< plq > 9.(@)) (12)

q p
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= flm(< rlg > g(q@))
q

The longitudinal direction is a one dimensional (radial) space. The
corresponding transverse direction is tangent to a sphere in 3D. Its
direction depends on the field g(q) or alternatively on the combination of
field f and the selected (ideal) coordinate system Q.

For a weakly curved coordinate system Q the formulas hold with a
restricted accuracy and within a restricted region.

Alternative fransverse plane

The Cayley-Dickson construction, as well as Warren Smith’s construction
formula shows that the transverse part can be considered as a complex
number space multiplied with a fixed imaginary quaternionic base
number. The selection of the imaginary base number i is arbitrary as long
as it is perpendicular to k. The resulting plane is spanned by axes i and ik.
When base number i is divided away, then a normal complex number
space results.

Also here a complex Fourier transform can be defined in a way that is
similar to the longitudinal Fourier transform. It must be reckoned that the
sign selections for these directions differ.

Alternative approach to Fourier transform
The following draws from the work of S. Thangavelu®.

Let us take the non-abelian group Hi which is R @ R @R with the group
law

Y ) (x0, Yo, to) = (x + Xo5 ¥y + Yo; t + to + x Vo)

Then it is clear that H1 is non-abelian and the Lebesgue measure dx dy dt is
both left and right invariant Haar measure on Hi. With this measure we
can form the Hilbert space L%(H1). LetI' =Z @ Z @ Z. Then it is easy to

8 http://www.math.iitb.ac.in/atm/fahal/veluma.pdf
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check that I is a subgroup of Hi so that we can form the quotient M = I'/Hi
consisting of all right cosets of I'. Functions on M are naturally identified
with left I'-invariant functions on Hi. As the Lebesgue measure dx dy dt is
left I'-invariant we can form L2(M) using the Lebesgue measure restricted
to M. As a set we can identify M with [0, 1)° and we just think of L%(M) as
LA([0, 1))).

Fourier expansion in the last variable allows us to decompose L2(M) into a direct

sum of orthogonal subspaces. Simply define Hx to be the set of all f eL2(M)
which satisfy the condition

fl,y,t +5s) = exp(2miks) f(xy,t) (2)

Then H is orthogonal to #;jwhenever k # j and any f € L?(M) has the unique
expansion

C (3)
f = Z fio; fx € Hy
k=—o0
In quaternionic terms, the split sees ik as imaginary quaternion k and the
quaternionic Hilbert space is split in components according to the imaginary
direction of k, where the choice is between three mutually perpendicular
directions.
For the moment, we are mainly interested in 1 which is a Hilbert space in its
own right. It is interesting to note that functions in #1 are also invariant under the
left action of T'.
Our next example of a unitary operator is the following. Consider the map J : H1
— Higiven by
Jeay,t) = (-x,y,t- xy) (4)
JTey,t) = (x-y,t- xy) ()
Jt=t (6)
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lz(xry't) = ](_x"y; t- xy) = (—X,— Y t)
Jt =1
J(0,0,t) = (0,0,¢t)

]f(xry't) = f(](x»y, t)) = f(_x"y't_ xy)

Weil-Brezin transform
Next consider the Weil-Brezin transform V:

Vfixyt) =exp(2mkt) z fx + n)expmkny)

n=oo

fy:olVf(x,y,t)Izdy [ Y v e

Y n=-o0

1
1
ff V £ (x,y,0)[2dx dy dt = f | F(0)2dx
0
0

V is unitary.
See also Zak transform

Fourier fransform
We define the Fourier transform F by:

F=vtjv
o F*f = f;forevery f € L*(R)

e F%2f(x) = f(—x); for almostevery x € R
o IFFI?=1rIP
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For f € L*(R) \ L?(R) the Fourier transform is given by

Ff) = f f(x) - exp(2 m k x)dx

x€ER

If we further assume that Ff € L'(R) then for almost every x we have

f(¢) = L RTf(E) exp(2mkx &)dx

Functions invariant under Fourier transform
In this section we confine to a complex part of the Hilbert space.
See http://en.wikipedia.org/wiki/Hermite polynomials.

There exist two types of Hermite polynomials:

1. The probalist’'s Hermite polynomials:

Hﬁmb(Z) — (_1)11 eXp(l/zZz) ;Tnn exp(—l/zzz).

2. The physicist’s Hermite polynomials

n

HY™(2) = (~1)" exp(z®) —— exp(—z°)
= exp(%z?) (z —i> exp(—%z?)
dz

These two definitions are not exactly equivalent; either is a rescaling of the
other:

HE™S(z) = 22 HE™°P (2v/2)

In the following we focus on the physicist’'s Hermite polynomials.
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The Gaussian function ¢(z) defined by

p(x) = exp(—mz?) (4)

is an eigenfunction of F. It means that its Fourier transform has the same
form.
As F* = [ any A in its spectrum o (F) satisfies A*=1: Hence,

o(F) = {1;,-1; i;—i}. (5)

We take the Fourier transform of the expansion:

[ee)

exp(—%z*+ 2zc- c?) = z exp(—¥2 z%) Hp(z) c"*/n!

n=0

(6)

First we take the Fourier transform of the left hand side:

e exp(—k z exp(=Y% z*> + 2zc- c?) dz
o e p( pz) exp(—%2 )

exp(—%p? — 2kp,c + c?)

o)

= ) exp(=¥p2) Halp,) (k)" /!

n=0

The Fourier transform of the right hand side is given by

(8)

1 < (%
> E f exp(—k zp,) - exp(—=% z*) Hy(2) c"/n! dz
Vs Z=—00
=0

n

Equating like powers of c in the transformed versions of the left- and
right-hand sides gives

©)
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% f;:_oo exp(—k zp,) - exp(—Y% z?) H,(2) c™/n! dz

n

= (~k)" - exp(= % p2) Ha(p,) =
Let us define the Hermite functions y,,(2)
Yn(z) & <zl >=cy exp(=Y% z%) Hy(2) (10)
|F by >= [t > (K)" (11)
with suitably chosen cx so as to make
lnll* = 1 (12)

1 (13)
Cp = /———
2nnl1

The importance of the Hermite functions lie in the following theorem.

“The Hermite functions {Ym; n € N form an orthonormal basis for
LZ(R)//

Consider the operator

H=-%lt %2 (14)
Apply this to Yn(z):
H-Y(2) = (Y2 + n) Pr(2) (15)

Thus, Yn is an eigenfunction of H.

Let f = Yy i4j be any of the Hermite functions. Then we have
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- (16)
Z fy +n)-exp(-2mkx (y+n))
= (—k)’ Z f(x + n)expRukny)
Proof: As
F=Vvjv (17)
the equation
Ff = (kS (18)
translates into
JVFGs y; ) = (R VF(x; y; t) (19)
With the definition of V and t = xy:
Vfilxyt) =exp(2mkt) z fx + n)exp2mkny) (20)

QED.

The vectors > are eigenvectors of the Fourier transform operator with
eigenvalues (-k)". The eigenfunctions {n(x) represent eigenvectors |{n>
that span the complex Hilbert space Hx.

For higher n the central parts of ¥,,(x) and |1, (x)|? become a sinusoidal
form.
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A coherent state® is a specific kind of state® of the quantum harmonic
oscillator whose dynamics most closely resemble the oscillating behavior
of a classical harmonic oscillator system. The ground state is a squeezed
coherent state®®.

The ground state here differs from the ground state of the QPAD. That
ground state equals zero in the close neighborhood of the center. The size
of that neighborhood is of the order of the Planck length. Thus in this
region the QPAD has the form of a stretched turban mold. It has a form
similar to the second state in the picture of [(x)|?, thus the lowest state

8 http://en.wikipedia.org/wiki/Coherent state
8 States
8 Canonical conjugate: Heisenberg’s uncertainty
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where 1(x) is asymmetric. Asymmetric states are better localizable than
symmetric states.
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Ladder operator
The Hermite functions v, represent Fock states®.

Boson ladder operators are characterized by
Al > = Vn [Yn-1 >

ATy > =V +1 |hne >

A 1( d+ ) P 1 . fmw
=—|c¢,—+c = -
VvZ\ tdq 24

Jl*—l( 4, )—k}5 ! +0 22
V2 Cldq ©4)= 2hmo 2h

In the Heisenberg picture, the operators have the following time
dependence:

A(t) = A(ty) exp(—k w (t—ty))

AT () = AT (ty) exp (ko (t—t5))

We can also define an enumeration operator N which has the following

property:
N =AlA

Ny, >= [Yp,>n

In deriving the form of AT, we have used the fact that the operators X
and Px, which represent observables, are Hermitian. These observable

87 http://en.wikipedia.org/wiki/Fock state
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operators can be expressed as a linear combination of the ladder operators

g h @
0O = [5o— AT +AW)

P(t) = kyahmao (AtE) —A(L)) (8)

as

The Q and P operators obey the following identity, known as the
canonical commutation relation:

[0,P] = kh 9)
Using the above, we can prove the identities

H=ho(ATA + %)= hw (N + %) (10)

[AT,A] = 1 (11)

Now, let |fe>denote an energy eigenstate with energy E. The inner
product of any ket with itself must be non-negative, so

< YpAlAYp >= < YgE| AT AYp > = 0 (12)
Expressing A'A in terms of the Hamiltonian H:

< Ypl(H/(hw) = Y2)Pp >= (E/(hw) — ¥2) = 0 (13)
so that

E > %ho. (14)

Note that when |A Y > = |0 > (is the zero ket i.e. a ket with length
zero), the inequality is saturated, so that
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E=%hw

It is straightforward to check that there exists a state satisfying this
condition; it is the ground state

w)ground >= w}En >; (n = 0)

Using the above identities, we can now show that the commutation
relations of A and AT with H are:

[HA]l = -hw A
[H, A" = how AT
Thus, provided | A g > is not the zero ket,
|HAYg >= |[HA] + AHYg >
=|-hwA +AEYg >
=|-hwA + AEyYg >
= (E - how) |[AYg >
Similarly, we can show that
|HAY Yy >= (E + how) [AT g >

In other words, A acts on an eigenstate of energy E to produce, up to a
multiplicative constant, another eigenstate of energy E —h w, and A" acts
on an eigenstate of energy E to produce an eigenstate of energy E + h w.
For this reason, a is called a "lowering operator", and A'A "raising
operator". The two operators together are called ladder operators. In
quantum field theory, A and AT are alternatively called "annihilation”
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and "creation" operators because they destroy and create particles, which
correspond to our quanta of energy.

Given any energy eigenstate, we can act on it with the lowering operator
A, to produce another eigenstate with h w-less energy. By repeated
application of the lowering operator, it seems that we can produce energy
eigenstates down to E = —eo. However, this would contradict our earlier
requirement that E > h w/2.

Ground state
Therefore, there must be a ground-state energy eigenstate, which we label
| fground>, such that

|A Ygrouna > = |0 >; (zero ket).
In this case, subsequent applications of the lowering operator will just

produce zero kets, instead of additional energy eigenstates. Furthermore,
we have shown above that

|H 1nl}ground >= (.hw) Iwground >

Finally, by acting on [Y4,-0unq > With the raising operator and multiplying
by suitable normalization factors, we can produce an infinite set of energy
eigenstates

{llpground >, |¢E1 >, |¢E2 >y |7~/)En >}/
such that
|HYg, >=how @ +%) [Py, >
which matches the energy spectrum.
This method can also be used to quickly find the ground state wave
function of the quantum harmonic oscillator.

Indeed
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|A l:bground >= 10>

becomes

d

h
l/)ground(x) =1o(x) = <x| ll}ground >= - m_a) a Yo (x)

so that

h mow
d Po(x) = Py(x) — xdx = In(e(x)) = ETY x% + const

After normalization this leads to the following position space
representation of the ground state wave function.

4 mw _%xz
l/)()(x) - 1’ T[h e

Coherent state
A coherent state is a specific kind of state® of the quantum harmonic

oscillator¥ whose dynamics most closely resemble the oscillating behavior

of a classical harmonic oscillator system.

The coherent state | o> is defined to be the 'right' eigenstate of the
annihilation operator A. Formally, this reads:

|Aa>= ala >

Since A is not Hermitian, a is a hyper complex number that is not
necessarily real, and can be represented as

88States
89 Functions invariant under Fourier transform
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a = |a| exp(k 9)
where 6 is a real number. |a| is the amplitude and 8 is the phase of state
o>,
This formula means that a coherent state is left unchanged by the
annihilation or the creation of a particle. The eigenstate of the annihilation
operator has a Poissonian® number distribution A Poisson distribution is
a necessary and sufficient condition that all annihilations are statistically
independent.

The coherent state's location in the complex plane (phase space?) is
centered at the position and momentum of a classical oscillator of the
same phase 0 and amplitude. As the phase increases the coherent state circles
the origin and the corresponding disk neither distorts nor spreads. The disc
represents Heisenberg’s uncertainty. This is the most similar a quantum state can
be to a single point in phase space.

Pll
\ﬁﬂ
@fPlor) | y
=|alsin® o ,,%
0
Xy X
=|a|cost

9 http://en.wikipedia.org/wiki/Poissonian
91 http://en.wikipedia.org/wiki/Phase space
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Phase space plot of a coherent state. This shows that the uncertainty (blur)
in a coherent state is equally distributed in all directions. The horizontal
and vertical axes are the X and P quadratures of the field, respectively.
Oscillations that are said to be in quadrature, if they are separated in phase by n/2
radians. The red dots on the x-axis trace out the boundaries of the
quantum noise. Further from the origin the relative contribution of the
quantum noise becomes less important.

The representation of the coherent state in the basis of Fock states is:
o an
la > = exp(—l/zlalz)Z— In > = exp(—%|al?) exp(ac/l'l' )[0>
n=0 \/m

where |n> are Hermite functions (eigenvectors of the Hamiltonian). This
is a Poissonian distribution. The probability of detecting 1 photons is:

(n)"

n!

P(n) = exp(—(n))
Similarly, the average photon number in a coherent state is
(n) = (ATA) = |af?
and the variance is

(An)? = Var(c/ch/l) = |al?

Squeezing
The squeezing operator can squeeze a state more or less in the direction of
either P or Q. The operator is defined as:

Sq(z) = exp (1/z(z*c/l + zc/lJr))

z=rexp(k8)
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The ground state is a saturated squeezed coherent state where

Ap = Aq and Aq-Ap =h/2

Base fransforms
Now we have discovered the following base transforms:
Position&=momentum:

1 (k q p)
ex
v 2mh P h

<qlp>=

Positione=Fock state:

< 5= 4’mw 1 mw N ,mw

Fock state<coherent state:

1
— 5N _1 2
<nlz> mz exp(—%2|z|*)
Harmonic oscillating Hilbert field

Take the ingredients of the complex harmonic oscillator and interpret
these as similar ingredients of a harmonic oscillating Hilbert field that is
based on a Gaussian blur. The blur delivers the conditions of the ground
state.

maw o

4 =
e 2h |

Yo(r) =

This means that the ground state corresponds with a Gaussian charge
distribution. Higher states correspond to a blurred current. We indicate
this current as vector potential ¢@. Its time derivative ¢ is perpendicular to
@. The other ingredients are P, Q, A and A'.
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h t
Qe Q=9 = M(‘Ax_*_dqx)

A, — Al =0
. . mwh +
P & me =me, = T(—cﬁly+u4y)
A, + AT =0
y y

. . mw 0 mw
A S A=Ay —ikA, = ﬁ((p+5) 2h<l(px+lk )

t e ot = ial b /w< LAY (i -f@
Al = A iA, + kA, oh (0] ) oh ip, — lkw

The ¢ field and the ¢ field are mutually perpendicular. If both fields are
subjected to a synchronized quantum harmonic oscillation, then an
oscillating wave results. We take the same ground state for each of the
fields. These ground states correspond to a spherical symmetric Gaussian
blur.

When bounds of the cavity are removed or relaxed, then the higher order
modes may differ in a phase shift. The sign selections set the eigenvalues
of the spin operator. The result is an elliptically polarized wave that
moves in directions along ¢ X @.

@ no longer stands for a single position, but instead for a Gaussian

distribution of positions. Similarly ¢ does not stand for a single moving
particle, but for a moving Gaussian cloud of virtual particles.
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Annihilator and creator
The annihilator 4 and the creator AT are examples of boson operators.
This is a consequence of their commutation relations.

A+ AT =ag
A-AT =B ¢
A= Yae+ YL@
AT = Yap - 1B ¢
A, AT(@)] =< flg >
[A(f), A(g)] = 0
[AT (), AT (9)] = 0
The corresponding fermion operators are:
{B().BT(9)} =< flg >
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{B(f),B(g)} =0
BT, BT(@)}=0

The fermion operators can be represented by imaginary quaternionic base
numbers:

B+Bl =i

B-BT =)

B = %(i+]))

Bt = w@i-j))

(B+BT)(B-B")=8B- BB+ BB BB

=gfB—BBt =ij

Rotational symmetry

In case of rotational symmetry in the imaginary part of quaternion space,
the exponential function must be replaced by a Bessel function. The
corresponding Fourier transform then becomes a Hankel transform?.

The spherical harmonics are eigenfunctions of the square of the orbital
angular momentum operator —ihr X V and therefore they represent the
different quantized configurations of atomic orbitals.

Spherical harmonics
The following draws from the work of S. Thangavelu®.

92 http://en.wikipedia.org/wiki/Hankel transform
% http://www.math.iitb.ac.in/atm/fahal/veluma.pdf
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In this subsection we look for eigenfunctions of the Fourier transform
which have spherical symmetry. As in the one dimensional case we
consider functions of the form

f(x) = p(x) exp(—m|x|?) (1)

This will be an eigenfunction of F if and only p satisfies
— i 1 - |x|? = (2)
p(x — iy)exp(=m-[x|*) dx = Ap(y)
R

Here in quaternion terms x and iy represent two mutually perpendicular
imaginary numbers while x and y are parallel. Thangavelu uses complex
numbers. We keep as close as is possible to his text.

If (2) is true for all y € R™ then we should also have
|| pec+ vy exp(or- 312 dx = Ap(iv) ®
[Rn

Integrating in polar coordinates the integral on the left is

f°° |1 (f 1p(y + rw) da(w)) exp(—m-r?) - r"ldr @)
r=0 sn-
where do(w) is the normalised surface measure on the unit sphere $* 1.
If p is homogeneous of degree m then
piy) = i"p¥) (5)

and hence for such polynomials the equation

|| pGc+ ) expCm lxl?) dx = 20m p(in) ©)

R
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will be satisfied for
A= (D)™

if p has the mean value property
f P+ rw)do(w) =pk)
sn-

Such functions are precisely the harmonic functions satisfying
Au = 0

Thus we have proved:

Let
f() = p(x) exp(—m |x|?)

where p is homogeneous of degree m and harmonic. Then
Ff = (o"f

Let P™ stand for the finite dimensional space of homogeneous harmonic
polynomials of degree m:

The above theorem says that the finite dimensional subspace of L?(R™)
consisting of functions of the form

p(x) exp(—m |x|?); p € P™

is invariant under the Fourier transform.
We claim that the following extension is true.
Let
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f € L*(R"
be of the form

f(x) = p(x)g(x]); p € P™
Then

Fr® = p®g(8h

Thus the subspace of functions of the form

f) = px)g(xD; p € P™

is invariant under the Fourier transform.

Let

f e 2R
be of the form

f) = pg(xD; p € P™
Then

Fa "= (D™ P Fniom g

The above result is known as the Hecke-Bochner formula for the Fourier
transform.

We conclude our discussion on invariant subspaces with the following
result which shows that the Fourier transform of a radial function reduces
to an integral transform whose kernel is a Bessel function. This relates to
the Hankel transform.
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Let J, stand for the Bessel function of type a > —1
If

fx) = g(xD (20)

is radial and integrable then

oS Jo_ (2mr[g]) (21)
OO = o [ g0) T ar
0 (nurlghz

Spherical harmonic transform

Next we like to decompose 2D and 3D functions into wave-like basic
patterns that have simple radial and angular structures®. In that case, the
base functions must take the separation-of-variable form:

R(r)®(p) = \/%_nR(r) exp(ime) (1)
for 2D and
R(rOW)®(p) = R(MQ(v,9) @)

20+1 (1 —m)! ®)
0, 9) = Yin(v, ) = j T Pin() exp(imo)

for 3D where (7, @) and (7, v, @) are the polar and spherical coordinates
respectively. mand | are integers.1 > 0 and |[m| < L

The base functions are eigenfunctions of the Laplacian. They represent
wave-like patterns. The associated angular transform is closely related to
the normal Fourier transform. For polar coordinates this reduces to a
simple complex 1D Fourier transform.

9 http://Imb.informatik.uni-freiburg.de/papers/download/wa_report01 08.pdf
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The radial base function is a Bessel function J,,, (kr) for polar coordinates
and a spherical Bessel function j;(kr) for spherical coordinates. The
parameter k can take either continuous or discrete values, depending on
whether the region is infinite or finite. For functions defined on (0, ), the
transform with J,,, (kr) as integral kernel and r as weight is known as the
Hankel transform. For functions defined on a finite interval, with zero-
value boundary condition for the base functions, one gets the Fourier-
Bessel series. For the 3D case the transform is called Spherical Harmonic
(SH) transform.

Polar coordinates
The Laplacian in polar coordinates is:

_1 6( 6_1/)) 10%y

4 ar r_20_<p2
The Helmholtz differential equation is
VA(r,¢) = —k*P(r, ¢)
Y@, @) =R)2(p)

P(p) = —m*P (@)

10/ OR(r) m?
r 3 (o )=<r—z"‘2>R@

The solution is:

P (@) = exp(imy)
R(r) = af,,(kr) + bY,,(kr)

Jm is the m-th order Bessel function. The Neumann function Yy, is singular
atr = 0. Thereforea =1 and b = 0.
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In finite solutions, the boundary conditions determine what set of
functions can be used as base functions. The reference in the footnote
shows which choices can be relevant.

Spherical coordinates
The Laplacian in polar coordinates is:

16(261/)) 1 0%y 1 6( 61/))

Vi) =— —(r? — : ——( sinv —
v r2 or ar/  r2sin?vde? r?sinvadv v

The Helmbholtz differential equation is
Vzll)(r, P, V) = —k2¢(r» P, 1/)
Y(r,o,v) = R(r)Q(e,v)

.Q((p, v) = Ylm((Pf V)

2+ 1 —m)!
M&@=j4;&+gﬁMWMWW)

1 i(rz @) _ (_l(lr_z D_ kz) R(r)

r2 or or

A non-singular solution for R(r) is:
R(r) = ju(kr)

ji is the spherical Bessel function of order [.

) = [ Jeon )
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The spherical harmonic transform

The equivalent of the Fourier transform in terms of spherical harmonics
depends on the boundary conditions. For example when the analysis is
done over a limited region, then the zero boundary condition will give
different results than the zero derivative boundary condition®®. An infinite
range will always request a zero value of contributions when the radius
goes to infinity.

21

crr (1)
Skim = f f f@r,o,v) ¥, (r,@,v)r’sinvdrdg dv
r=0 ¢@=0 v=0
e N 2)
FEom) =) D D Sum by o)
k=11=0 m=—1
Vim0, v) = Ji(kr) Yim(@,v) (3)

The Fourier transform of a black hole

In its simplest form a black hole is a bubble that is covered with a blanket
of ground states.

The blanket is a comb function that is convoluted with a ground state. The
Fourier transform of this blanket is the product of the Fourier transform
of the comb function and the Fourier transform of the ground state. Apart
from a factor, the ground state is invariant under Fourier transformation.
Also the comb function is invariant. Thus the Fourier transform of the
blanket is a modulated comb function. The modulation does not reach far.

The most complicated component is the bubble. In its simplest form this is
a pulse on the radius. If we interpret this pulse as a Dirac delta function,
then the Fourier coefficients have the form:

% http://Imb.informatik.uni-freiburg.de/papers/download/wa_report01 08.pdf
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Yoo (1) = jo(krp) = \/2?_7‘ Jy, (k7o)

If we sum these coefficients, then we get a sampled spherical Bessel
function. These spheres are blurred with the transformed blanket.

Spherical harmonics eigenvalues

See: http://en.wikipedia.org/wiki/Spherical harmonics for more details.
Spherical harmonics are best presented in polar coordinates. There exists
a corresponding polar Fourier transform. This Fourier transform also has
invariant functions. Like in the rectangular case, they form the basis for
spherical harmonics.

Laplace's equation in spherical coordinates is:

2_—212"’_1’) 19 ing)y Y 19 _ 1
v f =T or (T‘ or +r25in(9) 06 (Sln(e) dH) +rzsin2(0) ap2 ( )

0

Try to find solutions in the form of the eigenfunctions of the Fourier
transform.

By separation of variables, two differential equations result by imposing
Laplace's equation:

f(r,6,¢) = R(r)-Y(6,9) 2)
. d dR _ 3)
R () = 2
1 o [ oY 1 %y (4)
Y sin(9) 90 (sin(®) %) t ysn@opr - 7

The second equation can be simplified under the assumption that ¥ has
the form

Y(0,9) = 0(8)P(9) )
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Applying separation of variables again to the second equation gives way
to the pair of differential equations

1 d*o(p) _
o(p) de?

sin(9) d
0(6) do

doe
Asin?(0) + sin(6) 7l = m?

for some number m. A priori, m is a complex constant, but because @
must be a periodic function whose period evenly divides 2m, m is
necessarily an integer and @ is a linear combination of the complex
exponentials exp(+i m 0). The solution function Y'(6, ¢) is regular at the
poles of the sphere, where 8 = 0, m. Imposing this regularity in the
solution @ of the second equation at the boundary points of the domain is
a Sturm-Liouville problem* that forces the parameter A to be of the form
A = £(£ + 1) for some non-negative integer with £ > |m|; this is also
explained below in terms of the orbital angular momentum. Furthermore,
a change of variables t = cosf transforms this equation into the Legendre
equation, whose solution is a multiple of the associated Legendre
function”. P/"(cos(6)). Finally, the equation for R has solutions of the
form R(r) = Ar? + B r~1; requiring the solution to be regular
throughout R3 forces B = 0.

Here the solution was assumed to have the special form

Y(6,9) = 0(0) 2(p)

For a given value of ¢, there are 2¢ + 1 independent solutions of this form,
one for each integer m with —¢ < m < . These angular solutions are a

9 http://en.wikipedia.org/wiki/Sturm%E2%80%93Liouville problem
97 http://en.wikipedia.org/wiki/Associated Legendre function
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product of trigonometric functions, here represented as a complex
exponential, and associated Legendre functions:

Y™(6,9) = N exp(im @) P"(cos(6)) )
which fulfill
rivYm0,9) = -1+ DO, ) (10)

Here ¥;™ is called a spherical harmonic function of degree £ and order m,
P/™ is an associated Legendre function, N is a normalization constant, 6
represents the colatitude and ¢ represents the longitude. In particular, the
colatitude”® O, or polar angle, ranges from 0 at the North Pole to 7 at the
South Pole, assuming the value of /2 at the Equator, and the longitude®
@, or azimuth'®, may assume all values with 0 < ¢ < 2m. For a fixed
integer ¢, every solution Y (6, ¢) of the eigenvalue problem

2% = —l(l + 1Y (11)

is a linear combination of ¥;™. In fact, for any such solution, r* Y'(8, ¢) is
the expression in spherical coordinates of a homogeneous polynomial that
is harmonic, and so counting dimensions shows that there are 2¢ + 1
linearly independent of such polynomials.

The general solution to Laplace's equation in a ball centered at the origin
is a linear combination of the spherical harmonic functions multiplied by
the appropriate scale factor r!,

oo l (12)
£0.0,0) = > > e, )

=0 m=-1

98 http://en.wikipedia.org/wiki/Colatitude
99 http://en.wikipedia.org/wiki/Longitude
100 http://en.wikipedia.org/wiki/Azimuth
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where the f/™ are constants and the factors-r! ¥;™ are known as solid
harmonics!'™. Such an expansion is valid in the ball

r < R = 1/lim sup |/ (13)
Orbital angular momentum

In quantum mechanics, Laplace's spherical harmonics are understood in
terms of the orbital angular momentum!®

L=—ihxxV =Lei+Lj+Lk )

The spherical harmonics are eigenfunctions of the square of the orbital
angular momentum

d d )
2 _ __ 272 _ —_
L—rV+(rar+1)rar
B 1 Jd ) d 1 K
~ sin(@) 90 S 59 sin?(8) d¢?

Laplace's spherical harmonics are the joint eigenfunctions of the square of
the orbital angular momentum and the generator of rotations about the
azimuthal axis:

0 d . d (3)
)_l do

L =—'-h-( 7 _,2
z ' x(’)y arr

These operators commute, and are densely defined self-adjoint operators
on the Hilbert space of functions f square-integrable with respect to the
normal distribution on R3:

101 http://en.wikipedia.org/wiki/Solid harmonics
102 http://en.wikipedia.org/wiki/Orbital angular momentum

211



http://en.wikipedia.org/wiki/Solid_harmonics
http://en.wikipedia.org/wiki/Solid_harmonics
http://en.wikipedia.org/wiki/Orbital_angular_momentum
http://en.wikipedia.org/wiki/Solid_harmonics
http://en.wikipedia.org/wiki/Orbital_angular_momentum

Qn)2 f FGOIZ exp(=Ix[2/2) < oo
]R3

Furthermore, L is a positive operator.
If Y is a joint eigenfunction of L? and L,, then by definition

L’Y = 1Y
L,Y = mY

for some real numbers m and A. Here m must in fact be an integer, for ¥’
must be periodic in the coordinate ¢ with period a number that evenly
divides 2 w. Furthermore, since

L = 15 + 1% + L

and each of L, , L,, L, are self-adjoint, it follows that A > m2.
Denote this joint eigenspace by E, ,,, and define the raising and lowering
operators by

Ly = Ly + il
Lo=Ly— il

Then L, and L_ commute with L?, and the Lie algebra generated by
L, L_, L, is the special linear Lie algebra, with commutation relations

[LZfL+] = L+
[L, L ]= —L_
[L,,L_]= 2L,

Thus L,: E; , = Ej 41 (it is a "raising operator") and L_: E) ,,, = Ej -1 (it
is a "lowering operator"). In particular, L%: Ej ,, &> Ej m+x must be zero for
k sufficiently large, because the inequality 2 = m? must hold in each of the
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nontrivial joint eigenspaces. Let Y’ € E ;,, be a nonzero joint eigenfunction,
and let k be the least integer such that

kY =0

Then, since
L_L, =L*— 12— 1L,

it follows that
0=LLkY=Q-(m+Kk?-(m+ k)Y

Thus A = £(£ + 1) for the positive integer £ = m + k.

Spherical harmonics expansion

The Laplace spherical harmonics form a complete set of orthonormal
functions and thus form an orthonormal basis of the Hilbert space of
square-integrable functions. On the unit sphere, any square-integrable
function can thus be expanded as a linear combination of these:

00 l
FO.0)=) > fmmE,0)
=0 m=-1

This expansion holds in the sense of mean-square convergence —
convergence in L2 of the sphere — which is to say that

2T T
lim f f
N—->oo 0 0

The expansion coefficients are the analogs of Fourier coefficients, and can
be obtained by multiplying the above equation by the complex conjugate
of a spherical harmonic, integrating over the solid angle (), and utilizing

2

N l
FO.0) =) > Mm@, sin(6)do dp =0
=0 m=-1
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the above orthogonality relationships. This is justified rigorously by basic
Hilbert space theory. For the case of orthonormalized harmonics, this
gives:

"= fﬂf 6, 9) ;™" (6, 9)d0 3)

= f de f d sin(8) f(6,9) ;"™ (6, ¢)
0 0

If the coefficients decay in € sufficiently rapidly — for instance,
exponentially — then the series also converges uniformly to f.

A real square-integrable function f can be expanded in terms of the real
harmonics Yu above as a sum

1) l (4)
FO.0)=) > fMmE,0)
l

=0 m=—

Convergence of the series holds again in the same sense.

Spin weighted spherical harmonics

Regard the sphere $* as embedded into the three-dimensional imaginary
part of the quaternionic number field. At a point x on the sphere, a
positively oriented orthonormal basis of tangent vectors at x is a pair a, b
of vectors such that

(x,a) = (x,b) = (a,b) = 0 1)
(a,a) = (b,b) =1 2)
(x,a x b) > 0 (3)

where the first pair of equations states that a and b are tangent at x, the
second pair states that a and b are unit vectors, a and b are orthogonal,
and the {x, a, b} is a right-handed basis of R3.
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a-sin(0)

a-cos(0) 7”: ! + d, = c,-c0(0) —c,-sin(0)
/17 dy=cacin(6) —c,cos(6)

. i

v P

v : :

/ -

-b-sin(6)

Figure 3: O and the parameters a and b of the spin-weight function f.

A spin-weight s function f is a function accepting as input a point x of 52
and a positively oriented orthonormal basis of tangent vectors at x, such
that

f(x, a cos(8) — b sin(@),asin(6) + b cos(G)) = exp(is @) f(x,a,b) 4)
for every rotation angle 6.

Following Eastwood & Tod (1982), denote the collection of all spin-weight
s functions by B(s). Concretely, these are understood as functions f on
C?\{0} satisfying the following homogeneity law under complex scaling

f(lz,12) = (%) f(z,2) ®)

215



This makes sense provided s is a half-integer.

Abstractly, B(s) is isomorphic to the smooth vector bundle underlying the
antiholomorphic vector bundle O’(2-s) of the Serre twist on the complex
projective line CP*. A section of the latter bundle is a function ¢ on €*\{0}
satisfying

9(2272) = (D" 9(2.2) (6)

Given such a g, we may produce a spin-weight s function by multiplying
by a suitable power of the Hermitian form

P(z,z)=2z2z (7)

Specifically, f = P~®g is a spin-weight s function. The association of a spin-
weighted function to an ordinary homogeneous function is an
isomorphism.

Eth
The spin weight bundles B(s) are equipped with a differential operator 0
(eth). This operator is essentially the Dolbeault operator!'®,

0 =0+ 0 (1)
Thus for feB(s),
df=P~STL (P f) 2)

defines a function of spin-weight s + 1.

Spin-weighted harmonic functions
See http://en.wikipedia.org/wiki/Spin-weighted spherical harmonics for

more details.

103 http://en.wikipedia.org/wiki/Dolbeault operator
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Just as conventional spherical harmonics are the eigenfunctions of the
Laplace-Beltrami operator on the sphere, the spin-weight s harmonics are
the eigensections for the Laplace-Beltrami operator acting on the bundles
E(s) of spin-weight s functions.

The spin-weighted harmonics can be represented as functions on a sphere
once a point on the sphere has been selected to serve as the North Pole. By
definition, a function 1) with spin weight s transforms under rotation about
the pole via

n - exp(isy)n (1)

Working in standard spherical coordinates, we can define a particular
operator 0 acting on a function n as:

0 L rin=s (2)
Sin@) 99 [sin™*(6) n]

0
— inS

on = —sin®(0) {% +
This gives us another function of 8 and ¢. [The operator 0 is effectively a
covariant derivative operator in the sphere.]
An important property of the new function 07 is that if 1 had spin weight
s,0n has spin weight s + 1. Thus, the operator raises the spin weight of a
function by 1. Similarly, we can define an operator which will lower the
spin weight of a function by 1:

0
53} [Gsin*(6) 7] ©

_ 0
— _— cin—S - _
on = —sin*(0) {60 sin(@) dg

We extend the function ¥;™ to ;¥;"* according to

o™ (6,0) = Y™ (6,0) (4)

l=012.;m=—1..0,..1 )
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The spin-weighted spherical harmonics are then defined in terms of the
usual spherical harmonics as:

I-s)! (6)
ym = /(E:Syas Y0 <s <

)
s = gig: (DA <s=<0

m
1

0; 1 < |s|; (8)

The functions ;¥;™ then have the property of transforming with spin
weight s.
Other important properties include the following;:

OGY™ = +JU-s) U+s + 1) o 1" ©)

oGY™ = ~JU+s)U—s + 1) 1" (10)

Special Fourier tfransform pairs
Functions that keep the same form through Fourier transformation are:

f(@) = exp(=lql*) 1)
_ L 2)

fl@) = il

f(q) = comb(q) (3)

The comb function consists of a set of equidistant Dirac delta functions.
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Other examples of functions that are invariant under Fourier
transformation are the linear and spherical harmonic oscillators and the
solutions of the Laplace equation.

Complex Fourier transform invariance properties
Each even function f(q) < f(p) induces a Fourier invariant:

h(q) = V2 f(q) + f(q). (1)
h(q) = V2m h(q) (2)

Each odd function f(q) < f(p) induces a Fourier invariant;

h(q) =V2r f(q) — f(q). 3)

A function f(q) is invariant under Fourier transformation if and only if the
function f satisfies the differential equation

9*f(a)

502 t2f(q) = a f(q), for some scalar a € C. (4)

The Fourier transform invariant functions are fixed apart from a scale
factor. That scale factor can be 1, k, -1 or —k. k is an imaginary base
number in the longitudinal direction.

Fourier-invariant functions show iso-resolution, that is, Ap=Agqin the
Heisenberg’s uncertainty relation.

For proves see: http://www?2.ee.ufpe.br/codec/isoresolution vf.pdf.

Fourier transform properties

Parseval’s theorem
Parseval’s theorem runs:

[r@-g@-w, = [Fo)-50)-av, )
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This leads to

f|f(q>|2 v, = flf(p)f v,

Convolution
Through Fourier transformation a convolution changes into a simple
product and vice versa.

Ff(@eg@)= f®) -3

Differentiation
Fourier transformation converts differentiation into multiplication with
the canonical conjugated coordinate.

g(q) = Vf(q)
8(p) =pf(p)

Vacuum expectation value

The vacuum expectation value (also called condensate or simply VEV) of
an operator is its average, expected value in the vacuum!®. The vacuum
corresponds to a ground state. The vacuum expectation value of an
operator O is usually denoted by (0).

Hilbert field equations

Despite the obvious similarity, Hilbert field equations are not Maxwell
tield equations. First of all, the Hilbert field is a skew field. It carries the
properties of the quaternions and Hilbert field theory uses the properties
of the quaternionic Fourier transform.

Next Hilbert fields are mathematical (skew) fields, while Maxwell fields
are physical fields in a 3D geometry. Finally the Hilbert fields are

104 http://en.wikipedia.org/wiki/Vacuum state
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constituted from a collection of member fields that each have one or more
anchor points.

Statics and dynamics

In this section we mix statics and dynamics, but we start with a static
status quo. When we confine to the static status quo we get the two sets of
equations.

We will consider differentiations with respect to an idealized coordinate
system.

The field ¢ = @ + @, consists of a real part ¢, and an imaginary part ¢.
We consider the effect of the nabla operator V on this field.

F=Vp=V@+Vp,=F, +F,

The real valued field ¢ is a scalar field. Its divergence F = Vg, is
imaginary and can be considered to be a vector field. This vector field is
rotation free.

The imaginary valued field ¢ conforms to a vector field. It is possible to
take the curl F; = V X ¢ of that imaginary field. This new field is again
imaginary and is divergence free.

The idealized coordinate system is formed by the eigenspace of operator
Q. We will only use the imaginary part of the eigenspace as coordinate
system. Now introduce a progression parameter. We will place it as the
real part q, of the eigenvalues q of operator (. Thus a full eigenvalue is
q = q + qo. We use this in order to define a nabla operator V=V+Vj,.

When dynamics is supported as well, then these parts F, and Fget
coupled. A single separable Hilbert space H, only meets the static parts of
the Hilbert field. This means that in this Hilbert space the two parts do
not couple. Coupling only takes place during the step from one Hilbert
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space to the next member in the sequence. Continuity equations describe
the coupling between the parts.

The parameter that controls dynamics in these differential equations is the
progression parameter. This parameter stands for the counter of the
progression steps. For mathematical convenience we consider the
progression parameter as a smooth parameter. Thus we switch from a
fundamentally granular progression step counter to a continuous
progression parameter. This progression parameter is not our common
notion of time. The derivative of the field f for this parameter is defined
as Vof.

In order to make the step from the integer progression step to the
continuous progression parameter possible there must be a mechanism
that reduces change, such that no violent steps are taken. On the other
hand the mechanism must not be so strong that only a few steps are taken
after which the universe is put to an eternal hold. How this in practice is
regulated is shown by the phenomenon inertia'®. Inertia is installed by
the community of all particles. Locally this community generates an
enormous potential. This potential works the same in all directions, so
when nothing happens it has no influence on a local particle. A uniform
movement of a local particle corresponds with the existence of a local
vector potential. With other words, where the real part ¢, of field ¢
corresponds to the “charge density” of the particle, the imaginary part ¢
of the field ¢ corresponds to a uniform moving particle. Also this vector
potential does not apply any action. However, when the particle
accelerates, then this goes together with the existence of an extra vector
field that counteracts the acceleration. Thus, inertia does not counteract
uniform movement. Uniform movements cause redistribution of the
particles and with it a reconfiguration of the fields. This disturbance of the
static status quo is the motor that keeps dynamics going. The tolerance of
inertia with respect to uniform movement is the reason that the
movement does not get killed.

105 Influence:Inertia
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The quaternionic nabla
According to the definition of quaternionic differentiation the split of

quaternionic nabla operator in a real part and an imaginary part is
defined by:

9(@) =Vi(@) = go(@) + g(q) 1)
90(q) = Vofolq) +(V, f(@) )
9(@) = £Vf(q) + Vfo(q) + (£V x f(9)) (3)

= tVf(@) + 9:() + 9:(q)
The second term on the right treats imaginary divergence. The last term

treats the rotation. The first term is raised due to the dynamic coupling of
the static fields.

In Fourier space the equivalent equation are:

d) =pf(q) = go(p) + g(p) (4)
go(p) = pofo(P) + (pf(p)) (5)
3@ = +pf @) + pfo@) + (£ x () (6)

= +pof (@) + Gi(P) + §:(p)

Blurring the charges

We may represent the members of the Hilbert distribution with Dirac
delta functions. These Dirac delta functions can be multiplied with a
hyper complex number. Such a distribution raises problems with the
nabla operator.

However, since these members represent anchor points and since each
anchor point attaches to a QPAD, it has more sense to start directly with
these blurred anchor points. We introduce the quaternionic function p(q)
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that represent the presence of one or more blurred anchor points in its
real part and represent the flow of these blurred anchor points in its
imaginary part. This leads to integral and differential continuity
equations.

Not all anchor points must be equal. When this is true, it is better to
categorize them and treat each category separately. Each member of such

a category represents a charge that is typical for that category.

The QPAD p(q) can be interpreted as the combination of a scalar potential
po(q) and a vector potential p(q).
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Continuity equation for charges

Continuity equation

When p,(q) is interpreted as a charge density distribution, then the
conservation of the corresponding charge is given by the continuity
equation:

Total change within V = flow into V + production inside V

d

.V
a pOdV—ﬁnpocdS-f-fSOdV
14 14

vapo dV:.I-(V,p>dV+fSO dV
14 14 14

Here n is the normal vector pointing outward the surrounding surface S,
v(t, q) is the velocity at which the charge density p,(t, q) enters volume V
and s is the source density inside V. In the above formula p stands for

p = pov/c

It is the flux (flow per unit area and unit time) of p; .

The combination of py(t, q) and p(t, q) is a quaternionic skew field p(t, q)

and can be seen as a probability amplitude distribution (QPAD).
PEpotp

p(t,q)p*(t,q) can be seen as an overall probability density distribution

(PDD). py(t, q) is a charge density distribution. p(t, q) is the current
density distribution.

Depending on their sign selection, quaternions come in four sign flavors.
In a QPAD the quaternion sign flavors do not mix. So, there are four

QPAD sign flavors.
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Still these sign flavors can combine in pairs or in quadruples.

The quaternionic field p(t, q) contains information on the distribution
po(t, q) of the considered charge density as well as on the current density
p(t, q), which represents the transport of this charge density.

Where p(t,q)p*(t, @) can be seen as a probability density of finding the
center of charge at position q, the probability density distribution
p(t,p)p”(t,p) can be seen as the probability density of finding the center
of the corresponding wave package at location p. p(t, p) is the Fourier
transform of p(t, q).

The dimension of p,, p and p is [XTL 3], the dimension of s, is [XL™3]. The
factor c has dimension [T 1L]. [X] is an arbitrary dimension. It attaches to
the charge.

The conversion from formula (2) to formula (3) uses the Gauss theorem!®.
This results in the law of charge conservation

so(t, @) = Vopo(t, @) TV, (po(t, D (t, @) +V x a(t, q))) (6)
= Vopo(t,q) +(V,p(t,q) + A(t, @)
= Vopo(t, @) + (v(t,q), Vpo(t, @) +(V,v(t, q)) po(t, q)
HV,A(t, )

The blue colored + indicates quaternionic sign selection through
conjugation of the field p(t, q). The field a(t, q) is an arbitrary
differentiable vector function.

(V,Vxa(tq))=0 7)

106 http://en.wikipedia.org/wiki/Divergence theorem
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A(t,q) € V x a(t, q) is always divergence free. In the following we will
neglect A(t, q).
In Fourier space the continuity equation becomes:

5o(t,p) = poPo(t,p) + (P, P(t, D))

This equation represents a balance equation for charge (or mass) density.
Here py(q) is the charge distribution, p(q) is the current density.
This only treats the real part of the full equation. The full equation runs:

s(t,q) =Vp(t,q) = so(t,q) + s(t,q)

= VOPO(tI q) + (V' p(tr q)) t Vop(t: q) + VpO(t' q)
+ (+V x p(t, @)

= Vopo(t, @) + (v(t,q), Vpo(t, @) + (V,v(t, @) po(t, )
tVou(t, q) + Vopo(t, @) + Vpo(t, q)
+(+(po(t, @) V x v(t,q) — v(t,q) X Vpo(t, q))
so(t, @) = 2Vopo(t, @) + (v(q), Vpo (¢, @)) +(V,v(t, @) po (¢, @)
s(t,q) = £Vov(t, @) £ Vpo(t, q)

+ (£(po(t. @) ¥ x ¥(t, @) — v(t, @) X Vpo(t, @)

The red sign selection indicates a change of handedness by changing the
sign of one of the imaginary base vectors. (Conjugation also causes a
switch of handedness). If temporarily no creation and no annihilation
occur, then these equations reduce to equations of motion.

Vopo(t, @) + Vop(t,q) = +(V, p(t,@)) — Vpo(t,q) F (£V x p(t, q))
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Voo(t,q) =V, p(t,q)) — Vpo(t,q) +V X p(t,q)
Vopo(t,q) = HV,p(t,q))
Vop(t,q) = + Vpo(t,q) +V X p(t,q)

The field p(t, q) can be split in a (relative) stationary background p;, (q)
and the moving private field p,(t, q).
If v(t, q) is a constant then

So(t, q) = 2Vopo(t, q) + (v, Vpo(t, q))
s(t,q) = £ Vpo(t,q) F (+v X Vpy(t, q))
s(t,q) = 2Vopo(t, @) T (v, Vpo(t, @) + Vpo(t, @) T (+v X Vpo(t, q))

The continuity equation has a direct relation to a corresponding
conservation law'”. The conserved quantity is py(t, ) or its integral

Charge =J po AV
14

Noether’s theorem!® provides the relation between conserved quantities,
differentiable symmetries and the Lagrangian'®.

Properties

The particles described below have properties such a coupling factor m, a
half integer or full integer valued spin and an electric charge that can be
0, +%e, +%3e,0r * e.

107 http://en.wikipedia.org/wiki/Conservation law
108 http://en.wikipedia.org/wiki/Noether's theorem
109 http://en.wikipedia.org/wiki/Lagrangian#Lagrangians in quantum field theory
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Apart from the coupling factor, this paper does not explain why the
particles have these properties. However, it is clear that the values of the
properties are related to the sign flavors of the ordered pair of
quaternionic fields that identify the particle.

Quaternion sign flavors

Quaternions know two independent conjugations. One conjugation

q © q" switches the sign of all three imaginary base vectors of the values
of the quaternion. The other conjugation q & ¢* switches the sign of just
one imaginary base vector. In a quaternionic field the conjugation works
field wide. The two independent conjugations raise four sign flavors for

quaternionic fields. A quaternionic field will stick with one and no more
than one sign flavor. The sign flavors are determined by sign selections.

The background coordinate system has its own kind of sign flavor. The
sign flavor of the background coordinate system can act as a reference for
comparing quaternion field sign flavors. The background coordinate
system can be curved. In that case we use the local tangent space that acts
as a quaternionic number space.

Quaternion fields come in four sign flavors!!: lp@, 1/)®, w@ and 1/)®. We
will use the symbol i or zp@ for the sign flavor of the quaternionic field
that has the same sign flavor as the local background coordinate system.
The superscripts indicate the number of base vectors that changed sign.

$® =y (1)
And with the same symbolic:
Y@ =yt (2)

3)

110 The notion of “sign flavor” is used because for elementary particles “flavor” already
has a different meaning.

229



p©@ =y

Often the symbols ¥ and y* will be used instead of the symbols lp@ and
.

In the later investigated continuity equations, pairs of field sign flavors
will be treated that belong to the same base field 1. For example:

V* = my?Y

The factor m is a coupling factor. We sometimes call 17 the coupled field
and y* = ¥ stands for the flip.

The continuity equation will use one of the pair {{*, 1”7} as the
transported field and the other pair member (”) as the source field.
Each choice of an ordered pair of field sign flavors {1*, ¥} will result in a
different equation. However, if * = 1%, then the coupling factor m is
Zero.

In many equations ” is interpreted as a background field.

The same equation may accept different basic fields (). The standard
model appears to use three different field configurations for 1. This
means that as many different background fields exist. Each of the
configurations has its own set of coupling factors. This paper does not
explain why these three field configurations exist.

Each ordered pair {p*, )7} represents an elementary particle type
category. Each such pair corresponds to a specific continuity equation,
which is also an equation of motion.

Some categories appear in triplets. The members of the triplet are coupled
to directions of imaginary base vectors.

\ Sign flavor \ Flip \ Imaginary ’Handedness ‘Isotropy
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Y* =YY base vectors
conjugation: Y oY@ 3 switch isotropic
double flip: Y < Y@ 2 neutral anisotropic
single flip: Y < @ 1 switch anisotropic
No flip Y=y 0 neutral isotropic
@ flip v? o yp® 3 switch anisotropic

The quaternionic nabla operator V uses the sign flavor of the background
coordinate system. Antiparticles use the conjugated nabla operator "*.

The Dirac equation
The Dirac equation appears to be a special form of continuity equation'.

p(t,q) =v(t, q)po(t,q)

The QPAD 9 (t, q) can be used to define a charge probability density and
probability current density. The conventional form of the Dirac equation
runs

Vol} + Va{yp} = mB{}

a and f represent the matrices that implement the quaternion behavior
including the sign selections of quaternions for complex fields.
We keep the sign selections of the background coordinate system (¢, q)
fixed. Thus a and S only influence the elements of spinor {1}.

[0 i
@ =[5 o
_[0 J
2= 0]
[0 k
=k 0]

11 See http: //www.vttoth.com /gt.htm.
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s=[1 o ©

There exist also a relation between a,, a,, @; and the Pauli'’?> matrices

0'1,0'2,0'3:
01 70 —i Moo 7
0'1_[1 O]; 0-2_[1: 0 ) 0-3_[0 _1] ()
1—1, i o0, j—o o, k— o (8)

This combination is usually represented in the form of gamma matrices!®.
These matrices are not used in this paper. They are used when a complex
Hilbert space must handle quaternionic behavior.

Transferring the matrix form of the Dirac equation into quaternionic
format delivers two quaternionic fields ¥, and ¥, that couple two
equations of motion.

Vog + Vipp = my;, 9)
Vo, — Vi, = mipg (10)

The mass term m couples Y, and Y. The fact m = 0 decouples 1, and

Pk
Yr=Yr =Y+ ¢ (11)

Thus the fields are each other’s quaternionic conjugate.
Reformulating the quaternionic equations gives

Vyp©® =my® (12)

112 http://en.wikipedia.org/wiki/Pauli matrices

113 http://en.wikipedia.org/wiki/Gamma matrices
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Voo + ) + V(o +¢) = m(yho — )
For the conjugated field holds

V@ = my©@

Voo =) = V(o — ¢) = m(iho + )

This implements the reverse flip. The corresponding particle is the
antiparticle.

W) o (¥Oy®)
Summing the equations gives via
Vp =V x9—(V,9)
the result
Votbo — (V,9p) = mh,
The difference gives
Vo + Vo + VXp=—my

Just reversing the sign flavors does not work. The corresponding equation
contains extra terms:

VY© = V(o — ) + V(o — P) = Votho — Vol + V3o — V9P

=My, +(V,¢)) — (—myp — Vipy) + Vi,
- xy—(V,9))

=my + 2V, ) + 2V,
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Thus if the reverse equation fits, then it will concern another field
configuration ¥’ that will not fit the original equation.

VY = V2P +(V, V) = mvyYy® = m?y (21)

Compare with the continuity equations

Vopo(t,q) —(V,p(t, @) = so(t,q) (22)
And

s(t,q) = Vop(t,q) + Vpo(t,q) +V X p(t,q) (23)
This means that

so(t,q) » my(t, q) (24)

s(t,q) » —my (25)

Thus in the Dirac equation the mass term is a source term that depends on
the (conjugate) field.

The following definitions specify another continuity equation:

Ppirac £ Y = Yotho — (P, P) + 2ot (26)
Popirac = Yoo — (P, Y) (27)
Poirac = 2ot (28)
Vopirac = 2YVip = 2mypp®@ = 2my|? = 2me (29)
VYYD = Vo = 29V = 2mpy (30)
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The field ¢ is real and non-negative and represents a probability density
distribution. This result defines two new continuity equations. py ... has
a Minkowski signature.

The interpretation of ¢ as the probability density distribution of presence

leads to:
f pdV =1 (31)
4
j Vopirae AV = 2m (32)
4

The coupling factor m for the antiparticle is the same.

The field 1 has an intrinsic spin'!*:
spin = [ (Vipo) X P dV = [, VX (o) dV = % [ V X ppirac AV (33)

The sign flavor flip reverses the spin.

Properties

The particles that obey the Dirac equation appear to have electrical charge
and half integer valued spin. They are fermions.

The particles that obey equation (12) have the opposite charge from the
corresponding antiparticles that obey equation (14). Both particle types
can have spin up or spin down.

Interactions
The interaction free equation can be extended with interactions with other
fields.

114 http://www.plasma.uu.se/CED/Book/EMFT Book.pdf Section: Conservation of
angular momentum, formula 4.70a
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VY =my*
Dy = my* — e(4Y —yYB) + C

The field A is right covariant with 1. The field B is left covariant with .
The two can be combined in Q-covariance. e is a coupling constant. Thus
here D is the two sided covariant derivative!s. The field C represents a
source.

For the interaction field 4 holds
DA = (V(Z) - (V: V))A = e(l[)l[)) = €Ppirac
[ ] is the d’Alembert operator

The wave equation for the electromagnetic field in vacuum is

[JA=0

Besides of the one sided covariance also a Q covariance is possible due to
the application of a quaternion waltz!'®.

The background field
It is possible to get an explanation/implementation for the coupled field.
e Let y(r) be a spherically symmetric QPAD for which the modulus
|Y(r)| decreases with the distance r of the center location of ¥ (r)
according to the function 1/r.
e This dependence need not start directly at r = 0, but it must start
close to zero.
e Let the universe be filled with QPAD’s {1;} that on average are
equal to Y(r) and who's center locations are randomly distributed
over an affine space.

115 See paragraphs on covariant and Q-covariant derivative
116 Fermion and boson equations; Q covariant derivative
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e Define ¢(r) as the superposition of all {1);}, taken at the center
location of (7).

The contribution to the local superposition decreases with the distance of
a Y;, however the number of contributing ;s increases with that
distance. So, the largest contribution comes from the most distant ;’s.

Now the charge of ¢(r) is huge and it is distributed over space in a
similar way as the charge of 1(r). However the current ¢(r) has its
direction reverse to Y (r). With other words:

() = co P (1) = co P ()

Co is a constant. Thus, when v is spherically symmetric and is embedded
in a sea of QPAD’s that on average are similar to i, while all these
QPAD’s decrease with r as 1/r, then the above construction works.

The long range averaging over an increasing number of contributions and
the random distribution of the 1);’s take care that equation (1) holds.

We will call the renormalized superposition the background field.

This interpretation enables to interpret the transported field as the wave
function and the coupled field as the environment.

This view lifts a tip of the veil that hides why the gravitational constant
enters into the Planck units. The gravitational constant has to do with the
total number of particles that exist!"”.

The background field places the particle in its environment. It means that
the equation of motion is at the same time describing interactions.

117 See D. Sciama: On the origin of inertia,
(http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S
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Prospect
The original Dirac equation can be transformed into two quaternionic
equations:

VY =myp* (1)
VYt =my )
The reverse equations (for the same field configuration) are more
complicated:
V@ =my + 2V, 9) + 27, (3)
Vi =myp® = 27, ) - 201 (4)

We will analyze whether this is more general principle. For example the
Majorana equation is to a certain extend similar to the Dirac equation.

The Majorana equation

The Majorana equation''® differs from the Dirac equation in the way that
the sign flavor of the transported field Y@ differs.

In fact two possible versions of the Majorana equation exist. The first is:

VL = myp® (1)
While the second version is:
vyp® = m,yp© (2)

The first version is in agreement with the use of the background field Y@
as the coupled field. The second equation uses the conjugate PO of the
background field.

118 http://en.wikipedia.org/wiki/Majorana equation
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The sign selection @ only switches a single imaginary base vector. Like
the conjugation, it switches the handedness of 1 . The sign selection Y@
switches two imaginary base vectors. It does not switch the handedness.
In both equations two imaginary base vectors change their sign. These
sign selections do not switch handedness. Three independent directions
are possible. (That fact may not become observable).
For the conjugated equations hold:

v = m®

vl = mp®

Thus the conjugated equation does not switch the handedness. Three
independent directions are possible.

Neutrinos are supposed to obey the Majorana equation.

When the first version of the Majorana equation holds, then
Yop® = map p© = my [y
](1,[)%,[)@) av =mnj|1,l}|2 v =m,
v v
For the conjugated field holds:
YO VYE = mp Oy = mo|yp|?

[wovy®)av =m, [P av =m,
14 |4
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Properties
The particles that belong to this category are neutral fermions. They have
half integer valued spin that can be either up or down.

The third category sign flavor switch

Apart from the Dirac equation and the Majorana equation, a third
category equation is possible. In these equations the mass term flips the
sign of only one imaginary base vector. As a result the handedness flips as
well. The sign flavor of the background coordinate system can act as a
reference for comparing quaternion sign flavors. The quaternionic nabla
operator uses that same sign flavor. With respect to the background sign
flavor, three different possibilities for the choice of the flipped imaginary
base vector exist. It will become clear that this category corresponds to
quarks.

The corresponding equation is:

V2 = my; p@

i =

The index i runs over three color versions r, g and b. These colors relate to
the selected direction. This particle features charge -Ye.

For the conjugated equation holds:
vy = mg p®

The so called down versions obey equation (1) and (2). When equation (1)
holds, then

pOVY? = my; @ @ = my |2

[ o) av = mq

%4
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For each color i a down Version{lpi@ , 1/1®} and an up version

{lpl@ , lp@}exists.

Properties

In contrast to the (l/)@, 1/;®) flip, the (lp@, I/Jl@ ) flip and the (1/)®, 1/Ji® ) flip
are strongly anisotropic. The three choices for the flipped imaginary base
vector may be linked with color charges.

The antiparticles have anti-color. The particles and antiparticles may be
linked with the color charges and the up and down versions of quarks.
The fact that only one of the three, or with the second version two of the
three imaginary base vectors are flipped may account for the respective
electrical charges, which are +2%5 or —%5.

All particles of this category appear to have half integer valued spin. They
can have spin up or spin down. The particles are fermions.

The rules

The ordered pair {{*, {”'} represents a category of elementary particle
types.

The above treated particles appear to be fermions.

For antiparticles all participating fields and the nabla operator conjugate.
Photons and gluons have zero coupling factor.

The rules are:
e If the coupling takes place between two field sign flavors with
different handedness, then the corresponding particle is charged.
e The charge depends on the number and direction of the base
vectors that differ.
e The count for each difference is +3e.

No elementary particle exists that obeys the rules and features electric
charge %3e. Such a particle may exist as a composite. Thus, according to
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these rules the up-quarks are not elementary particlesFor that reason, they
do not belong to the standard model.

Anisotropic coupling fields

We have explored all particles that make use of the isotropic background
field or the conjugate of the background field, which is also isotropic.
These particles appear to be fermions. Next we like to explore particles
that couple to anisotropic fields. These particles appear to be bosons. They
all have integer valued spin.

The cross-sign flavor equations
These equations describe the situation that a flip is made from a 1/)1@ tield

toa 1,[)1-@ tield or vice versa. The direction i might play no role.

v = my,

The conjugated equation is:
vy = my, p

Another form is

vl = my, 2

L

The conjugated equation is:

vy =y g
The sign flavor switch affects three imaginary base vectors and flips the
handedness. As a consequence the particles have a full electric charge. It

concerns two particles, the W~ and the W* bosons. These bosons carry
electrical charges.
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v v = m v

J;/ ("bl@vdjz@) dv szJr'L(l/Ji@ 1/Jl®) av =my,g (6)
YL Y = my p p? 7)
.[ (1/)1® Vll’i@)) av = mw_j‘-/(ll}i@ lpl@)) v =my g (8)
14

The Z boson

The particle that obeys:
V@ =m, yp®

Is a neutral boson.
|, @2 ww®) av =m; | (47 0) av=m. g

Another possibility is:

VY@ =my, p@

The non-sign flavor flip category
In this category no switch is performed. The field couples with itself.
The corresponding equation is:

VY = mp* (1)
For the antiparticle holds:

V*l/Jx* — ml/)x* (2)
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And for the mass m holds
o av =m [1per av = gom
4 14

The equation describes neutral particles.
For the probability density no integral source or leakage exists. Thus m
must be zero.

Fermion and boson equations

Elementary particles are identified by a pair of quaternionic field sign
flavors. The antiparticle corresponds to the conjugated pair. The type of
sign flavor switch determines the charge of the particle. From this
combination it is not clear what the maximum value of the spin of the
particle will be. It certainly has something to do with the isotropy of the
coupled field.

Elementary particles with zero mass are not coupled and appear to be

bosons. With the Wz bosons the coupled field is in condition ¢® or lp@.

For all fermions the coupled field is in condition l/)® or 1/)@.

3)

vl ad el e mm afen L mermae 1D A 21(2)

Elementary fermions are elementary particles that are based on a coupled
pair of field sign flavors of which the coupled member has sign flavor e

Elementary bosons are elementary particles that are based on non-coupled
tield sign flavors or on a coupled pair of field sign flavors of which the

Three fermion equations exist. Their interaction free forms are:
O =m,_ y©

V*lp@ =m,, l/J@ , this concerns the antiparticle
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@ =m, yp®
W = mep®;i=r,g,b

Three massive boson equations exist:

W@ =my, p@
vy =my, yp@
WO =myp®

The massless particles are of the form {i*,*} :
VX =0

Four of these massless bosons exist.

Other possibilities do not appear in the standard model.

VY@ = myyp@
VL = m,p@;i=r,g,b

V@ =m,, p©@

VY@ =m,, p©@

General form

The general form of the equation for particle {1p*,y”} is:

Vy* =myY

For the antiparticle:
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V*I,Dx* =m lpy*
For all particles holds:

Voo — (V, ) = mp,

Vxyp*+ VY5 + Vop* =myp?Y

J¢¢®dvz1

[wPp@av =g
%4

The factor g is real and non-negative.
Further, the equation for coupling factor m

j WV AV =m j @Y YY) dv = m j Y2 dv
Vv 174 4

An equivalent of the Lagrangian may look like

L2 ¥ VgF —my?
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Survey of couplings
In the following table the attribution of particle names is speculative.

[Riri| e | Diff| coupling | m | | Particle | Multiplet |
RL -1 3  yOyuB® m fermion electron 1
LR 1 3  y®yo m fermion positron 1
R - 1 Y Oy© my fermion down-quark 3 colors

s
LI 0 2 4B®y® m, boson z 3?
Ir -1 1 ypOy® my, boson w- 3?
nm 1 1 yp@y0 my, boson w* 3?
RR 0 0 ypO@y© 0 boson photon
LL 0 0 y®y® 0 boson photon
m 0 0 y®y® 0 boson gluon 3?
o 0 y®yo 0 boson gluon 3?
RI % 1 yOy® Myr boson ? 3 colors
% 1 yp@y® my boson ? 3 colors
Lr - 1 yp®y® My boson ? 3 colors
%
R0 2 y@yo My boson neutrino? 3?
L 0 2 yOyu® my boson neutrino 3?
Rr 0 2 ypO@y® My, boson Z? 3?
Colophon:

RLrl; switch by 3, 2 or 1 imaginary base vectors
e; electric charge of particle

Diff; number of imaginary base vectors difference
Coupling; the field sign flavors that are coupled

Fermion/boson;

Particle; elementary particle category
Multiplet; multiplet structure

The neutrinos, Z and W bosons might show multiplicity.
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In the standard model three versions of fermion mass factors m exist.
These versions are not (yet) explained by this model.

Remarkably, in the table several places for particles are still open.

Coupling factors
The integral probability densities are:

[@ou®)yav = [y av =1
174 |4

9= [@Ou@) av = [@2u®)av = (O av = [[w@ av
|4 |4 14 74

The coupling factors are:

Primary Coupling factor reverse Coupling factor

VOV = [@Ow)ar | VO
1%4

ORTAS @, @

1
m, = — WOvY DY) qv
g‘-[( )

p@,yp® m, = ] WOvy@)ay | ¥PW@
174

©) 1 @
2 | =EV (v@vy®) av v,y
Py | =5 (W@vyp®) av PO,y
lV
VI =< [ Pv®) v | VO =2 [ (00 ) av

Most particle categories of the SM appear with three different coupling
factors. This corresponds with three different field configurations of .
This paper does not explain that extra diversity.
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Interactions

In complex quantum field theory, interactions are derived from covariant
derivatives. In quaternion field theory this is not that straight forward.
The problem is caused by the fact that for quaternionic fields in general:

v(ifg) # fvg+(Vf)g

On the other hand quaternionic fields are interesting because a field f can
rotate inside another field g under the influence of a quaternion waltz:

h=gf/g#f

The result is Q-covariance.

Covariant derivative
The covariant derivative plays a role in the Lagrangian and in the
equation of motion.
The covariant derivative D of field ¥(q) is defined as
Dy(q,t) = Vi(q,t) — A(q,t) Y(q, 1)
This is interesting with respect to a gauge transformation of the form
(@) = ¢(@) Y(9)
The field ¢(q) has a modulus that is equal to one:
9(q) p*(q) =1

We suppose that a field H(q) exists such that

Vo(q) = H(q) ¢(q)
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A new version of the derivative can be obtained by a corresponding
vector potential transformation

A'(q) = A(q) + H(q) (5)

D'=V—-A(q) —H(q) (6)
The following inequality holds in general for quaternionic functions.

V(p(@v(@) = (Vo(@)¥(@) + e(@V(q) (7)

However, we assume that it is an equality for ¢(q) and ¥(q).
D'y’ (q) = H(q) ¢(@) Y(@) + ¢(q) Vip(q) (8)
—A(@e(@¥(q) — H@e(@)y(q)
= o(@)(V¥(q@) - A(@) ¥(9))
D'Y'(q) = ¢(q) DY(q) (9)
Thus, with that transformation pair not only the modulus of the function

stays invariant but also the modulus of the covariant derivative stays
invariant.

Further
v (@)D'Y (@) = ¥*(q) ¢™(q) ¢(q) DY(q) (10)
=¥"(q) DY(q)
Above the right sided covariant derivative D is defined

Dy(q) = Vip(q) — A(@Q)¥(q) (11)
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The left sided covariant derivative is defined as:

(@)D = Y(q)V — ¥(q) B(q)

We will use D for both left sided and right sided covariant derivative:

V(@) + Y@V
2

Dy(q) = — A(Q) ¥(q) — ¥(q) B(q)

Multiplication with a unitary factor corresponds with a displacement in
the canonical conjugate space, thus with a shift of the momentum of the
tield.

Q Covariant derivative
The Q covariant derivative! relates to quaternionic field transformations
of the form

V' =y
po =1
This is the quaternion waltz. Let the imaginary field A be defined by:
ch LAQ
¢ 7= —¢'A = (Vo)

The following step is questionable, because with quaternionic functions in
general

V(ifg) # fVvg+(Vfg

119 Principle of General Q Covariance; D. Finkelstein, ]. M. Jauch, S. Schiminovich and D.
Speiser; Journal of Mathematical Physics volume 4, number 6, June 1963, 788-796
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However we consider the rule valid for this special case. In fact we apply
the covariant case twice.

VW =V(e U ¢) = (Vo) o + ¢ (V) o + ¢ ¥ (¢7) (6)
=AY "+ (VP) 9" —oYo'A
V' =AU ]+ (V) @ (7)
The general equation of motion is:
Vy* = m Y (8)
Applying the quaternion waltz gives:
v = [A U] + oV e* 9)
=[Ay¥]+moey’ " = [AY¥]+my”
Where
¢V @ (10)
Thus, the general equation of motion due to the waltz is
vgr = [A ¥ ]+ myY (11)
This equation describes the equation of motion including interactions that
are due to the effect of the quaternion waltz under the influence of

another field (¢).

The interpretation of the Q-covariant derivative is that the particle to
which ¢* and ¥ belong not only moves due to the nabla operator, but
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also rotates with respect to an outside field ¢, which takes the particle in a
quaternion waltz!%.

English quaternion waltz

When the rotation is slow compared to the current P*, then it becomes
interesting to analyze an infinitesimal rotation. The quaternionic value of
@ is close to 1. Thus ¢ = 1 + 46. 460 is imaginary. Let us investigate the
transform Y*' = @ YX @".

U< = (1+460) y*(1-46) (12)
= Y+ 40 y* — X 40 — A0 Y* A0

~ PX + A0 P* — ¥ 40

= X — 2¢P*x 40
AP =~ —2¢P*x A0 (13)
VX = VX — 2 VX x 40 — 2 (V X P¥) X 40 (14)

= VX — 2(Vo* + V X %) x 40
= V¥ — 2 (V§¥) x 40

= m (¥ — 2 Y x 460)

120 For an explanation of the quaternion waltz, see the Hilbert book model:
http://www.crypts-of-physics.eu/OntheoriginofdynamicsBoek2.pdf, part two
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Interpreting the flip event

The equations of motion indicate that a flip of field sign flavor occurs. The
charge density distribution specifies the probability where this flip occurs.
The current density distribution represents the transport of the location
where the flip may occur.

The flip event can be observed. This is then the event of observing the
corresponding quantum. The observation represents the interaction with
another particle. The flip event may represent an electric charge and it
may represent a color charge.

Photons and gluons are flipping at every progression step. That is why
their coupling constant delivers zero.

Interpreting coupling factors

The gravitation field, which is a tensor field rather than a quaternionic
field, is an administrator of the local curvature rather than that it is the
cause of local curvature. The value of the local metric tensor accurately
registers all aspects of the local curvature. From the gravitation field it is
possible to derive centers of gravitation on which the field can be thought
to be anchored. Such a center need not be the location of an actual cause.
It can be the center of the activity of a local geometric anomaly, such as a
black hole. Such a center is a (virtual) position that can be at a location
where space does not even exist. This is possible when two coordinate
systems are considered. One flat and the other curved. The curved system
features geometric anomalies.

In this way it becomes possible to consider a black hole as a geometric
anomaly, such that within which nothing, not even space exists. Instead
space at its border is curved such that no information can penetrate that
border. Every particle, elementary or not, that approaches the border is
ripped apart and part of the debris is attached to the border of the BH.
The rest of the debris escapes from the process.

254



It can be imagined that elementary particles that possess mass will also
have a geometric anomaly at their center. The curvature at the border of
that anomaly forms a center of gravity. The fact that the particle is formed
by anti-symmetric private fields will already explain the presence of such
a local hole.

Private fields of elementary particles are formed by pairs of coupled sign
flavors of the same quaternionic probability amplitude distribution. The
coupling factor that characterizes the coupling of the two sign flavors
might also determine the curvature of the local geometric anomaly.

Interpreting the equations of free movement
The equations of movement are best interpreted when an extra
differentiation step is added:

VY* =my’ (1)
V'VY* = m vy’ ()

It means that a coupled oscillation takes place when the quantum moves.
In case of leptons this means that:

V'V = m V'y* 3)

The coupled oscillation takes place along the direction in which the
electron moves.

The anisotropic coupled quanta oscillate free in one or two directions and
oscillate coupled along the direction of movement.

Extending the Zoo

This paper treated single fields and ordered pairs of sign flavors of the
same base field. The set of particles may be extended by ordered triples
and ordered quadruples of the same base field.
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Higher order couplings

Couplings that constitute composite particles from elementary particles or
other composite particles are not treated here. It is assumed that during
these couplings the constituting elementary particles keep their basic
properties; coupling factor, electric charge and angular momentum.

The properties that characterize the coupling event are sources of
secondary fields. These fields are known as physical fields.

It is thought that these secondary fields play a major role in the higher
order couplings. The reason for this fact is that the properties influence
the curvature of the parameter space.

Forbidden region

Fermions have asymmetric permutation wave functions. This fact has
only significance when two or more states are considered. Let us consider
the situation that the two states are completely identical’® and are nearly at
the same location. In that case the superposition of the two states is given

by:
Y >=|ny > [ny > %ny > |ng > (1)

The plus sign holds for bosons and the minus sign holds for fermions. The
images of the two cases are:

Boson pair Fermion pair

Symmetric distribution Asymmetric distribution

121 http://en.wikipedia.org/wiki/Identical particles
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This is a two dimensional model, but it explains the general idea. Below
the cut through the center of the asymmetric distribution is shown. When
this is compared with the same cut of the squared modulus, then it
reveals a forbidden region for the asymmetric distribution.

Y(x) Y I?

forbidden

ya . /\H/\h_

—~

The particles were put at the closest possible position. Before the
displacement occurs, the direction of the displacement is undefined. Thus
the forbidden region has a spherical shape. When fermions go to their
next position, they must step over the forbidden region. Bosons do not
have that restriction.

Fourier transforms
The Fourier transform of the generalized equation

VY =Ty — (V) + VX P + Vho + Vopp =myp’ (1)

Gives

pY =poo — (DY) + D X P + po + pop = m Y’ )

For all field sign flavors hold:

Polljo - (p,{/v)) =m 1/30 3)
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pXYP+pPo+pp =myP’

VfJnﬁ*dV:l

Let us consider the (anti)commutators
[b®), @] = d@) @) - @) p®")
H®,d®"} = P@) @) +d® p®")
To be continued

Example potential
Spatial Harmonic functions!?? are suitable spread functions.
For a harmonic function f(q) holds:

Af(q) = WOf(q) = 0

If there is a static spherically symmetric Gaussian charge density o (r):

Q

p(q) = exp(—1ql?/(20%))
V2no? ’

where Q is the total charge, then the solution ¢ (r) of Poisson's equation'®,

VZo(q) = —@
is given by
. Q lql
P = gl erf(x/ZTr)

122 http://en.wikipedia.org/wiki/Harmonic function
123 http://en.wikipedia.org/wiki/Poisson%27s equation
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where erf(x) is the error function.

In fact the quaternionic Poisson’s equation represents two separate
equations:

" - P)g0() = ~ 222 ©
¥~ V() = ~ 22 6)

Note that, for |q| much greater than o, the erf function approaches unity
Q
4melq|’

would expect. Furthermore the erf function approaches 1 extremely
quickly as its argument increases; in practice for |q| > 3o the relative error

is smaller than one part in a thousand'*.

and the potential ¢ (r) approaches the point charge potential as one

The definition of the quaternionic potential ¢(g) is based on the
convolution of a quaternionic distribution p(g) with the real function ¢(q)
See Newton potential and Bertrand’s theorem in Wikipedia. The real part
po(q) of the distribution p(g) can be interpreted as a charge distribution.
The imaginary part p(q) can be interpreted as a current distribution.

The convolution blurs the distribution such that the result becomes
differentiable.

In configuration space holds:

_ S L (7)
$(q) = p(q) il

Reversely, according to Poisson’s equation:

124 http://en.wikipedia.org/wiki/Poisson's equation#Potential of a Gaussian charge density
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p(q) == —A¢(q)

The real part of ¢(g) presents a scalar potential. The imaginary part
presents a vector potential.

d(q) = do(q@) + P(q)

In the above section:

The scalar potential is a blurred charge distribution.
The vector potential is a blurred current distribution.
Current is moving charge.

Mass is a form of charge.

(The selected blurring function has striking resemblance with the ground state of the
quantum harmonic oscillator!?s).

In Fourier space holds:

$) = p) 'n%r: Fo®) + ()

In Fourier space the frequency spectrum of the Hilbert distribution is
multiplied with the Fourier transform of the blurring function. When this
falls off when the frequencies go to infinity, then as a consequence the
frequency spectrum of the potential is bounded. This is valid independent
of the fact that the frequency spectrum of the Hilbert distribution is
unbounded.

Equations of motion
The equation for the conservation of charge:

125 Functions and fields:Functions invariant under Fourier transformation:Ladder
operator:Ground state
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So(q) = Vopo(q) +(V,p(q))

We can define §(q):
&) £ Vp(q)
Fo(q) = Vop, (@) +(V, p(@))
F(@) = Vp, (@) £ Vop(q) + V x p(q) = €(q) + B(q)
€(q) =-Vp,(q) +Vop(q)
B(q) =tV x p(q)

The definition of B(q) and €(q) have the freedom of the gauge
transform?'%

p(a) » p(q) + Vo,
€(q) > €(q) — V (Vo ()
Vi, = Vi,
This translates in the source free case sy,(q) = 0 into:

Vopo(q) = £(V,p(q))

To(q) = Vop,(q) +(V,p(@)) =0

In the source divergence free case Vsy(g) = 0 this means:

126 http://en.wikipedia.org/wiki/Gauge_fixing
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VoV, (q) = VY, p(q))
VoV, (@) = VY, P (q))
V(V, (@) =V xV x p(q) +V>P(q)

Due to the fact that there are other charges present, the divergence of the
scalar potential need be in the direction of the current p(g), which for a

spherical symmetric blur is also in the direction of the vector potential ¢(g).

However, a tendency exists to minimize that difference. Thus V,V¢ O(q) is
parallel to ¢p(q). With other words:

d(q) X V(V,¢(q)) =0

Reckoning the sign selections for the sign + of the conjugation and the
handedness + of the cross product will provide four different sets of
equations. This will provide four different Hilbert fields.

Discrete distribution
If p(g) is discrete, such that

p(q) =Xiqs;-6(q —q,)

where gy is a point charge at location q', then the contribution to the field
E(g) that is generated by a point charge at location gi is given by:

9= 1
dE(q) =CIEi'|ql_—q|3= _CIEi'V'H
i l

Differential potential equations
The gradient and curl of ¢(q) are related. In configuration space holds:

Vo(q) = Yodo(q) F(V,d(Q)) + Vod(q) + Vpo(q) + (£V X ¢(q))

C(q) ¥ —Voo(q)
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B(q) ¥ Vxd(q)

F(q) ¥ Vo(a) = Folg) + €(q) = Bg) £ Vop(q)
Fo(@) = Vodo(q) +(V,¢(q))

F(q) = +€(q) = B(q) £ Voep(q)

When the field ¢(q) is split into a private field ¢,(q) and a background
field ¢, (q), then ¢,(q) corresponds to the private field of the uniform
moving item. When this item accelerates, then it goes together with an
extra term V,¢,(q). This is the reason of existence of inertia'>.

(V,€(q) = —V?¢o(q) = po(q)
V x €(q) = 0; Rotation free field
(V,8B(q)) = 0; Divergence free B field
V x B(q) = V(V,$(q)) — V’$(q) = V(V,0(q)) + p(q) + Vo d(q)
VxB(q) = £V o(q) + p(q) + Vo ()
= +V,€(q) + p(q) + Vo 9(q)

Since V¢ (q)is supposed to be parallel to Vg,(q), it is sensible to define
E(q)as the total field in longitudinal direction:

E(q) = —V¢o(q) — Vop(q) = €(q) — Vop(q)

And

B(q) = B(q)

127 Influence; Inertia
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With this definition:

VX E(q) =—VoB(q) (14)
(V,B(q))=0 (15)
VX B(q) = p(q) +V,E(q) (16)

In Fourier space
In Fourier space holds:

F@) = podo®@) — (. @)) + Po® @) + Po(P) +p X P(p) (1)
F(@) = pd(@) = Fop) T E®) £ B(p) £ ped () (2)
To(0) = Podpo(d) — (. d()) 3)
€)= -pdo(p) (4)

E(p) = —pdo(p) = ped(p)

B(p) = px @) (5)
@) = TE€@) + B) £ pod(p) 6)
(0, €)= —p*Po(®) = po(p) (7)
p x €(p) = 0; Rotation free field (8)
(p,B(p)) = 0; Divergence free B field 9)
p X B() = p(p, $(0)) — p*$(q) = p(p, d(»)) + B(p) (10)
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p X B(p) = +popdo(p) + P(p) = +p.E() + p(p)

If the distribution p(g) is differentiable, then the same equations that hold
for fields ¢(q) and ¢(p) hold for the non-blurred distributions p(q) and

p(q)-

Maxwell equations

First it must be noted that the above derived field equations hold for
general quaternionic fields.

The resemblance with physical fields holds for electromagnetic fields as
well as for gravitational fields and for any fields whose blurring function
approximates

1

fl@ =~ —

lql’

In Maxwell equations, E(r) is defined as:

_ d0A(r,t) B dA(r,t)
E(r,t) = —V¢,(r,t) — — = C(r t) — —
Further:
(¥, Er,0) = ~Vigy(r,t) — D)
_ pO(ri t) _ a(V,A(T, t))
B o ot

In Maxwell equations, B(r) is defined as:

B(r,t) = VX A(r,t) = B(r,t)

Further:
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0B(r,t)

VX E(rt) =— 5%
(V,B(r,t)) =0

, OE
VX B0 = kol +&05)

Differentiable distribution
If the distribution p(g) is differentiable, then the same equations that hold
for fields ¢(q) and ¢(p) hold for the non-blurred distributions p(q) and

p(q).
Using:

B=VX¢=i(Vopy —Vy¢2) +j(Vy1 — V1¢)) + k(V1¢, — V1)
gives

Vod(q) = +Vydo(q)

Vod1 (@) = F (V21(@) — Vyb2(a))

Vodo(q) = £ (V1¢||(CI) - V||¢1(CI))

Vodo(q) =V, d(q)) = V(@) + Vid1(q) + V22(q)

And correspondingly in Fourier space

po‘lsll (p) = +py <lso (»)

P (@) = £ (P162(0) — P2 b))

Pob2(@) = F (P11 (@) — P2y ()
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Po®o (@) = (0, () = p1dy (D) + P11 (P) + P2P2 (D) 9)

The origin of mass

Conservation laws

Flux vector

The longitudinal direction k of E(g) and the direction i of B(q) fix two
mutual perpendicular directions. This generates curiosity to the
significance of the direction k X i. With other words what happens with

E(q) x B(q).

The flux vector &(q) is defined as:

S(q) ¥ E(q) X B(q) (1)

Conservation of energy

Field energy density
(V,8(q)) = (B(q),V x E(q)) — (E(q),V x B(q)) (1)
= —(B(q),VoB(q)) — (E(q), ¢(q)) — (E(q), Vo E(q))
= —%V,((B(q), B(q)) + (E(q), E(9))) — (E(q), $(q))

The field energy density is defined as:
urieta(q) = 2({B(q), B(q)) + (E(q), E(q))) = up(q) + ux(q) 2)

8&(q) can be interpreted as the field energy current density.
The continuity equation for field energy density is given by:

Vousiea(q@) +(V,8(q)) = —(E(q), p(@)) = —Po(a){E(q),v(q)) (3)
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This means that (E(q), ¢(q)) can be interpreted as a source term.
$0(q)E(q) represents force per unit volume.

b0(q){E(q),v(q)) represents work per unit volume, or, in other words,
the power density. It is known as the Lorentz power density and is
equivalent to the time rate of change of the mechanical energy density of
the charged particles that form the current ¢(q).

VOufield (Q) +(V, G(Q)) = _voumechanical(Q)
Volmechanicar = (E(CI)’ ¢(Q)> = ¢o(CI)<E(CI),v(CI)>

V0 (ufield (Q) + umechanical(q)) = _(V: 6(‘1))

Total change within V = flow into V + production inside V

u(q) = Ufield (@) + Umechanicat (@) = up(q) + up(q) + Umechanicar (@)

U = Ufleld + UmeChanical = UB + UE + Umechanical = fu dV
v

d
— udV=j€(ﬁ,6)dS+fsodV
dt g

14

%4

Here the source so is zero.

How to interprete Umechanical
Unmechanicai 1S the energy of the private field (wave function) of the
involved particle(s).

Conservation of linear momentum

Field linear momentum
&(q) can also be interpreted as the field linear momentum density. The
time rate change of the field linear momentum density is:
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Vo&(q) = Grieta(q) = Vo E(q) X B(q) + E(q) X VoB(q) (1)
= (VxB(q) - p(q)) x B(q) — E(q) x VX E(q) (2)

G(E) = Ex (V x E) =(VE ,E) — (E,E) = V(E ,E) — (E, E) 3)
= —V(EE) + %V(E ,E) + (V,E)E

= —V(EE + %15(E ,E)) + (V,E)E

G(B) = B x (V x B) = —V(BB + %15(B,B)) + (V,B)B (4)
H(B) = —V(BB + %13(B,B)) (5)
Vo&(q) = G(B) + G(E) — p(q) x B(q) (6)

= H(E) + H(B) — p(q) X B(q) +(V,B)B + (V,E)E
= H(E)+ H(B) — p(q) X B(q) — po(q) E(q)
=H(E)+H(B) - f(q) =7(q) — f(@)

T(q) is the linear momentum flux tensor.
The linear momentum of the field contained in volume V surrounded by
surface S is:

Pria = [ grieadv = [ popav + [ (VB av + § (@, E)as ?)
S
\%4 \%4 vV
f(@) = p(q) x B(q) + po(q) E(q) (8)

Physically, f(q) is the Lorentz force density. It equals the time rate change
of the mechanical linear momentum density gechanicai-
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gmechanical(q) = pOm(Q)v(q)

The force acted upon a single particle that is contained in a volume V' is:
szdezf(px B+ py E) dV
14 14

Brought together this gives:

V0 (gfield(Q) + gmechanical(Q)) = —(V, T(q)>

This is the continuity equation for linear momentum.
The component Tj; is the linear momentum in the i-th direction that passes
a surface element in the j-th direction per unit time, per unit area.

Total change within V = flow into V + production inside V

9(q) = Yrield (@) + Gmechanicai (@)

P = Pfield + Pechanical = Jg av
|4

d
— ng=¢(ﬁ,T)dS+jsng
dt S

14 14

Here the source sg = 0.
Conservation of angular momentum

Field angular momentum
The angular momentum relates to the linear momentum.

h(q.) =(@q@—-4q.) xg(q)

hticia(qc) = (@ —qc) X Grie1a(q)
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hmechanical(Q) = (q - qc) X gmechanical(Q) (3)
¥(qc) = (q—qc) X T(q) (4)

This enables the balance equation for angular momentum:

V0 (hfield (qc) + hmechanical(qc)) = _(V' %(qc)) (5)

Total change within V = flow into V + production inside V

J = ]field + ]mechanical = f hdv (6)
74

d _ & (7)
— | hdV =¢R,K)dS + | s, dV
dt S )

%4

Here the source s»=0.

For a localized charge density contained within a volume V holds for the
mechanical torsion:

(q.) = f (@' - q0) x F(g)dV ®)
74

- j @ - 40) % (po(@VE(@) + j(q) x B(g))dV
\%4

=0Q(q—q.) < (E(q) + v(q) x B(q))
]field(qc) = ]field(o) +4qc X P(Q) (9)
Using
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(Va, b) = aa”b
@O =M gg,

da,
(b, Va) = nﬂ a—qv bﬂ

holds

J ie1a(0) = f q' x &(q)dV = f g X E(@) XV X $(q) dV
174 174
- f (@' % ((V$),E) — (q' X E,(V$))) dV
174

= [ @ x(wg).Brav
\%4

+jE><qde—jV(V,Eq’x¢)dV

%4

+ f (q' X §)(V,E)aVv
14

Spin
Define the non-local spin term, which does not depend on q' as:

5 = f E(q) X $(q)dV
174

Notice
d(q) X Voo(q) = poV X d(q) + V X (¢o(@)$())
And
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Liea(®) = [ @' X (V). BV + [ @' x poav (14)
v v

Using Gauss:
f(V, a)dV = yg(ﬁ, a)dS (15)
v S
And
Leads to:
Jfie1a(0) = Ziera + Lyiera(0) + 3€ (A, Eq' x ¢)dS (17)
s

Spin discussion
The spin term is defined by:

%o = j E(q) x p(q)dV (1)

%4

In free space the charge density m vanishes and the scalar potential ¢o
shows no variance. Only the vector potential ¢g may vary with qo. Thus:

E=V¢,—Vop = -V, 2)

Zriea = [ (Fo(@) x pla)d 3)
\%4

Depending on the selected field Zges has two versions that differ in their sign.
These versions can be combined in a single operator:

rt fieldl 4)

Zriod = | o
field lz field
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9(@)
If l¢(D)]

the principle normal N(q,), then

Voo (q)
Vo (q)]

can be interpreted as the

can be interpreted as tantrix (qq) ) and

(Vo (9))x9(q)
[(Vop(a))xp(q)]

can be interpreted as

binormal B(q).
From these quantities the curvature and the torsion!28 can be derived.

T(t) 0 k@® 0 ][T®
NO|=|-xk® 0 T@®||NQ®
B(t) 0 -t 0] [B()

States

Where a unique closed Hilbert subspace represents a given physical item,
its state characterizes the probabilistic properties of that item. In quantum
physics, a quantum state is a set of mathematical variables that as far as is
possible describes the corresponding physical item. For example, the set
of 4 numbers {n, |, mi, ms} define part of the state of an electron within a
hydrogen atom and are known as the electron's quantum numbers. The
observables that determine the state are mutually compatible. The
position of the electron within the atom is a hidden property. If two
operators are each other’s canonical conjugate, then only one of them can
participate in the state, or the state must contain an account of the
combination of both values. An example of such a combination is the
ladder operator.

Quantum states can be either pure or mixed. Pure states cannot be
described as a mixture of others. Mixed states correspond to a random
process that blends pure states together. Realizations of elementary types
are characterized by pure states.

128Path characteristics
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This indicates that the notion of state is closely related to the basic
constituents of Hilbert fields. Stated in other words:

The QPAD that represents the private field of an elementary particle
also represents the state of that particle.
The properties of the field are also the properties of the state.

In relation to the concepts defined earlier, a pure state corresponds to the
blur of an elementary Hilbert distribution, while the blur itself can be
interpreted as a QPAD. The state then also corresponds to the squared
modulus of this QPAD, which is a probability density function. The blur
is defined with respect to a background coordinate system. This
coordinate system is delivered by a GPS operator'? that resides in rigged
Hilbert space. For example the operators @ and Q suit that purpose, or the
coordinate system is represented by the canonical conjugate, the GMS
operator that corresponds to P or P. With other words, several different
states correspond with the same physical item. The position of the
considered item is determined by the position of the anchor points of the
QPAD. These anchor points correspond to eigenvectors of the strand
operator. The eigenvalues of this strand operator are coupled to the
background coordinate system. This coupling is inaccurate. The QPAD
reflects the inaccuracy.

When performing an observation on a quantum state, the result is
generally described by a probability distribution, and the form that this
distribution takes is completely determined by the quantum state and the
operators that are related to the observation of the quantum state. The
result of an observation is only determined probabilistically. Even when
the observed quantity is quantized it still can take a range of values, each
with a corresponding probability. In relation to the observables that
determine the state, a pure state is characterized by the blur of a single
elementary Hilbert distribution and that blurred distribution corresponds

129Hilbert spaces; Generating a Hilbert space GPS
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in relation to these observables to a mathematical object known as a wave
function. If another observable concerns the canonical conjugate, then the
corresponding Fourier transform of the wave function must be
considered.

The result of a “sharp” observation equals one of the eigenvalues that
corresponds to the set of eigenvectors over which the probability
distribution is non-zero. It means that the observable must have the same
eigenvectors as the operator that is used to define the wave function. The
probability of getting this vector and the corresponding value is given by
the probability density that corresponds to the wave function value. The
probalistic nature of observations reflects a core difference between
classical and quantum physics. The granularity of observables that are
afflicted with Planck limits forbids that differences are measured with
precise accuracy.

Linear combinations (superpositions) of states can describe interference
phenomena. A mixed state cannot be characterized by a single blurred
elementary Hilbert distribution. Instead, it is described by the associated
density operator of that mixed state. It is still represented by a (blurred)
closed Hilbert subspace, but that is no longer the subspace that is spanned
by a single elementary Hilbert distribution.

Pure states can be represented by a single blurred elementary Hilbert
distribution.

State definition
A measure u on the closed subspaces of a Hilbert space obeys the rule:

1(B) = it A,, for each set {A;} of closed subspaces (1)

Each Hilbert vector |v > generates a measure u,,(A) via the projection P4
of [lv >on A
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(A = [Pa)II?

Gleason’s theorem states:

Let u(A) be a measure on the closed subspaces A of a separable Hilbert
space H with dimension > 3, then there exists a positive definite self
adjoint operator T of the trace class, such that

u(A) = trace(TPy)

Given a state P on a space of dimension > 3, there is an Hermitian, non-
negative operator p on H, whose trace is unity, such that

Vixsen{P(x) = < x| p x >}, where x is a ray spanned by |x>

With each compact normal operator Q corresponds an orthonormal base
of eigenvectors {|q >}, with eigenvalues q. As a consequence a notion of
state is attached to each physical item combined with one or more
mutually compatible compact normal operators {Q;};.

In Hilbert space a state, or probability function, is a real function P on the
Hilbert subspaces, with the following properties:

1. P(0)=0
2. Vyeu{P(y) = 0}, y is a Hilbert subspace

3. XjP(x;) =1, where |x; > form an orthonormal base of H, and x; is
the ray spanned by | x>

4. P(y) = Xj=1 P(xj) where x;are mutually orthogonal rays spanning
subspace y
Pure state

In particular, if some ray xo satisfies P(xo) = 1, then according to Born’s
rule:
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Vixsen(P(x) = |< xo,x >|%} (1)

This happens when [xo> represents an unary pure state.

ltem state
The state P({q;};) is connected to a wave function lp({q i} ]-), where

P(a}) = |v(ta3)| (1)

and {q;}; are the eigenvalues of eigenvector{|q; >} of the operators {Q;};.
Two operators A and B are compatible when their commutator is zero:

[A4,B] & AB—BA = 0 )

If the state is characterized by a set of independent properties, then each
of these properties corresponds with a corresponding operator. These
operators must be normal, but they need not be compact. It must be
possible to construct a spectral decomposition for each of the operators.
Further, the operators that together determine the state must be mutually
compatible. The wave function is then the product of the probability
amplitudes that correspond to the separate operators. Thus the resulting
wave function is a characteristic that represents the probability
amplitudes of a set of mutually compatible observables that correspond to
the normal operators that determine the state.

The squared modulus of the probability amplitude is the probability
density. The wave function will also be a function of a progression
parameter. Position can be a state characterizing observable. However,
like the progression parameter, spacetime does not occur as an eigenvalue
of a Hilbert space operator. The operators may vary. For example an
operator may be replaced by its canonical conjugate. In that case, care
must be taken that the operators that form the changed state are still
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compatible. Thus, even with the same physical item, the wave function is
not unique.

For the operator Q with eigenfunctions |q> and eigenvalues g the
probability amplitude function \(g) is given by the smoothed version of

<ylq>
Y(q) =<ylq> 3)

When Q is a compact normal operator then the smoothed version of {(g)

is a continuous function. In that case the eigenvalues of the corresponding
operator Q that resides in rigged Hilbert space H are used. Then {(g) has
a Fourier transform ¢(p), where the operator P with eigenvectors | p> and
eigenvalues p is the canonical conjugate of Q. Like {(g), the function {(p)
is also a function that characterizes the corresponding item and [¢> is a
characterizing vector. The parameters g and p may be quaternionic.

o) =9¥(q) =<¢lp> (4)

With respect to the correspondence with traditional quantum logic, it is
wrong to take any characteristic vector including the locator or any
function including the wave function as the representative for the item. It is
ridiculous to expect that a single Hilbert vector carries all properties of a
complex physical item, such as a DNA molecule or an elephant.

In usual quantum mechanics the wave function can be interpreted as the
combination of a stationary vector and a progression operator. The
progression operator has the form A-exp(S/h). This was introduced by
Dirac. A is Hermitian and positive. S is anti-Hermitian. Both operators are
a function of parameter t. This is reflected in the Hamilton-Jacobi
equation.

In contemporary quantum field theory the fields replace the wave
function. Thus a field may be interpreted as the amplitude of the
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probability to find something at the location of the field value. For bosons
that something may be interpreted as a virtual particle. For fermions that
something may be interpreted as a pair of virtual particles. Each type of
virtual particle has its own type of field.

There are some questions left with wave functions:
e Can it have non-zero values outside the subspace that represents
the physical item?
o Answer: Yes. The private field covers the whole Hilbert
space.
e Is the wave function a regular function?
o Answer: When universe is restricted by an outer horizon,
then the wave function is regular.
e What happens to the representing subspace and to the wave
function when a measurement on a particle is performed?
o Answer:

*  When the coordinate space stays the same, then both
the subspace and the wave function will not be
affected. However, the measurement may affect the
state of the particle.

* When the coordinate space changes into the canonical
conjugate, then the subspace changes to other base
vectors and the wave function is Fourier transformed
into a new form.

¢ Has a system a wave function?
o Answer: In general a system must not have a wave function,
but it has a density operator.

Probability density

Gleason’s theorem!® states that a probability measure u(P) on the lattice
L(H) of projections P on closed subspaces of a Hilbert space H,
corresponds to a non-negative Hermitian operator p with trace 1, such

130 http://en.wikipedia.org/wiki/Quantum logic#Statistical structure
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that u(P) = tr(pP). When the projections Pq correspond to the rays formed
by the eigenvectors | q> of operator Q and pi(Pq) corresponds to the
considered physical item, then pi(Pq) = <q, pi g> corresponds to the square
of the modulus of the wave function i(q). pi is the probability density
operator' corresponding to pi. The probability measure p is a regular
function.

The probability density function'® P(q) = [{(g) |? of an absolutely
continuous random variable g is a function that describes the relative
chance for this random variable to occur at a given point in the Q
observation space. The probability for a random variable to fall within a
given set is given by the integral of its density over the set.

The probability density operator!'® p is positive-semi-definite (V|ee 1 {<flp
£>2>0}), self-adjoint (p = pt), and has trace one (tr(p) = 1). For the operator
Q with eigenfunctions | g> and eigenvalues g with probability amplitude
P(q), the density operator p is given by

p =X dl<¥lg>I*-1g ><ql}

Von Neumann entropy'* is defined using the density operator of physical
items.

The entropy S(0) describes the departure of the system from a pure state.
In other words, it measures the degree of mixture (entanglement'*) of the
state [{>.

The operator A can be decomposed

131 Functions and fields:characteristic functions

132 http://en.wikipedia.org/wiki/Probability density function
133 http://en.wikipedia.org/wiki/Density operator

134 http://en.wikipedia.org/wiki/Von Neumann entropy

135 http://en.wikipedia.org/wiki/Quantum entanglement
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A= Y,a>a<al

For the state |1{> the expectation value (4) for the observable A is
(A Z <yplAy >= T A< Plg >|*-< q| Aq >} = tr(p4)

A Hilbert field is a blurred Hilbert distribution. The blur represents a
QPAD.

The squared modulus of the private field that belongs to a Hilbert
distribution can act as a probability density function. The projection
operator whose target domain is spanned by the Hilbert distribution can
act as the probability operator.

States and blurs

Apparently a state is the same stuff as the basic constituent of a Hilbert
field. Both can be characterized as QPAD’s. The squared modulus of a
probability amplitude distribution' is a probability density distribution
(PDD). The state corresponds with a wave function or with a probability
density operator.

e The state of a physical item can be interpreted as the probability of
finding the parameter value when an observation is done that
corresponds to the corresponding coordinate operator.

e The squared modulus of the blur can be interpreted as the
probability of detecting a quantum at the location specified by the
parameter value that corresponds to the corresponding coordinate
operator.

Blurs are the building stones of Hilbert fields. In a similar way wave
functions must be interpretable as the building stones of fields.

Blurs are private fields of elementary Hilbert distributions. Thus, wave
functions must also be related to elementary Hilbert distributions.

136 http://en.wikipedia.org/wiki/Probability amplitude; the quaternionic version is used.
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Observables and field values

In separable Hilbert space observables are represented by operators. The
observed value is represented by an eigenvalue or by the expectation
value of the operator that represents the observable. The expectation
value can be computed using the QPAD of the observed item. In order to
do this the QPAD must be written as a function of the eigenvalues of the
operator.

Scalar physical fields have numeric values. Vector and tensor fields
consist of vectors and tensors that are constructed using numbers. Both
the eigenvalues of operators and the values of fields may be hyper
complex 2"-ons'¥.

Numbers

The Hilbert space can be specified by using a number space that allows
the mutual orthogonalization and the closure of subspaces. The real
numbers, the complex numbers and the quaternions can perform that job.
Horwitz showed that even the octonions with some trouble can achieve
this 13, The real numbers, the complex numbers, the quaternions and the
octonions are the only normed division algebras and they are the only
alternative division algebras. In general the octonions are not associative,
but the product of two octonions that belong to the same quaternionic
subfield is associative. The alternative property of the octonions admits
the closure of the subspace generated by (successively associated)
products of the vector with octonion elements to order seven, i.e., after
multiplication seven times by octonions, the subspace no longer grows.

Neither all quaternions nor all octonions commute. However, within
complex subspaces the numbers commute. In general holds for 2"-ons that
they behave like 2™-ons in their lower m dimensions.

137 see http://www.math.temple.edu/~wds/homepage/nce2.pdf or the appendix
138 gee: http://arxiv.org/abs/quant-ph/9602001
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We might take the following freedom. The fact that a given number space
is used for specifying linear combinations of Hilbert space vectors does
not mean that eigenvalues of operators must also be restricted to that
same number space. In this sense a Hilbert space specified over the
quaternions may allow eigenvalues of operators that are taken from the
octonions or even higher 2"-ons. The problem with higher dimension 2n-
ons is that their number characteristics deteriorate with n. However, as
long as the (full) eigenvalues are not used to construct linear
combinations of vectors, or to specify the inner products of the Hilbert
space, there is no problem. This means that operators for which
expectation values are used as parameters of functions must also have
quaternionic or lower dimensional eigenvalues.

All higher dimensional 2°-ons contain several subspaces that are lower
dimensional 2™-on number spaces. Further, 2"-ons behave like 2™-ons in
their lower 2™ dimensions.

In general the elements of curves or curved manifolds are themselves not
numbers. So, in general they cannot be used as eigenvalues. However,
locally the elements of a curved manifold may resemble numbers of a 2"-
on number space. Also tangent spaces may resemble number spaces.

Number spaces can be attached as tangent spaces to smoothly curved
manifolds. Smoothly curved trails of objects that locally resemble 2"-ons
can be treated with the Frenet-Serret frame toolkit. In that way the
elements of the curves and the manifolds obtain number characteristics in
a small enough environment.

Sequences or sets of operators can locally have eigenvalues that are
numbers which can be considered as member of smooth curves or of the
tangent space of a curved manifold at that location. In that way the
elements of smooth curves or of curved manifolds can be related to the
corresponding eigenvalues. 2"-ons are ideally suited for this purpose. This
means that the eigenspaces of the subsequent operators in a trail need not
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overlap. These eigenspaces are only used locally. When curvature and
bending of the operator trail diminish, the dimension of the local number
space can be lower. When the curvature and the bending increase, the
dimension must be higher. This will be reflected in the dimensionality of
the local eigenvalues. Apart from the application as eigenvalues of
operators the 2"-ons are suited as values of physical fields.

We will restrict to the 2"-ons as extensions of the quaternions. As we
stated, the higher dimension numbers created with the Cayley-Dickson
construction are not so well behaved. Alternatives are the use of Clifford
algebras, Jordan algebras or Grassmann algebras. We will show that in
the Hilbert space the 2"-ons for n > 1 automatically introduce these latter
algebras for example through their number waltz.

The niners are the most extensive 2"-on numbers that still keep a
reasonable set of number characteristics. More precisely said the 2"-ons,
even those that have a higher dimension than the octonions, keep
reasonable number characteristics in the space spanned by their
coordinates that have an index lower than nine. The real numbers, the
complex numbers, the quaternions and the octonions completely fall
within these boundaries. The above hyperlink describes exactly what
characteristics the niners retain.

The subspace of the 2"-on field that is spanned by the first 2™ dimensions
acts as a 2™-on number space. Thus in a dynamic situation, an octionic
operator acts locally as a quaternionic operator. In a smaller or more flat
region it acts as a complex operator and at “nano”-locality as a real (or as
an imaginary) operator.

2n-on construction
The 2r-ons use the following doubling formula

(a,b) (¢, d) = (a-c - (b-d’),(b"c’)" + (b™(a™((b)"d")))) 1)
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Up until the 16-ons the formula can be simplified to

(a, b) (¢, d) =(a-c—b-d’, cb + (a"b)-(b-d))
Up to the octonions the Cayley Dickson construction delivers the same as
the 2"-on construction. From n>3 the 2"-ons are ‘nicer’ than the Cayley

Dickson numbers. They keep more useful number characteristics. The 2*!-
ons contain the 2"-ons as the sub-algebra of elements of the form (a, 0)

Waltz details
The 16-ons lose the continuity of the map x => xy. Also, in general holds
xy-x # x-yx for 16-ons. However, for all 2"-ons the base numbers fulfill
eiej-ei = ei-ejei. All 2n-ons feature a conjugate and an inverse. The inverse
only exists for non-zero numbers. The 2"-ons support the number waltz

c=abal.
Often the number waltz appears as a unitary number waltz

c=u"bu

where u is a unit size number and " is its conjugate u-u” = 1.

In quaternion space the quaternion waltz a-b-a’'can be written as
a-b-al=exp(2:i¢)-bexp(-2-tiP)
=b—bi+exp(2-miP)brexp(-2-mid)
=b-bi+exp@miP)bL

Ab = (exp(4-ti-}P) - 1)bs
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= (cos(4-r-@) + 1-sin(4-m-P) — 1)-bs
= exp(2- T ()2 Tsin (2-7-)-be
LTAbI | = 112-sin(2:7-}p)-bil | (5)
Another way of specifying the difference is:
Ab = (a-b —b-a)/a=2-(axb)/a (6)

LTADI =2-11axb! |/ | lall (7)

Figure 1. The rotation of a quaternion by a second quaternion.

287



Infinitesimal number transformation
The number v is close to 1. Thus v =1 + As. Let us investigate the

transform ¢ = v*-b-v.

c=(1+As")b(1+As) (1)
=b+ Asb+b-As+ As™b- As
=b+ As"b+b-As
=b+ Aso:b + 2-bxAs

Ab = Aso-b + 2-bxAs (2)

This comes close to the effect of an infinitesimal number waltz, especially
when Aso = 0 In that case Abo =0 and Ab is perpendicular to As.

For 27-ons with n > 1, a-ba! in general does not equal b. This effect stays
unnoticed when quantum mechanics sticks to a complex Hilbert space.
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b.2sin?(2nd))
ab.a*t

: ~ | b.isin(4n®)

Ab = (-2sin2(2n®) + isin(4nd))b,

Figure 2: The difference after rotation

Sign selections

The paper that describes 2"-ons does not describe the choice for right or
left handedness of the external vector product. So, we do it here. The
generally accepted convention is to let the handedness depend on the
orientation of the underlying R space. However, when numbers are
constructed via the Cayley-Dickson construction or the 2"-on construction
then the handedness follows from the applied construction formula. We
want to get rid of these restrictions, because we want to give operators
and fields the freedom to select the handedness and other sign selections
of their (eigen)values.

The 2r-ons have n independent binary base numbers and n sign
selections. The real numbers do not offer a sign selection. The complex
numbers offer the selection of the sign of the real or the imaginary axis.
This is inherited by all higher 2"-ons in the form of the conjugation. The
quaternions have two independent imaginary base numbers and two
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independent sign selections that both affect the handedness of its external
product. The octonions have three independent imaginary base numbers.
These correspond to three independent sign selections for the handedness
in external products that involve this new base number.

Need for spinors

In the number waltz the current manipulator only needs an argument « in
order to turn the subject over 2a. This is typical behavior for spinors.
Spinors also have a storage place for the handedness of rotations. By
using the number waltz and the sign selections the 2"-ons can perform the
same act as the spinors. Spinors are only required when quantum
mechanics is restricted to complex Hilbert spaces. Spinors are the carriers
of the spin phenomenon. Thus, in our model the sign selections in
combination with the number waltz form the carriers of spin.

The approach taken in this paper might cause a revival of the importance

of the hyper complex numbers that turned in oblivion when Gibbs
introduced his vector analysis.
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Influence

The original example proposition (#) talks about influencing the position
of an item. This implies that the position of the item changes due to the
mentioned influence. Thus when the influence occurs, the eigenvector
that represents the position of the item is exchanged against another
eigenvector. That other eigenvector corresponds to another environment
inside the eigenspace of the position operator. The eigenvectors of the
position operator move with respect to the subspace that characterizes the
item. Another possibility is that the eigenvectors stay, but the
corresponding eigenvalues change while the Hilbert subspace moves. In
both cases the movement is relative. See Heisenberg picture versus
Schrodinger picture’®.

Thus, there is a way to implement influence in Hilbert space. The
influence causes a move of the item’s subspace relative to one or more
eigenvectors of the position operator. The original proposition (#) claims
that this movement is caused by other items. We must check whether this
is true.

If this is true then influences are the motor behind the dynamics of the
items.

The universe of items

The original proposition (#) states that all items influence each other’s
position. This includes that all items influence the considered item. Part of
the items compensates each other’s influences on the currently considered
item. It will be shown that this holds for the largest part.

Inertia

The influence may decrease with distance according to some function f(r)
of the distance r. However the number of contributing items increases
with the distance. Depending on function f(r) the most probable result is

139 Dynamics: Schrodinger or Heisenberg picture
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that the strongest influence comes from the cooperative activity of the
most distant items. Due to the enormous number of items in the universe,
any variation of the influences of the distant items averages away. This
also holds for the density distribution of the items. So there exists a fairly
uniform background influence caused by the universe of items. What will
happen, can be deduced from an equivalent of Denis Sciama’s analysis'¥.

We will take his analysis as a guide. Sciama’s analysis uses a different
setting: the (observed) 3D space and coordinate time. This setting raised
critique because the approach involves instantaneous action on large
distances. In Sciama’s setting this is in conflict with special relativity. In
our setting we do not (yet) encounter special relativity. We use the
coordinate space defined by an appropriate coordinate operator and the
progression parameter ¢t that relates to the progression step counter as our
setting. A location in coordinate space represents a location on the unit
sphere of Hilbert space. This last location is taken by the eigenvector that
corresponds to the first location. As stated before, the unit sphere of
Hilbert space is an affine space. This means that we must treat position as
relative data. With other words, the eigenspace of the coordinate operator
has no absolute origin.

The most important aspects of the analysis are:

The total potential @ at the location of the influenced subject is'!
av
<P=—J£dV=—pJ—=2nR2p (D
vT v T

This conforms to a Gaussian blur'*? as a representative of the average blur
function. The integral is taken over the coordinate space volume V.
Indirectly, the integral is taken over the unit sphere of Hilbert space. This

140 See: http://arxiv.org/abs/physics/0609026v4.pdf and "On the origin of inertia", by
Denis Sciama (http://www.adsabs.harvard.edu/abs/1953MNRAS.113...34S

141 See: http://en.wikipedia.org/wiki/Newtonian potential
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is an affine space. The parameter r is the length of the vector from the
actor to the location of the subject. The considered subject is located
somewhere in the affine coordinate space. All other subjects have
positions relative to that considered subject. At large distances, the
density o of the contributing items can be considered to be uniformly
distributed. Also any variance in strength other than the dependence on r
becomes negligible because the differences are blurred and averaged
away. We already assumed that the average blur of the distributed matter
in universe is a Gaussian blur. We take the average of the strength as the
significant parameter. We combine it with p. Therefore the average of p
can be taken out of the integral. Thus, apart from its dependence on the
average value of p, @ is a huge constant. Sciama relates @ to the
gravitational constant G.

_ .2
G= C/(p

As a consequence we can consider the universe as a very large rigid body.
If nothing else happens then all influences compensate each other.

In the following equations we use imaginary quaternions rather than 3D
vectors. In this way we can avoid the distracting factor .

If the considered subject moves relative to the universe with a uniform
speed v, then a vector potential A is generated.

A=_fudv 2)
yCc-T

Both p and v are independent of r. Together with the constant c they can
be taken out of the integral. Thus

A= Dv/c (3)
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What we have here is the reverse of the definition of the potential that
goes together with a charge distribution. When we defined a Hilbert field
we started in fact from a charge distribution and a current distribution
and we considered the influence of these distributions on the universe.
Here we consider the influence of the universe on a local charge or
current. For this purpose we use the same volume integrals!

The field that we treat in studying inertia is a curvature field rather than a
covering field. The curvature field derives from the covering field by
taking the curvature that is caused by the decomposition of the covering
field as its charge.

The notions of charge and current correspond to equivalent notions in
Noether’s theorem!43. Here we talk about inertia and curvature fields.
Thus charge may symbolize mass.

Here the progression parameter t plays the role of “time”. Be aware, this
is not our usual notion of time.

According to Helmholtz theorem the Hilbert field derived from the above
potentials can be split into a divergence free part and a rotation free part.
The Helmholtz decomposition theorem only concerns the static versions
of the derived field. It is related to the fact that the Fourier transform of a
vector field can be split in a longitudinal and a transversal version. There
also exists a corresponding split of the multi-dimensional Dirac delta
function in a longitudinal and a transversal version. If we use the position
operator Q as the coordinate operator, then the decomposition runs along
straight lines. If we use the GPS operator © then the decomposition runs
along curved lines. In curved manifolds the Helmholtz decomposition
theorem should be replaced by the Hodge decomposition theorem.

143 http://en.wikipedia.org/wiki/Noether%27s theorem
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A variation of v goes together with a variation of A. On its turn this goes
together with a non-zero field A(r, t) which is a dynamical part of the
derived Hilbert field.

Sciama uses a Maxwell equation to explain the relation between ov/ot and
A(r,t). Our setting differs, but the main reasoning is the same.

E(r,t) = —Vo(r,t) —=- A(r,t) (4)
E(kw) = —k- (ko) — = 0Ak w) (5)

If we exclude the first term because it is negligible small, we get:

® oOv ov (6)
Erit) = ——=+-—=06—
.0 c? ot ot
Remark: As soon as we turn to the dynamic version (4) an extra
component A of field E appears that corresponds to acceleration dv/ot.
(See for derivation of Maxwell equations e.g. the online book
http://www.plasma.uu.se/CED/Book; formula 3.25 or the section on Hilbert field

equations in this e-paper)

As already claimed, in our setting the component V@ of the field E is
negligible. With respect to this component the items compensate each
other’s influence. This means that if the influenced subject moves with
uniform speed v, then E = 0. However, a vector potential A is present due
to the movement of the considered item. Any acceleration of the
considered item goes together with an extra non-zero E field. In this way
the universe of items causes inertia in the form of a force that acts upon
the accelerating item’s charge.

We have used the coordinate space as a playground to implement an
equivalent of Sciama’s analysis. The analysis uses the fact that every item
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in universe causes an influence and that this influence reduces according
to f=—k/r. (Compare this with Bertrand’s theorem!* in Wikipedia)

A uniform movement in Hilbert space does not on itself generate a
reaction of the universe of items. Any alteration of that uniform
movement will cause as reaction a field. The physical name for this
reaction is action. It usually gets the symbol S. When the path of the item
coincides with a geodesic, then it can be travelled field free.

Uniform movements do cause displacement of charges. On its turn it
changes the configuration of the local field. Thus, indirectly the local field
will also act on uniform displacements. As we see from inertia, any field
change goes together with a corresponding acceleration.

It must be noticed that the original analysis of Sciama uses observable
position space rather coordinate space and it uses a different notion of
time. However, the general conclusion stays the same. Sciama’s analysis is
criticized because it uses infinite speed of information transfer. Since we
do not work in observable position space, we do not encounter coordinate
time. So for us, this criticism is misplaced. Most part of the story plays in a
stationary condition. Even the uniform movement is stationary. The
acceleration deviates from the stationary condition. This deviation goes
together with an extra field component.

Coordinate time!® relates to observations of position. It is a local player in
the game, where the progression parameter is a global player.

The situation with electromagnetic fields is different, because with this
tield positive and negative charges compensate each other’s long range
influence. For that reason there exists no electromagnetic background
influence. The masses of the gravitational and inertial fields only

144 http://en.wikipedia.org/wiki/Bertrand's theorem
145 Dynamics; Relativity
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compensate each other’s long range influences through geometrical
circumstances. Still in combination, they create gigantic potentials.

The particles outside the information horizons also contribute to the
inertia.

We may reverse the conclusion of the analysis:

An extra field component goes together with an acceleration of the local
item.

Thus when through uniform movement the local field configuration
changes, then that change goes together with an acceleration of the local
item.

Nearby items

Items that are located nearby have a different effect. In general their
influence will not have its strength equal to the average strength. Further
these items are not uniformly distributed. Still at macroscopic distances
their influence depends on inter-distance as f = —k/r. As a consequence
their influences form a landscape of which the effects will become sensible
in the action of the fields that surround the considered item. This
landscape will form a curved action space. The considered item will try to
follow a geodesic through that curved space.

Rotational inertia

Besides linear inertia there exists rotational inertia. In a non-rotating
universe hold near the origin A =0 and @ =-c2/G. We choose units such
that c=G=1. In a universe rotating slowly with angular speed w hold

Ax=wy (1)
Ay = —w-X (2)
©)
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AZ=O

& =T @7

A constant angular movement meets the fields that correspond to a
centripetal force.

The field E has the form
£ - w?r
Vitan?

An added uniform speed v meets the fields corresponding to a Coriolis
force.

H=VxA=2w
VvXH=2-vXw

The forces are usually considered as fictitious but they are actually caused
by inertia. Sciama treats them in section 5 of his paper. Like fields of linear
inertia these rotation related fields correspond to actions of the
manipulator.

Storage, sign selections and virtual items.
The static fields act as storage media for the location and the speed of the
charges of the physical items.

When the values of the fields are stored in hyper complex numbers, then
the sign choices for these numbers will also be reflected in these fields.
Each of the n independent imaginary base vectors will introduce an
independent sign selection. This will produce 2" field sign flavors.
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The fields can be interpreted as reflections of the presence of non-actual
items that are ready to exchange roles with actual items.

The proposition
This finding indicates that when our interpretation of Sciama’s analysis is
correct, the original proposition

All items in universe influence each other’s position.
is not generally true. The universe of items does not influence position. It
counteracts acceleration of individual items. Position is only influenced in
an indirect way and presupposes an observation. If the item moves in a
geodesic with uniform speed, then the position changes while the
influences of all other items compensate each other. In such cases the
summed influence is zero.

We may alter the original proposition (#). If our analysis is correct, then
the proposition

All items in universe influence each other’s acceleration.
is true.
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The origin of dynamics

If we want to discover the origin of dynamics, we must first determine
what the static structure of nature is. We already found an important
ingredient of this skeleton: the lattice structure of quantum logic and the
corresponding lattice structure of the closed subspaces of a Hilbert space.
Both structures are only defined in a static way. Nothing is said about
their dynamics. Besides of these static relations the concept of wave
functions and density operators offer insight in the probability and
information content of these relations. These subjects correspond to
private fields, which are the constituents of a covering field. This covering
field can be seen as the superposition of all private fields. For a selected
coordinate system the static covering field can be decomposed into a
rotation free and a divergence free part. Depending on the configuration
of the anchors of the private fields the decomposition does not run along
straight coordinate lines. This defines a local curvature that depends on
the selected coordinate system. That curvature can be used to define a
curvature field. This together defines the ingredients of the static status
quo. It all fits in a model that we call extended quantum logic or
equivalently extended Hilbert space.

In the previous part of the paper the added component of the static
structure of nature is investigated: the static structure of the influences. It
appears that this structure is identical with the structure of static Hilbert
fields. Both the analysis of inertia and the study of Hilbert fields showed
the static relation between divergence free fields and rotation free fields.
These analyses also showed the influence of dynamics on the coupling of
these static fields. The analysis of Hilbert fields explained how these fields
change as a function of the progression parameter go. Inertia showed how
these fields get coupled when the uniform movement of a physical item is
disturbed. We also explained that uniform movement may cause a
reconfiguration of the field. On its turn, this change may initiate extra
movement.
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Next we try to find a more precise formulation for these origins of
dynamics.

Extended quantum logic

Wave functions represent the probability of finding properties of actual
items. For example if a GPS type coordinate system is selected as its
parameter space, then this property can be the position of the item. If it is
a GMS type system, then the property can be momentum.

In quantum theory the values of fields are treated in equations of motion
in a similar way as the wave functions of actual items are treated in such
equations. The Hilbert book model interprets the wave function itself as
part of the field.

When fields in general can be considered as representations of the
probability of finding properties of actual as well as virtual items, then the
fields get an interesting interpretation.

In quantum logic the realistic physical item is represented by a
proposition in the form of a statement that says everything about that
item.

For non-actual items the new interpretation would mean that in extended
quantum logic the non-actual items are represented by potential
propositions that are ready to become actual propositions or that were
actual propositions in the past.

It means that traditional quantum logic is embedded in extended
quantum logic such that it apart from propositions about actual physical
items also contains preconditions about future physical items and post-
conditions about past physical items.

This information is contained the Fourier transforms of the QPAD’s that
belong to elementary particles. It is already shown that the canonical
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conjugated operators give information about changes of the original
operators',

In this way, the set of propositions of extended quantum logic is much
larger than the set of propositions of quantum logic.

Interpretation in logical terms

The results of the analysis of inertia mean that when the redefinition of
the set of vectors that belongs to the representation of the item occurs
such that this corresponds to a uniform movement of the physical item,
then the influences of the universe of items tend to compensate each
other. The whole is treated as a static set of relations. Otherwise, the
universe of items reacts with a corresponding extra field component. This
means an extra blur = extra divergence of the stochastic inaccuracy of
properties of the considered item.

Besides of the universe wide response, a local variance in the distribution
of items causes a variation in the influences. This local variance can partly
be the consequence of a uniform displacement of particles.

It seems that quantum logic and Helmholtz decomposition together
define an important part of the static relations that exist in physics. The
fields appear to resist the disturbance of the interrelations in the lattice of
quantum propositions. In dynamical sense this lattice might step from one
static status quo to the next. After a step new conditions are established
that again must fulfill the laws that govern the static situation. If this is a
proper interpretation, then it is likely that the progression step is taken
universe wide. After each step the positions of the physical items relative
to the fields have changed, thus when the fields are not uniformly
distributed, the items meet a different field configuration. The next step is
taken with and due to these new conditions.

146 Functions and fields; Canonical conjugate; The quaternionic displacement generator
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Quantum logic only defines a static skeleton in which the dynamics of
quantum physics takes place. To make it a dynamic logic, the set of
axioms must be extended. The new axioms must state that all
propositions influence each other. The influence depends on their mutual
(coordinate) distance. In stationary conditions, which include uniform
motion, these influences compensate each other. When an atomic
predicate that concerns an element of an ordered set is replaced in a non-
ordered fashion, meaning that the distance between the replaced elements
does not stay the same, then the universe of all propositions will react
such that the influences of the other propositions no longer compensate
each other. The disordered influences counteract the disordered
replacement.

Besides of that the local variance in the distribution of the propositions,
which corresponds to a variance of the distribution of the corresponding
physical items, also cause a variation in the influences that propositions
have with respect to each other.

In Hilbert space these influences are implemented in the actions of Hilbert
fields. In quantum physics the influence appears as a set of physical fields.

Minkowski signature

One important step must still be taken. In physics observed spacetime has
a Minkowski signature. Further we observe that space corresponds with
the imaginary part of a position quaternion for which the real part seems
to have no direct physical meaning. We must find an explanation for
these facts. The Minkowski signature defines the following time-like
relation between the space time step As, the space step Ag and the
coordinate time step At

(4s)? = (4)* — (4q)?/c?
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During inertial motion this corresponds for the proper time'¥’ 7 to

(41)* = (4t)* — (4q)?/c? 2)
At = At + Aq/c 3)

This is a triangle relation where At is at the hypotenuse.
If we substitute the Planck-length for 4g and the Planck-time for At then
At equals zero.

Dynamics

Schrodinger or Heisenberg picture

For global rotations around its origin the Hilbert unit sphere acts as an
affine space. It does not matter whether the eigenvectors of operators or
the subspace that represents the item is moved. We can take the picture in
which the subspace stays fixed, while the eigenvectors move and the
operators change with them. This is the Heisenberg picture.

We can also take the picture in which the eigenvectors and operators stay
fixed and the subspace moves. This is the Schrodinger picture.

We are only interested in the consequences. These are determined by the
relative movement, not by the absolute movement. For a given physical
item, in both pictures the expectation values of the operators vary in the
same way.

Unitary transform

A unitary transform is a bounded normal operator. Unitary transforms
keep the value of inner products untouched. If a unitary transform is
applied to two vectors, then their inner product stays the same.

147 http://en.wikipedia.org/wiki/Proper time
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Unitary transforms need not have eigenvectors. For example Fourier
transforms do not possess eigenvectors. In the rigged Hilbert space H
functions exist that apart from a scaling factor are invariant under Fourier
transformation.

If a unitary transform has eigenvectors then it has unit sized eigenvalues
and to each of these eigenvalues correspond one or more eigenvectors
that are mutually orthogonal. Unitary transforms are completely
determined by their vector replacement characteristics or by their
eigenvectors and the corresponding eigenvalues.

When a unitary operator U is applied to the eigenvector |q > of an
operator Q with eigenvalue g, then the eigenvector is transferred into
another vector |U g >. In general |U q > is not another eigenvector of Q. In
quaternionic Hilbert space the expectation value for |QU q > is no longer
q, but

<qU|QU q>=<q|UTQU q > (1)
Or, with other words the operator Q is redefined to U tQU.

The norm of the expectation value < f U|QU f > for an arbitrary vector
|f > does not depend on U. It only depends on Q and |f >. However the
expectation value is rotated and the rotation depends on U.

Trail of infinitesimal transforms

The effect of a single unitary transform U can also be achieved by a trail of
infinitesimal unitary transforms {U,};. This also holds for a set of unitary
operators that operate in parallel.

The situation sketched above can be refined for any instant t occurring
after t=0. We can treat it more generally by chopping the path from
{Ifs >}s to {|gst >}s into a trail of infinitesimal steps of size At that is
achieved by a set of infinitesimal transforms {Us.};, where
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|.gst >= |Hs Ustf:? >

and
Uy = 1+ AS,;

The parameter t acts as the trail progression parameter. It is not identical
with our common notion of time. If it has anything to do with time it will
be confronted with a lower limit, which is set by the Planck-time. The
infinitesimal transforms Us, work in parallel as well as in sequence. AS,
represents the current local infinitesimal action step. It is an imaginary
operator. Like time the action step also has a lower limit that is
determined by a corresponding Planck unit.

The Heisenberg picture conforms to the description with unitary
transforms where operators are redefined. When this is done in small
steps, then the redefined operator becomes a function of progression
parameter t.

Unitary transform with full set of eigenvectors

When a unitary transformation U is applied to an arbitrary vector |f >,
which is not an eigenvector, then that vector is transferred into another
vector |g > = |U f >, which has the same norm. If |f > is an eigenvector
of U then |f > is not transferred to a different vector, but it is multiplied
with the corresponding eigenvalue. Also in this case the norm stays the
same.

If a unitary transform contains a full set of eigenvectors, then
multidimensional subspaces usually contain one or more eigenvectors of
that unitary transform. In that case the transfer of a multidimensional
closed subspace requires a set of parallel unitary transforms.

If we take a set of vectors {|f; >}, that together span a closed subspace,
then a set of suitable unitary transforms {U;},, can in parallel transfer all
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vectors of this set such that after the transform |g; > = |U; f; > the set
{lgs >}s spans the new subspace. Each of the members U; of the set {U}
can be split in a trail. {Ug},

Fourier transform as unitary transform

Unitary transforms exist that have no eigenvectors. For example in
Hilbert space a Fourier transform has no eigenvectors and no eigenvalues.
It does not leave a single Hilbert vector untouched.

The Fourier transform converts an orthonormal base into another
orthonormal base, which is the canonical conjugate of the first.

Hilbert fields exist that apart from a scaling factor are invariant under
Fourier transformation. They keep their form through Fourier
transformation. For that reason they are often called eigenfunctions, but
they do not correspond to eigenvectors. Their form stays the same, but
their parameters change. So, the name eigenfunction is incorrect. The
Hermite functions!*® are notorious examples of Fourier invariant
functions. Even and odd functions have an indirect relation to functions
that are invariant under Fourier transformation.

An invariant function is not an eigenfunction. In extended separable Hilbert
space, every Fourier transform causes a resampling of the analyzed field
or function.

Each Fourier transform means a complete replacement of the current
orthonormal base. For that reason, a Fourier transform that resides in
separable Hilbert space can never be an infinitesimal unitary transform.
Stated in different words this means: The transform U;; = 1 + AS; isnot a
Fourier transform. However, Fourier transforms Uz and reverse Fourier
transforms U; can be member of a trail of unitary transforms, where each

148 Functions and fields; Functions that are invariant under Fourier transform.
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trail step contains a move up and down to Fourier space, while in Fourier
space only an infinitesimal action is taken.

|gst >= |l_[s UTUstU;—"f:c > (1)

Stepping through the Fourier space has the advantage that there
derivation turns into multiplication and multiplication with a factor close
to unity reduces to addition.

Single infinitesimal step

The success of the Feynman path integral formalism'* gives us guidance
in the analysis of what happens during a single infinitesimal step. We
analyze an arbitrary trail consisting of infinitesimal trajectory steps:

)
< qt1|USt1,to qt, > = 1_[(< Qtllpt ><p: Ust|qt >) < q¢,|pe, >

t=t0

During a single step the system moves from position g to g’ = q + Aq?
Let us evaluate < q'|p > < p U |q > for a single trajectory. Here Uy, is an
infinitesimal unitary transform. It is a member of the set of parallel
unitary transforms that act on a target subspace. In the following text we
leave the parallel trajectory index s in U, unspecified. We concentrate on
the sequence index t, which represents the progression parameter. The
infinitesimal sequence step comprises three sub-steps:

1. Goto Fourier space. This is achieved by part < q'|p >.
2. Perform the action. This is done by < p U;r |
3. Go back to configuration space. This is achieved by < p|q >.

The sense behind the first and the last part is a travel to and back from
Fourier space. Step two means that in Fourier space the action of the
operator is just a multiplication with factor exp(As;).

149 http://en.wikipedia.org/wiki/Path integral formulation
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<p Uf| = exp(As,) <pl
First we split < q'|p >.

, Aqp Aqp
<qlp>=<qlp> eXp(T>z<q|p>(1+T)

<plg>=<q|p>"
< q'|p > exp(As,) <plqg >

Aqp
~<q|p > 1+T 1+ Asy) <plg>

=<qlp> C <q|p>"

This is a quaternionic rotation of the central term C,, which is close to
unity. The quaternionic rotation manipulators stands for the route to
Fourier space and the route back from Fourier space. The central term C,

stands for what is done during a single step by the action in Fourier space.

A A
Ctz(1+$)(1+Ast)z1+$+Ast=1+ AC

A
Ac=¥+Ast

hAC—hAs,= Aqp

= Aqopo — (Aq,p) +Aqop + Aqpo+ Aq X p

We study the step AC somewhat deeper. Since q and p are considered to
be imaginary, we skip the parts containing Aq, or py.

hAC —hAs, = —(Aq,p)+ AqX p
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We introduce K. It characterizes the infinitesimal step.

—hAC hC
= A S

Both AC and K are functions of progression parameter t.

hACy = —K, At = — (Aq, p)
Ko = CL 5y ~(a,p)
0o — At,p ~ q;p

hAC—hAs;, = —KAt—hAs;,= AqX p

K= hASt+Aqx hs,+ g X
N At At p= SeT 4xXP

The steps Aq; and As, depend on the step At of the trajectory parameter ¢
that is used to chop the unitary transform Uy, ., .

In the trail the imaginary part of K is rotated.
If Aq is zero then

K= —h As,
B At

At is never zero. If At equals the Planck-time, then |Aq]| is either zero or it
equals the Planck-length. In that case

5 -
Ael €

Ray tracing

Following a trail has much in common with ray tracing in optics.
However in optics the use of characteristics that have their base in Fourier
analysis seems to be more fruitful than ray tracing. Ray tracing follows
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the path of a sharp particle, while Fourier analysis is capable of following
the life path of a blurred particle and include more of the influences of the
environment in the analysis. It is sensible to expect that the advantages of
Fourier analysis also hold for wave mechanics. As shown here, to a
certain extent the path integral approach also makes use of Fourier
analysis.

The dynamic of the private field

The private field represents the particle. When it is interpreted as a
probability amplitude distribution, then it can be related to the
expectation value of the position and the expectation value of the
momentum of the particle. In this way the private field represents all
potential paths with their corresponding probabilities. The Feynman path
integral relates all these paths with the actual path, which corresponds to
the path that uses minimal action.

Relativity

In advance Einstein’s own explanation of the origin of relativity was:
"There is no logical way to the discovery of these elementary laws. There is only
the way of intuition." Read more in:
http://www.time.com/time/magazine/article/0,9171,878733,00.html#ixzz15

NlhpWDu

Transformations that describe displacements

The current explanation of the origin of special relativity is based on the
properties of the generalized transformation that causes a displacement
with uniform speed. We apply the corresponding reasoning on the
Hilbert book model. This model represents static status quos of the
universe by extended quantum logics or equivalently by extended
separable Hilbert spaces. The complete model consists of a sequence of
such extended separable Hilbert spaces.

The unit sphere of the separable Hilbert space is an affine space. It houses
all unit length eigenvectors. This also holds for the eigenvectors of the
position operator. This means that between two realizations of the Hilbert
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space the eigenvector that corresponds to the origin of position can be
freely selected. Or with other words the origin of position can be selected
freely.

Differences between positions in subsequent members of the sequence of
extended separable Hilbert spaces can be interpreted as displacements.
The displacement is a coordinate transformation. For the properties of this
transformation it does not matter where the displacement starts or in
which direction it is taken. The same holds for displacements that concern
sequence members that are separated further apart.

The corresponding displacements form a group. The displacement is a
function of both the position and the sequence number. The displacement
z,t = z',t' can be interpreted as a coordinate transformation and can be
described by a matrix

t'y _[r o]rt
[Z’] - [,8 a] [z]
The matrix elements are interrelated.

Uniform movement

When the displacement concerns a uniform movement, the interrelations
of the matrix elements become a function of the speed v. The group
properties fix the interrelations'".

[2] = 1/\1+ kv? [_1v kv M

111z

If k is positive, then there may be transformations with kv? > 1 which
transform time into a spatial coordinate and vice versa. This is considered
to be unphysical.

150 Appendix; Displacement in an isotropic medium
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The condition k = 0 corresponds to a Galilean transformation

t'1_[11 01t 3)
=15 AL
The condition k < 0 corresponds to a Lorentz transformation. We then
can set kc? = —1, where c is an invariant speed that corresponds to the

maximum of v.

-7,

Z

Thus, when the displacement transformation group features a maximum
speed, then it concerns Lorentz transforms.

Since in each progression step photons step with a non-zero space step
and both step sizes are fixed, the speed of the photon at microscopic scale
is fixed. No other particle goes faster, so in the model a maximum speed
occurs. With other words when sequence members at different sequence
number are compared, then the corresponding displacements can be
described by Lorentz transformations.

Lorentz transformations introduce the phenomena that go together with
relativity, such as length contraction, time dilatation and relativity of
simultaneity that occur when two inertial reference frames are
considered. These phenomena occur in the Hilbert book model when
different members of the sequence of Hilbert spaces are compared.

Simultaneity
The restrictions set by the relativity of simultaneity limit the freedom of
the selection of reference frames.

Ate = (At, — Az, v/c?) /{1 —v2/c? (17)

313



Here t, is the proper time, which is measured by a clock that travels with
the observed item and t. is the coordinate time that is measured by the
observer.

If At, = 0 then depending on v and Az, the time difference At is non-
zero.

This restriction of selection of reference frames means that the inertial
reference frames cannot arbitrarily be taken from the sequence of extended
Hilbert spaces. Usually at least one of them must be taken from a multi-
sample range of extended Hilbert spaces.

For photons the proper time step is always zero.

Infinitesimal unitary transforms
Still another indication exists that the model supports special relativity.

The position operator Q is modified by the unitary operators of the trail
into another operator Q, that has different eigenvectors and different
eigenvalues.

Qeene = UeQcU/

U, ~ 1+ AS,

Uf ~1-A4s,

Q:iar ~ Q¢ + [AS,, Q]

AMq) = (Qr4ae) — (Q¢) = [AS,, Q] = 2 Q¢ X AS,

This indicates that the step A(q) in the expectation value (Q,) of Q, is
perpendicular to both Q, and AS,. The steps A(q) and AS; form a right
angular triangle with a hypotenuse: c¢ At,, such that:

c At, = A(q) + AS,
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Here we introduced a new imaginary variable ..
With Ae = AS,/c the Minkowski signature of a new “observable”
spacetime becomes visible.

I "
Ao = At — A(q)/c (8)
|Ac|? = |At|? — |A(q)]?/c? 9)

Thus, the analysis of what occurs during a single infinitesimal step gives
us an indication how relativity enters physics. However, it asks for the
introduction of a local notion of time t. = |t.| that differs considerably
from the (global) progression parameter t. This new parameter is the
coordinate time! ¢.

Proper time

In relativity, proper time' t,, is time measured by a single clock between
events that occur at the same place as the clock. It depends not only on the
events but also on the motion of the clock between the events. An
accelerated clock will measure a proper time between two events that is
shorter than the coordinate time measured by a non-accelerated (inertial)
clock between the same events.

|at,|” = 1t|2 — |A(g)[2/c? 1)

AS
Ao = Tt = eq Aty (2)

151 http://en.wikipedia.org/wiki/Coordinate time

152 http://en.wikipedia.org/wiki/Proper time
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Thus, proper time t,, is, via the action step AS, related to our notion of
progression parameter f.

For a photon the proper time step is always zero. This also holds in the
realm of general relativity. In the vicinity of a black hole this leads to the
fact that the radial velocity of a photon approaches zero when the photon
approaches the border of the black hole. The border is located at the
Schwarzschild radius ry,

rsn = 2MG /c? 3)

We use polar coordinates and the expression for the metric near the black
hole

2 _ o Ten o (_IATE o2 2 (4)
|ac,|” =@ - )|At,| (1—rsh/r+r |AQI? | /c
Take AQ = 0. Then with At, =0
dr Tsh (5)
A 1 ——=—
dt, C( r)
Discussion

We have successfully introduced special relativity into our model.
By introducing relativity this way we perform a few tricks.
e We neglect the real part of the quaternionic position observable. In
our model it plays no essential part in dynamics.
e Clocks do not count progression steps. Instead they tend to
measure coordinate time differences.
e We may shift from the global progression parameter t to the local
coordinate time t,.
e We may combine the resulting observed space with coordinate
time into a Minkowski/Lorentzian space.
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As a consequence

e We then shift from 2"-on/Riemannian space to
Minkowski/Lorentzian space.

e Most physicists will use Clifford, Jordan and Grassmann algebras
rather than 2"-on algebras.

e With these algebras they can use complex analysis instead of the
more complicated 2"-on analysis.

e Butif they do so, they are confronted with unintuitive selection
features.

e In the new space the quaternion waltz becomes an odd operation.

e Spinors can help in order to cope with these changes.

Can we do without relativity?
Yes.

e Skip coordinate time.

e Use clocks that measure the progression parameter.
However, you would have to fight existing conventions.

Inertia and progression step

The covering field represents the influence of the universe of all particles.
According to the findings about inertia'>®, the change AE since the last
progression step of the corresponding curvature field E determines the
acceleration that a local particle senses during the current progression
step.

This results in the acceleration % of the particle.

ov (1)
AE(r,t) = G -—
() ot
Redefinition
If we want to use the Schrodinger picture, rather than the Heisenberg
picture, then it is better not to use unitary transforms, because they

153 Influence; Inertia
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change the operators by acting on the eigenvectors of the operators.
Instead the subspace should be redefined without touching eigenvectors.

Let us suppose that there exists a dynamical equivalent of the traditional
quantum logic. The equivalent of a move of a physical item in the lattice
of propositions is a redefinition of a subset of the propositions. The
redefinition occurs in terms of atomic predicates that describe the
properties of the physical items. In the Hilbert space this corresponds
with a redefinition of a relevant part of the Hilbert subspace in terms of
the eigenvectors that belong to the new eigenvalues.

The redefinition concerns the Hilbert space which represents the current
static status quo. The step transforms the current version of the Hilbert
space into a past version of the Hilbert space and it transforms a future
version of the Hilbert space into the new current version. This is
interesting in the light that a Hilbert field exists that controls the relation
between the past, the current and the future versions of the Hilbert fields.
For that reason we will call this special Hilbert field the adventure field.
A transform that controls dynamics converts a future Hilbert space into
the new current Hilbert spaces and it converts the current Hilbert spaces
into a past Hilbert space. This transform will be called progression
transform. The local blurs that characterize the adventure field form
boundary conditions for the local transfer characteristics of the
progression transform. Each item type is surrounded by a characteristic
blur.

A progression transform that moves Hilbert subspaces without touching
the eigenvectors of normal operators will be called a redefiner. The effect
of the action of the redefiner on expectation values of operators must be
similar to the effect of the trail of parallel unitary transforms treated in the
previous paragraphs. While the set of parallel trails of unitary transforms
act in the Heisenberg picture, the redefiner acts in the Schrodinger
picture. As indicated earlier, the redefiner has an equivalent in the
dynamic version of quantum logic.
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In order to achieve the same effect as the Heisenberg picture, the Hilbert
subspace redefiner must to a large degree have similar properties as the
trails of parallel infinitesimal unitary transformations that are used to
move the subspace in the Heisenberg picture. The redefinition keeps the
inner products of vectors intact. Where unitary transforms rotate vectors
around the origin of a Hilbert space, the redefiner takes subspaces of a
potential future Hilbert space in order to redefine them into subspaces of
the new current Hilbert space. In contrast to a unitary transform the
redefiner does not change the eigenvectors of normal operators. Thus, it
leaves the operators untouched. Like the trails of unitary transforms the
redefinition works in infinitesimal steps. These infinitesimal actions also
form trails. In this way the manipulated subspace can move close to
continuously through Hilbert space. Where the redefiners act on
subspaces, the trails of unitary transforms redefine operators.

During this process the subspace may change its configuration. This may
include a change that corresponds to the change of type definitions of
atomic predicates. The redefiner steps from one stationary situation to the
next. The Schrodinger picture conforms to the description with a
redefiner. The result for the position of the locator must be the same as it
was under the influence of the set of parallel infinitesimal unitary
operators in the Heisenberg picture. The redefiner moves the subspace
such that the new locator position is similar to the value as was
established by the redefined position operator. It means that during the
redefiner step the position of the locator undergoes an infinitesimal
number transform that is equivalent to the infinitesimal transform that is
established by the redefined position operator. That redefinition was
caused by the parallel infinitesimal unitary transforms.

Trails

In fact the At step characterizes the redefinition step. The subsequent
replacement of vectors and the replacement of the corresponding
eigenvalues can be interpreted as a rather continuous movement of the
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corresponding characteristic subjects. Here we encountered ten different
trails.

1. The trail of subsequent manipulators (infinitesimal unitary
transforms or infinitesimal redefiners) that each perform an
infinitesimal action.

2. The trail of subspaces, which with respect to the manipulators are

characteristic for the considered item.

The trail of corresponding “action values” of the redefiner.

The trails of corresponding “action values” of the unitary
transforms.

The trail of eigenvectors |qe>

The trail of corresponding observables Q.

The trail of corresponding observed expectation values gt.

The trail of values {(g:) of a wave function.

This, on its turn corresponds to a trail of a state in coordinate space
10 And a trail of that state in Hilbert space.

Ll

© ® N o v

Cycles

It is quite possible that locally subsequent steps are done in cycles of two
or more steps. It is obvious that movements inside an item are cyclic. In
ideal circumstances these movements are harmonic.

Redefiner

The concept of dynamic manipulator gives us reason to introduce a new
type of actuator: the redefiner R. This actuator moves subspaces, but
leaves vectors untouched. It works in infinitesimal steps. In the Hilbert
book model its activity fits in the conversion from an actual Hilbert space
to the next Hilbert space. It is easily interpreted as a function R: of the
progression parameter t. Its scope spans the subsequent Hilbert spaces.
The effect of each step on an item is similar to the effect of a set of parallel
infinitesimal unitary transforms {Ux}s. The current “action value” of the
redefiner is a number, which is close to unity. It is an “average” of the
“actions values” of the parallel infinitesimal uniforms that are active in
the same step. The redefiner accepts 2"-ons as “action values”.
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The redefiner has an equivalent in a dynamic quantum logic, where it
redefines propositions that concern the same objects as are represented by
the closed subspaces of the Hilbert space that are moved by R:. There
seems to be no objection against the assumption that Rt has a global scope.
If we take that point of view, then the progression parameter t also has a
global scope.

With this interpretation, the redefiner is a universe-wide stepper. It
transforms the universe from one static situation to the next static
situation. These static situations are governed by extended quantum logic,
which combines traditional quantum logic, the blur of representations of
physical items and the Helmholtz/Hodge decomposition theorems. After
each step a new static status quo of subspaces and fields is established.
After the step the conditions have been changed. After each step the
position of the physical item relative to the fields has changed, thus when
the fields are not uniformly distributed, the item meets a different field
configuration. On the other hand the fields represent the blurs of the
individual items. Thus, when the position or the type of the item has
changed, then the local configuration of the field has changed. This is the
way that macroscopic dynamics takes place in quantum physics.
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Equations of motion

Private continuity equation
Existence, transport, generation and annihilation of information carrying quanta is
governed by a continuity equation. In short this equation runs:

Total change within V = flow into V + production inside V

This integral equation corresponds to differential equations in which an
information quantum density po, an information quantum current p and an
information quantum source s will play a role.

Particles act as sources and drains. Private fields represent the currents and the
static density distributions. Wave functions are private fields that represent the
situation in the direct environment of particles.

The rotation free part of the private field corresponds to the divergence of the
information QPAD, whose squared modulus corresponds to the probability
density. The transverse part of the private field corresponds to curl of the
information current QPAD, whose squared modulus corresponds to the
information current. Together the private fields form the covering field. The
covering field is the superposition of all private fields. The curvature field is
derived from the decomposition properties of the covering field.

Particles

Fields are superpositions of QPAD’s. These QPAD’s are typical for
corresponding particles and are attached to one or a small set of Hilbert vectors.
The anchor points of the fields are eigenvectors of the strand operator. Thus the
eigenvalue of these vectors are positions. All other properties of the particle are
properties of its private field.

Particle types

Boson dynamics is controlled by U(1). Four boson types exist: photons, gluons,
W type and Z type bosons. They all have spin £1. However, apart from the W
type, bosons do not carry a charge. They are the messengers that transfer
interactions. Photons and gluons are massless bosons. Z and W type bosons have
mass. They mediate weak field forces. The photons mediate EM field forces.
Photons have no charge. Gluons have color charge. The gluons mediate color
(strong) field forces. All bosons can be considered as a pair of fermions. For that
reason it might be sensible to attach in the Hilbert book model two Hilbert
vectors to a single boson that each attach to a fermion.
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Quark color dynamics is controlled by SU(3) and quark sign flavor is controlled
by SU(2). Six quark types exist: up, down, charm, strange, top and bottom. These
quarks are grouped into 3x2 sign flavors. They all have spin % and fractional
electric charge. Further, each quark has one of three color charges: red, green or
blue. The quarks have mass. The Hilbert book model attaches a quark to a single
Hilbert vector. The attached private field can be red, green or blue. An SU(3)
group treats the corresponding color conversions.

The color neutral hadrons are aggregates and group into baryons and mesons. The
baryons consist of three quarks and the mesons consist of a quark and an anti-
quark. In this picture the gluons are not counted. For the aggregates the anchor
points carry together a centralized probability distribution that represents the
influence of a single charge.

Eight types of gluons exist. Gluons have color charge. The eight gluons
correspond to the eight generators of the SU(3) group. They each attach to two
Hilbert vectors.

Glueballs are aggregates that consist of gluons.

Six lepton types exist. All leptons have spin £%. The three neutrino types have no
charge and relative little mass. The electron, the muon and the tau particle are all
massive particles. The leptons are attached to a single Hilbert vector. These
leptons are grouped into 3x2 sign flavors. The sign flavors correspond to an
SU(2) group.

Gen | Gen Il Gen 11l type
Up Down charm Strange top Bottom | quark
2/3 -1/3 2/3 -1/3 2/3 -1/3 charge
low high low high low high | sign flavor

red
green
blue

Ve e electron vy, “ muon vy Ttau | lepton
0 -1 0 -1 0 -1 charge
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An SU(3) group treats colors for quarks. An SU(2) group treats sign flavor
conversions for both quarks and leptons. The W and Z bosons mediate sign
flavors.

type mediates #
photon Leptons, hadrons, WX EM | 1
gluon Quark color 8
wt w- Fermion sign flavor 1,1
Z Fermion sign flavor 1

Photons and gluons are massless. Neutrinos are nearly massless.

Usually the Higgs boson is also included into the standard model. The Hilbert
book model does not do that. It takes the position that the reason for a particle to
cause curvature is already contained in the structure of the private field.

In the strand model bosons are attached to a single strand, quarks are attached to
two strands and leptons attach to three strands. In the Hilbert book model all
elementary fermions attach to a single Hilbert vector. Bosons attach to two
Hilbert vectors. One vector attaches to a fermion and the other vector attaches to
an anti-fermion.

Interactions

QPAD?’s, which represent particles, move and rotate. That is interpreted as a
movement / rotation of the corresponding item. Interactions may change the form
of the QPAD’s. Three types of change are discerned:

In strand theory the first Reidemeister move, or type | move, or twist, is
the addition or removal of a twist in a corresponding strand. In Hilbert space it
involves the approach of a single Hilbert vector into the realm of a particle. The
twist, is related to the electromagnetic interaction. Two twist directions are
possible. The twists form an SU(1) group.

In strand theory the second Reidemeister move, or type Il move, or poke,
is the addition or removal of a bend of one strand under (or over) a second strand.
In Hilbert space it involves the interaction of two Hilbert vectors in the realm of a
particle, where one Hilbert vector approaches the particle. The poke is related to
electro-weak interaction. Three basic pokes exist. The pokes form an SU(2)

group.

324




In strand theory the third Reidemeister move, or type Ill move, or slide, is
the displacement of one strand segment under (or over) the crossing of two other
strands. In Hilbert space it involves the simultaneous interaction of three Hilbert
vectors in the realm of a particle, where one Hilbert vector approaches the
particle. The slide is related to electro-strong interaction. The slides form an
SU(3) group.

Each Reidemeister move generates a single corresponding observable quant or
annihilates a single potentially observable quant.

Schrodinger equation

When the spin has a constant direction:

The first term on the left side signifies the quantum generation rate per
time step.

The second term indicates the influence of the electric field on this rate.
The first term on the right signifies the generation rate per path length.
The second term indicates the influence of the vector potential on this
rate.

The square dependence indicates the increasing alignment of spin with
the movement.

(hw — qV)P(x,t) = (hk — qA)P(x,¢)

1
(ihde = qV)P = o— (~ih? — qA)*Y

Pauli equation
When the spin has no constant direction:
The density p(x,t) and the Euler angles «, 8,y define the Pauli equation:

B\
i« | cos (E) ez

Y= Jeer | (ﬁ’) 1
tsin|—je
2

Due to the half angles, the two-component matrix is not a vector, but a spinor.
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Pauli’s equation for the evolution of a free quantum particle with spin %% is:

how = — 2 (ov)2w (4)
2m

S S L (5)
(iho: — qV)¥ Zm( ihV — qA)“¥ > oBY

The last term shows the influence of spin.

Dirac equation
The final and most detailed description of elementary fermions, the Dirac
equation, results from combining all three ingredients:

1. the relation between the quantum of action and the phase of the wave

function,
2. the relativistic mass—energy relation,
3. spin 1/2.
4]
i—l'b = (aV + ifm)y (D
at
10 i1[0 j] 0 k 2)
a=[2 ol [5 ol L% 9
., _J0 1 (3)
v = Jp el LR (5 p " (4)
2'2°2

p(r, t) is the probability density.
6 is a phase which represents the relative importance of particle and antiparticle
density.
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a, f and y are Euler angles. They describe the average local orientation and
phase of the spin axis.

(this defines a rotating spin vector)

v(r,t) is the average local Lorentz boost.

LR is an abbreviation for the boosted and rotated unit spinor.(quantum)

The probability amplitude i moves and rotates and individually the quanta carry
position, momentum and angular momentum (including spin) information.

Fields

It is clear that the physical fields play an important role in nature. They
form an indispensable ingredient in the establishment of dynamics. Each
physical item follows a path through a set of universe wide fields. The
static gravitational field, the electrostatic field and the electromagnetic
field are all subjected to the Helmholtz decomposition theorem. The
difference between the gravitational field and the electromagnetic field is
that the masses are non-negative and the electric charges are, apart from a
sign, always the same. All other fields also have charges that on the long
range will compensate each other. The gravitation field can be seen as
being derived from the curvature set by the decomposition of the
covering field. The covering field is the superposition of all fields but the
gravitation field.

When the path with respect to the gravitation field corresponds to a unit
speed curve then that field executes no action onto that item. Only the
gravitation field keeps its long range because its charges do not
compensate each other’s potentials. They only compensate each other’s
forces.

More fields

There exists a list of fields with shorter ranges than the range of the
gravitation field and the range of the electromagnetic fields. The electro-
weak field and the electro-strong field are not treated here in detail.

The action represented by a complete Lagrangian indicates how fields
appear in the argument of a manipulator. See Lagrangian of the world!**

134 Appendix; Thoughts; The world’s action
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for a complete survey of terms. Mendel Sachs'® has also found a way to
bring all terms under the same hood.

Lagrangian

= @(ihcP — mc?)p — —F JFH — %Z Wawi
8
~% ) GG
a=1
Where p,v =1,2,3

The first term concerns the affected particle.
The second term concerns electromagnetic interactions. Reidemeister twists.
SU(2).

The third term concerns unbroken weak interactions. Reidemeister moves. SU(2).

The fourth term concerns unbroken strong interactions. Reidemeister slides.
SU(3).

D =y°D; = vy (0, — iqA;)
E, = 0,4, — 0,4,
%% — OMWU“ _ avVVya _ gfabc %bmc
¢ = 0,G¢ — 0,GF — g fcGLGS
@ is the private field of the affected particle.
A,, W2 and W,* are vector potentials of the corresponding subfields

g is the gauge coupling constant’®. The quantity f%¢ is the structure
constant'™” of the gauge group.

155 Appendix; Thoughts; Representing multiple fields
156 http://en.wikipedia.org/wiki/Coupling constant

157 http://en.wikipedia.org/wiki/Algebra over a field#Structure coefficients
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Path through field

The text in this section is borrowed from Wikipedia.

In a Riemannian manifold!'®® M with metric tensor'® g, the length of a
continuously differentiable curve y: [a,b] = M is defined by

b
M
LOy) = f Joroposm

The distance d(p, q) between two points p and q of M is defined as the
infimum'® of the length taken over all continuous, piecewise
continuously differentiable curves y: [a, b] - M such that y(a) = p and
y(b) = q. With this definition of distance, geodesics in a Riemannian

manifold are then the locally distance-minimizing paths, in the above
sense.

The minimizing curves of L in a small enough open set'®! of M can be
obtained by techniques of calculus of variations!®?. Typically, one
introduces the following action'®® or energy functional'®*

o[ (2)
EW) =" gywewiw)
a
It is then enough to minimize the functional E, owing to the Cauchy—
Schwarz inequality'®
Ly)*<2(b—-a)E®y) )

with equality if and only if |dy/dt| is constant.

158 http://en.wikipedia.org/wiki/Riemannian manifold

15 http://en.wikipedia.org/wiki/Metric tensor

160 http://en.wikipedia.org/wiki/Infimum

161 http://en.wikipedia.org/wiki/Open set

162 http://en.wikipedia.org/wiki/Calculus of variations

163 http://en.wikipedia.org/wiki/Action (physics)

164 http://en.wikipedia.org/wiki/Energy functional

165 http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz inequality
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The Euler-Lagrange!® equations of motion for the functional E are then
given in local coordinates by

d?x* dx* dx” (4)
+ A . _—0
dt? Woode  dt

where I}, are the Christoffel symbols'” of the metric. This is the geodesic

equation.

Calculus of variations

Techniques of the classical calculus of variations!*® can be applied to
examine the energy functional E. The first variation!® of energy is defined
in local coordinates by

4 1
SEN@) ==| E(r+to) @
t=0
The critical points'” of the first variation are precisely the geodesics. The
second variation is defined by
2 i 2)
SEMY) =5 EG+te+sp)
t=0

In an appropriate sense, zeros of the second variation along a geodesic y
arise along Jacobi fields'”!. Jacobi fields are thus regarded as variations
through geodesics.

By applying variational techniques from classical mechanics!”, one can
also regard geodesics as Hamiltonian flows'. They are solutions of the

166 Appendix; Derivation of the one dimensional Euler Langrange equation
167 Equations of motion; Path through field; Christoffel symbols

168 http://en.wikipedia.org/wiki/Calculus of variations

169 http://en.wikipedia.org/wiki/First variation

170 http://en.wikipedia.org/wiki/Critical point (mathematics)

171 http://en.wikipedia.org/wiki/Jacobi field

172 http://en.wikipedia.org/wiki/Classical mechanics
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associated Hamilton-Jacobi equations', with (pseudo-)Riemannian
metric taken as Hamiltonian'”.

Affine geometry
A geodesic on a smooth manifold M with an affine connection'”® V is

defined as a curve y(t) such that parallel transport'”” along the curve
preserves the tangent vector to the curve, so

at each point along the curve, where y is the derivative with respect to ¢.
More precisely, in order to define the covariant derivative of y it is
necessary first to extend y to a continuously differentiable imaginary
Hilbert field in an open set'”®. However, the resulting value of the
equation is independent of the choice of extension.

Using local coordinates' on M, we can write the geodesic equation
(using the summation convention'®’) as

d2x? . dxt dx?
+ ) ———— =
dt? dt dt

where x#(t) are the coordinates of the curve y(t) and Fﬁ\, are the
Christoffel symbols'! of the connection V. This is just an ordinary
differential equation for the coordinates. It has a unique solution, given an
initial position and an initial velocity.
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From the point of view of classical mechanics, geodesics can be thought of
as trajectories of free particles in a manifold. Indeed, the equation

V,¥(t) = 0 means that the acceleration of the curve has no components in
the direction of the surface (and therefore it is perpendicular to the
tangent plane of the surface at each point of the curve). So, the motion is
completely determined by the bending of the surface. This is also the idea
of the general relativity where particles move on geodesics and the
bending is caused by the gravity.

Christoffel symbols
If x',i=1,2,...,n, is a local coordinate system on a manifold M, then the
tangent vectors
0 (1)
define a basis of the tangent space of M at each point. The Christoffel
symbols I'}, are defined as the unique coefficients such that the equation

Ve, = T e @)

holds, where V,is the Levi-Civita connection'® on M taken in the

coordinate direction e,,.
The Christoffel symbols can be derived from the vanishing of the

covariant derivative of the metric tensor gik:

_ 09w

_ n 0 3)
0=Vigw = 9%, I T = Gun - Ty

By permuting the indices, and re-summing, one can solve explicitly for
the Christoffel symbols as a function of the metric tensor:

182 http://en.wikipedia.org/wiki/Levi-Civita connection
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09y 0gnya  0Gwa (4)
F"u}‘ - 1/2"(]111/'((')36"l + ax¥  0x"

where the matrix (g"V) is an inverse of the matrix (g uv), defined as (using
the Kronecker delta, and Einstein notation for summation)

gM* - g,y = 61 (5)

Although the Christoffel symbols are written in the same notation as
tensors with index notation, they are not tensors, since they do not
transform like tensors under a change of coordinates.

Under a change of variable from (x}, ...., x") to (Y}, ...., y"), vectors
transform as

0 _ 0x* 0 (6)
dyt 0yt odxk
and so
v 0xP 0x% - oy* ay* 9%x™ (7)

I _a_yi'w'rpq'axr-l_axm'ayiayj

where the underline denotes the Christoffel symbols in the y coordinate
frame. Note that the Christoffel symbol does not transform as a tensor,
but rather as an object in the jet bundle.

At each point, there exist coordinate systems in which the Christoffel
symbols vanish at the point. These are called (geodesic) normal
coordinates, and are often used in Riemannian geometry.

The Christoffel symbols are most typically defined in a coordinate basis,
which is the convention followed here. However, the Christoffel symbols
can also be defined in an arbitrary basis of tangent vectors e, by

Ve#ev = F&v "€ (8)
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The action along the live path
The integrated action Sw is performed over a distance along the action
trail or equivalently over a period of coordination time

(1)

b
Sap = — f m- c? - ds + matter terms
a

v 2
= — m-c?- [1- (E) - dt + matter terms

m is the mass of the considered item.
v is the speed in Q space.
L is the Lagrangian.

The first line of this formula can be considered as an integral along the
trail in coordinate space or equivalently over the trail in Hilbert space.
The next lines concern integrals over the corresponding path in observed
space combined with coordinate time. It must be noticed that these spaces
have different signature.

L= —-m-c?. % + matter terms (2)

In general relativity, the first term generalizes (includes) both the classical
kinetic energy and interaction with the Newtonian gravitational potential.
It becomes:

m-cz.éz—m.c. g ,q ,q (3)
dr aB " Ha " 4B
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Jap is the rank 2 symmetric metric tensor which is also the gravitational
potential. Notice that a factor of ¢ has been absorbed into the square root.
The matter terms in the Lagrangian £ differ from those in the integrated

action Sab.
’ 4)
Sab matter = — f e A, - dq” + other matter terms
a
The matter term in the Lagrangian due to the presence of an
electromagnetic field is given by:
L= —-m-c?: % +e-q¥- A, + other matter terms (5)
A, is the electromagnetic 4-vector potential.
Black hole
Classical black hole
According to classical mechanics the no-hair theorem!? states that, once a
black hole achieves a stable condition after formation, it has only three
independent physical properties:
® mass,
e charge, and
e angular momentum.
The surface gravity k may be calculated directly from Newton's Law of
Gravitation184, which gives the formula
_Gm (2)

K=—
r2

183 http://en.wikipedia.org/wiki/No-hair theorem
184 http://en.wikipedia.org/wiki/Newton%27s Law of Gravitation
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where m is the mass of the object, r is its radius, and G is the gravitational
constant!®. If we let p = m/V denote the mean density of the object, we
can also write this as

_41TG
K= 3 pr

For fixed mean density p, the surface gravity k is proportional to the
radius r.

Sciama'® relates G to the potential that is raised by the community of
particles. For fixed mean density p this is shown by

dv
® = —deV= —pf—=p27tR2
vT v T

®  p2mR?
Here R is the current radius of the universe.

Simple black hole

The Schwarzschild radius 75 for a non-rotating spherical black hole is

2Gm
TS =

c?

General black hole
More generally holds

185 http://en.wikipedia.org/wiki/Gravitational constant

186 Influence;Inertia
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K
dM = —dA+0d] + $dQ

e M is the mass/energy,

e Ais the horizon area,

e (isthe angular velocity,

e ] isthe angular momentum,

e ¢ is the electrostatic potential,
e Kk is the surface gravity,

e ( is the electric charge.

For a stationary black hole, the horizon has constant surface gravity.
It is not possible to form a black hole with surface gravity. k = 0.

Quantum black hole
When quantum mechanical effects are taken into account, one finds that
black holes emit thermal radiation (Hawking radiation) at temperature

T—K
= on

A quantum black hole is characterized by an entropy S and an area A.
The entropy of a black hole is given by the equation:

B c3kA
"~ 4hG

The Bekenstein-Hawking Entropy of three-dimensional black holes
exactly saturates the bound

where Ap is the two-dimensional area of the black hole's event horizon in
units of the Planck area,

